forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3394 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3394 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements name lookup for C, C++, Objective-C, and
 | |
| //  Objective-C++.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "clang/Sema/Sema.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/TemplateDeduction.h"
 | |
| #include "clang/Sema/ExternalSemaSource.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/LangOptions.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <limits>
 | |
| #include <list>
 | |
| #include <set>
 | |
| #include <vector>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| namespace {
 | |
|   class UnqualUsingEntry {
 | |
|     const DeclContext *Nominated;
 | |
|     const DeclContext *CommonAncestor;
 | |
| 
 | |
|   public:
 | |
|     UnqualUsingEntry(const DeclContext *Nominated,
 | |
|                      const DeclContext *CommonAncestor)
 | |
|       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
 | |
|     }
 | |
| 
 | |
|     const DeclContext *getCommonAncestor() const {
 | |
|       return CommonAncestor;
 | |
|     }
 | |
| 
 | |
|     const DeclContext *getNominatedNamespace() const {
 | |
|       return Nominated;
 | |
|     }
 | |
| 
 | |
|     // Sort by the pointer value of the common ancestor.
 | |
|     struct Comparator {
 | |
|       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
 | |
|         return L.getCommonAncestor() < R.getCommonAncestor();
 | |
|       }
 | |
| 
 | |
|       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
 | |
|         return E.getCommonAncestor() < DC;
 | |
|       }
 | |
| 
 | |
|       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
 | |
|         return DC < E.getCommonAncestor();
 | |
|       }
 | |
|     };
 | |
|   };
 | |
| 
 | |
|   /// A collection of using directives, as used by C++ unqualified
 | |
|   /// lookup.
 | |
|   class UnqualUsingDirectiveSet {
 | |
|     typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
 | |
| 
 | |
|     ListTy list;
 | |
|     llvm::SmallPtrSet<DeclContext*, 8> visited;
 | |
| 
 | |
|   public:
 | |
|     UnqualUsingDirectiveSet() {}
 | |
| 
 | |
|     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
 | |
|       // C++ [namespace.udir]p1:
 | |
|       //   During unqualified name lookup, the names appear as if they
 | |
|       //   were declared in the nearest enclosing namespace which contains
 | |
|       //   both the using-directive and the nominated namespace.
 | |
|       DeclContext *InnermostFileDC
 | |
|         = static_cast<DeclContext*>(InnermostFileScope->getEntity());
 | |
|       assert(InnermostFileDC && InnermostFileDC->isFileContext());
 | |
| 
 | |
|       for (; S; S = S->getParent()) {
 | |
|         if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
 | |
|           DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
 | |
|           visit(Ctx, EffectiveDC);
 | |
|         } else {
 | |
|           Scope::udir_iterator I = S->using_directives_begin(),
 | |
|                              End = S->using_directives_end();
 | |
| 
 | |
|           for (; I != End; ++I)
 | |
|             visit(*I, InnermostFileDC);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Visits a context and collect all of its using directives
 | |
|     // recursively.  Treats all using directives as if they were
 | |
|     // declared in the context.
 | |
|     //
 | |
|     // A given context is only every visited once, so it is important
 | |
|     // that contexts be visited from the inside out in order to get
 | |
|     // the effective DCs right.
 | |
|     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
 | |
|       if (!visited.insert(DC))
 | |
|         return;
 | |
| 
 | |
|       addUsingDirectives(DC, EffectiveDC);
 | |
|     }
 | |
| 
 | |
|     // Visits a using directive and collects all of its using
 | |
|     // directives recursively.  Treats all using directives as if they
 | |
|     // were declared in the effective DC.
 | |
|     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
 | |
|       DeclContext *NS = UD->getNominatedNamespace();
 | |
|       if (!visited.insert(NS))
 | |
|         return;
 | |
| 
 | |
|       addUsingDirective(UD, EffectiveDC);
 | |
|       addUsingDirectives(NS, EffectiveDC);
 | |
|     }
 | |
| 
 | |
|     // Adds all the using directives in a context (and those nominated
 | |
|     // by its using directives, transitively) as if they appeared in
 | |
|     // the given effective context.
 | |
|     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
 | |
|       llvm::SmallVector<DeclContext*,4> queue;
 | |
|       while (true) {
 | |
|         DeclContext::udir_iterator I, End;
 | |
|         for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
 | |
|           UsingDirectiveDecl *UD = *I;
 | |
|           DeclContext *NS = UD->getNominatedNamespace();
 | |
|           if (visited.insert(NS)) {
 | |
|             addUsingDirective(UD, EffectiveDC);
 | |
|             queue.push_back(NS);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (queue.empty())
 | |
|           return;
 | |
| 
 | |
|         DC = queue.back();
 | |
|         queue.pop_back();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add a using directive as if it had been declared in the given
 | |
|     // context.  This helps implement C++ [namespace.udir]p3:
 | |
|     //   The using-directive is transitive: if a scope contains a
 | |
|     //   using-directive that nominates a second namespace that itself
 | |
|     //   contains using-directives, the effect is as if the
 | |
|     //   using-directives from the second namespace also appeared in
 | |
|     //   the first.
 | |
|     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
 | |
|       // Find the common ancestor between the effective context and
 | |
|       // the nominated namespace.
 | |
|       DeclContext *Common = UD->getNominatedNamespace();
 | |
|       while (!Common->Encloses(EffectiveDC))
 | |
|         Common = Common->getParent();
 | |
|       Common = Common->getPrimaryContext();
 | |
| 
 | |
|       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
 | |
|     }
 | |
| 
 | |
|     void done() {
 | |
|       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
 | |
|     }
 | |
| 
 | |
|     typedef ListTy::const_iterator const_iterator;
 | |
| 
 | |
|     const_iterator begin() const { return list.begin(); }
 | |
|     const_iterator end() const { return list.end(); }
 | |
| 
 | |
|     std::pair<const_iterator,const_iterator>
 | |
|     getNamespacesFor(DeclContext *DC) const {
 | |
|       return std::equal_range(begin(), end(), DC->getPrimaryContext(),
 | |
|                               UnqualUsingEntry::Comparator());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // Retrieve the set of identifier namespaces that correspond to a
 | |
| // specific kind of name lookup.
 | |
| static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
 | |
|                                bool CPlusPlus,
 | |
|                                bool Redeclaration) {
 | |
|   unsigned IDNS = 0;
 | |
|   switch (NameKind) {
 | |
|   case Sema::LookupOrdinaryName:
 | |
|   case Sema::LookupRedeclarationWithLinkage:
 | |
|     IDNS = Decl::IDNS_Ordinary;
 | |
|     if (CPlusPlus) {
 | |
|       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
 | |
|       if (Redeclaration)
 | |
|         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupOperatorName:
 | |
|     // Operator lookup is its own crazy thing;  it is not the same
 | |
|     // as (e.g.) looking up an operator name for redeclaration.
 | |
|     assert(!Redeclaration && "cannot do redeclaration operator lookup");
 | |
|     IDNS = Decl::IDNS_NonMemberOperator;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupTagName:
 | |
|     if (CPlusPlus) {
 | |
|       IDNS = Decl::IDNS_Type;
 | |
| 
 | |
|       // When looking for a redeclaration of a tag name, we add:
 | |
|       // 1) TagFriend to find undeclared friend decls
 | |
|       // 2) Namespace because they can't "overload" with tag decls.
 | |
|       // 3) Tag because it includes class templates, which can't
 | |
|       //    "overload" with tag decls.
 | |
|       if (Redeclaration)
 | |
|         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
 | |
|     } else {
 | |
|       IDNS = Decl::IDNS_Tag;
 | |
|     }
 | |
|     break;
 | |
|   case Sema::LookupLabel:
 | |
|     IDNS = Decl::IDNS_Label;
 | |
|     break;
 | |
|       
 | |
|   case Sema::LookupMemberName:
 | |
|     IDNS = Decl::IDNS_Member;
 | |
|     if (CPlusPlus)
 | |
|       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupNestedNameSpecifierName:
 | |
|     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupNamespaceName:
 | |
|     IDNS = Decl::IDNS_Namespace;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupUsingDeclName:
 | |
|     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
 | |
|          | Decl::IDNS_Member | Decl::IDNS_Using;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupObjCProtocolName:
 | |
|     IDNS = Decl::IDNS_ObjCProtocol;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupAnyName:
 | |
|     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
 | |
|       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
 | |
|       | Decl::IDNS_Type;
 | |
|     break;
 | |
|   }
 | |
|   return IDNS;
 | |
| }
 | |
| 
 | |
| void LookupResult::configure() {
 | |
|   IDNS = getIDNS(LookupKind, SemaRef.getLangOptions().CPlusPlus,
 | |
|                  isForRedeclaration());
 | |
| 
 | |
|   // If we're looking for one of the allocation or deallocation
 | |
|   // operators, make sure that the implicitly-declared new and delete
 | |
|   // operators can be found.
 | |
|   if (!isForRedeclaration()) {
 | |
|     switch (NameInfo.getName().getCXXOverloadedOperator()) {
 | |
|     case OO_New:
 | |
|     case OO_Delete:
 | |
|     case OO_Array_New:
 | |
|     case OO_Array_Delete:
 | |
|       SemaRef.DeclareGlobalNewDelete();
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LookupResult::sanity() const {
 | |
|   assert(ResultKind != NotFound || Decls.size() == 0);
 | |
|   assert(ResultKind != Found || Decls.size() == 1);
 | |
|   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
 | |
|          (Decls.size() == 1 &&
 | |
|           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
 | |
|   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
 | |
|   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
 | |
|          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
 | |
|                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
 | |
|   assert((Paths != NULL) == (ResultKind == Ambiguous &&
 | |
|                              (Ambiguity == AmbiguousBaseSubobjectTypes ||
 | |
|                               Ambiguity == AmbiguousBaseSubobjects)));
 | |
| }
 | |
| 
 | |
| // Necessary because CXXBasePaths is not complete in Sema.h
 | |
| void LookupResult::deletePaths(CXXBasePaths *Paths) {
 | |
|   delete Paths;
 | |
| }
 | |
| 
 | |
| /// Resolves the result kind of this lookup.
 | |
| void LookupResult::resolveKind() {
 | |
|   unsigned N = Decls.size();
 | |
| 
 | |
|   // Fast case: no possible ambiguity.
 | |
|   if (N == 0) {
 | |
|     assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If there's a single decl, we need to examine it to decide what
 | |
|   // kind of lookup this is.
 | |
|   if (N == 1) {
 | |
|     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
 | |
|     if (isa<FunctionTemplateDecl>(D))
 | |
|       ResultKind = FoundOverloaded;
 | |
|     else if (isa<UnresolvedUsingValueDecl>(D))
 | |
|       ResultKind = FoundUnresolvedValue;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Don't do any extra resolution if we've already resolved as ambiguous.
 | |
|   if (ResultKind == Ambiguous) return;
 | |
| 
 | |
|   llvm::SmallPtrSet<NamedDecl*, 16> Unique;
 | |
|   llvm::SmallPtrSet<QualType, 16> UniqueTypes;
 | |
| 
 | |
|   bool Ambiguous = false;
 | |
|   bool HasTag = false, HasFunction = false, HasNonFunction = false;
 | |
|   bool HasFunctionTemplate = false, HasUnresolved = false;
 | |
| 
 | |
|   unsigned UniqueTagIndex = 0;
 | |
| 
 | |
|   unsigned I = 0;
 | |
|   while (I < N) {
 | |
|     NamedDecl *D = Decls[I]->getUnderlyingDecl();
 | |
|     D = cast<NamedDecl>(D->getCanonicalDecl());
 | |
| 
 | |
|     // Redeclarations of types via typedef can occur both within a scope
 | |
|     // and, through using declarations and directives, across scopes. There is
 | |
|     // no ambiguity if they all refer to the same type, so unique based on the
 | |
|     // canonical type.
 | |
|     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
 | |
|       if (!TD->getDeclContext()->isRecord()) {
 | |
|         QualType T = SemaRef.Context.getTypeDeclType(TD);
 | |
|         if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
 | |
|           // The type is not unique; pull something off the back and continue
 | |
|           // at this index.
 | |
|           Decls[I] = Decls[--N];
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!Unique.insert(D)) {
 | |
|       // If it's not unique, pull something off the back (and
 | |
|       // continue at this index).
 | |
|       Decls[I] = Decls[--N];
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, do some decl type analysis and then continue.
 | |
| 
 | |
|     if (isa<UnresolvedUsingValueDecl>(D)) {
 | |
|       HasUnresolved = true;
 | |
|     } else if (isa<TagDecl>(D)) {
 | |
|       if (HasTag)
 | |
|         Ambiguous = true;
 | |
|       UniqueTagIndex = I;
 | |
|       HasTag = true;
 | |
|     } else if (isa<FunctionTemplateDecl>(D)) {
 | |
|       HasFunction = true;
 | |
|       HasFunctionTemplate = true;
 | |
|     } else if (isa<FunctionDecl>(D)) {
 | |
|       HasFunction = true;
 | |
|     } else {
 | |
|       if (HasNonFunction)
 | |
|         Ambiguous = true;
 | |
|       HasNonFunction = true;
 | |
|     }
 | |
|     I++;
 | |
|   }
 | |
| 
 | |
|   // C++ [basic.scope.hiding]p2:
 | |
|   //   A class name or enumeration name can be hidden by the name of
 | |
|   //   an object, function, or enumerator declared in the same
 | |
|   //   scope. If a class or enumeration name and an object, function,
 | |
|   //   or enumerator are declared in the same scope (in any order)
 | |
|   //   with the same name, the class or enumeration name is hidden
 | |
|   //   wherever the object, function, or enumerator name is visible.
 | |
|   // But it's still an error if there are distinct tag types found,
 | |
|   // even if they're not visible. (ref?)
 | |
|   if (HideTags && HasTag && !Ambiguous &&
 | |
|       (HasFunction || HasNonFunction || HasUnresolved)) {
 | |
|     if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
 | |
|          Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
 | |
|       Decls[UniqueTagIndex] = Decls[--N];
 | |
|     else
 | |
|       Ambiguous = true;
 | |
|   }
 | |
| 
 | |
|   Decls.set_size(N);
 | |
| 
 | |
|   if (HasNonFunction && (HasFunction || HasUnresolved))
 | |
|     Ambiguous = true;
 | |
| 
 | |
|   if (Ambiguous)
 | |
|     setAmbiguous(LookupResult::AmbiguousReference);
 | |
|   else if (HasUnresolved)
 | |
|     ResultKind = LookupResult::FoundUnresolvedValue;
 | |
|   else if (N > 1 || HasFunctionTemplate)
 | |
|     ResultKind = LookupResult::FoundOverloaded;
 | |
|   else
 | |
|     ResultKind = LookupResult::Found;
 | |
| }
 | |
| 
 | |
| void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
 | |
|   CXXBasePaths::const_paths_iterator I, E;
 | |
|   DeclContext::lookup_iterator DI, DE;
 | |
|   for (I = P.begin(), E = P.end(); I != E; ++I)
 | |
|     for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
 | |
|       addDecl(*DI);
 | |
| }
 | |
| 
 | |
| void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
 | |
|   Paths = new CXXBasePaths;
 | |
|   Paths->swap(P);
 | |
|   addDeclsFromBasePaths(*Paths);
 | |
|   resolveKind();
 | |
|   setAmbiguous(AmbiguousBaseSubobjects);
 | |
| }
 | |
| 
 | |
| void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
 | |
|   Paths = new CXXBasePaths;
 | |
|   Paths->swap(P);
 | |
|   addDeclsFromBasePaths(*Paths);
 | |
|   resolveKind();
 | |
|   setAmbiguous(AmbiguousBaseSubobjectTypes);
 | |
| }
 | |
| 
 | |
| void LookupResult::print(llvm::raw_ostream &Out) {
 | |
|   Out << Decls.size() << " result(s)";
 | |
|   if (isAmbiguous()) Out << ", ambiguous";
 | |
|   if (Paths) Out << ", base paths present";
 | |
| 
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     Out << "\n";
 | |
|     (*I)->print(Out, 2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Lookup a builtin function, when name lookup would otherwise
 | |
| /// fail.
 | |
| static bool LookupBuiltin(Sema &S, LookupResult &R) {
 | |
|   Sema::LookupNameKind NameKind = R.getLookupKind();
 | |
| 
 | |
|   // If we didn't find a use of this identifier, and if the identifier
 | |
|   // corresponds to a compiler builtin, create the decl object for the builtin
 | |
|   // now, injecting it into translation unit scope, and return it.
 | |
|   if (NameKind == Sema::LookupOrdinaryName ||
 | |
|       NameKind == Sema::LookupRedeclarationWithLinkage) {
 | |
|     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
 | |
|     if (II) {
 | |
|       // If this is a builtin on this (or all) targets, create the decl.
 | |
|       if (unsigned BuiltinID = II->getBuiltinID()) {
 | |
|         // In C++, we don't have any predefined library functions like
 | |
|         // 'malloc'. Instead, we'll just error.
 | |
|         if (S.getLangOptions().CPlusPlus &&
 | |
|             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
 | |
|           return false;
 | |
| 
 | |
|         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
 | |
|                                                  BuiltinID, S.TUScope,
 | |
|                                                  R.isForRedeclaration(),
 | |
|                                                  R.getNameLoc())) {
 | |
|           R.addDecl(D);
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         if (R.isForRedeclaration()) {
 | |
|           // If we're redeclaring this function anyway, forget that
 | |
|           // this was a builtin at all.
 | |
|           S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether we can declare a special member function within
 | |
| /// the class at this point.
 | |
| static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
 | |
|                                             const CXXRecordDecl *Class) {
 | |
|   // Don't do it if the class is invalid.
 | |
|   if (Class->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // We need to have a definition for the class.
 | |
|   if (!Class->getDefinition() || Class->isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   // We can't be in the middle of defining the class.
 | |
|   if (const RecordType *RecordTy
 | |
|                         = Context.getTypeDeclType(Class)->getAs<RecordType>())
 | |
|     return !RecordTy->isBeingDefined();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
 | |
|   if (!CanDeclareSpecialMemberFunction(Context, Class))
 | |
|     return;
 | |
| 
 | |
|   // If the default constructor has not yet been declared, do so now.
 | |
|   if (!Class->hasDeclaredDefaultConstructor())
 | |
|     DeclareImplicitDefaultConstructor(Class);
 | |
| 
 | |
|   // If the copy constructor has not yet been declared, do so now.
 | |
|   if (!Class->hasDeclaredCopyConstructor())
 | |
|     DeclareImplicitCopyConstructor(Class);
 | |
| 
 | |
|   // If the copy assignment operator has not yet been declared, do so now.
 | |
|   if (!Class->hasDeclaredCopyAssignment())
 | |
|     DeclareImplicitCopyAssignment(Class);
 | |
| 
 | |
|   // If the destructor has not yet been declared, do so now.
 | |
|   if (!Class->hasDeclaredDestructor())
 | |
|     DeclareImplicitDestructor(Class);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether this is the name of an implicitly-declared
 | |
| /// special member function.
 | |
| static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
 | |
|   switch (Name.getNameKind()) {
 | |
|   case DeclarationName::CXXConstructorName:
 | |
|   case DeclarationName::CXXDestructorName:
 | |
|     return true;
 | |
| 
 | |
|   case DeclarationName::CXXOperatorName:
 | |
|     return Name.getCXXOverloadedOperator() == OO_Equal;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief If there are any implicit member functions with the given name
 | |
| /// that need to be declared in the given declaration context, do so.
 | |
| static void DeclareImplicitMemberFunctionsWithName(Sema &S,
 | |
|                                                    DeclarationName Name,
 | |
|                                                    const DeclContext *DC) {
 | |
|   if (!DC)
 | |
|     return;
 | |
| 
 | |
|   switch (Name.getNameKind()) {
 | |
|   case DeclarationName::CXXConstructorName:
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
 | |
|       if (Record->getDefinition() &&
 | |
|           CanDeclareSpecialMemberFunction(S.Context, Record)) {
 | |
|         if (!Record->hasDeclaredDefaultConstructor())
 | |
|           S.DeclareImplicitDefaultConstructor(
 | |
|                                            const_cast<CXXRecordDecl *>(Record));
 | |
|         if (!Record->hasDeclaredCopyConstructor())
 | |
|           S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
 | |
|       }
 | |
|     break;
 | |
| 
 | |
|   case DeclarationName::CXXDestructorName:
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
 | |
|       if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
 | |
|           CanDeclareSpecialMemberFunction(S.Context, Record))
 | |
|         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
 | |
|     break;
 | |
| 
 | |
|   case DeclarationName::CXXOperatorName:
 | |
|     if (Name.getCXXOverloadedOperator() != OO_Equal)
 | |
|       break;
 | |
| 
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
 | |
|       if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
 | |
|           CanDeclareSpecialMemberFunction(S.Context, Record))
 | |
|         S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Adds all qualifying matches for a name within a decl context to the
 | |
| // given lookup result.  Returns true if any matches were found.
 | |
| static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
 | |
|   bool Found = false;
 | |
| 
 | |
|   // Lazily declare C++ special member functions.
 | |
|   if (S.getLangOptions().CPlusPlus)
 | |
|     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
 | |
| 
 | |
|   // Perform lookup into this declaration context.
 | |
|   DeclContext::lookup_const_iterator I, E;
 | |
|   for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
|     if (R.isAcceptableDecl(D)) {
 | |
|       R.addDecl(D);
 | |
|       Found = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
 | |
|     return true;
 | |
| 
 | |
|   if (R.getLookupName().getNameKind()
 | |
|         != DeclarationName::CXXConversionFunctionName ||
 | |
|       R.getLookupName().getCXXNameType()->isDependentType() ||
 | |
|       !isa<CXXRecordDecl>(DC))
 | |
|     return Found;
 | |
| 
 | |
|   // C++ [temp.mem]p6:
 | |
|   //   A specialization of a conversion function template is not found by
 | |
|   //   name lookup. Instead, any conversion function templates visible in the
 | |
|   //   context of the use are considered. [...]
 | |
|   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
 | |
|   if (!Record->isDefinition())
 | |
|     return Found;
 | |
| 
 | |
|   const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
 | |
|   for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
 | |
|          UEnd = Unresolved->end(); U != UEnd; ++U) {
 | |
|     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
 | |
|     if (!ConvTemplate)
 | |
|       continue;
 | |
| 
 | |
|     // When we're performing lookup for the purposes of redeclaration, just
 | |
|     // add the conversion function template. When we deduce template
 | |
|     // arguments for specializations, we'll end up unifying the return
 | |
|     // type of the new declaration with the type of the function template.
 | |
|     if (R.isForRedeclaration()) {
 | |
|       R.addDecl(ConvTemplate);
 | |
|       Found = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++ [temp.mem]p6:
 | |
|     //   [...] For each such operator, if argument deduction succeeds
 | |
|     //   (14.9.2.3), the resulting specialization is used as if found by
 | |
|     //   name lookup.
 | |
|     //
 | |
|     // When referencing a conversion function for any purpose other than
 | |
|     // a redeclaration (such that we'll be building an expression with the
 | |
|     // result), perform template argument deduction and place the
 | |
|     // specialization into the result set. We do this to avoid forcing all
 | |
|     // callers to perform special deduction for conversion functions.
 | |
|     TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
 | |
|     FunctionDecl *Specialization = 0;
 | |
| 
 | |
|     const FunctionProtoType *ConvProto
 | |
|       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
 | |
|     assert(ConvProto && "Nonsensical conversion function template type");
 | |
| 
 | |
|     // Compute the type of the function that we would expect the conversion
 | |
|     // function to have, if it were to match the name given.
 | |
|     // FIXME: Calling convention!
 | |
|     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
 | |
|     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
 | |
|     EPI.ExceptionSpecType = EST_None;
 | |
|     EPI.NumExceptions = 0;
 | |
|     QualType ExpectedType
 | |
|       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
 | |
|                                             0, 0, EPI);
 | |
| 
 | |
|     // Perform template argument deduction against the type that we would
 | |
|     // expect the function to have.
 | |
|     if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
 | |
|                                             Specialization, Info)
 | |
|           == Sema::TDK_Success) {
 | |
|       R.addDecl(Specialization);
 | |
|       Found = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| // Performs C++ unqualified lookup into the given file context.
 | |
| static bool
 | |
| CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
 | |
|                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
 | |
| 
 | |
|   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
 | |
| 
 | |
|   // Perform direct name lookup into the LookupCtx.
 | |
|   bool Found = LookupDirect(S, R, NS);
 | |
| 
 | |
|   // Perform direct name lookup into the namespaces nominated by the
 | |
|   // using directives whose common ancestor is this namespace.
 | |
|   UnqualUsingDirectiveSet::const_iterator UI, UEnd;
 | |
|   llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
 | |
| 
 | |
|   for (; UI != UEnd; ++UI)
 | |
|     if (LookupDirect(S, R, UI->getNominatedNamespace()))
 | |
|       Found = true;
 | |
| 
 | |
|   R.resolveKind();
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| static bool isNamespaceOrTranslationUnitScope(Scope *S) {
 | |
|   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
 | |
|     return Ctx->isFileContext();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Find the next outer declaration context from this scope. This
 | |
| // routine actually returns the semantic outer context, which may
 | |
| // differ from the lexical context (encoded directly in the Scope
 | |
| // stack) when we are parsing a member of a class template. In this
 | |
| // case, the second element of the pair will be true, to indicate that
 | |
| // name lookup should continue searching in this semantic context when
 | |
| // it leaves the current template parameter scope.
 | |
| static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
 | |
|   DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
 | |
|   DeclContext *Lexical = 0;
 | |
|   for (Scope *OuterS = S->getParent(); OuterS;
 | |
|        OuterS = OuterS->getParent()) {
 | |
|     if (OuterS->getEntity()) {
 | |
|       Lexical = static_cast<DeclContext *>(OuterS->getEntity());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.local]p8:
 | |
|   //   In the definition of a member of a class template that appears
 | |
|   //   outside of the namespace containing the class template
 | |
|   //   definition, the name of a template-parameter hides the name of
 | |
|   //   a member of this namespace.
 | |
|   //
 | |
|   // Example:
 | |
|   //
 | |
|   //   namespace N {
 | |
|   //     class C { };
 | |
|   //
 | |
|   //     template<class T> class B {
 | |
|   //       void f(T);
 | |
|   //     };
 | |
|   //   }
 | |
|   //
 | |
|   //   template<class C> void N::B<C>::f(C) {
 | |
|   //     C b;  // C is the template parameter, not N::C
 | |
|   //   }
 | |
|   //
 | |
|   // In this example, the lexical context we return is the
 | |
|   // TranslationUnit, while the semantic context is the namespace N.
 | |
|   if (!Lexical || !DC || !S->getParent() ||
 | |
|       !S->getParent()->isTemplateParamScope())
 | |
|     return std::make_pair(Lexical, false);
 | |
| 
 | |
|   // Find the outermost template parameter scope.
 | |
|   // For the example, this is the scope for the template parameters of
 | |
|   // template<class C>.
 | |
|   Scope *OutermostTemplateScope = S->getParent();
 | |
|   while (OutermostTemplateScope->getParent() &&
 | |
|          OutermostTemplateScope->getParent()->isTemplateParamScope())
 | |
|     OutermostTemplateScope = OutermostTemplateScope->getParent();
 | |
| 
 | |
|   // Find the namespace context in which the original scope occurs. In
 | |
|   // the example, this is namespace N.
 | |
|   DeclContext *Semantic = DC;
 | |
|   while (!Semantic->isFileContext())
 | |
|     Semantic = Semantic->getParent();
 | |
| 
 | |
|   // Find the declaration context just outside of the template
 | |
|   // parameter scope. This is the context in which the template is
 | |
|   // being lexically declaration (a namespace context). In the
 | |
|   // example, this is the global scope.
 | |
|   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
 | |
|       Lexical->Encloses(Semantic))
 | |
|     return std::make_pair(Semantic, true);
 | |
| 
 | |
|   return std::make_pair(Lexical, false);
 | |
| }
 | |
| 
 | |
| bool Sema::CppLookupName(LookupResult &R, Scope *S) {
 | |
|   assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
 | |
| 
 | |
|   DeclarationName Name = R.getLookupName();
 | |
| 
 | |
|   // If this is the name of an implicitly-declared special member function,
 | |
|   // go through the scope stack to implicitly declare
 | |
|   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
 | |
|     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
 | |
|       if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
 | |
|         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
 | |
|   }
 | |
| 
 | |
|   // Implicitly declare member functions with the name we're looking for, if in
 | |
|   // fact we are in a scope where it matters.
 | |
| 
 | |
|   Scope *Initial = S;
 | |
|   IdentifierResolver::iterator
 | |
|     I = IdResolver.begin(Name),
 | |
|     IEnd = IdResolver.end();
 | |
| 
 | |
|   // First we lookup local scope.
 | |
|   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
 | |
|   // ...During unqualified name lookup (3.4.1), the names appear as if
 | |
|   // they were declared in the nearest enclosing namespace which contains
 | |
|   // both the using-directive and the nominated namespace.
 | |
|   // [Note: in this context, "contains" means "contains directly or
 | |
|   // indirectly".
 | |
|   //
 | |
|   // For example:
 | |
|   // namespace A { int i; }
 | |
|   // void foo() {
 | |
|   //   int i;
 | |
|   //   {
 | |
|   //     using namespace A;
 | |
|   //     ++i; // finds local 'i', A::i appears at global scope
 | |
|   //   }
 | |
|   // }
 | |
|   //
 | |
|   DeclContext *OutsideOfTemplateParamDC = 0;
 | |
|   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
 | |
|     DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
 | |
| 
 | |
|     // Check whether the IdResolver has anything in this scope.
 | |
|     bool Found = false;
 | |
|     for (; I != IEnd && S->isDeclScope(*I); ++I) {
 | |
|       if (R.isAcceptableDecl(*I)) {
 | |
|         Found = true;
 | |
|         R.addDecl(*I);
 | |
|       }
 | |
|     }
 | |
|     if (Found) {
 | |
|       R.resolveKind();
 | |
|       if (S->isClassScope())
 | |
|         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
 | |
|           R.setNamingClass(Record);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
 | |
|         S->getParent() && !S->getParent()->isTemplateParamScope()) {
 | |
|       // We've just searched the last template parameter scope and
 | |
|       // found nothing, so look into the the contexts between the
 | |
|       // lexical and semantic declaration contexts returned by
 | |
|       // findOuterContext(). This implements the name lookup behavior
 | |
|       // of C++ [temp.local]p8.
 | |
|       Ctx = OutsideOfTemplateParamDC;
 | |
|       OutsideOfTemplateParamDC = 0;
 | |
|     }
 | |
| 
 | |
|     if (Ctx) {
 | |
|       DeclContext *OuterCtx;
 | |
|       bool SearchAfterTemplateScope;
 | |
|       llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
 | |
|       if (SearchAfterTemplateScope)
 | |
|         OutsideOfTemplateParamDC = OuterCtx;
 | |
| 
 | |
|       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
 | |
|         // We do not directly look into transparent contexts, since
 | |
|         // those entities will be found in the nearest enclosing
 | |
|         // non-transparent context.
 | |
|         if (Ctx->isTransparentContext())
 | |
|           continue;
 | |
| 
 | |
|         // We do not look directly into function or method contexts,
 | |
|         // since all of the local variables and parameters of the
 | |
|         // function/method are present within the Scope.
 | |
|         if (Ctx->isFunctionOrMethod()) {
 | |
|           // If we have an Objective-C instance method, look for ivars
 | |
|           // in the corresponding interface.
 | |
|           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
 | |
|             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
 | |
|               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
 | |
|                 ObjCInterfaceDecl *ClassDeclared;
 | |
|                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
 | |
|                                                  Name.getAsIdentifierInfo(),
 | |
|                                                              ClassDeclared)) {
 | |
|                   if (R.isAcceptableDecl(Ivar)) {
 | |
|                     R.addDecl(Ivar);
 | |
|                     R.resolveKind();
 | |
|                     return true;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|           }
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Perform qualified name lookup into this context.
 | |
|         // FIXME: In some cases, we know that every name that could be found by
 | |
|         // this qualified name lookup will also be on the identifier chain. For
 | |
|         // example, inside a class without any base classes, we never need to
 | |
|         // perform qualified lookup because all of the members are on top of the
 | |
|         // identifier chain.
 | |
|         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Stop if we ran out of scopes.
 | |
|   // FIXME:  This really, really shouldn't be happening.
 | |
|   if (!S) return false;
 | |
| 
 | |
|   // If we are looking for members, no need to look into global/namespace scope.
 | |
|   if (R.getLookupKind() == LookupMemberName)
 | |
|     return false;
 | |
| 
 | |
|   // Collect UsingDirectiveDecls in all scopes, and recursively all
 | |
|   // nominated namespaces by those using-directives.
 | |
|   //
 | |
|   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
 | |
|   // don't build it for each lookup!
 | |
| 
 | |
|   UnqualUsingDirectiveSet UDirs;
 | |
|   UDirs.visitScopeChain(Initial, S);
 | |
|   UDirs.done();
 | |
| 
 | |
|   // Lookup namespace scope, and global scope.
 | |
|   // Unqualified name lookup in C++ requires looking into scopes
 | |
|   // that aren't strictly lexical, and therefore we walk through the
 | |
|   // context as well as walking through the scopes.
 | |
| 
 | |
|   for (; S; S = S->getParent()) {
 | |
|     // Check whether the IdResolver has anything in this scope.
 | |
|     bool Found = false;
 | |
|     for (; I != IEnd && S->isDeclScope(*I); ++I) {
 | |
|       if (R.isAcceptableDecl(*I)) {
 | |
|         // We found something.  Look for anything else in our scope
 | |
|         // with this same name and in an acceptable identifier
 | |
|         // namespace, so that we can construct an overload set if we
 | |
|         // need to.
 | |
|         Found = true;
 | |
|         R.addDecl(*I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Found && S->isTemplateParamScope()) {
 | |
|       R.resolveKind();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
 | |
|     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
 | |
|         S->getParent() && !S->getParent()->isTemplateParamScope()) {
 | |
|       // We've just searched the last template parameter scope and
 | |
|       // found nothing, so look into the the contexts between the
 | |
|       // lexical and semantic declaration contexts returned by
 | |
|       // findOuterContext(). This implements the name lookup behavior
 | |
|       // of C++ [temp.local]p8.
 | |
|       Ctx = OutsideOfTemplateParamDC;
 | |
|       OutsideOfTemplateParamDC = 0;
 | |
|     }
 | |
| 
 | |
|     if (Ctx) {
 | |
|       DeclContext *OuterCtx;
 | |
|       bool SearchAfterTemplateScope;
 | |
|       llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
 | |
|       if (SearchAfterTemplateScope)
 | |
|         OutsideOfTemplateParamDC = OuterCtx;
 | |
| 
 | |
|       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
 | |
|         // We do not directly look into transparent contexts, since
 | |
|         // those entities will be found in the nearest enclosing
 | |
|         // non-transparent context.
 | |
|         if (Ctx->isTransparentContext())
 | |
|           continue;
 | |
| 
 | |
|         // If we have a context, and it's not a context stashed in the
 | |
|         // template parameter scope for an out-of-line definition, also
 | |
|         // look into that context.
 | |
|         if (!(Found && S && S->isTemplateParamScope())) {
 | |
|           assert(Ctx->isFileContext() &&
 | |
|               "We should have been looking only at file context here already.");
 | |
| 
 | |
|           // Look into context considering using-directives.
 | |
|           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
 | |
|             Found = true;
 | |
|         }
 | |
| 
 | |
|         if (Found) {
 | |
|           R.resolveKind();
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return !R.empty();
 | |
| }
 | |
| 
 | |
| /// @brief Perform unqualified name lookup starting from a given
 | |
| /// scope.
 | |
| ///
 | |
| /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
 | |
| /// used to find names within the current scope. For example, 'x' in
 | |
| /// @code
 | |
| /// int x;
 | |
| /// int f() {
 | |
| ///   return x; // unqualified name look finds 'x' in the global scope
 | |
| /// }
 | |
| /// @endcode
 | |
| ///
 | |
| /// Different lookup criteria can find different names. For example, a
 | |
| /// particular scope can have both a struct and a function of the same
 | |
| /// name, and each can be found by certain lookup criteria. For more
 | |
| /// information about lookup criteria, see the documentation for the
 | |
| /// class LookupCriteria.
 | |
| ///
 | |
| /// @param S        The scope from which unqualified name lookup will
 | |
| /// begin. If the lookup criteria permits, name lookup may also search
 | |
| /// in the parent scopes.
 | |
| ///
 | |
| /// @param Name     The name of the entity that we are searching for.
 | |
| ///
 | |
| /// @param Loc      If provided, the source location where we're performing
 | |
| /// name lookup. At present, this is only used to produce diagnostics when
 | |
| /// C library functions (like "malloc") are implicitly declared.
 | |
| ///
 | |
| /// @returns The result of name lookup, which includes zero or more
 | |
| /// declarations and possibly additional information used to diagnose
 | |
| /// ambiguities.
 | |
| bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
 | |
|   DeclarationName Name = R.getLookupName();
 | |
|   if (!Name) return false;
 | |
| 
 | |
|   LookupNameKind NameKind = R.getLookupKind();
 | |
| 
 | |
|   if (!getLangOptions().CPlusPlus) {
 | |
|     // Unqualified name lookup in C/Objective-C is purely lexical, so
 | |
|     // search in the declarations attached to the name.
 | |
|     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
 | |
|       // Find the nearest non-transparent declaration scope.
 | |
|       while (!(S->getFlags() & Scope::DeclScope) ||
 | |
|              (S->getEntity() &&
 | |
|               static_cast<DeclContext *>(S->getEntity())
 | |
|                 ->isTransparentContext()))
 | |
|         S = S->getParent();
 | |
|     }
 | |
| 
 | |
|     unsigned IDNS = R.getIdentifierNamespace();
 | |
| 
 | |
|     // Scan up the scope chain looking for a decl that matches this
 | |
|     // identifier that is in the appropriate namespace.  This search
 | |
|     // should not take long, as shadowing of names is uncommon, and
 | |
|     // deep shadowing is extremely uncommon.
 | |
|     bool LeftStartingScope = false;
 | |
| 
 | |
|     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
 | |
|                                    IEnd = IdResolver.end();
 | |
|          I != IEnd; ++I)
 | |
|       if ((*I)->isInIdentifierNamespace(IDNS)) {
 | |
|         if (NameKind == LookupRedeclarationWithLinkage) {
 | |
|           // Determine whether this (or a previous) declaration is
 | |
|           // out-of-scope.
 | |
|           if (!LeftStartingScope && !S->isDeclScope(*I))
 | |
|             LeftStartingScope = true;
 | |
| 
 | |
|           // If we found something outside of our starting scope that
 | |
|           // does not have linkage, skip it.
 | |
|           if (LeftStartingScope && !((*I)->hasLinkage()))
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         R.addDecl(*I);
 | |
| 
 | |
|         if ((*I)->getAttr<OverloadableAttr>()) {
 | |
|           // If this declaration has the "overloadable" attribute, we
 | |
|           // might have a set of overloaded functions.
 | |
| 
 | |
|           // Figure out what scope the identifier is in.
 | |
|           while (!(S->getFlags() & Scope::DeclScope) ||
 | |
|                  !S->isDeclScope(*I))
 | |
|             S = S->getParent();
 | |
| 
 | |
|           // Find the last declaration in this scope (with the same
 | |
|           // name, naturally).
 | |
|           IdentifierResolver::iterator LastI = I;
 | |
|           for (++LastI; LastI != IEnd; ++LastI) {
 | |
|             if (!S->isDeclScope(*LastI))
 | |
|               break;
 | |
|             R.addDecl(*LastI);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         R.resolveKind();
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|   } else {
 | |
|     // Perform C++ unqualified name lookup.
 | |
|     if (CppLookupName(R, S))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find a use of this identifier, and if the identifier
 | |
|   // corresponds to a compiler builtin, create the decl object for the builtin
 | |
|   // now, injecting it into translation unit scope, and return it.
 | |
|   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
 | |
|     return true;
 | |
| 
 | |
|   // If we didn't find a use of this identifier, the ExternalSource 
 | |
|   // may be able to handle the situation. 
 | |
|   // Note: some lookup failures are expected!
 | |
|   // See e.g. R.isForRedeclaration().
 | |
|   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
 | |
| }
 | |
| 
 | |
| /// @brief Perform qualified name lookup in the namespaces nominated by
 | |
| /// using directives by the given context.
 | |
| ///
 | |
| /// C++98 [namespace.qual]p2:
 | |
| ///   Given X::m (where X is a user-declared namespace), or given ::m
 | |
| ///   (where X is the global namespace), let S be the set of all
 | |
| ///   declarations of m in X and in the transitive closure of all
 | |
| ///   namespaces nominated by using-directives in X and its used
 | |
| ///   namespaces, except that using-directives are ignored in any
 | |
| ///   namespace, including X, directly containing one or more
 | |
| ///   declarations of m. No namespace is searched more than once in
 | |
| ///   the lookup of a name. If S is the empty set, the program is
 | |
| ///   ill-formed. Otherwise, if S has exactly one member, or if the
 | |
| ///   context of the reference is a using-declaration
 | |
| ///   (namespace.udecl), S is the required set of declarations of
 | |
| ///   m. Otherwise if the use of m is not one that allows a unique
 | |
| ///   declaration to be chosen from S, the program is ill-formed.
 | |
| /// C++98 [namespace.qual]p5:
 | |
| ///   During the lookup of a qualified namespace member name, if the
 | |
| ///   lookup finds more than one declaration of the member, and if one
 | |
| ///   declaration introduces a class name or enumeration name and the
 | |
| ///   other declarations either introduce the same object, the same
 | |
| ///   enumerator or a set of functions, the non-type name hides the
 | |
| ///   class or enumeration name if and only if the declarations are
 | |
| ///   from the same namespace; otherwise (the declarations are from
 | |
| ///   different namespaces), the program is ill-formed.
 | |
| static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
 | |
|                                                  DeclContext *StartDC) {
 | |
|   assert(StartDC->isFileContext() && "start context is not a file context");
 | |
| 
 | |
|   DeclContext::udir_iterator I = StartDC->using_directives_begin();
 | |
|   DeclContext::udir_iterator E = StartDC->using_directives_end();
 | |
| 
 | |
|   if (I == E) return false;
 | |
| 
 | |
|   // We have at least added all these contexts to the queue.
 | |
|   llvm::DenseSet<DeclContext*> Visited;
 | |
|   Visited.insert(StartDC);
 | |
| 
 | |
|   // We have not yet looked into these namespaces, much less added
 | |
|   // their "using-children" to the queue.
 | |
|   llvm::SmallVector<NamespaceDecl*, 8> Queue;
 | |
| 
 | |
|   // We have already looked into the initial namespace; seed the queue
 | |
|   // with its using-children.
 | |
|   for (; I != E; ++I) {
 | |
|     NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
 | |
|     if (Visited.insert(ND).second)
 | |
|       Queue.push_back(ND);
 | |
|   }
 | |
| 
 | |
|   // The easiest way to implement the restriction in [namespace.qual]p5
 | |
|   // is to check whether any of the individual results found a tag
 | |
|   // and, if so, to declare an ambiguity if the final result is not
 | |
|   // a tag.
 | |
|   bool FoundTag = false;
 | |
|   bool FoundNonTag = false;
 | |
| 
 | |
|   LookupResult LocalR(LookupResult::Temporary, R);
 | |
| 
 | |
|   bool Found = false;
 | |
|   while (!Queue.empty()) {
 | |
|     NamespaceDecl *ND = Queue.back();
 | |
|     Queue.pop_back();
 | |
| 
 | |
|     // We go through some convolutions here to avoid copying results
 | |
|     // between LookupResults.
 | |
|     bool UseLocal = !R.empty();
 | |
|     LookupResult &DirectR = UseLocal ? LocalR : R;
 | |
|     bool FoundDirect = LookupDirect(S, DirectR, ND);
 | |
| 
 | |
|     if (FoundDirect) {
 | |
|       // First do any local hiding.
 | |
|       DirectR.resolveKind();
 | |
| 
 | |
|       // If the local result is a tag, remember that.
 | |
|       if (DirectR.isSingleTagDecl())
 | |
|         FoundTag = true;
 | |
|       else
 | |
|         FoundNonTag = true;
 | |
| 
 | |
|       // Append the local results to the total results if necessary.
 | |
|       if (UseLocal) {
 | |
|         R.addAllDecls(LocalR);
 | |
|         LocalR.clear();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we find names in this namespace, ignore its using directives.
 | |
|     if (FoundDirect) {
 | |
|       Found = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
 | |
|       NamespaceDecl *Nom = (*I)->getNominatedNamespace();
 | |
|       if (Visited.insert(Nom).second)
 | |
|         Queue.push_back(Nom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Found) {
 | |
|     if (FoundTag && FoundNonTag)
 | |
|       R.setAmbiguousQualifiedTagHiding();
 | |
|     else
 | |
|       R.resolveKind();
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| /// \brief Callback that looks for any member of a class with the given name.
 | |
| static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
 | |
|                             CXXBasePath &Path,
 | |
|                             void *Name) {
 | |
|   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
 | |
| 
 | |
|   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
 | |
|   Path.Decls = BaseRecord->lookup(N);
 | |
|   return Path.Decls.first != Path.Decls.second;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given set of member declarations contains only
 | |
| /// static members, nested types, and enumerators.
 | |
| template<typename InputIterator>
 | |
| static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
 | |
|   Decl *D = (*First)->getUnderlyingDecl();
 | |
|   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
 | |
|     return true;
 | |
| 
 | |
|   if (isa<CXXMethodDecl>(D)) {
 | |
|     // Determine whether all of the methods are static.
 | |
|     bool AllMethodsAreStatic = true;
 | |
|     for(; First != Last; ++First) {
 | |
|       D = (*First)->getUnderlyingDecl();
 | |
| 
 | |
|       if (!isa<CXXMethodDecl>(D)) {
 | |
|         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (!cast<CXXMethodDecl>(D)->isStatic()) {
 | |
|         AllMethodsAreStatic = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (AllMethodsAreStatic)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Perform qualified name lookup into a given context.
 | |
| ///
 | |
| /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
 | |
| /// names when the context of those names is explicit specified, e.g.,
 | |
| /// "std::vector" or "x->member", or as part of unqualified name lookup.
 | |
| ///
 | |
| /// Different lookup criteria can find different names. For example, a
 | |
| /// particular scope can have both a struct and a function of the same
 | |
| /// name, and each can be found by certain lookup criteria. For more
 | |
| /// information about lookup criteria, see the documentation for the
 | |
| /// class LookupCriteria.
 | |
| ///
 | |
| /// \param R captures both the lookup criteria and any lookup results found.
 | |
| ///
 | |
| /// \param LookupCtx The context in which qualified name lookup will
 | |
| /// search. If the lookup criteria permits, name lookup may also search
 | |
| /// in the parent contexts or (for C++ classes) base classes.
 | |
| ///
 | |
| /// \param InUnqualifiedLookup true if this is qualified name lookup that
 | |
| /// occurs as part of unqualified name lookup.
 | |
| ///
 | |
| /// \returns true if lookup succeeded, false if it failed.
 | |
| bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
 | |
|                                bool InUnqualifiedLookup) {
 | |
|   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
 | |
| 
 | |
|   if (!R.getLookupName())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that the declaration context is complete.
 | |
|   assert((!isa<TagDecl>(LookupCtx) ||
 | |
|           LookupCtx->isDependentContext() ||
 | |
|           cast<TagDecl>(LookupCtx)->isDefinition() ||
 | |
|           Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
 | |
|             ->isBeingDefined()) &&
 | |
|          "Declaration context must already be complete!");
 | |
| 
 | |
|   // Perform qualified name lookup into the LookupCtx.
 | |
|   if (LookupDirect(*this, R, LookupCtx)) {
 | |
|     R.resolveKind();
 | |
|     if (isa<CXXRecordDecl>(LookupCtx))
 | |
|       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Don't descend into implied contexts for redeclarations.
 | |
|   // C++98 [namespace.qual]p6:
 | |
|   //   In a declaration for a namespace member in which the
 | |
|   //   declarator-id is a qualified-id, given that the qualified-id
 | |
|   //   for the namespace member has the form
 | |
|   //     nested-name-specifier unqualified-id
 | |
|   //   the unqualified-id shall name a member of the namespace
 | |
|   //   designated by the nested-name-specifier.
 | |
|   // See also [class.mfct]p5 and [class.static.data]p2.
 | |
|   if (R.isForRedeclaration())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a namespace, look it up in the implied namespaces.
 | |
|   if (LookupCtx->isFileContext())
 | |
|     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
 | |
| 
 | |
|   // If this isn't a C++ class, we aren't allowed to look into base
 | |
|   // classes, we're done.
 | |
|   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
 | |
|   if (!LookupRec || !LookupRec->getDefinition())
 | |
|     return false;
 | |
| 
 | |
|   // If we're performing qualified name lookup into a dependent class,
 | |
|   // then we are actually looking into a current instantiation. If we have any
 | |
|   // dependent base classes, then we either have to delay lookup until
 | |
|   // template instantiation time (at which point all bases will be available)
 | |
|   // or we have to fail.
 | |
|   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
 | |
|       LookupRec->hasAnyDependentBases()) {
 | |
|     R.setNotFoundInCurrentInstantiation();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Perform lookup into our base classes.
 | |
|   CXXBasePaths Paths;
 | |
|   Paths.setOrigin(LookupRec);
 | |
| 
 | |
|   // Look for this member in our base classes
 | |
|   CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
 | |
|   switch (R.getLookupKind()) {
 | |
|     case LookupOrdinaryName:
 | |
|     case LookupMemberName:
 | |
|     case LookupRedeclarationWithLinkage:
 | |
|       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
 | |
|       break;
 | |
| 
 | |
|     case LookupTagName:
 | |
|       BaseCallback = &CXXRecordDecl::FindTagMember;
 | |
|       break;
 | |
| 
 | |
|     case LookupAnyName:
 | |
|       BaseCallback = &LookupAnyMember;
 | |
|       break;
 | |
| 
 | |
|     case LookupUsingDeclName:
 | |
|       // This lookup is for redeclarations only.
 | |
| 
 | |
|     case LookupOperatorName:
 | |
|     case LookupNamespaceName:
 | |
|     case LookupObjCProtocolName:
 | |
|     case LookupLabel:
 | |
|       // These lookups will never find a member in a C++ class (or base class).
 | |
|       return false;
 | |
| 
 | |
|     case LookupNestedNameSpecifierName:
 | |
|       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (!LookupRec->lookupInBases(BaseCallback,
 | |
|                                 R.getLookupName().getAsOpaquePtr(), Paths))
 | |
|     return false;
 | |
| 
 | |
|   R.setNamingClass(LookupRec);
 | |
| 
 | |
|   // C++ [class.member.lookup]p2:
 | |
|   //   [...] If the resulting set of declarations are not all from
 | |
|   //   sub-objects of the same type, or the set has a nonstatic member
 | |
|   //   and includes members from distinct sub-objects, there is an
 | |
|   //   ambiguity and the program is ill-formed. Otherwise that set is
 | |
|   //   the result of the lookup.
 | |
|   QualType SubobjectType;
 | |
|   int SubobjectNumber = 0;
 | |
|   AccessSpecifier SubobjectAccess = AS_none;
 | |
| 
 | |
|   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
 | |
|        Path != PathEnd; ++Path) {
 | |
|     const CXXBasePathElement &PathElement = Path->back();
 | |
| 
 | |
|     // Pick the best (i.e. most permissive i.e. numerically lowest) access
 | |
|     // across all paths.
 | |
|     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
 | |
| 
 | |
|     // Determine whether we're looking at a distinct sub-object or not.
 | |
|     if (SubobjectType.isNull()) {
 | |
|       // This is the first subobject we've looked at. Record its type.
 | |
|       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
 | |
|       SubobjectNumber = PathElement.SubobjectNumber;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (SubobjectType
 | |
|                  != Context.getCanonicalType(PathElement.Base->getType())) {
 | |
|       // We found members of the given name in two subobjects of
 | |
|       // different types. If the declaration sets aren't the same, this
 | |
|       // this lookup is ambiguous.
 | |
|       if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
 | |
|         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
 | |
|         DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
 | |
|         DeclContext::lookup_iterator CurrentD = Path->Decls.first;
 | |
| 
 | |
|         while (FirstD != FirstPath->Decls.second &&
 | |
|                CurrentD != Path->Decls.second) {
 | |
|          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
 | |
|              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
 | |
|            break;
 | |
| 
 | |
|           ++FirstD;
 | |
|           ++CurrentD;
 | |
|         }
 | |
| 
 | |
|         if (FirstD == FirstPath->Decls.second &&
 | |
|             CurrentD == Path->Decls.second)
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       R.setAmbiguousBaseSubobjectTypes(Paths);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (SubobjectNumber != PathElement.SubobjectNumber) {
 | |
|       // We have a different subobject of the same type.
 | |
| 
 | |
|       // C++ [class.member.lookup]p5:
 | |
|       //   A static member, a nested type or an enumerator defined in
 | |
|       //   a base class T can unambiguously be found even if an object
 | |
|       //   has more than one base class subobject of type T.
 | |
|       if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
 | |
|         continue;
 | |
| 
 | |
|       // We have found a nonstatic member name in multiple, distinct
 | |
|       // subobjects. Name lookup is ambiguous.
 | |
|       R.setAmbiguousBaseSubobjects(Paths);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Lookup in a base class succeeded; return these results.
 | |
| 
 | |
|   DeclContext::lookup_iterator I, E;
 | |
|   for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
|     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
 | |
|                                                     D->getAccess());
 | |
|     R.addDecl(D, AS);
 | |
|   }
 | |
|   R.resolveKind();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// @brief Performs name lookup for a name that was parsed in the
 | |
| /// source code, and may contain a C++ scope specifier.
 | |
| ///
 | |
| /// This routine is a convenience routine meant to be called from
 | |
| /// contexts that receive a name and an optional C++ scope specifier
 | |
| /// (e.g., "N::M::x"). It will then perform either qualified or
 | |
| /// unqualified name lookup (with LookupQualifiedName or LookupName,
 | |
| /// respectively) on the given name and return those results.
 | |
| ///
 | |
| /// @param S        The scope from which unqualified name lookup will
 | |
| /// begin.
 | |
| ///
 | |
| /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
 | |
| ///
 | |
| /// @param EnteringContext Indicates whether we are going to enter the
 | |
| /// context of the scope-specifier SS (if present).
 | |
| ///
 | |
| /// @returns True if any decls were found (but possibly ambiguous)
 | |
| bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
 | |
|                             bool AllowBuiltinCreation, bool EnteringContext) {
 | |
|   if (SS && SS->isInvalid()) {
 | |
|     // When the scope specifier is invalid, don't even look for
 | |
|     // anything.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (SS && SS->isSet()) {
 | |
|     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
 | |
|       // We have resolved the scope specifier to a particular declaration
 | |
|       // contex, and will perform name lookup in that context.
 | |
|       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
 | |
|         return false;
 | |
| 
 | |
|       R.setContextRange(SS->getRange());
 | |
| 
 | |
|       return LookupQualifiedName(R, DC);
 | |
|     }
 | |
| 
 | |
|     // We could not resolve the scope specified to a specific declaration
 | |
|     // context, which means that SS refers to an unknown specialization.
 | |
|     // Name lookup can't find anything in this case.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Perform unqualified name lookup starting in the given scope.
 | |
|   return LookupName(R, S, AllowBuiltinCreation);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @brief Produce a diagnostic describing the ambiguity that resulted
 | |
| /// from name lookup.
 | |
| ///
 | |
| /// @param Result       The ambiguous name lookup result.
 | |
| ///
 | |
| /// @param Name         The name of the entity that name lookup was
 | |
| /// searching for.
 | |
| ///
 | |
| /// @param NameLoc      The location of the name within the source code.
 | |
| ///
 | |
| /// @param LookupRange  A source range that provides more
 | |
| /// source-location information concerning the lookup itself. For
 | |
| /// example, this range might highlight a nested-name-specifier that
 | |
| /// precedes the name.
 | |
| ///
 | |
| /// @returns true
 | |
| bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
 | |
|   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
 | |
| 
 | |
|   DeclarationName Name = Result.getLookupName();
 | |
|   SourceLocation NameLoc = Result.getNameLoc();
 | |
|   SourceRange LookupRange = Result.getContextRange();
 | |
| 
 | |
|   switch (Result.getAmbiguityKind()) {
 | |
|   case LookupResult::AmbiguousBaseSubobjects: {
 | |
|     CXXBasePaths *Paths = Result.getBasePaths();
 | |
|     QualType SubobjectType = Paths->front().back().Base->getType();
 | |
|     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
 | |
|       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
 | |
|       << LookupRange;
 | |
| 
 | |
|     DeclContext::lookup_iterator Found = Paths->front().Decls.first;
 | |
|     while (isa<CXXMethodDecl>(*Found) &&
 | |
|            cast<CXXMethodDecl>(*Found)->isStatic())
 | |
|       ++Found;
 | |
| 
 | |
|     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case LookupResult::AmbiguousBaseSubobjectTypes: {
 | |
|     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
 | |
|       << Name << LookupRange;
 | |
| 
 | |
|     CXXBasePaths *Paths = Result.getBasePaths();
 | |
|     std::set<Decl *> DeclsPrinted;
 | |
|     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
 | |
|                                       PathEnd = Paths->end();
 | |
|          Path != PathEnd; ++Path) {
 | |
|       Decl *D = *Path->Decls.first;
 | |
|       if (DeclsPrinted.insert(D).second)
 | |
|         Diag(D->getLocation(), diag::note_ambiguous_member_found);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case LookupResult::AmbiguousTagHiding: {
 | |
|     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
 | |
| 
 | |
|     llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
 | |
| 
 | |
|     LookupResult::iterator DI, DE = Result.end();
 | |
|     for (DI = Result.begin(); DI != DE; ++DI)
 | |
|       if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
 | |
|         TagDecls.insert(TD);
 | |
|         Diag(TD->getLocation(), diag::note_hidden_tag);
 | |
|       }
 | |
| 
 | |
|     for (DI = Result.begin(); DI != DE; ++DI)
 | |
|       if (!isa<TagDecl>(*DI))
 | |
|         Diag((*DI)->getLocation(), diag::note_hiding_object);
 | |
| 
 | |
|     // For recovery purposes, go ahead and implement the hiding.
 | |
|     LookupResult::Filter F = Result.makeFilter();
 | |
|     while (F.hasNext()) {
 | |
|       if (TagDecls.count(F.next()))
 | |
|         F.erase();
 | |
|     }
 | |
|     F.done();
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case LookupResult::AmbiguousReference: {
 | |
|     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
 | |
| 
 | |
|     LookupResult::iterator DI = Result.begin(), DE = Result.end();
 | |
|     for (; DI != DE; ++DI)
 | |
|       Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown ambiguity kind");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct AssociatedLookup {
 | |
|     AssociatedLookup(Sema &S,
 | |
|                      Sema::AssociatedNamespaceSet &Namespaces,
 | |
|                      Sema::AssociatedClassSet &Classes)
 | |
|       : S(S), Namespaces(Namespaces), Classes(Classes) {
 | |
|     }
 | |
| 
 | |
|     Sema &S;
 | |
|     Sema::AssociatedNamespaceSet &Namespaces;
 | |
|     Sema::AssociatedClassSet &Classes;
 | |
|   };
 | |
| }
 | |
| 
 | |
| static void
 | |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
 | |
| 
 | |
| static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
 | |
|                                       DeclContext *Ctx) {
 | |
|   // Add the associated namespace for this class.
 | |
| 
 | |
|   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
 | |
|   // be a locally scoped record.
 | |
| 
 | |
|   // We skip out of inline namespaces. The innermost non-inline namespace
 | |
|   // contains all names of all its nested inline namespaces anyway, so we can
 | |
|   // replace the entire inline namespace tree with its root.
 | |
|   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
 | |
|          Ctx->isInlineNamespace())
 | |
|     Ctx = Ctx->getParent();
 | |
| 
 | |
|   if (Ctx->isFileContext())
 | |
|     Namespaces.insert(Ctx->getPrimaryContext());
 | |
| }
 | |
| 
 | |
| // \brief Add the associated classes and namespaces for argument-dependent
 | |
| // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
 | |
| static void
 | |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
 | |
|                                   const TemplateArgument &Arg) {
 | |
|   // C++ [basic.lookup.koenig]p2, last bullet:
 | |
|   //   -- [...] ;
 | |
|   switch (Arg.getKind()) {
 | |
|     case TemplateArgument::Null:
 | |
|       break;
 | |
| 
 | |
|     case TemplateArgument::Type:
 | |
|       // [...] the namespaces and classes associated with the types of the
 | |
|       // template arguments provided for template type parameters (excluding
 | |
|       // template template parameters)
 | |
|       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
 | |
|       break;
 | |
| 
 | |
|     case TemplateArgument::Template:
 | |
|     case TemplateArgument::TemplateExpansion: {
 | |
|       // [...] the namespaces in which any template template arguments are
 | |
|       // defined; and the classes in which any member templates used as
 | |
|       // template template arguments are defined.
 | |
|       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
 | |
|       if (ClassTemplateDecl *ClassTemplate
 | |
|                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
 | |
|         DeclContext *Ctx = ClassTemplate->getDeclContext();
 | |
|         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|           Result.Classes.insert(EnclosingClass);
 | |
|         // Add the associated namespace for this class.
 | |
|         CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TemplateArgument::Declaration:
 | |
|     case TemplateArgument::Integral:
 | |
|     case TemplateArgument::Expression:
 | |
|       // [Note: non-type template arguments do not contribute to the set of
 | |
|       //  associated namespaces. ]
 | |
|       break;
 | |
| 
 | |
|     case TemplateArgument::Pack:
 | |
|       for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
 | |
|                                         PEnd = Arg.pack_end();
 | |
|            P != PEnd; ++P)
 | |
|         addAssociatedClassesAndNamespaces(Result, *P);
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // \brief Add the associated classes and namespaces for
 | |
| // argument-dependent lookup with an argument of class type
 | |
| // (C++ [basic.lookup.koenig]p2).
 | |
| static void
 | |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
 | |
|                                   CXXRecordDecl *Class) {
 | |
| 
 | |
|   // Just silently ignore anything whose name is __va_list_tag.
 | |
|   if (Class->getDeclName() == Result.S.VAListTagName)
 | |
|     return;
 | |
| 
 | |
|   // C++ [basic.lookup.koenig]p2:
 | |
|   //   [...]
 | |
|   //     -- If T is a class type (including unions), its associated
 | |
|   //        classes are: the class itself; the class of which it is a
 | |
|   //        member, if any; and its direct and indirect base
 | |
|   //        classes. Its associated namespaces are the namespaces in
 | |
|   //        which its associated classes are defined.
 | |
| 
 | |
|   // Add the class of which it is a member, if any.
 | |
|   DeclContext *Ctx = Class->getDeclContext();
 | |
|   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|     Result.Classes.insert(EnclosingClass);
 | |
|   // Add the associated namespace for this class.
 | |
|   CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | |
| 
 | |
|   // Add the class itself. If we've already seen this class, we don't
 | |
|   // need to visit base classes.
 | |
|   if (!Result.Classes.insert(Class))
 | |
|     return;
 | |
| 
 | |
|   // -- If T is a template-id, its associated namespaces and classes are
 | |
|   //    the namespace in which the template is defined; for member
 | |
|   //    templates, the member template's class; the namespaces and classes
 | |
|   //    associated with the types of the template arguments provided for
 | |
|   //    template type parameters (excluding template template parameters); the
 | |
|   //    namespaces in which any template template arguments are defined; and
 | |
|   //    the classes in which any member templates used as template template
 | |
|   //    arguments are defined. [Note: non-type template arguments do not
 | |
|   //    contribute to the set of associated namespaces. ]
 | |
|   if (ClassTemplateSpecializationDecl *Spec
 | |
|         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
 | |
|     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
 | |
|     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|       Result.Classes.insert(EnclosingClass);
 | |
|     // Add the associated namespace for this class.
 | |
|     CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | |
| 
 | |
|     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
 | |
|     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
 | |
|   }
 | |
| 
 | |
|   // Only recurse into base classes for complete types.
 | |
|   if (!Class->hasDefinition()) {
 | |
|     // FIXME: we might need to instantiate templates here
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add direct and indirect base classes along with their associated
 | |
|   // namespaces.
 | |
|   llvm::SmallVector<CXXRecordDecl *, 32> Bases;
 | |
|   Bases.push_back(Class);
 | |
|   while (!Bases.empty()) {
 | |
|     // Pop this class off the stack.
 | |
|     Class = Bases.back();
 | |
|     Bases.pop_back();
 | |
| 
 | |
|     // Visit the base classes.
 | |
|     for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
 | |
|                                          BaseEnd = Class->bases_end();
 | |
|          Base != BaseEnd; ++Base) {
 | |
|       const RecordType *BaseType = Base->getType()->getAs<RecordType>();
 | |
|       // In dependent contexts, we do ADL twice, and the first time around,
 | |
|       // the base type might be a dependent TemplateSpecializationType, or a
 | |
|       // TemplateTypeParmType. If that happens, simply ignore it.
 | |
|       // FIXME: If we want to support export, we probably need to add the
 | |
|       // namespace of the template in a TemplateSpecializationType, or even
 | |
|       // the classes and namespaces of known non-dependent arguments.
 | |
|       if (!BaseType)
 | |
|         continue;
 | |
|       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       if (Result.Classes.insert(BaseDecl)) {
 | |
|         // Find the associated namespace for this base class.
 | |
|         DeclContext *BaseCtx = BaseDecl->getDeclContext();
 | |
|         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
 | |
| 
 | |
|         // Make sure we visit the bases of this base class.
 | |
|         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
 | |
|           Bases.push_back(BaseDecl);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // \brief Add the associated classes and namespaces for
 | |
| // argument-dependent lookup with an argument of type T
 | |
| // (C++ [basic.lookup.koenig]p2).
 | |
| static void
 | |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
 | |
|   // C++ [basic.lookup.koenig]p2:
 | |
|   //
 | |
|   //   For each argument type T in the function call, there is a set
 | |
|   //   of zero or more associated namespaces and a set of zero or more
 | |
|   //   associated classes to be considered. The sets of namespaces and
 | |
|   //   classes is determined entirely by the types of the function
 | |
|   //   arguments (and the namespace of any template template
 | |
|   //   argument). Typedef names and using-declarations used to specify
 | |
|   //   the types do not contribute to this set. The sets of namespaces
 | |
|   //   and classes are determined in the following way:
 | |
| 
 | |
|   llvm::SmallVector<const Type *, 16> Queue;
 | |
|   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
 | |
| 
 | |
|   while (true) {
 | |
|     switch (T->getTypeClass()) {
 | |
| 
 | |
| #define TYPE(Class, Base)
 | |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #include "clang/AST/TypeNodes.def"
 | |
|       // T is canonical.  We can also ignore dependent types because
 | |
|       // we don't need to do ADL at the definition point, but if we
 | |
|       // wanted to implement template export (or if we find some other
 | |
|       // use for associated classes and namespaces...) this would be
 | |
|       // wrong.
 | |
|       break;
 | |
| 
 | |
|     //    -- If T is a pointer to U or an array of U, its associated
 | |
|     //       namespaces and classes are those associated with U.
 | |
|     case Type::Pointer:
 | |
|       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
 | |
|       continue;
 | |
|     case Type::ConstantArray:
 | |
|     case Type::IncompleteArray:
 | |
|     case Type::VariableArray:
 | |
|       T = cast<ArrayType>(T)->getElementType().getTypePtr();
 | |
|       continue;
 | |
| 
 | |
|     //     -- If T is a fundamental type, its associated sets of
 | |
|     //        namespaces and classes are both empty.
 | |
|     case Type::Builtin:
 | |
|       break;
 | |
| 
 | |
|     //     -- If T is a class type (including unions), its associated
 | |
|     //        classes are: the class itself; the class of which it is a
 | |
|     //        member, if any; and its direct and indirect base
 | |
|     //        classes. Its associated namespaces are the namespaces in
 | |
|     //        which its associated classes are defined.
 | |
|     case Type::Record: {
 | |
|       CXXRecordDecl *Class
 | |
|         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
 | |
|       addAssociatedClassesAndNamespaces(Result, Class);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     //     -- If T is an enumeration type, its associated namespace is
 | |
|     //        the namespace in which it is defined. If it is class
 | |
|     //        member, its associated class is the member's class; else
 | |
|     //        it has no associated class.
 | |
|     case Type::Enum: {
 | |
|       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
 | |
| 
 | |
|       DeclContext *Ctx = Enum->getDeclContext();
 | |
|       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|         Result.Classes.insert(EnclosingClass);
 | |
| 
 | |
|       // Add the associated namespace for this class.
 | |
|       CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     //     -- If T is a function type, its associated namespaces and
 | |
|     //        classes are those associated with the function parameter
 | |
|     //        types and those associated with the return type.
 | |
|     case Type::FunctionProto: {
 | |
|       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
 | |
|       for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
 | |
|                                              ArgEnd = Proto->arg_type_end();
 | |
|              Arg != ArgEnd; ++Arg)
 | |
|         Queue.push_back(Arg->getTypePtr());
 | |
|       // fallthrough
 | |
|     }
 | |
|     case Type::FunctionNoProto: {
 | |
|       const FunctionType *FnType = cast<FunctionType>(T);
 | |
|       T = FnType->getResultType().getTypePtr();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     //     -- If T is a pointer to a member function of a class X, its
 | |
|     //        associated namespaces and classes are those associated
 | |
|     //        with the function parameter types and return type,
 | |
|     //        together with those associated with X.
 | |
|     //
 | |
|     //     -- If T is a pointer to a data member of class X, its
 | |
|     //        associated namespaces and classes are those associated
 | |
|     //        with the member type together with those associated with
 | |
|     //        X.
 | |
|     case Type::MemberPointer: {
 | |
|       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
 | |
| 
 | |
|       // Queue up the class type into which this points.
 | |
|       Queue.push_back(MemberPtr->getClass());
 | |
| 
 | |
|       // And directly continue with the pointee type.
 | |
|       T = MemberPtr->getPointeeType().getTypePtr();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // As an extension, treat this like a normal pointer.
 | |
|     case Type::BlockPointer:
 | |
|       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
 | |
|       continue;
 | |
| 
 | |
|     // References aren't covered by the standard, but that's such an
 | |
|     // obvious defect that we cover them anyway.
 | |
|     case Type::LValueReference:
 | |
|     case Type::RValueReference:
 | |
|       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
 | |
|       continue;
 | |
| 
 | |
|     // These are fundamental types.
 | |
|     case Type::Vector:
 | |
|     case Type::ExtVector:
 | |
|     case Type::Complex:
 | |
|       break;
 | |
| 
 | |
|     // If T is an Objective-C object or interface type, or a pointer to an 
 | |
|     // object or interface type, the associated namespace is the global
 | |
|     // namespace.
 | |
|     case Type::ObjCObject:
 | |
|     case Type::ObjCInterface:
 | |
|     case Type::ObjCObjectPointer:
 | |
|       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (Queue.empty()) break;
 | |
|     T = Queue.back();
 | |
|     Queue.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Find the associated classes and namespaces for
 | |
| /// argument-dependent lookup for a call with the given set of
 | |
| /// arguments.
 | |
| ///
 | |
| /// This routine computes the sets of associated classes and associated
 | |
| /// namespaces searched by argument-dependent lookup
 | |
| /// (C++ [basic.lookup.argdep]) for a given set of arguments.
 | |
| void
 | |
| Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
 | |
|                                  AssociatedNamespaceSet &AssociatedNamespaces,
 | |
|                                  AssociatedClassSet &AssociatedClasses) {
 | |
|   AssociatedNamespaces.clear();
 | |
|   AssociatedClasses.clear();
 | |
| 
 | |
|   AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
 | |
| 
 | |
|   // C++ [basic.lookup.koenig]p2:
 | |
|   //   For each argument type T in the function call, there is a set
 | |
|   //   of zero or more associated namespaces and a set of zero or more
 | |
|   //   associated classes to be considered. The sets of namespaces and
 | |
|   //   classes is determined entirely by the types of the function
 | |
|   //   arguments (and the namespace of any template template
 | |
|   //   argument).
 | |
|   for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
 | |
|     Expr *Arg = Args[ArgIdx];
 | |
| 
 | |
|     if (Arg->getType() != Context.OverloadTy) {
 | |
|       addAssociatedClassesAndNamespaces(Result, Arg->getType());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // [...] In addition, if the argument is the name or address of a
 | |
|     // set of overloaded functions and/or function templates, its
 | |
|     // associated classes and namespaces are the union of those
 | |
|     // associated with each of the members of the set: the namespace
 | |
|     // in which the function or function template is defined and the
 | |
|     // classes and namespaces associated with its (non-dependent)
 | |
|     // parameter types and return type.
 | |
|     Arg = Arg->IgnoreParens();
 | |
|     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
 | |
|       if (unaryOp->getOpcode() == UO_AddrOf)
 | |
|         Arg = unaryOp->getSubExpr();
 | |
| 
 | |
|     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
 | |
|     if (!ULE) continue;
 | |
| 
 | |
|     for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
 | |
|            I != E; ++I) {
 | |
|       // Look through any using declarations to find the underlying function.
 | |
|       NamedDecl *Fn = (*I)->getUnderlyingDecl();
 | |
| 
 | |
|       FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
 | |
|       if (!FDecl)
 | |
|         FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
 | |
| 
 | |
|       // Add the classes and namespaces associated with the parameter
 | |
|       // types and return type of this function.
 | |
|       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
 | |
| /// an acceptable non-member overloaded operator for a call whose
 | |
| /// arguments have types T1 (and, if non-empty, T2). This routine
 | |
| /// implements the check in C++ [over.match.oper]p3b2 concerning
 | |
| /// enumeration types.
 | |
| static bool
 | |
| IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
 | |
|                                        QualType T1, QualType T2,
 | |
|                                        ASTContext &Context) {
 | |
|   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
 | |
|     return true;
 | |
| 
 | |
|   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
 | |
|     return true;
 | |
| 
 | |
|   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
 | |
|   if (Proto->getNumArgs() < 1)
 | |
|     return false;
 | |
| 
 | |
|   if (T1->isEnumeralType()) {
 | |
|     QualType ArgType = Proto->getArgType(0).getNonReferenceType();
 | |
|     if (Context.hasSameUnqualifiedType(T1, ArgType))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (Proto->getNumArgs() < 2)
 | |
|     return false;
 | |
| 
 | |
|   if (!T2.isNull() && T2->isEnumeralType()) {
 | |
|     QualType ArgType = Proto->getArgType(1).getNonReferenceType();
 | |
|     if (Context.hasSameUnqualifiedType(T2, ArgType))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
 | |
|                                   SourceLocation Loc,
 | |
|                                   LookupNameKind NameKind,
 | |
|                                   RedeclarationKind Redecl) {
 | |
|   LookupResult R(*this, Name, Loc, NameKind, Redecl);
 | |
|   LookupName(R, S);
 | |
|   return R.getAsSingle<NamedDecl>();
 | |
| }
 | |
| 
 | |
| /// \brief Find the protocol with the given name, if any.
 | |
| ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
 | |
|                                        SourceLocation IdLoc) {
 | |
|   Decl *D = LookupSingleName(TUScope, II, IdLoc,
 | |
|                              LookupObjCProtocolName);
 | |
|   return cast_or_null<ObjCProtocolDecl>(D);
 | |
| }
 | |
| 
 | |
| void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
 | |
|                                         QualType T1, QualType T2,
 | |
|                                         UnresolvedSetImpl &Functions) {
 | |
|   // C++ [over.match.oper]p3:
 | |
|   //     -- The set of non-member candidates is the result of the
 | |
|   //        unqualified lookup of operator@ in the context of the
 | |
|   //        expression according to the usual rules for name lookup in
 | |
|   //        unqualified function calls (3.4.2) except that all member
 | |
|   //        functions are ignored. However, if no operand has a class
 | |
|   //        type, only those non-member functions in the lookup set
 | |
|   //        that have a first parameter of type T1 or "reference to
 | |
|   //        (possibly cv-qualified) T1", when T1 is an enumeration
 | |
|   //        type, or (if there is a right operand) a second parameter
 | |
|   //        of type T2 or "reference to (possibly cv-qualified) T2",
 | |
|   //        when T2 is an enumeration type, are candidate functions.
 | |
|   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | |
|   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
 | |
|   LookupName(Operators, S);
 | |
| 
 | |
|   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
 | |
| 
 | |
|   if (Operators.empty())
 | |
|     return;
 | |
| 
 | |
|   for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
 | |
|        Op != OpEnd; ++Op) {
 | |
|     NamedDecl *Found = (*Op)->getUnderlyingDecl();
 | |
|     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
 | |
|       if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
 | |
|         Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
 | |
|     } else if (FunctionTemplateDecl *FunTmpl
 | |
|                  = dyn_cast<FunctionTemplateDecl>(Found)) {
 | |
|       // FIXME: friend operators?
 | |
|       // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
 | |
|       // later?
 | |
|       if (!FunTmpl->getDeclContext()->isRecord())
 | |
|         Functions.addDecl(*Op, Op.getAccess());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Look up the constructors for the given class.
 | |
| DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
 | |
|   // If the copy constructor has not yet been declared, do so now.
 | |
|   if (CanDeclareSpecialMemberFunction(Context, Class)) {
 | |
|     if (!Class->hasDeclaredDefaultConstructor())
 | |
|       DeclareImplicitDefaultConstructor(Class);
 | |
|     if (!Class->hasDeclaredCopyConstructor())
 | |
|       DeclareImplicitCopyConstructor(Class);
 | |
|   }
 | |
| 
 | |
|   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
 | |
|   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
 | |
|   return Class->lookup(Name);
 | |
| }
 | |
| 
 | |
| /// \brief Look for the destructor of the given class.
 | |
| ///
 | |
| /// During semantic analysis, this routine should be used in lieu of
 | |
| /// CXXRecordDecl::getDestructor().
 | |
| ///
 | |
| /// \returns The destructor for this class.
 | |
| CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
 | |
|   // If the destructor has not yet been declared, do so now.
 | |
|   if (CanDeclareSpecialMemberFunction(Context, Class) &&
 | |
|       !Class->hasDeclaredDestructor())
 | |
|     DeclareImplicitDestructor(Class);
 | |
| 
 | |
|   return Class->getDestructor();
 | |
| }
 | |
| 
 | |
| void ADLResult::insert(NamedDecl *New) {
 | |
|   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
 | |
| 
 | |
|   // If we haven't yet seen a decl for this key, or the last decl
 | |
|   // was exactly this one, we're done.
 | |
|   if (Old == 0 || Old == New) {
 | |
|     Old = New;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, decide which is a more recent redeclaration.
 | |
|   FunctionDecl *OldFD, *NewFD;
 | |
|   if (isa<FunctionTemplateDecl>(New)) {
 | |
|     OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
 | |
|     NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
 | |
|   } else {
 | |
|     OldFD = cast<FunctionDecl>(Old);
 | |
|     NewFD = cast<FunctionDecl>(New);
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *Cursor = NewFD;
 | |
|   while (true) {
 | |
|     Cursor = Cursor->getPreviousDeclaration();
 | |
| 
 | |
|     // If we got to the end without finding OldFD, OldFD is the newer
 | |
|     // declaration;  leave things as they are.
 | |
|     if (!Cursor) return;
 | |
| 
 | |
|     // If we do find OldFD, then NewFD is newer.
 | |
|     if (Cursor == OldFD) break;
 | |
| 
 | |
|     // Otherwise, keep looking.
 | |
|   }
 | |
| 
 | |
|   Old = New;
 | |
| }
 | |
| 
 | |
| void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
 | |
|                                    Expr **Args, unsigned NumArgs,
 | |
|                                    ADLResult &Result,
 | |
|                                    bool StdNamespaceIsAssociated) {
 | |
|   // Find all of the associated namespaces and classes based on the
 | |
|   // arguments we have.
 | |
|   AssociatedNamespaceSet AssociatedNamespaces;
 | |
|   AssociatedClassSet AssociatedClasses;
 | |
|   FindAssociatedClassesAndNamespaces(Args, NumArgs,
 | |
|                                      AssociatedNamespaces,
 | |
|                                      AssociatedClasses);
 | |
|   if (StdNamespaceIsAssociated && StdNamespace)
 | |
|     AssociatedNamespaces.insert(getStdNamespace());
 | |
| 
 | |
|   QualType T1, T2;
 | |
|   if (Operator) {
 | |
|     T1 = Args[0]->getType();
 | |
|     if (NumArgs >= 2)
 | |
|       T2 = Args[1]->getType();
 | |
|   }
 | |
| 
 | |
|   // C++ [basic.lookup.argdep]p3:
 | |
|   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
 | |
|   //   and let Y be the lookup set produced by argument dependent
 | |
|   //   lookup (defined as follows). If X contains [...] then Y is
 | |
|   //   empty. Otherwise Y is the set of declarations found in the
 | |
|   //   namespaces associated with the argument types as described
 | |
|   //   below. The set of declarations found by the lookup of the name
 | |
|   //   is the union of X and Y.
 | |
|   //
 | |
|   // Here, we compute Y and add its members to the overloaded
 | |
|   // candidate set.
 | |
|   for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
 | |
|                                      NSEnd = AssociatedNamespaces.end();
 | |
|        NS != NSEnd; ++NS) {
 | |
|     //   When considering an associated namespace, the lookup is the
 | |
|     //   same as the lookup performed when the associated namespace is
 | |
|     //   used as a qualifier (3.4.3.2) except that:
 | |
|     //
 | |
|     //     -- Any using-directives in the associated namespace are
 | |
|     //        ignored.
 | |
|     //
 | |
|     //     -- Any namespace-scope friend functions declared in
 | |
|     //        associated classes are visible within their respective
 | |
|     //        namespaces even if they are not visible during an ordinary
 | |
|     //        lookup (11.4).
 | |
|     DeclContext::lookup_iterator I, E;
 | |
|     for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
 | |
|       NamedDecl *D = *I;
 | |
|       // If the only declaration here is an ordinary friend, consider
 | |
|       // it only if it was declared in an associated classes.
 | |
|       if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
 | |
|         DeclContext *LexDC = D->getLexicalDeclContext();
 | |
|         if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       if (isa<UsingShadowDecl>(D))
 | |
|         D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|       if (isa<FunctionDecl>(D)) {
 | |
|         if (Operator &&
 | |
|             !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
 | |
|                                                     T1, T2, Context))
 | |
|           continue;
 | |
|       } else if (!isa<FunctionTemplateDecl>(D))
 | |
|         continue;
 | |
| 
 | |
|       Result.insert(D);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // Search for all visible declarations.
 | |
| //----------------------------------------------------------------------------
 | |
| VisibleDeclConsumer::~VisibleDeclConsumer() { }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ShadowContextRAII;
 | |
| 
 | |
| class VisibleDeclsRecord {
 | |
| public:
 | |
|   /// \brief An entry in the shadow map, which is optimized to store a
 | |
|   /// single declaration (the common case) but can also store a list
 | |
|   /// of declarations.
 | |
|   class ShadowMapEntry {
 | |
|     typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
 | |
| 
 | |
|     /// \brief Contains either the solitary NamedDecl * or a vector
 | |
|     /// of declarations.
 | |
|     llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
 | |
| 
 | |
|   public:
 | |
|     ShadowMapEntry() : DeclOrVector() { }
 | |
| 
 | |
|     void Add(NamedDecl *ND);
 | |
|     void Destroy();
 | |
| 
 | |
|     // Iteration.
 | |
|     typedef NamedDecl * const *iterator;
 | |
|     iterator begin();
 | |
|     iterator end();
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   /// \brief A mapping from declaration names to the declarations that have
 | |
|   /// this name within a particular scope.
 | |
|   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
 | |
| 
 | |
|   /// \brief A list of shadow maps, which is used to model name hiding.
 | |
|   std::list<ShadowMap> ShadowMaps;
 | |
| 
 | |
|   /// \brief The declaration contexts we have already visited.
 | |
|   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
 | |
| 
 | |
|   friend class ShadowContextRAII;
 | |
| 
 | |
| public:
 | |
|   /// \brief Determine whether we have already visited this context
 | |
|   /// (and, if not, note that we are going to visit that context now).
 | |
|   bool visitedContext(DeclContext *Ctx) {
 | |
|     return !VisitedContexts.insert(Ctx);
 | |
|   }
 | |
| 
 | |
|   bool alreadyVisitedContext(DeclContext *Ctx) {
 | |
|     return VisitedContexts.count(Ctx);
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine whether the given declaration is hidden in the
 | |
|   /// current scope.
 | |
|   ///
 | |
|   /// \returns the declaration that hides the given declaration, or
 | |
|   /// NULL if no such declaration exists.
 | |
|   NamedDecl *checkHidden(NamedDecl *ND);
 | |
| 
 | |
|   /// \brief Add a declaration to the current shadow map.
 | |
|   void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
 | |
| };
 | |
| 
 | |
| /// \brief RAII object that records when we've entered a shadow context.
 | |
| class ShadowContextRAII {
 | |
|   VisibleDeclsRecord &Visible;
 | |
| 
 | |
|   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
 | |
| 
 | |
| public:
 | |
|   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
 | |
|     Visible.ShadowMaps.push_back(ShadowMap());
 | |
|   }
 | |
| 
 | |
|   ~ShadowContextRAII() {
 | |
|     for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
 | |
|                           EEnd = Visible.ShadowMaps.back().end();
 | |
|          E != EEnd;
 | |
|          ++E)
 | |
|       E->second.Destroy();
 | |
| 
 | |
|     Visible.ShadowMaps.pop_back();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
 | |
|   if (DeclOrVector.isNull()) {
 | |
|     // 0 - > 1 elements: just set the single element information.
 | |
|     DeclOrVector = ND;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
 | |
|     // 1 -> 2 elements: create the vector of results and push in the
 | |
|     // existing declaration.
 | |
|     DeclVector *Vec = new DeclVector;
 | |
|     Vec->push_back(PrevND);
 | |
|     DeclOrVector = Vec;
 | |
|   }
 | |
| 
 | |
|   // Add the new element to the end of the vector.
 | |
|   DeclOrVector.get<DeclVector*>()->push_back(ND);
 | |
| }
 | |
| 
 | |
| void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
 | |
|   if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
 | |
|     delete Vec;
 | |
|     DeclOrVector = ((NamedDecl *)0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| VisibleDeclsRecord::ShadowMapEntry::iterator
 | |
| VisibleDeclsRecord::ShadowMapEntry::begin() {
 | |
|   if (DeclOrVector.isNull())
 | |
|     return 0;
 | |
| 
 | |
|   if (DeclOrVector.is<NamedDecl *>())
 | |
|     return DeclOrVector.getAddrOf<NamedDecl *>();
 | |
| 
 | |
|   return DeclOrVector.get<DeclVector *>()->begin();
 | |
| }
 | |
| 
 | |
| VisibleDeclsRecord::ShadowMapEntry::iterator
 | |
| VisibleDeclsRecord::ShadowMapEntry::end() {
 | |
|   if (DeclOrVector.isNull())
 | |
|     return 0;
 | |
| 
 | |
|   if (DeclOrVector.dyn_cast<NamedDecl *>())
 | |
|     return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
 | |
| 
 | |
|   return DeclOrVector.get<DeclVector *>()->end();
 | |
| }
 | |
| 
 | |
| NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
 | |
|   // Look through using declarations.
 | |
|   ND = ND->getUnderlyingDecl();
 | |
| 
 | |
|   unsigned IDNS = ND->getIdentifierNamespace();
 | |
|   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
 | |
|   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
 | |
|        SM != SMEnd; ++SM) {
 | |
|     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
 | |
|     if (Pos == SM->end())
 | |
|       continue;
 | |
| 
 | |
|     for (ShadowMapEntry::iterator I = Pos->second.begin(),
 | |
|                                IEnd = Pos->second.end();
 | |
|          I != IEnd; ++I) {
 | |
|       // A tag declaration does not hide a non-tag declaration.
 | |
|       if ((*I)->hasTagIdentifierNamespace() &&
 | |
|           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
 | |
|                    Decl::IDNS_ObjCProtocol)))
 | |
|         continue;
 | |
| 
 | |
|       // Protocols are in distinct namespaces from everything else.
 | |
|       if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
 | |
|            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
 | |
|           (*I)->getIdentifierNamespace() != IDNS)
 | |
|         continue;
 | |
| 
 | |
|       // Functions and function templates in the same scope overload
 | |
|       // rather than hide.  FIXME: Look for hiding based on function
 | |
|       // signatures!
 | |
|       if ((*I)->isFunctionOrFunctionTemplate() &&
 | |
|           ND->isFunctionOrFunctionTemplate() &&
 | |
|           SM == ShadowMaps.rbegin())
 | |
|         continue;
 | |
| 
 | |
|       // We've found a declaration that hides this one.
 | |
|       return *I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
 | |
|                                bool QualifiedNameLookup,
 | |
|                                bool InBaseClass,
 | |
|                                VisibleDeclConsumer &Consumer,
 | |
|                                VisibleDeclsRecord &Visited) {
 | |
|   if (!Ctx)
 | |
|     return;
 | |
| 
 | |
|   // Make sure we don't visit the same context twice.
 | |
|   if (Visited.visitedContext(Ctx->getPrimaryContext()))
 | |
|     return;
 | |
| 
 | |
|   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
 | |
| 
 | |
|   // Enumerate all of the results in this context.
 | |
|   for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
 | |
|        CurCtx = CurCtx->getNextContext()) {
 | |
|     for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
 | |
|                                  DEnd = CurCtx->decls_end();
 | |
|          D != DEnd; ++D) {
 | |
|       if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) {
 | |
|         if (Result.isAcceptableDecl(ND)) {
 | |
|           Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
 | |
|           Visited.add(ND);
 | |
|         }
 | |
|       } else if (ObjCForwardProtocolDecl *ForwardProto
 | |
|                                       = dyn_cast<ObjCForwardProtocolDecl>(*D)) {
 | |
|         for (ObjCForwardProtocolDecl::protocol_iterator
 | |
|                   P = ForwardProto->protocol_begin(),
 | |
|                PEnd = ForwardProto->protocol_end();
 | |
|              P != PEnd;
 | |
|              ++P) {
 | |
|           if (Result.isAcceptableDecl(*P)) {
 | |
|             Consumer.FoundDecl(*P, Visited.checkHidden(*P), InBaseClass);
 | |
|             Visited.add(*P);
 | |
|           }
 | |
|         }
 | |
|       } else if (ObjCClassDecl *Class = dyn_cast<ObjCClassDecl>(*D)) {
 | |
|         for (ObjCClassDecl::iterator I = Class->begin(), IEnd = Class->end();
 | |
|              I != IEnd; ++I) {
 | |
|           ObjCInterfaceDecl *IFace = I->getInterface();
 | |
|           if (Result.isAcceptableDecl(IFace)) {
 | |
|             Consumer.FoundDecl(IFace, Visited.checkHidden(IFace), InBaseClass);
 | |
|             Visited.add(IFace);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Visit transparent contexts and inline namespaces inside this context.
 | |
|       if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
 | |
|         if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
 | |
|           LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
 | |
|                              Consumer, Visited);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse using directives for qualified name lookup.
 | |
|   if (QualifiedNameLookup) {
 | |
|     ShadowContextRAII Shadow(Visited);
 | |
|     DeclContext::udir_iterator I, E;
 | |
|     for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
 | |
|       LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
 | |
|                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse the contexts of inherited C++ classes.
 | |
|   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
 | |
|     if (!Record->hasDefinition())
 | |
|       return;
 | |
| 
 | |
|     for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
 | |
|                                          BEnd = Record->bases_end();
 | |
|          B != BEnd; ++B) {
 | |
|       QualType BaseType = B->getType();
 | |
| 
 | |
|       // Don't look into dependent bases, because name lookup can't look
 | |
|       // there anyway.
 | |
|       if (BaseType->isDependentType())
 | |
|         continue;
 | |
| 
 | |
|       const RecordType *Record = BaseType->getAs<RecordType>();
 | |
|       if (!Record)
 | |
|         continue;
 | |
| 
 | |
|       // FIXME: It would be nice to be able to determine whether referencing
 | |
|       // a particular member would be ambiguous. For example, given
 | |
|       //
 | |
|       //   struct A { int member; };
 | |
|       //   struct B { int member; };
 | |
|       //   struct C : A, B { };
 | |
|       //
 | |
|       //   void f(C *c) { c->### }
 | |
|       //
 | |
|       // accessing 'member' would result in an ambiguity. However, we
 | |
|       // could be smart enough to qualify the member with the base
 | |
|       // class, e.g.,
 | |
|       //
 | |
|       //   c->B::member
 | |
|       //
 | |
|       // or
 | |
|       //
 | |
|       //   c->A::member
 | |
| 
 | |
|       // Find results in this base class (and its bases).
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
 | |
|                          true, Consumer, Visited);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse the contexts of Objective-C classes.
 | |
|   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
 | |
|     // Traverse categories.
 | |
|     for (ObjCCategoryDecl *Category = IFace->getCategoryList();
 | |
|          Category; Category = Category->getNextClassCategory()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
 | |
|                          Consumer, Visited);
 | |
|     }
 | |
| 
 | |
|     // Traverse protocols.
 | |
|     for (ObjCInterfaceDecl::all_protocol_iterator
 | |
|          I = IFace->all_referenced_protocol_begin(),
 | |
|          E = IFace->all_referenced_protocol_end(); I != E; ++I) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
 | |
|                          Visited);
 | |
|     }
 | |
| 
 | |
|     // Traverse the superclass.
 | |
|     if (IFace->getSuperClass()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
 | |
|                          true, Consumer, Visited);
 | |
|     }
 | |
| 
 | |
|     // If there is an implementation, traverse it. We do this to find
 | |
|     // synthesized ivars.
 | |
|     if (IFace->getImplementation()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(IFace->getImplementation(), Result,
 | |
|                          QualifiedNameLookup, true, Consumer, Visited);
 | |
|     }
 | |
|   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
 | |
|     for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
 | |
|            E = Protocol->protocol_end(); I != E; ++I) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
 | |
|                          Visited);
 | |
|     }
 | |
|   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
 | |
|     for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
 | |
|            E = Category->protocol_end(); I != E; ++I) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
 | |
|                          Visited);
 | |
|     }
 | |
| 
 | |
|     // If there is an implementation, traverse it.
 | |
|     if (Category->getImplementation()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(Category->getImplementation(), Result,
 | |
|                          QualifiedNameLookup, true, Consumer, Visited);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void LookupVisibleDecls(Scope *S, LookupResult &Result,
 | |
|                                UnqualUsingDirectiveSet &UDirs,
 | |
|                                VisibleDeclConsumer &Consumer,
 | |
|                                VisibleDeclsRecord &Visited) {
 | |
|   if (!S)
 | |
|     return;
 | |
| 
 | |
|   if (!S->getEntity() ||
 | |
|       (!S->getParent() &&
 | |
|        !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
 | |
|       ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
 | |
|     // Walk through the declarations in this Scope.
 | |
|     for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
 | |
|          D != DEnd; ++D) {
 | |
|       if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
 | |
|         if (Result.isAcceptableDecl(ND)) {
 | |
|           Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
 | |
|           Visited.add(ND);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: C++ [temp.local]p8
 | |
|   DeclContext *Entity = 0;
 | |
|   if (S->getEntity()) {
 | |
|     // Look into this scope's declaration context, along with any of its
 | |
|     // parent lookup contexts (e.g., enclosing classes), up to the point
 | |
|     // where we hit the context stored in the next outer scope.
 | |
|     Entity = (DeclContext *)S->getEntity();
 | |
|     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
 | |
| 
 | |
|     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
 | |
|          Ctx = Ctx->getLookupParent()) {
 | |
|       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
 | |
|         if (Method->isInstanceMethod()) {
 | |
|           // For instance methods, look for ivars in the method's interface.
 | |
|           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
 | |
|                                   Result.getNameLoc(), Sema::LookupMemberName);
 | |
|           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
 | |
|             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
 | |
|                                /*InBaseClass=*/false, Consumer, Visited);
 | |
| 
 | |
|             // Look for properties from which we can synthesize ivars, if
 | |
|             // permitted.
 | |
|             if (Result.getSema().getLangOptions().ObjCNonFragileABI2 &&
 | |
|                 IFace->getImplementation() &&
 | |
|                 Result.getLookupKind() == Sema::LookupOrdinaryName) {
 | |
|               for (ObjCInterfaceDecl::prop_iterator
 | |
|                         P = IFace->prop_begin(),
 | |
|                      PEnd = IFace->prop_end();
 | |
|                    P != PEnd; ++P) {
 | |
|                 if (Result.getSema().canSynthesizeProvisionalIvar(*P) &&
 | |
|                     !IFace->lookupInstanceVariable((*P)->getIdentifier())) {
 | |
|                   Consumer.FoundDecl(*P, Visited.checkHidden(*P), false);
 | |
|                   Visited.add(*P);
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // We've already performed all of the name lookup that we need
 | |
|         // to for Objective-C methods; the next context will be the
 | |
|         // outer scope.
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Ctx->isFunctionOrMethod())
 | |
|         continue;
 | |
| 
 | |
|       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
 | |
|                          /*InBaseClass=*/false, Consumer, Visited);
 | |
|     }
 | |
|   } else if (!S->getParent()) {
 | |
|     // Look into the translation unit scope. We walk through the translation
 | |
|     // unit's declaration context, because the Scope itself won't have all of
 | |
|     // the declarations if we loaded a precompiled header.
 | |
|     // FIXME: We would like the translation unit's Scope object to point to the
 | |
|     // translation unit, so we don't need this special "if" branch. However,
 | |
|     // doing so would force the normal C++ name-lookup code to look into the
 | |
|     // translation unit decl when the IdentifierInfo chains would suffice.
 | |
|     // Once we fix that problem (which is part of a more general "don't look
 | |
|     // in DeclContexts unless we have to" optimization), we can eliminate this.
 | |
|     Entity = Result.getSema().Context.getTranslationUnitDecl();
 | |
|     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
 | |
|                        /*InBaseClass=*/false, Consumer, Visited);
 | |
|   }
 | |
| 
 | |
|   if (Entity) {
 | |
|     // Lookup visible declarations in any namespaces found by using
 | |
|     // directives.
 | |
|     UnqualUsingDirectiveSet::const_iterator UI, UEnd;
 | |
|     llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
 | |
|     for (; UI != UEnd; ++UI)
 | |
|       LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
 | |
|                          Result, /*QualifiedNameLookup=*/false,
 | |
|                          /*InBaseClass=*/false, Consumer, Visited);
 | |
|   }
 | |
| 
 | |
|   // Lookup names in the parent scope.
 | |
|   ShadowContextRAII Shadow(Visited);
 | |
|   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
 | |
| }
 | |
| 
 | |
| void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
 | |
|                               VisibleDeclConsumer &Consumer,
 | |
|                               bool IncludeGlobalScope) {
 | |
|   // Determine the set of using directives available during
 | |
|   // unqualified name lookup.
 | |
|   Scope *Initial = S;
 | |
|   UnqualUsingDirectiveSet UDirs;
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // Find the first namespace or translation-unit scope.
 | |
|     while (S && !isNamespaceOrTranslationUnitScope(S))
 | |
|       S = S->getParent();
 | |
| 
 | |
|     UDirs.visitScopeChain(Initial, S);
 | |
|   }
 | |
|   UDirs.done();
 | |
| 
 | |
|   // Look for visible declarations.
 | |
|   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
 | |
|   VisibleDeclsRecord Visited;
 | |
|   if (!IncludeGlobalScope)
 | |
|     Visited.visitedContext(Context.getTranslationUnitDecl());
 | |
|   ShadowContextRAII Shadow(Visited);
 | |
|   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
 | |
| }
 | |
| 
 | |
| void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
 | |
|                               VisibleDeclConsumer &Consumer,
 | |
|                               bool IncludeGlobalScope) {
 | |
|   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
 | |
|   VisibleDeclsRecord Visited;
 | |
|   if (!IncludeGlobalScope)
 | |
|     Visited.visitedContext(Context.getTranslationUnitDecl());
 | |
|   ShadowContextRAII Shadow(Visited);
 | |
|   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
 | |
|                        /*InBaseClass=*/false, Consumer, Visited);
 | |
| }
 | |
| 
 | |
| /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
 | |
| /// If GnuLabelLoc is a valid source location, then this is a definition
 | |
| /// of an __label__ label name, otherwise it is a normal label definition
 | |
| /// or use.
 | |
| LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
 | |
|                                      SourceLocation GnuLabelLoc) {
 | |
|   // Do a lookup to see if we have a label with this name already.
 | |
|   NamedDecl *Res = 0;
 | |
| 
 | |
|   if (GnuLabelLoc.isValid()) {
 | |
|     // Local label definitions always shadow existing labels.
 | |
|     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
 | |
|     Scope *S = CurScope;
 | |
|     PushOnScopeChains(Res, S, true);
 | |
|     return cast<LabelDecl>(Res);
 | |
|   }
 | |
| 
 | |
|   // Not a GNU local label.
 | |
|   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
 | |
|   // If we found a label, check to see if it is in the same context as us.
 | |
|   // When in a Block, we don't want to reuse a label in an enclosing function.
 | |
|   if (Res && Res->getDeclContext() != CurContext)
 | |
|     Res = 0;
 | |
|   if (Res == 0) {
 | |
|     // If not forward referenced or defined already, create the backing decl.
 | |
|     Res = LabelDecl::Create(Context, CurContext, Loc, II);
 | |
|     Scope *S = CurScope->getFnParent();
 | |
|     assert(S && "Not in a function?");
 | |
|     PushOnScopeChains(Res, S, true);
 | |
|   }
 | |
|   return cast<LabelDecl>(Res);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Typo correction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class TypoCorrectionConsumer : public VisibleDeclConsumer {
 | |
|   /// \brief The name written that is a typo in the source.
 | |
|   llvm::StringRef Typo;
 | |
| 
 | |
|   /// \brief The results found that have the smallest edit distance
 | |
|   /// found (so far) with the typo name.
 | |
|   ///
 | |
|   /// The boolean value indicates whether there is a keyword with this name.
 | |
|   llvm::StringMap<bool, llvm::BumpPtrAllocator> BestResults;
 | |
| 
 | |
|   /// \brief The best edit distance found so far.
 | |
|   unsigned BestEditDistance;
 | |
| 
 | |
| public:
 | |
|   explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
 | |
|     : Typo(Typo->getName()),
 | |
|       BestEditDistance((std::numeric_limits<unsigned>::max)()) { }
 | |
| 
 | |
|   virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
 | |
|   void FoundName(llvm::StringRef Name);
 | |
|   void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
 | |
| 
 | |
|   typedef llvm::StringMap<bool, llvm::BumpPtrAllocator>::iterator iterator;
 | |
|   iterator begin() { return BestResults.begin(); }
 | |
|   iterator end()  { return BestResults.end(); }
 | |
|   void erase(iterator I) { BestResults.erase(I); }
 | |
|   unsigned size() const { return BestResults.size(); }
 | |
|   bool empty() const { return BestResults.empty(); }
 | |
| 
 | |
|   bool &operator[](llvm::StringRef Name) {
 | |
|     return BestResults[Name];
 | |
|   }
 | |
| 
 | |
|   unsigned getBestEditDistance() const { return BestEditDistance; }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
 | |
|                                        bool InBaseClass) {
 | |
|   // Don't consider hidden names for typo correction.
 | |
|   if (Hiding)
 | |
|     return;
 | |
| 
 | |
|   // Only consider entities with identifiers for names, ignoring
 | |
|   // special names (constructors, overloaded operators, selectors,
 | |
|   // etc.).
 | |
|   IdentifierInfo *Name = ND->getIdentifier();
 | |
|   if (!Name)
 | |
|     return;
 | |
| 
 | |
|   FoundName(Name->getName());
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::FoundName(llvm::StringRef Name) {
 | |
|   // Use a simple length-based heuristic to determine the minimum possible
 | |
|   // edit distance. If the minimum isn't good enough, bail out early.
 | |
|   unsigned MinED = abs((int)Name.size() - (int)Typo.size());
 | |
|   if (MinED > BestEditDistance || (MinED && Typo.size() / MinED < 3))
 | |
|     return;
 | |
| 
 | |
|   // Compute an upper bound on the allowable edit distance, so that the
 | |
|   // edit-distance algorithm can short-circuit.
 | |
|   unsigned UpperBound =
 | |
|     std::min(unsigned((Typo.size() + 2) / 3), BestEditDistance);
 | |
| 
 | |
|   // Compute the edit distance between the typo and the name of this
 | |
|   // entity. If this edit distance is not worse than the best edit
 | |
|   // distance we've seen so far, add it to the list of results.
 | |
|   unsigned ED = Typo.edit_distance(Name, true, UpperBound);
 | |
|   if (ED == 0)
 | |
|     return;
 | |
| 
 | |
|   if (ED < BestEditDistance) {
 | |
|     // This result is better than any we've seen before; clear out
 | |
|     // the previous results.
 | |
|     BestResults.clear();
 | |
|     BestEditDistance = ED;
 | |
|   } else if (ED > BestEditDistance) {
 | |
|     // This result is worse than the best results we've seen so far;
 | |
|     // ignore it.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Add this name to the list of results. By not assigning a value, we
 | |
|   // keep the current value if we've seen this name before (either as a
 | |
|   // keyword or as a declaration), or get the default value (not a keyword)
 | |
|   // if we haven't seen it before.
 | |
|   (void)BestResults[Name];
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
 | |
|                                               llvm::StringRef Keyword) {
 | |
|   // Compute the edit distance between the typo and this keyword.
 | |
|   // If this edit distance is not worse than the best edit
 | |
|   // distance we've seen so far, add it to the list of results.
 | |
|   unsigned ED = Typo.edit_distance(Keyword);
 | |
|   if (ED < BestEditDistance) {
 | |
|     BestResults.clear();
 | |
|     BestEditDistance = ED;
 | |
|   } else if (ED > BestEditDistance) {
 | |
|     // This result is worse than the best results we've seen so far;
 | |
|     // ignore it.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   BestResults[Keyword] = true;
 | |
| }
 | |
| 
 | |
| /// \brief Perform name lookup for a possible result for typo correction.
 | |
| static void LookupPotentialTypoResult(Sema &SemaRef,
 | |
|                                       LookupResult &Res,
 | |
|                                       IdentifierInfo *Name,
 | |
|                                       Scope *S, CXXScopeSpec *SS,
 | |
|                                       DeclContext *MemberContext,
 | |
|                                       bool EnteringContext,
 | |
|                                       Sema::CorrectTypoContext CTC) {
 | |
|   Res.suppressDiagnostics();
 | |
|   Res.clear();
 | |
|   Res.setLookupName(Name);
 | |
|   if (MemberContext) {
 | |
|     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
 | |
|       if (CTC == Sema::CTC_ObjCIvarLookup) {
 | |
|         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
 | |
|           Res.addDecl(Ivar);
 | |
|           Res.resolveKind();
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
 | |
|         Res.addDecl(Prop);
 | |
|         Res.resolveKind();
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SemaRef.LookupQualifiedName(Res, MemberContext);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
 | |
|                            EnteringContext);
 | |
| 
 | |
|   // Fake ivar lookup; this should really be part of
 | |
|   // LookupParsedName.
 | |
|   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
 | |
|     if (Method->isInstanceMethod() && Method->getClassInterface() &&
 | |
|         (Res.empty() ||
 | |
|          (Res.isSingleResult() &&
 | |
|           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
 | |
|        if (ObjCIvarDecl *IV
 | |
|              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
 | |
|          Res.addDecl(IV);
 | |
|          Res.resolveKind();
 | |
|        }
 | |
|      }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Try to "correct" a typo in the source code by finding
 | |
| /// visible declarations whose names are similar to the name that was
 | |
| /// present in the source code.
 | |
| ///
 | |
| /// \param Res the \c LookupResult structure that contains the name
 | |
| /// that was present in the source code along with the name-lookup
 | |
| /// criteria used to search for the name. On success, this structure
 | |
| /// will contain the results of name lookup.
 | |
| ///
 | |
| /// \param S the scope in which name lookup occurs.
 | |
| ///
 | |
| /// \param SS the nested-name-specifier that precedes the name we're
 | |
| /// looking for, if present.
 | |
| ///
 | |
| /// \param MemberContext if non-NULL, the context in which to look for
 | |
| /// a member access expression.
 | |
| ///
 | |
| /// \param EnteringContext whether we're entering the context described by
 | |
| /// the nested-name-specifier SS.
 | |
| ///
 | |
| /// \param CTC The context in which typo correction occurs, which impacts the
 | |
| /// set of keywords permitted.
 | |
| ///
 | |
| /// \param OPT when non-NULL, the search for visible declarations will
 | |
| /// also walk the protocols in the qualified interfaces of \p OPT.
 | |
| ///
 | |
| /// \returns the corrected name if the typo was corrected, otherwise returns an
 | |
| /// empty \c DeclarationName. When a typo was corrected, the result structure
 | |
| /// may contain the results of name lookup for the correct name or it may be
 | |
| /// empty.
 | |
| DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
 | |
|                                   DeclContext *MemberContext,
 | |
|                                   bool EnteringContext,
 | |
|                                   CorrectTypoContext CTC,
 | |
|                                   const ObjCObjectPointerType *OPT) {
 | |
|   if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
 | |
|     return DeclarationName();
 | |
| 
 | |
|   // We only attempt to correct typos for identifiers.
 | |
|   IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
 | |
|   if (!Typo)
 | |
|     return DeclarationName();
 | |
| 
 | |
|   // If the scope specifier itself was invalid, don't try to correct
 | |
|   // typos.
 | |
|   if (SS && SS->isInvalid())
 | |
|     return DeclarationName();
 | |
| 
 | |
|   // Never try to correct typos during template deduction or
 | |
|   // instantiation.
 | |
|   if (!ActiveTemplateInstantiations.empty())
 | |
|     return DeclarationName();
 | |
| 
 | |
|   TypoCorrectionConsumer Consumer(Typo);
 | |
| 
 | |
|   // Perform name lookup to find visible, similarly-named entities.
 | |
|   bool IsUnqualifiedLookup = false;
 | |
|   if (MemberContext) {
 | |
|     LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
 | |
| 
 | |
|     // Look in qualified interfaces.
 | |
|     if (OPT) {
 | |
|       for (ObjCObjectPointerType::qual_iterator
 | |
|              I = OPT->qual_begin(), E = OPT->qual_end();
 | |
|            I != E; ++I)
 | |
|         LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
 | |
|     }
 | |
|   } else if (SS && SS->isSet()) {
 | |
|     DeclContext *DC = computeDeclContext(*SS, EnteringContext);
 | |
|     if (!DC)
 | |
|       return DeclarationName();
 | |
| 
 | |
|     // Provide a stop gap for files that are just seriously broken.  Trying
 | |
|     // to correct all typos can turn into a HUGE performance penalty, causing
 | |
|     // some files to take minutes to get rejected by the parser.
 | |
|     if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
 | |
|       return DeclarationName();
 | |
|     ++TyposCorrected;
 | |
| 
 | |
|     LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
 | |
|   } else {
 | |
|     IsUnqualifiedLookup = true;
 | |
|     UnqualifiedTyposCorrectedMap::iterator Cached
 | |
|       = UnqualifiedTyposCorrected.find(Typo);
 | |
|     if (Cached == UnqualifiedTyposCorrected.end()) {
 | |
|       // Provide a stop gap for files that are just seriously broken.  Trying
 | |
|       // to correct all typos can turn into a HUGE performance penalty, causing
 | |
|       // some files to take minutes to get rejected by the parser.
 | |
|       if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
 | |
|         return DeclarationName();
 | |
| 
 | |
|       // For unqualified lookup, look through all of the names that we have
 | |
|       // seen in this translation unit.
 | |
|       for (IdentifierTable::iterator I = Context.Idents.begin(),
 | |
|                                   IEnd = Context.Idents.end();
 | |
|            I != IEnd; ++I)
 | |
|         Consumer.FoundName(I->getKey());
 | |
| 
 | |
|       // Walk through identifiers in external identifier sources.
 | |
|       if (IdentifierInfoLookup *External
 | |
|                               = Context.Idents.getExternalIdentifierLookup()) {
 | |
|         llvm::OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
 | |
|         do {
 | |
|           llvm::StringRef Name = Iter->Next();
 | |
|           if (Name.empty())
 | |
|             break;
 | |
| 
 | |
|           Consumer.FoundName(Name);
 | |
|         } while (true);
 | |
|       }
 | |
|     } else {
 | |
|       // Use the cached value, unless it's a keyword. In the keyword case, we'll
 | |
|       // end up adding the keyword below.
 | |
|       if (Cached->second.first.empty())
 | |
|         return DeclarationName();
 | |
| 
 | |
|       if (!Cached->second.second)
 | |
|         Consumer.FoundName(Cached->second.first);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add context-dependent keywords.
 | |
|   bool WantTypeSpecifiers = false;
 | |
|   bool WantExpressionKeywords = false;
 | |
|   bool WantCXXNamedCasts = false;
 | |
|   bool WantRemainingKeywords = false;
 | |
|   switch (CTC) {
 | |
|     case CTC_Unknown:
 | |
|       WantTypeSpecifiers = true;
 | |
|       WantExpressionKeywords = true;
 | |
|       WantCXXNamedCasts = true;
 | |
|       WantRemainingKeywords = true;
 | |
| 
 | |
|       if (ObjCMethodDecl *Method = getCurMethodDecl())
 | |
|         if (Method->getClassInterface() &&
 | |
|             Method->getClassInterface()->getSuperClass())
 | |
|           Consumer.addKeywordResult(Context, "super");
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     case CTC_NoKeywords:
 | |
|       break;
 | |
| 
 | |
|     case CTC_Type:
 | |
|       WantTypeSpecifiers = true;
 | |
|       break;
 | |
| 
 | |
|     case CTC_ObjCMessageReceiver:
 | |
|       Consumer.addKeywordResult(Context, "super");
 | |
|       // Fall through to handle message receivers like expressions.
 | |
| 
 | |
|     case CTC_Expression:
 | |
|       if (getLangOptions().CPlusPlus)
 | |
|         WantTypeSpecifiers = true;
 | |
|       WantExpressionKeywords = true;
 | |
|       // Fall through to get C++ named casts.
 | |
| 
 | |
|     case CTC_CXXCasts:
 | |
|       WantCXXNamedCasts = true;
 | |
|       break;
 | |
| 
 | |
|     case CTC_ObjCPropertyLookup:
 | |
|       // FIXME: Add "isa"?
 | |
|       break;
 | |
| 
 | |
|     case CTC_MemberLookup:
 | |
|       if (getLangOptions().CPlusPlus)
 | |
|         Consumer.addKeywordResult(Context, "template");
 | |
|       break;
 | |
| 
 | |
|     case CTC_ObjCIvarLookup:
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (WantTypeSpecifiers) {
 | |
|     // Add type-specifier keywords to the set of results.
 | |
|     const char *CTypeSpecs[] = {
 | |
|       "char", "const", "double", "enum", "float", "int", "long", "short",
 | |
|       "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
 | |
|       "_Complex", "_Imaginary",
 | |
|       // storage-specifiers as well
 | |
|       "extern", "inline", "static", "typedef"
 | |
|     };
 | |
| 
 | |
|     const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
 | |
|     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
 | |
|       Consumer.addKeywordResult(Context, CTypeSpecs[I]);
 | |
| 
 | |
|     if (getLangOptions().C99)
 | |
|       Consumer.addKeywordResult(Context, "restrict");
 | |
|     if (getLangOptions().Bool || getLangOptions().CPlusPlus)
 | |
|       Consumer.addKeywordResult(Context, "bool");
 | |
| 
 | |
|     if (getLangOptions().CPlusPlus) {
 | |
|       Consumer.addKeywordResult(Context, "class");
 | |
|       Consumer.addKeywordResult(Context, "typename");
 | |
|       Consumer.addKeywordResult(Context, "wchar_t");
 | |
| 
 | |
|       if (getLangOptions().CPlusPlus0x) {
 | |
|         Consumer.addKeywordResult(Context, "char16_t");
 | |
|         Consumer.addKeywordResult(Context, "char32_t");
 | |
|         Consumer.addKeywordResult(Context, "constexpr");
 | |
|         Consumer.addKeywordResult(Context, "decltype");
 | |
|         Consumer.addKeywordResult(Context, "thread_local");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (getLangOptions().GNUMode)
 | |
|       Consumer.addKeywordResult(Context, "typeof");
 | |
|   }
 | |
| 
 | |
|   if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
 | |
|     Consumer.addKeywordResult(Context, "const_cast");
 | |
|     Consumer.addKeywordResult(Context, "dynamic_cast");
 | |
|     Consumer.addKeywordResult(Context, "reinterpret_cast");
 | |
|     Consumer.addKeywordResult(Context, "static_cast");
 | |
|   }
 | |
| 
 | |
|   if (WantExpressionKeywords) {
 | |
|     Consumer.addKeywordResult(Context, "sizeof");
 | |
|     if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
 | |
|       Consumer.addKeywordResult(Context, "false");
 | |
|       Consumer.addKeywordResult(Context, "true");
 | |
|     }
 | |
| 
 | |
|     if (getLangOptions().CPlusPlus) {
 | |
|       const char *CXXExprs[] = {
 | |
|         "delete", "new", "operator", "throw", "typeid"
 | |
|       };
 | |
|       const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
 | |
|       for (unsigned I = 0; I != NumCXXExprs; ++I)
 | |
|         Consumer.addKeywordResult(Context, CXXExprs[I]);
 | |
| 
 | |
|       if (isa<CXXMethodDecl>(CurContext) &&
 | |
|           cast<CXXMethodDecl>(CurContext)->isInstance())
 | |
|         Consumer.addKeywordResult(Context, "this");
 | |
| 
 | |
|       if (getLangOptions().CPlusPlus0x) {
 | |
|         Consumer.addKeywordResult(Context, "alignof");
 | |
|         Consumer.addKeywordResult(Context, "nullptr");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (WantRemainingKeywords) {
 | |
|     if (getCurFunctionOrMethodDecl() || getCurBlock()) {
 | |
|       // Statements.
 | |
|       const char *CStmts[] = {
 | |
|         "do", "else", "for", "goto", "if", "return", "switch", "while" };
 | |
|       const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
 | |
|       for (unsigned I = 0; I != NumCStmts; ++I)
 | |
|         Consumer.addKeywordResult(Context, CStmts[I]);
 | |
| 
 | |
|       if (getLangOptions().CPlusPlus) {
 | |
|         Consumer.addKeywordResult(Context, "catch");
 | |
|         Consumer.addKeywordResult(Context, "try");
 | |
|       }
 | |
| 
 | |
|       if (S && S->getBreakParent())
 | |
|         Consumer.addKeywordResult(Context, "break");
 | |
| 
 | |
|       if (S && S->getContinueParent())
 | |
|         Consumer.addKeywordResult(Context, "continue");
 | |
| 
 | |
|       if (!getCurFunction()->SwitchStack.empty()) {
 | |
|         Consumer.addKeywordResult(Context, "case");
 | |
|         Consumer.addKeywordResult(Context, "default");
 | |
|       }
 | |
|     } else {
 | |
|       if (getLangOptions().CPlusPlus) {
 | |
|         Consumer.addKeywordResult(Context, "namespace");
 | |
|         Consumer.addKeywordResult(Context, "template");
 | |
|       }
 | |
| 
 | |
|       if (S && S->isClassScope()) {
 | |
|         Consumer.addKeywordResult(Context, "explicit");
 | |
|         Consumer.addKeywordResult(Context, "friend");
 | |
|         Consumer.addKeywordResult(Context, "mutable");
 | |
|         Consumer.addKeywordResult(Context, "private");
 | |
|         Consumer.addKeywordResult(Context, "protected");
 | |
|         Consumer.addKeywordResult(Context, "public");
 | |
|         Consumer.addKeywordResult(Context, "virtual");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (getLangOptions().CPlusPlus) {
 | |
|       Consumer.addKeywordResult(Context, "using");
 | |
| 
 | |
|       if (getLangOptions().CPlusPlus0x)
 | |
|         Consumer.addKeywordResult(Context, "static_assert");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we haven't found anything, we're done.
 | |
|   if (Consumer.empty()) {
 | |
|     // If this was an unqualified lookup, note that no correction was found.
 | |
|     if (IsUnqualifiedLookup)
 | |
|       (void)UnqualifiedTyposCorrected[Typo];
 | |
| 
 | |
|     return DeclarationName();
 | |
|   }
 | |
| 
 | |
|   // Make sure that the user typed at least 3 characters for each correction
 | |
|   // made. Otherwise, we don't even both looking at the results.
 | |
| 
 | |
|   // We also suppress exact matches; those should be handled by a
 | |
|   // different mechanism (e.g., one that introduces qualification in
 | |
|   // C++).
 | |
|   unsigned ED = Consumer.getBestEditDistance();
 | |
|   if (ED > 0 && Typo->getName().size() / ED < 3) {
 | |
|     // If this was an unqualified lookup, note that no correction was found.
 | |
|     if (IsUnqualifiedLookup)
 | |
|       (void)UnqualifiedTyposCorrected[Typo];
 | |
| 
 | |
|     return DeclarationName();
 | |
|   }
 | |
| 
 | |
|   // Weed out any names that could not be found by name lookup.
 | |
|   bool LastLookupWasAccepted = false;
 | |
|   for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
 | |
|                                      IEnd = Consumer.end();
 | |
|        I != IEnd; /* Increment in loop. */) {
 | |
|     // Keywords are always found.
 | |
|     if (I->second) {
 | |
|       ++I;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Perform name lookup on this name.
 | |
|     IdentifierInfo *Name = &Context.Idents.get(I->getKey());
 | |
|     LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
 | |
|                               EnteringContext, CTC);
 | |
| 
 | |
|     switch (Res.getResultKind()) {
 | |
|     case LookupResult::NotFound:
 | |
|     case LookupResult::NotFoundInCurrentInstantiation:
 | |
|     case LookupResult::Ambiguous:
 | |
|       // We didn't find this name in our scope, or didn't like what we found;
 | |
|       // ignore it.
 | |
|       Res.suppressDiagnostics();
 | |
|       {
 | |
|         TypoCorrectionConsumer::iterator Next = I;
 | |
|         ++Next;
 | |
|         Consumer.erase(I);
 | |
|         I = Next;
 | |
|       }
 | |
|       LastLookupWasAccepted = false;
 | |
|       break;
 | |
| 
 | |
|     case LookupResult::Found:
 | |
|     case LookupResult::FoundOverloaded:
 | |
|     case LookupResult::FoundUnresolvedValue:
 | |
|       ++I;
 | |
|       LastLookupWasAccepted = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (Res.isAmbiguous()) {
 | |
|       // We don't deal with ambiguities.
 | |
|       Res.suppressDiagnostics();
 | |
|       Res.clear();
 | |
|       return DeclarationName();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If only a single name remains, return that result.
 | |
|   if (Consumer.size() == 1) {
 | |
|     IdentifierInfo *Name = &Context.Idents.get(Consumer.begin()->getKey());
 | |
|     if (Consumer.begin()->second) {
 | |
|       Res.suppressDiagnostics();
 | |
|       Res.clear();
 | |
| 
 | |
|       // Don't correct to a keyword that's the same as the typo; the keyword
 | |
|       // wasn't actually in scope.
 | |
|       if (ED == 0) {
 | |
|         Res.setLookupName(Typo);
 | |
|         return DeclarationName();
 | |
|       }
 | |
| 
 | |
|     } else if (!LastLookupWasAccepted) {
 | |
|       // Perform name lookup on this name.
 | |
|       LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
 | |
|                                 EnteringContext, CTC);
 | |
|     }
 | |
| 
 | |
|     // Record the correction for unqualified lookup.
 | |
|     if (IsUnqualifiedLookup)
 | |
|       UnqualifiedTyposCorrected[Typo]
 | |
|         = std::make_pair(Name->getName(), Consumer.begin()->second);
 | |
| 
 | |
|     return &Context.Idents.get(Consumer.begin()->getKey());
 | |
|   }
 | |
|   else if (Consumer.size() > 1 && CTC == CTC_ObjCMessageReceiver
 | |
|            && Consumer["super"]) {
 | |
|     // Prefix 'super' when we're completing in a message-receiver
 | |
|     // context.
 | |
|     Res.suppressDiagnostics();
 | |
|     Res.clear();
 | |
| 
 | |
|     // Don't correct to a keyword that's the same as the typo; the keyword
 | |
|     // wasn't actually in scope.
 | |
|     if (ED == 0) {
 | |
|       Res.setLookupName(Typo);
 | |
|       return DeclarationName();
 | |
|     }
 | |
| 
 | |
|     // Record the correction for unqualified lookup.
 | |
|     if (IsUnqualifiedLookup)
 | |
|       UnqualifiedTyposCorrected[Typo]
 | |
|         = std::make_pair("super", Consumer.begin()->second);
 | |
| 
 | |
|     return &Context.Idents.get("super");
 | |
|   }
 | |
| 
 | |
|   Res.suppressDiagnostics();
 | |
|   Res.setLookupName(Typo);
 | |
|   Res.clear();
 | |
|   // Record the correction for unqualified lookup.
 | |
|   if (IsUnqualifiedLookup)
 | |
|     (void)UnqualifiedTyposCorrected[Typo];
 | |
| 
 | |
|   return DeclarationName();
 | |
| }
 |