forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2239 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2239 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for statements.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/StmtObjC.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
 | |
|   Expr *E = expr.get();
 | |
|   if (!E) // FIXME: FullExprArg has no error state?
 | |
|     return StmtError();
 | |
| 
 | |
|   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
 | |
|   // void expression for its side effects.  Conversion to void allows any
 | |
|   // operand, even incomplete types.
 | |
| 
 | |
|   // Same thing in for stmt first clause (when expr) and third clause.
 | |
|   return Owned(static_cast<Stmt*>(E));
 | |
| }
 | |
| 
 | |
| 
 | |
| StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, bool LeadingEmptyMacro) {
 | |
|   return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacro));
 | |
| }
 | |
| 
 | |
| StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
 | |
|                                SourceLocation EndLoc) {
 | |
|   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
 | |
| 
 | |
|   // If we have an invalid decl, just return an error.
 | |
|   if (DG.isNull()) return StmtError();
 | |
| 
 | |
|   return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
 | |
| }
 | |
| 
 | |
| void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
 | |
|   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
 | |
| 
 | |
|   // If we have an invalid decl, just return.
 | |
|   if (DG.isNull() || !DG.isSingleDecl()) return;
 | |
|   // suppress any potential 'unused variable' warning.
 | |
|   DG.getSingleDecl()->setUsed();
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
 | |
|   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
 | |
|     return DiagnoseUnusedExprResult(Label->getSubStmt());
 | |
| 
 | |
|   const Expr *E = dyn_cast_or_null<Expr>(S);
 | |
|   if (!E)
 | |
|     return;
 | |
| 
 | |
|   if (E->isBoundMemberFunction(Context)) {
 | |
|     Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
 | |
|       << E->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SourceLocation Loc;
 | |
|   SourceRange R1, R2;
 | |
|   if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
 | |
|     return;
 | |
| 
 | |
|   // Okay, we have an unused result.  Depending on what the base expression is,
 | |
|   // we might want to make a more specific diagnostic.  Check for one of these
 | |
|   // cases now.
 | |
|   unsigned DiagID = diag::warn_unused_expr;
 | |
|   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
 | |
|     E = Temps->getSubExpr();
 | |
|   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
 | |
|     E = TempExpr->getSubExpr();
 | |
| 
 | |
|   E = E->IgnoreParenImpCasts();
 | |
|   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
 | |
|     if (E->getType()->isVoidType())
 | |
|       return;
 | |
| 
 | |
|     // If the callee has attribute pure, const, or warn_unused_result, warn with
 | |
|     // a more specific message to make it clear what is happening.
 | |
|     if (const Decl *FD = CE->getCalleeDecl()) {
 | |
|       if (FD->getAttr<WarnUnusedResultAttr>()) {
 | |
|         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
 | |
|         return;
 | |
|       }
 | |
|       if (FD->getAttr<PureAttr>()) {
 | |
|         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
 | |
|         return;
 | |
|       }
 | |
|       if (FD->getAttr<ConstAttr>()) {
 | |
|         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
 | |
|     const ObjCMethodDecl *MD = ME->getMethodDecl();
 | |
|     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
 | |
|       Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
 | |
|       return;
 | |
|     }
 | |
|   } else if (isa<ObjCPropertyRefExpr>(E)) {
 | |
|     DiagID = diag::warn_unused_property_expr;
 | |
|   } else if (const CXXFunctionalCastExpr *FC
 | |
|                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
 | |
|     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
 | |
|         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
 | |
|       return;
 | |
|   }
 | |
|   // Diagnose "(void*) blah" as a typo for "(void) blah".
 | |
|   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
 | |
|     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
 | |
|     QualType T = TI->getType();
 | |
| 
 | |
|     // We really do want to use the non-canonical type here.
 | |
|     if (T == Context.VoidPtrTy) {
 | |
|       PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
 | |
| 
 | |
|       Diag(Loc, diag::warn_unused_voidptr)
 | |
|         << FixItHint::CreateRemoval(TL.getStarLoc());
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
 | |
|                         MultiStmtArg elts, bool isStmtExpr) {
 | |
|   unsigned NumElts = elts.size();
 | |
|   Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
 | |
|   // If we're in C89 mode, check that we don't have any decls after stmts.  If
 | |
|   // so, emit an extension diagnostic.
 | |
|   if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
 | |
|     // Note that __extension__ can be around a decl.
 | |
|     unsigned i = 0;
 | |
|     // Skip over all declarations.
 | |
|     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
 | |
|       /*empty*/;
 | |
| 
 | |
|     // We found the end of the list or a statement.  Scan for another declstmt.
 | |
|     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
 | |
|       /*empty*/;
 | |
| 
 | |
|     if (i != NumElts) {
 | |
|       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
 | |
|       Diag(D->getLocation(), diag::ext_mixed_decls_code);
 | |
|     }
 | |
|   }
 | |
|   // Warn about unused expressions in statements.
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     // Ignore statements that are last in a statement expression.
 | |
|     if (isStmtExpr && i == NumElts - 1)
 | |
|       continue;
 | |
| 
 | |
|     DiagnoseUnusedExprResult(Elts[i]);
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
 | |
|                     SourceLocation DotDotDotLoc, Expr *RHSVal,
 | |
|                     SourceLocation ColonLoc) {
 | |
|   assert((LHSVal != 0) && "missing expression in case statement");
 | |
| 
 | |
|   // C99 6.8.4.2p3: The expression shall be an integer constant.
 | |
|   // However, GCC allows any evaluatable integer expression.
 | |
|   if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
 | |
|       VerifyIntegerConstantExpression(LHSVal))
 | |
|     return StmtError();
 | |
| 
 | |
|   // GCC extension: The expression shall be an integer constant.
 | |
| 
 | |
|   if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
 | |
|       VerifyIntegerConstantExpression(RHSVal)) {
 | |
|     RHSVal = 0;  // Recover by just forgetting about it.
 | |
|   }
 | |
| 
 | |
|   if (getCurFunction()->SwitchStack.empty()) {
 | |
|     Diag(CaseLoc, diag::err_case_not_in_switch);
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
 | |
|                                         ColonLoc);
 | |
|   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
 | |
|   return Owned(CS);
 | |
| }
 | |
| 
 | |
| /// ActOnCaseStmtBody - This installs a statement as the body of a case.
 | |
| void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
 | |
|   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
 | |
|   CS->setSubStmt(SubStmt);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
 | |
|                        Stmt *SubStmt, Scope *CurScope) {
 | |
|   if (getCurFunction()->SwitchStack.empty()) {
 | |
|     Diag(DefaultLoc, diag::err_default_not_in_switch);
 | |
|     return Owned(SubStmt);
 | |
|   }
 | |
| 
 | |
|   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
 | |
|   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
 | |
|   return Owned(DS);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
 | |
|                      SourceLocation ColonLoc, Stmt *SubStmt) {
 | |
|   
 | |
|   // If the label was multiply defined, reject it now.
 | |
|   if (TheDecl->getStmt()) {
 | |
|     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
 | |
|     Diag(TheDecl->getLocation(), diag::note_previous_definition);
 | |
|     return Owned(SubStmt);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, things are good.  Fill in the declaration and return it.
 | |
|   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
 | |
|   TheDecl->setStmt(LS);
 | |
|   if (!TheDecl->isGnuLocal())
 | |
|     TheDecl->setLocation(IdentLoc);
 | |
|   return Owned(LS);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
 | |
|                   Stmt *thenStmt, SourceLocation ElseLoc,
 | |
|                   Stmt *elseStmt) {
 | |
|   ExprResult CondResult(CondVal.release());
 | |
| 
 | |
|   VarDecl *ConditionVar = 0;
 | |
|   if (CondVar) {
 | |
|     ConditionVar = cast<VarDecl>(CondVar);
 | |
|     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
 | |
|     if (CondResult.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
|   Expr *ConditionExpr = CondResult.takeAs<Expr>();
 | |
|   if (!ConditionExpr)
 | |
|     return StmtError();
 | |
| 
 | |
|   DiagnoseUnusedExprResult(thenStmt);
 | |
| 
 | |
|   // Warn if the if block has a null body without an else value.
 | |
|   // this helps prevent bugs due to typos, such as
 | |
|   // if (condition);
 | |
|   //   do_stuff();
 | |
|   //
 | |
|   if (!elseStmt) {
 | |
|     if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
 | |
|       // But do not warn if the body is a macro that expands to nothing, e.g:
 | |
|       //
 | |
|       // #define CALL(x)
 | |
|       // if (condition)
 | |
|       //   CALL(0);
 | |
|       //
 | |
|       if (!stmt->hasLeadingEmptyMacro())
 | |
|         Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
 | |
|   }
 | |
| 
 | |
|   DiagnoseUnusedExprResult(elseStmt);
 | |
| 
 | |
|   return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
 | |
|                                     thenStmt, ElseLoc, elseStmt));
 | |
| }
 | |
| 
 | |
| /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
 | |
| /// the specified width and sign.  If an overflow occurs, detect it and emit
 | |
| /// the specified diagnostic.
 | |
| void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
 | |
|                                               unsigned NewWidth, bool NewSign,
 | |
|                                               SourceLocation Loc,
 | |
|                                               unsigned DiagID) {
 | |
|   // Perform a conversion to the promoted condition type if needed.
 | |
|   if (NewWidth > Val.getBitWidth()) {
 | |
|     // If this is an extension, just do it.
 | |
|     Val = Val.extend(NewWidth);
 | |
|     Val.setIsSigned(NewSign);
 | |
| 
 | |
|     // If the input was signed and negative and the output is
 | |
|     // unsigned, don't bother to warn: this is implementation-defined
 | |
|     // behavior.
 | |
|     // FIXME: Introduce a second, default-ignored warning for this case?
 | |
|   } else if (NewWidth < Val.getBitWidth()) {
 | |
|     // If this is a truncation, check for overflow.
 | |
|     llvm::APSInt ConvVal(Val);
 | |
|     ConvVal = ConvVal.trunc(NewWidth);
 | |
|     ConvVal.setIsSigned(NewSign);
 | |
|     ConvVal = ConvVal.extend(Val.getBitWidth());
 | |
|     ConvVal.setIsSigned(Val.isSigned());
 | |
|     if (ConvVal != Val)
 | |
|       Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
 | |
| 
 | |
|     // Regardless of whether a diagnostic was emitted, really do the
 | |
|     // truncation.
 | |
|     Val = Val.trunc(NewWidth);
 | |
|     Val.setIsSigned(NewSign);
 | |
|   } else if (NewSign != Val.isSigned()) {
 | |
|     // Convert the sign to match the sign of the condition.  This can cause
 | |
|     // overflow as well: unsigned(INTMIN)
 | |
|     // We don't diagnose this overflow, because it is implementation-defined
 | |
|     // behavior.
 | |
|     // FIXME: Introduce a second, default-ignored warning for this case?
 | |
|     llvm::APSInt OldVal(Val);
 | |
|     Val.setIsSigned(NewSign);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct CaseCompareFunctor {
 | |
|     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
 | |
|                     const llvm::APSInt &RHS) {
 | |
|       return LHS.first < RHS;
 | |
|     }
 | |
|     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
 | |
|                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
 | |
|       return LHS.first < RHS.first;
 | |
|     }
 | |
|     bool operator()(const llvm::APSInt &LHS,
 | |
|                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
 | |
|       return LHS < RHS.first;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// CmpCaseVals - Comparison predicate for sorting case values.
 | |
| ///
 | |
| static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
 | |
|                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
 | |
|   if (lhs.first < rhs.first)
 | |
|     return true;
 | |
| 
 | |
|   if (lhs.first == rhs.first &&
 | |
|       lhs.second->getCaseLoc().getRawEncoding()
 | |
|        < rhs.second->getCaseLoc().getRawEncoding())
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CmpEnumVals - Comparison predicate for sorting enumeration values.
 | |
| ///
 | |
| static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
 | |
|                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
 | |
| {
 | |
|   return lhs.first < rhs.first;
 | |
| }
 | |
| 
 | |
| /// EqEnumVals - Comparison preficate for uniqing enumeration values.
 | |
| ///
 | |
| static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
 | |
|                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
 | |
| {
 | |
|   return lhs.first == rhs.first;
 | |
| }
 | |
| 
 | |
| /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
 | |
| /// potentially integral-promoted expression @p expr.
 | |
| static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
 | |
|   if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
 | |
|     const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
 | |
|     QualType TypeBeforePromotion = ExprBeforePromotion->getType();
 | |
|     if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
 | |
|       return TypeBeforePromotion;
 | |
|     }
 | |
|   }
 | |
|   return expr->getType();
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
 | |
|                              Decl *CondVar) {
 | |
|   ExprResult CondResult;
 | |
| 
 | |
|   VarDecl *ConditionVar = 0;
 | |
|   if (CondVar) {
 | |
|     ConditionVar = cast<VarDecl>(CondVar);
 | |
|     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
 | |
|     if (CondResult.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     Cond = CondResult.release();
 | |
|   }
 | |
| 
 | |
|   if (!Cond)
 | |
|     return StmtError();
 | |
| 
 | |
|   CondResult
 | |
|     = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
 | |
|                           PDiag(diag::err_typecheck_statement_requires_integer),
 | |
|                                    PDiag(diag::err_switch_incomplete_class_type)
 | |
|                                      << Cond->getSourceRange(),
 | |
|                                    PDiag(diag::err_switch_explicit_conversion),
 | |
|                                          PDiag(diag::note_switch_conversion),
 | |
|                                    PDiag(diag::err_switch_multiple_conversions),
 | |
|                                          PDiag(diag::note_switch_conversion),
 | |
|                                          PDiag(0));
 | |
|   if (CondResult.isInvalid()) return StmtError();
 | |
|   Cond = CondResult.take();
 | |
| 
 | |
|   if (!CondVar) {
 | |
|     CheckImplicitConversions(Cond, SwitchLoc);
 | |
|     CondResult = MaybeCreateExprWithCleanups(Cond);
 | |
|     if (CondResult.isInvalid())
 | |
|       return StmtError();
 | |
|     Cond = CondResult.take();
 | |
|   }
 | |
| 
 | |
|   getCurFunction()->setHasBranchIntoScope();
 | |
| 
 | |
|   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
 | |
|   getCurFunction()->SwitchStack.push_back(SS);
 | |
|   return Owned(SS);
 | |
| }
 | |
| 
 | |
| static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
 | |
|   if (Val.getBitWidth() < BitWidth)
 | |
|     Val = Val.extend(BitWidth);
 | |
|   else if (Val.getBitWidth() > BitWidth)
 | |
|     Val = Val.trunc(BitWidth);
 | |
|   Val.setIsSigned(IsSigned);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
 | |
|                             Stmt *BodyStmt) {
 | |
|   SwitchStmt *SS = cast<SwitchStmt>(Switch);
 | |
|   assert(SS == getCurFunction()->SwitchStack.back() &&
 | |
|          "switch stack missing push/pop!");
 | |
| 
 | |
|   SS->setBody(BodyStmt, SwitchLoc);
 | |
|   getCurFunction()->SwitchStack.pop_back();
 | |
| 
 | |
|   if (SS->getCond() == 0)
 | |
|     return StmtError();
 | |
| 
 | |
|   Expr *CondExpr = SS->getCond();
 | |
|   Expr *CondExprBeforePromotion = CondExpr;
 | |
|   QualType CondTypeBeforePromotion =
 | |
|       GetTypeBeforeIntegralPromotion(CondExpr);
 | |
| 
 | |
|   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
 | |
|   ExprResult CondResult = UsualUnaryConversions(CondExpr);
 | |
|   if (CondResult.isInvalid())
 | |
|     return StmtError();
 | |
|   CondExpr = CondResult.take();
 | |
|   QualType CondType = CondExpr->getType();
 | |
|   SS->setCond(CondExpr);
 | |
| 
 | |
|   // C++ 6.4.2.p2:
 | |
|   // Integral promotions are performed (on the switch condition).
 | |
|   //
 | |
|   // A case value unrepresentable by the original switch condition
 | |
|   // type (before the promotion) doesn't make sense, even when it can
 | |
|   // be represented by the promoted type.  Therefore we need to find
 | |
|   // the pre-promotion type of the switch condition.
 | |
|   if (!CondExpr->isTypeDependent()) {
 | |
|     // We have already converted the expression to an integral or enumeration
 | |
|     // type, when we started the switch statement. If we don't have an
 | |
|     // appropriate type now, just return an error.
 | |
|     if (!CondType->isIntegralOrEnumerationType())
 | |
|       return StmtError();
 | |
| 
 | |
|     if (CondExpr->isKnownToHaveBooleanValue()) {
 | |
|       // switch(bool_expr) {...} is often a programmer error, e.g.
 | |
|       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
 | |
|       // One can always use an if statement instead of switch(bool_expr).
 | |
|       Diag(SwitchLoc, diag::warn_bool_switch_condition)
 | |
|           << CondExpr->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get the bitwidth of the switched-on value before promotions.  We must
 | |
|   // convert the integer case values to this width before comparison.
 | |
|   bool HasDependentValue
 | |
|     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
 | |
|   unsigned CondWidth
 | |
|     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
 | |
|   bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
 | |
| 
 | |
|   // Accumulate all of the case values in a vector so that we can sort them
 | |
|   // and detect duplicates.  This vector contains the APInt for the case after
 | |
|   // it has been converted to the condition type.
 | |
|   typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
 | |
|   CaseValsTy CaseVals;
 | |
| 
 | |
|   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
 | |
|   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
 | |
|   CaseRangesTy CaseRanges;
 | |
| 
 | |
|   DefaultStmt *TheDefaultStmt = 0;
 | |
| 
 | |
|   bool CaseListIsErroneous = false;
 | |
| 
 | |
|   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
 | |
|        SC = SC->getNextSwitchCase()) {
 | |
| 
 | |
|     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
 | |
|       if (TheDefaultStmt) {
 | |
|         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
 | |
|         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
 | |
| 
 | |
|         // FIXME: Remove the default statement from the switch block so that
 | |
|         // we'll return a valid AST.  This requires recursing down the AST and
 | |
|         // finding it, not something we are set up to do right now.  For now,
 | |
|         // just lop the entire switch stmt out of the AST.
 | |
|         CaseListIsErroneous = true;
 | |
|       }
 | |
|       TheDefaultStmt = DS;
 | |
| 
 | |
|     } else {
 | |
|       CaseStmt *CS = cast<CaseStmt>(SC);
 | |
| 
 | |
|       // We already verified that the expression has a i-c-e value (C99
 | |
|       // 6.8.4.2p3) - get that value now.
 | |
|       Expr *Lo = CS->getLHS();
 | |
| 
 | |
|       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
 | |
|         HasDependentValue = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
 | |
| 
 | |
|       // Convert the value to the same width/sign as the condition.
 | |
|       ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
 | |
|                                          Lo->getLocStart(),
 | |
|                                          diag::warn_case_value_overflow);
 | |
| 
 | |
|       // If the LHS is not the same type as the condition, insert an implicit
 | |
|       // cast.
 | |
|       Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
 | |
|       CS->setLHS(Lo);
 | |
| 
 | |
|       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
 | |
|       if (CS->getRHS()) {
 | |
|         if (CS->getRHS()->isTypeDependent() ||
 | |
|             CS->getRHS()->isValueDependent()) {
 | |
|           HasDependentValue = true;
 | |
|           break;
 | |
|         }
 | |
|         CaseRanges.push_back(std::make_pair(LoVal, CS));
 | |
|       } else
 | |
|         CaseVals.push_back(std::make_pair(LoVal, CS));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!HasDependentValue) {
 | |
|     // If we don't have a default statement, check whether the
 | |
|     // condition is constant.
 | |
|     llvm::APSInt ConstantCondValue;
 | |
|     bool HasConstantCond = false;
 | |
|     bool ShouldCheckConstantCond = false;
 | |
|     if (!HasDependentValue && !TheDefaultStmt) {
 | |
|       Expr::EvalResult Result;
 | |
|       HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
 | |
|       if (HasConstantCond) {
 | |
|         assert(Result.Val.isInt() && "switch condition evaluated to non-int");
 | |
|         ConstantCondValue = Result.Val.getInt();
 | |
|         ShouldCheckConstantCond = true;
 | |
| 
 | |
|         assert(ConstantCondValue.getBitWidth() == CondWidth &&
 | |
|                ConstantCondValue.isSigned() == CondIsSigned);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Sort all the scalar case values so we can easily detect duplicates.
 | |
|     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
 | |
| 
 | |
|     if (!CaseVals.empty()) {
 | |
|       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
 | |
|         if (ShouldCheckConstantCond &&
 | |
|             CaseVals[i].first == ConstantCondValue)
 | |
|           ShouldCheckConstantCond = false;
 | |
| 
 | |
|         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
 | |
|           // If we have a duplicate, report it.
 | |
|           Diag(CaseVals[i].second->getLHS()->getLocStart(),
 | |
|                diag::err_duplicate_case) << CaseVals[i].first.toString(10);
 | |
|           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
 | |
|                diag::note_duplicate_case_prev);
 | |
|           // FIXME: We really want to remove the bogus case stmt from the
 | |
|           // substmt, but we have no way to do this right now.
 | |
|           CaseListIsErroneous = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Detect duplicate case ranges, which usually don't exist at all in
 | |
|     // the first place.
 | |
|     if (!CaseRanges.empty()) {
 | |
|       // Sort all the case ranges by their low value so we can easily detect
 | |
|       // overlaps between ranges.
 | |
|       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
 | |
| 
 | |
|       // Scan the ranges, computing the high values and removing empty ranges.
 | |
|       std::vector<llvm::APSInt> HiVals;
 | |
|       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
 | |
|         llvm::APSInt &LoVal = CaseRanges[i].first;
 | |
|         CaseStmt *CR = CaseRanges[i].second;
 | |
|         Expr *Hi = CR->getRHS();
 | |
|         llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
 | |
| 
 | |
|         // Convert the value to the same width/sign as the condition.
 | |
|         ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
 | |
|                                            Hi->getLocStart(),
 | |
|                                            diag::warn_case_value_overflow);
 | |
| 
 | |
|         // If the LHS is not the same type as the condition, insert an implicit
 | |
|         // cast.
 | |
|         Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
 | |
|         CR->setRHS(Hi);
 | |
| 
 | |
|         // If the low value is bigger than the high value, the case is empty.
 | |
|         if (LoVal > HiVal) {
 | |
|           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
 | |
|             << SourceRange(CR->getLHS()->getLocStart(),
 | |
|                            Hi->getLocEnd());
 | |
|           CaseRanges.erase(CaseRanges.begin()+i);
 | |
|           --i, --e;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (ShouldCheckConstantCond &&
 | |
|             LoVal <= ConstantCondValue &&
 | |
|             ConstantCondValue <= HiVal)
 | |
|           ShouldCheckConstantCond = false;
 | |
| 
 | |
|         HiVals.push_back(HiVal);
 | |
|       }
 | |
| 
 | |
|       // Rescan the ranges, looking for overlap with singleton values and other
 | |
|       // ranges.  Since the range list is sorted, we only need to compare case
 | |
|       // ranges with their neighbors.
 | |
|       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
 | |
|         llvm::APSInt &CRLo = CaseRanges[i].first;
 | |
|         llvm::APSInt &CRHi = HiVals[i];
 | |
|         CaseStmt *CR = CaseRanges[i].second;
 | |
| 
 | |
|         // Check to see whether the case range overlaps with any
 | |
|         // singleton cases.
 | |
|         CaseStmt *OverlapStmt = 0;
 | |
|         llvm::APSInt OverlapVal(32);
 | |
| 
 | |
|         // Find the smallest value >= the lower bound.  If I is in the
 | |
|         // case range, then we have overlap.
 | |
|         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
 | |
|                                                   CaseVals.end(), CRLo,
 | |
|                                                   CaseCompareFunctor());
 | |
|         if (I != CaseVals.end() && I->first < CRHi) {
 | |
|           OverlapVal  = I->first;   // Found overlap with scalar.
 | |
|           OverlapStmt = I->second;
 | |
|         }
 | |
| 
 | |
|         // Find the smallest value bigger than the upper bound.
 | |
|         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
 | |
|         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
 | |
|           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
 | |
|           OverlapStmt = (I-1)->second;
 | |
|         }
 | |
| 
 | |
|         // Check to see if this case stmt overlaps with the subsequent
 | |
|         // case range.
 | |
|         if (i && CRLo <= HiVals[i-1]) {
 | |
|           OverlapVal  = HiVals[i-1];       // Found overlap with range.
 | |
|           OverlapStmt = CaseRanges[i-1].second;
 | |
|         }
 | |
| 
 | |
|         if (OverlapStmt) {
 | |
|           // If we have a duplicate, report it.
 | |
|           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
 | |
|             << OverlapVal.toString(10);
 | |
|           Diag(OverlapStmt->getLHS()->getLocStart(),
 | |
|                diag::note_duplicate_case_prev);
 | |
|           // FIXME: We really want to remove the bogus case stmt from the
 | |
|           // substmt, but we have no way to do this right now.
 | |
|           CaseListIsErroneous = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Complain if we have a constant condition and we didn't find a match.
 | |
|     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
 | |
|       // TODO: it would be nice if we printed enums as enums, chars as
 | |
|       // chars, etc.
 | |
|       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
 | |
|         << ConstantCondValue.toString(10)
 | |
|         << CondExpr->getSourceRange();
 | |
|     }
 | |
| 
 | |
|     // Check to see if switch is over an Enum and handles all of its
 | |
|     // values.  We only issue a warning if there is not 'default:', but
 | |
|     // we still do the analysis to preserve this information in the AST
 | |
|     // (which can be used by flow-based analyes).
 | |
|     //
 | |
|     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
 | |
| 
 | |
|     // If switch has default case, then ignore it.
 | |
|     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
 | |
|       const EnumDecl *ED = ET->getDecl();
 | |
|       typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
 | |
|       EnumValsTy EnumVals;
 | |
| 
 | |
|       // Gather all enum values, set their type and sort them,
 | |
|       // allowing easier comparison with CaseVals.
 | |
|       for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
 | |
|            EDI != ED->enumerator_end(); ++EDI) {
 | |
|         llvm::APSInt Val = EDI->getInitVal();
 | |
|         AdjustAPSInt(Val, CondWidth, CondIsSigned);
 | |
|         EnumVals.push_back(std::make_pair(Val, *EDI));
 | |
|       }
 | |
|       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
 | |
|       EnumValsTy::iterator EIend =
 | |
|         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
 | |
| 
 | |
|       // See which case values aren't in enum.
 | |
|       // TODO: we might want to check whether case values are out of the
 | |
|       // enum even if we don't want to check whether all cases are handled.
 | |
|       if (!TheDefaultStmt) {
 | |
|         EnumValsTy::const_iterator EI = EnumVals.begin();
 | |
|         for (CaseValsTy::const_iterator CI = CaseVals.begin();
 | |
|              CI != CaseVals.end(); CI++) {
 | |
|           while (EI != EIend && EI->first < CI->first)
 | |
|             EI++;
 | |
|           if (EI == EIend || EI->first > CI->first)
 | |
|             Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
 | |
|               << ED->getDeclName();
 | |
|         }
 | |
|         // See which of case ranges aren't in enum
 | |
|         EI = EnumVals.begin();
 | |
|         for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
 | |
|              RI != CaseRanges.end() && EI != EIend; RI++) {
 | |
|           while (EI != EIend && EI->first < RI->first)
 | |
|             EI++;
 | |
| 
 | |
|           if (EI == EIend || EI->first != RI->first) {
 | |
|             Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
 | |
|               << ED->getDeclName();
 | |
|           }
 | |
| 
 | |
|           llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
 | |
|           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
 | |
|           while (EI != EIend && EI->first < Hi)
 | |
|             EI++;
 | |
|           if (EI == EIend || EI->first != Hi)
 | |
|             Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
 | |
|               << ED->getDeclName();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Check which enum vals aren't in switch
 | |
|       CaseValsTy::const_iterator CI = CaseVals.begin();
 | |
|       CaseRangesTy::const_iterator RI = CaseRanges.begin();
 | |
|       bool hasCasesNotInSwitch = false;
 | |
| 
 | |
|       llvm::SmallVector<DeclarationName,8> UnhandledNames;
 | |
| 
 | |
|       for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
 | |
|         // Drop unneeded case values
 | |
|         llvm::APSInt CIVal;
 | |
|         while (CI != CaseVals.end() && CI->first < EI->first)
 | |
|           CI++;
 | |
| 
 | |
|         if (CI != CaseVals.end() && CI->first == EI->first)
 | |
|           continue;
 | |
| 
 | |
|         // Drop unneeded case ranges
 | |
|         for (; RI != CaseRanges.end(); RI++) {
 | |
|           llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
 | |
|           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
 | |
|           if (EI->first <= Hi)
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (RI == CaseRanges.end() || EI->first < RI->first) {
 | |
|           hasCasesNotInSwitch = true;
 | |
|           if (!TheDefaultStmt)
 | |
|             UnhandledNames.push_back(EI->second->getDeclName());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Produce a nice diagnostic if multiple values aren't handled.
 | |
|       switch (UnhandledNames.size()) {
 | |
|       case 0: break;
 | |
|       case 1:
 | |
|         Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
 | |
|           << UnhandledNames[0];
 | |
|         break;
 | |
|       case 2:
 | |
|         Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
 | |
|           << UnhandledNames[0] << UnhandledNames[1];
 | |
|         break;
 | |
|       case 3:
 | |
|         Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
 | |
|           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
 | |
|         break;
 | |
|       default:
 | |
|         Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
 | |
|           << (unsigned)UnhandledNames.size()
 | |
|           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (!hasCasesNotInSwitch)
 | |
|         SS->setAllEnumCasesCovered();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: If the case list was broken is some way, we don't have a good system
 | |
|   // to patch it up.  Instead, just return the whole substmt as broken.
 | |
|   if (CaseListIsErroneous)
 | |
|     return StmtError();
 | |
| 
 | |
|   return Owned(SS);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
 | |
|                      Decl *CondVar, Stmt *Body) {
 | |
|   ExprResult CondResult(Cond.release());
 | |
| 
 | |
|   VarDecl *ConditionVar = 0;
 | |
|   if (CondVar) {
 | |
|     ConditionVar = cast<VarDecl>(CondVar);
 | |
|     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
 | |
|     if (CondResult.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
|   Expr *ConditionExpr = CondResult.take();
 | |
|   if (!ConditionExpr)
 | |
|     return StmtError();
 | |
| 
 | |
|   DiagnoseUnusedExprResult(Body);
 | |
| 
 | |
|   return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
 | |
|                                        Body, WhileLoc));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
 | |
|                   SourceLocation WhileLoc, SourceLocation CondLParen,
 | |
|                   Expr *Cond, SourceLocation CondRParen) {
 | |
|   assert(Cond && "ActOnDoStmt(): missing expression");
 | |
| 
 | |
|   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
 | |
|   if (CondResult.isInvalid() || CondResult.isInvalid())
 | |
|     return StmtError();
 | |
|   Cond = CondResult.take();
 | |
| 
 | |
|   CheckImplicitConversions(Cond, DoLoc);
 | |
|   CondResult = MaybeCreateExprWithCleanups(Cond);
 | |
|   if (CondResult.isInvalid())
 | |
|     return StmtError();
 | |
|   Cond = CondResult.take();
 | |
| 
 | |
|   DiagnoseUnusedExprResult(Body);
 | |
| 
 | |
|   return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
 | |
|                    Stmt *First, FullExprArg second, Decl *secondVar,
 | |
|                    FullExprArg third,
 | |
|                    SourceLocation RParenLoc, Stmt *Body) {
 | |
|   if (!getLangOptions().CPlusPlus) {
 | |
|     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
 | |
|       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
 | |
|       // declare identifiers for objects having storage class 'auto' or
 | |
|       // 'register'.
 | |
|       for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
 | |
|            DI!=DE; ++DI) {
 | |
|         VarDecl *VD = dyn_cast<VarDecl>(*DI);
 | |
|         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
 | |
|           VD = 0;
 | |
|         if (VD == 0)
 | |
|           Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
 | |
|         // FIXME: mark decl erroneous!
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ExprResult SecondResult(second.release());
 | |
|   VarDecl *ConditionVar = 0;
 | |
|   if (secondVar) {
 | |
|     ConditionVar = cast<VarDecl>(secondVar);
 | |
|     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
 | |
|     if (SecondResult.isInvalid())
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   Expr *Third  = third.release().takeAs<Expr>();
 | |
| 
 | |
|   DiagnoseUnusedExprResult(First);
 | |
|   DiagnoseUnusedExprResult(Third);
 | |
|   DiagnoseUnusedExprResult(Body);
 | |
| 
 | |
|   return Owned(new (Context) ForStmt(Context, First,
 | |
|                                      SecondResult.take(), ConditionVar,
 | |
|                                      Third, Body, ForLoc, LParenLoc,
 | |
|                                      RParenLoc));
 | |
| }
 | |
| 
 | |
| /// In an Objective C collection iteration statement:
 | |
| ///   for (x in y)
 | |
| /// x can be an arbitrary l-value expression.  Bind it up as a
 | |
| /// full-expression.
 | |
| StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
 | |
|   CheckImplicitConversions(E);
 | |
|   ExprResult Result = MaybeCreateExprWithCleanups(E);
 | |
|   if (Result.isInvalid()) return StmtError();
 | |
|   return Owned(static_cast<Stmt*>(Result.get()));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
 | |
|                                  SourceLocation LParenLoc,
 | |
|                                  Stmt *First, Expr *Second,
 | |
|                                  SourceLocation RParenLoc, Stmt *Body) {
 | |
|   if (First) {
 | |
|     QualType FirstType;
 | |
|     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
 | |
|       if (!DS->isSingleDecl())
 | |
|         return StmtError(Diag((*DS->decl_begin())->getLocation(),
 | |
|                          diag::err_toomany_element_decls));
 | |
| 
 | |
|       Decl *D = DS->getSingleDecl();
 | |
|       FirstType = cast<ValueDecl>(D)->getType();
 | |
|       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
 | |
|       // declare identifiers for objects having storage class 'auto' or
 | |
|       // 'register'.
 | |
|       VarDecl *VD = cast<VarDecl>(D);
 | |
|       if (VD->isLocalVarDecl() && !VD->hasLocalStorage())
 | |
|         return StmtError(Diag(VD->getLocation(),
 | |
|                               diag::err_non_variable_decl_in_for));
 | |
|     } else {
 | |
|       Expr *FirstE = cast<Expr>(First);
 | |
|       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
 | |
|         return StmtError(Diag(First->getLocStart(),
 | |
|                    diag::err_selector_element_not_lvalue)
 | |
|           << First->getSourceRange());
 | |
| 
 | |
|       FirstType = static_cast<Expr*>(First)->getType();
 | |
|     }
 | |
|     if (!FirstType->isDependentType() &&
 | |
|         !FirstType->isObjCObjectPointerType() &&
 | |
|         !FirstType->isBlockPointerType())
 | |
|         Diag(ForLoc, diag::err_selector_element_type)
 | |
|           << FirstType << First->getSourceRange();
 | |
|   }
 | |
|   if (Second && !Second->isTypeDependent()) {
 | |
|     ExprResult Result = DefaultFunctionArrayLvalueConversion(Second);
 | |
|     if (Result.isInvalid())
 | |
|       return StmtError();
 | |
|     Second = Result.take();
 | |
|     QualType SecondType = Second->getType();
 | |
|     if (!SecondType->isObjCObjectPointerType())
 | |
|       Diag(ForLoc, diag::err_collection_expr_type)
 | |
|         << SecondType << Second->getSourceRange();
 | |
|     else if (const ObjCObjectPointerType *OPT =
 | |
|              SecondType->getAsObjCInterfacePointerType()) {
 | |
|       llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
 | |
|       IdentifierInfo* selIdent =
 | |
|         &Context.Idents.get("countByEnumeratingWithState");
 | |
|       KeyIdents.push_back(selIdent);
 | |
|       selIdent = &Context.Idents.get("objects");
 | |
|       KeyIdents.push_back(selIdent);
 | |
|       selIdent = &Context.Idents.get("count");
 | |
|       KeyIdents.push_back(selIdent);
 | |
|       Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
 | |
|       if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
 | |
|         if (!IDecl->isForwardDecl() &&
 | |
|             !IDecl->lookupInstanceMethod(CSelector) &&
 | |
|             !LookupMethodInQualifiedType(CSelector, OPT, true)) {
 | |
|           // Must further look into private implementation methods.
 | |
|           if (!LookupPrivateInstanceMethod(CSelector, IDecl))
 | |
|             Diag(ForLoc, diag::warn_collection_expr_type)
 | |
|               << SecondType << CSelector << Second->getSourceRange();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
 | |
|                                                    ForLoc, RParenLoc));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| enum BeginEndFunction {
 | |
|   BEF_begin,
 | |
|   BEF_end
 | |
| };
 | |
| 
 | |
| /// Build a variable declaration for a for-range statement.
 | |
| static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
 | |
|                                      QualType Type, const char *Name) {
 | |
|   DeclContext *DC = SemaRef.CurContext;
 | |
|   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
 | |
|   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
 | |
|   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
 | |
|                                   TInfo, SC_Auto, SC_None);
 | |
|   Decl->setImplicit();
 | |
|   return Decl;
 | |
| }
 | |
| 
 | |
| /// Finish building a variable declaration for a for-range statement.
 | |
| /// \return true if an error occurs.
 | |
| static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
 | |
|                                   SourceLocation Loc, int diag) {
 | |
|   // Deduce the type for the iterator variable now rather than leaving it to
 | |
|   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
 | |
|   TypeSourceInfo *InitTSI = 0;
 | |
|   if (Init->getType()->isVoidType() ||
 | |
|       !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
 | |
|     SemaRef.Diag(Loc, diag) << Init->getType();
 | |
|   if (!InitTSI) {
 | |
|     Decl->setInvalidDecl();
 | |
|     return true;
 | |
|   }
 | |
|   Decl->setTypeSourceInfo(InitTSI);
 | |
|   Decl->setType(InitTSI->getType());
 | |
| 
 | |
|   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
 | |
|                                /*TypeMayContainAuto=*/false);
 | |
|   SemaRef.FinalizeDeclaration(Decl);
 | |
|   SemaRef.CurContext->addHiddenDecl(Decl);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Produce a note indicating which begin/end function was implicitly called
 | |
| /// by a C++0x for-range statement. This is often not obvious from the code,
 | |
| /// nor from the diagnostics produced when analysing the implicit expressions
 | |
| /// required in a for-range statement.
 | |
| void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
 | |
|                                   BeginEndFunction BEF) {
 | |
|   CallExpr *CE = dyn_cast<CallExpr>(E);
 | |
|   if (!CE)
 | |
|     return;
 | |
|   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
 | |
|   if (!D)
 | |
|     return;
 | |
|   SourceLocation Loc = D->getLocation();
 | |
| 
 | |
|   std::string Description;
 | |
|   bool IsTemplate = false;
 | |
|   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
 | |
|     Description = SemaRef.getTemplateArgumentBindingsText(
 | |
|       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
 | |
|     IsTemplate = true;
 | |
|   }
 | |
| 
 | |
|   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
 | |
|     << BEF << IsTemplate << Description << E->getType();
 | |
| }
 | |
| 
 | |
| /// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
 | |
| /// given LookupResult is non-empty, it is assumed to describe a member which
 | |
| /// will be invoked. Otherwise, the function will be found via argument
 | |
| /// dependent lookup.
 | |
| static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
 | |
|                                             SourceLocation Loc,
 | |
|                                             VarDecl *Decl,
 | |
|                                             BeginEndFunction BEF,
 | |
|                                             const DeclarationNameInfo &NameInfo,
 | |
|                                             LookupResult &MemberLookup,
 | |
|                                             Expr *Range) {
 | |
|   ExprResult CallExpr;
 | |
|   if (!MemberLookup.empty()) {
 | |
|     ExprResult MemberRef =
 | |
|       SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
 | |
|                                        /*IsPtr=*/false, CXXScopeSpec(),
 | |
|                                        /*Qualifier=*/0, MemberLookup,
 | |
|                                        /*TemplateArgs=*/0);
 | |
|     if (MemberRef.isInvalid())
 | |
|       return ExprError();
 | |
|     CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
 | |
|                                      Loc, 0);
 | |
|     if (CallExpr.isInvalid())
 | |
|       return ExprError();
 | |
|   } else {
 | |
|     UnresolvedSet<0> FoundNames;
 | |
|     // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
 | |
|     // std is an associated namespace.
 | |
|     UnresolvedLookupExpr *Fn =
 | |
|       UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
 | |
|                                    NestedNameSpecifierLoc(), NameInfo,
 | |
|                                    /*NeedsADL=*/true, /*Overloaded=*/false,
 | |
|                                    FoundNames.begin(), FoundNames.end(),
 | |
|                                    /*LookInStdNamespace=*/true);
 | |
|     CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
 | |
|                                                0);
 | |
|     if (CallExpr.isInvalid()) {
 | |
|       SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
 | |
|         << Range->getType();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
|   if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
 | |
|                             diag::err_for_range_iter_deduction_failure)) {
 | |
|     NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
 | |
|     return ExprError();
 | |
|   }
 | |
|   return CallExpr;
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| /// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
 | |
| ///
 | |
| /// C++0x [stmt.ranged]:
 | |
| ///   A range-based for statement is equivalent to
 | |
| ///
 | |
| ///   {
 | |
| ///     auto && __range = range-init;
 | |
| ///     for ( auto __begin = begin-expr,
 | |
| ///           __end = end-expr;
 | |
| ///           __begin != __end;
 | |
| ///           ++__begin ) {
 | |
| ///       for-range-declaration = *__begin;
 | |
| ///       statement
 | |
| ///     }
 | |
| ///   }
 | |
| ///
 | |
| /// The body of the loop is not available yet, since it cannot be analysed until
 | |
| /// we have determined the type of the for-range-declaration.
 | |
| StmtResult
 | |
| Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
 | |
|                            Stmt *First, SourceLocation ColonLoc, Expr *Range,
 | |
|                            SourceLocation RParenLoc) {
 | |
|   if (!First || !Range)
 | |
|     return StmtError();
 | |
| 
 | |
|   DeclStmt *DS = dyn_cast<DeclStmt>(First);
 | |
|   assert(DS && "first part of for range not a decl stmt");
 | |
| 
 | |
|   if (!DS->isSingleDecl()) {
 | |
|     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
 | |
|     return StmtError();
 | |
|   }
 | |
|   if (DS->getSingleDecl()->isInvalidDecl())
 | |
|     return StmtError();
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
 | |
|     return StmtError();
 | |
| 
 | |
|   // Build  auto && __range = range-init
 | |
|   SourceLocation RangeLoc = Range->getLocStart();
 | |
|   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
 | |
|                                            Context.getAutoRRefDeductType(),
 | |
|                                            "__range");
 | |
|   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
 | |
|                             diag::err_for_range_deduction_failure))
 | |
|     return StmtError();
 | |
| 
 | |
|   // Claim the type doesn't contain auto: we've already done the checking.
 | |
|   DeclGroupPtrTy RangeGroup =
 | |
|     BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
 | |
|   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
 | |
|   if (RangeDecl.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
 | |
|                               /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
 | |
|                               RParenLoc);
 | |
| }
 | |
| 
 | |
| /// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
 | |
| StmtResult
 | |
| Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
 | |
|                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
 | |
|                            Expr *Inc, Stmt *LoopVarDecl,
 | |
|                            SourceLocation RParenLoc) {
 | |
|   Scope *S = getCurScope();
 | |
| 
 | |
|   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
 | |
|   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
 | |
|   QualType RangeVarType = RangeVar->getType();
 | |
| 
 | |
|   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
 | |
|   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
 | |
| 
 | |
|   StmtResult BeginEndDecl = BeginEnd;
 | |
|   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
 | |
| 
 | |
|   if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
 | |
|     SourceLocation RangeLoc = RangeVar->getLocation();
 | |
| 
 | |
|     ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
 | |
|                                            RangeVarType.getNonReferenceType(),
 | |
|                                            VK_LValue, ColonLoc);
 | |
|     if (RangeRef.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     QualType AutoType = Context.getAutoDeductType();
 | |
|     Expr *Range = RangeVar->getInit();
 | |
|     if (!Range)
 | |
|       return StmtError();
 | |
|     QualType RangeType = Range->getType();
 | |
| 
 | |
|     if (RequireCompleteType(RangeLoc, RangeType,
 | |
|                             PDiag(diag::err_for_range_incomplete_type)))
 | |
|       return StmtError();
 | |
| 
 | |
|     // Build auto __begin = begin-expr, __end = end-expr.
 | |
|     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
 | |
|                                              "__begin");
 | |
|     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
 | |
|                                            "__end");
 | |
| 
 | |
|     // Build begin-expr and end-expr and attach to __begin and __end variables.
 | |
|     ExprResult BeginExpr, EndExpr;
 | |
|     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
 | |
|       // - if _RangeT is an array type, begin-expr and end-expr are __range and
 | |
|       //   __range + __bound, respectively, where __bound is the array bound. If
 | |
|       //   _RangeT is an array of unknown size or an array of incomplete type,
 | |
|       //   the program is ill-formed;
 | |
| 
 | |
|       // begin-expr is __range.
 | |
|       BeginExpr = RangeRef;
 | |
|       if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
 | |
|                                 diag::err_for_range_iter_deduction_failure)) {
 | |
|         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | |
|         return StmtError();
 | |
|       }
 | |
| 
 | |
|       // Find the array bound.
 | |
|       ExprResult BoundExpr;
 | |
|       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
 | |
|         BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
 | |
|                                                  Context.IntTy, RangeLoc));
 | |
|       else if (const VariableArrayType *VAT =
 | |
|                dyn_cast<VariableArrayType>(UnqAT))
 | |
|         BoundExpr = VAT->getSizeExpr();
 | |
|       else {
 | |
|         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
 | |
|         // UnqAT is not incomplete and Range is not type-dependent.
 | |
|         assert(0 && "Unexpected array type in for-range");
 | |
|         return StmtError();
 | |
|       }
 | |
| 
 | |
|       // end-expr is __range + __bound.
 | |
|       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
 | |
|                            BoundExpr.get());
 | |
|       if (EndExpr.isInvalid())
 | |
|         return StmtError();
 | |
|       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
 | |
|                                 diag::err_for_range_iter_deduction_failure)) {
 | |
|         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
 | |
|         return StmtError();
 | |
|       }
 | |
|     } else {
 | |
|       DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
 | |
|                                         ColonLoc);
 | |
|       DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
 | |
|                                       ColonLoc);
 | |
| 
 | |
|       LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
 | |
|       LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
 | |
| 
 | |
|       if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
 | |
|         // - if _RangeT is a class type, the unqualified-ids begin and end are
 | |
|         //   looked up in the scope of class _RangeT as if by class member access
 | |
|         //   lookup (3.4.5), and if either (or both) finds at least one
 | |
|         //   declaration, begin-expr and end-expr are __range.begin() and
 | |
|         //   __range.end(), respectively;
 | |
|         LookupQualifiedName(BeginMemberLookup, D);
 | |
|         LookupQualifiedName(EndMemberLookup, D);
 | |
| 
 | |
|         if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
 | |
|           Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
 | |
|             << RangeType << BeginMemberLookup.empty();
 | |
|           return StmtError();
 | |
|         }
 | |
|       } else {
 | |
|         // - otherwise, begin-expr and end-expr are begin(__range) and
 | |
|         //   end(__range), respectively, where begin and end are looked up with
 | |
|         //   argument-dependent lookup (3.4.2). For the purposes of this name
 | |
|         //   lookup, namespace std is an associated namespace.
 | |
|       }
 | |
| 
 | |
|       BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
 | |
|                                             BEF_begin, BeginNameInfo,
 | |
|                                             BeginMemberLookup, RangeRef.get());
 | |
|       if (BeginExpr.isInvalid())
 | |
|         return StmtError();
 | |
| 
 | |
|       EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
 | |
|                                           BEF_end, EndNameInfo,
 | |
|                                           EndMemberLookup, RangeRef.get());
 | |
|       if (EndExpr.isInvalid())
 | |
|         return StmtError();
 | |
|     }
 | |
| 
 | |
|     // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
 | |
|     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
 | |
|     if (!Context.hasSameType(BeginType, EndType)) {
 | |
|       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
 | |
|         << BeginType << EndType;
 | |
|       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | |
|       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
 | |
|     }
 | |
| 
 | |
|     Decl *BeginEndDecls[] = { BeginVar, EndVar };
 | |
|     // Claim the type doesn't contain auto: we've already done the checking.
 | |
|     DeclGroupPtrTy BeginEndGroup =
 | |
|       BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
 | |
|     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
 | |
| 
 | |
|     ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
 | |
|                                            BeginType.getNonReferenceType(),
 | |
|                                            VK_LValue, ColonLoc);
 | |
|     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
 | |
|                                          VK_LValue, ColonLoc);
 | |
| 
 | |
|     // Build and check __begin != __end expression.
 | |
|     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
 | |
|                            BeginRef.get(), EndRef.get());
 | |
|     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
 | |
|     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
 | |
|     if (NotEqExpr.isInvalid()) {
 | |
|       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | |
|       if (!Context.hasSameType(BeginType, EndType))
 | |
|         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
 | |
|       return StmtError();
 | |
|     }
 | |
| 
 | |
|     // Build and check ++__begin expression.
 | |
|     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
 | |
|     IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
 | |
|     if (IncrExpr.isInvalid()) {
 | |
|       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | |
|       return StmtError();
 | |
|     }
 | |
| 
 | |
|     // Build and check *__begin  expression.
 | |
|     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
 | |
|     if (DerefExpr.isInvalid()) {
 | |
|       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | |
|       return StmtError();
 | |
|     }
 | |
| 
 | |
|     // Attach  *__begin  as initializer for VD.
 | |
|     if (!LoopVar->isInvalidDecl()) {
 | |
|       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
 | |
|                            /*TypeMayContainAuto=*/true);
 | |
|       if (LoopVar->isInvalidDecl())
 | |
|         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) CXXForRangeStmt(RangeDS,
 | |
|                                      cast_or_null<DeclStmt>(BeginEndDecl.get()),
 | |
|                                              NotEqExpr.take(), IncrExpr.take(),
 | |
|                                              LoopVarDS, /*Body=*/0, ForLoc,
 | |
|                                              ColonLoc, RParenLoc));
 | |
| }
 | |
| 
 | |
| /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
 | |
| /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
 | |
| /// body cannot be performed until after the type of the range variable is
 | |
| /// determined.
 | |
| StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
 | |
|   if (!S || !B)
 | |
|     return StmtError();
 | |
| 
 | |
|   cast<CXXForRangeStmt>(S)->setBody(B);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
 | |
|                                SourceLocation LabelLoc,
 | |
|                                LabelDecl *TheDecl) {
 | |
|   getCurFunction()->setHasBranchIntoScope();
 | |
|   TheDecl->setUsed();
 | |
|   return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
 | |
|                             Expr *E) {
 | |
|   // Convert operand to void*
 | |
|   if (!E->isTypeDependent()) {
 | |
|     QualType ETy = E->getType();
 | |
|     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
 | |
|     ExprResult ExprRes = Owned(E);
 | |
|     AssignConvertType ConvTy =
 | |
|       CheckSingleAssignmentConstraints(DestTy, ExprRes);
 | |
|     if (ExprRes.isInvalid())
 | |
|       return StmtError();
 | |
|     E = ExprRes.take();
 | |
|     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
 | |
|       return StmtError();
 | |
|   }
 | |
| 
 | |
|   getCurFunction()->setHasIndirectGoto();
 | |
| 
 | |
|   return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
 | |
|   Scope *S = CurScope->getContinueParent();
 | |
|   if (!S) {
 | |
|     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
 | |
|     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) ContinueStmt(ContinueLoc));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
 | |
|   Scope *S = CurScope->getBreakParent();
 | |
|   if (!S) {
 | |
|     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
 | |
|     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) BreakStmt(BreakLoc));
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given expression is a candidate for
 | |
| /// copy elision in either a return statement or a throw expression.
 | |
| ///
 | |
| /// \param ReturnType If we're determining the copy elision candidate for
 | |
| /// a return statement, this is the return type of the function. If we're
 | |
| /// determining the copy elision candidate for a throw expression, this will
 | |
| /// be a NULL type.
 | |
| ///
 | |
| /// \param E The expression being returned from the function or block, or
 | |
| /// being thrown.
 | |
| ///
 | |
| /// \param AllowFunctionParameter
 | |
| ///
 | |
| /// \returns The NRVO candidate variable, if the return statement may use the
 | |
| /// NRVO, or NULL if there is no such candidate.
 | |
| const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
 | |
|                                              Expr *E,
 | |
|                                              bool AllowFunctionParameter) {
 | |
|   QualType ExprType = E->getType();
 | |
|   // - in a return statement in a function with ...
 | |
|   // ... a class return type ...
 | |
|   if (!ReturnType.isNull()) {
 | |
|     if (!ReturnType->isRecordType())
 | |
|       return 0;
 | |
|     // ... the same cv-unqualified type as the function return type ...
 | |
|     if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // ... the expression is the name of a non-volatile automatic object
 | |
|   // (other than a function or catch-clause parameter)) ...
 | |
|   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
 | |
|   if (!DR)
 | |
|     return 0;
 | |
|   const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
 | |
|   if (!VD)
 | |
|     return 0;
 | |
| 
 | |
|   if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
 | |
|       !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
 | |
|       !VD->getType().isVolatileQualified() &&
 | |
|       ((VD->getKind() == Decl::Var) ||
 | |
|        (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
 | |
|     return VD;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// \brief Perform the initialization of a potentially-movable value, which
 | |
| /// is the result of return value.
 | |
| ///
 | |
| /// This routine implements C++0x [class.copy]p33, which attempts to treat
 | |
| /// returned lvalues as rvalues in certain cases (to prefer move construction),
 | |
| /// then falls back to treating them as lvalues if that failed.
 | |
| ExprResult
 | |
| Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
 | |
|                                       const VarDecl *NRVOCandidate,
 | |
|                                       QualType ResultType,
 | |
|                                       Expr *Value) {
 | |
|   // C++0x [class.copy]p33:
 | |
|   //   When the criteria for elision of a copy operation are met or would
 | |
|   //   be met save for the fact that the source object is a function
 | |
|   //   parameter, and the object to be copied is designated by an lvalue,
 | |
|   //   overload resolution to select the constructor for the copy is first
 | |
|   //   performed as if the object were designated by an rvalue.
 | |
|   ExprResult Res = ExprError();
 | |
|   if (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true)) {
 | |
|     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
 | |
|                               Value->getType(), CK_LValueToRValue,
 | |
|                               Value, VK_XValue);
 | |
| 
 | |
|     Expr *InitExpr = &AsRvalue;
 | |
|     InitializationKind Kind
 | |
|       = InitializationKind::CreateCopy(Value->getLocStart(),
 | |
|                                        Value->getLocStart());
 | |
|     InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
 | |
| 
 | |
|     //   [...] If overload resolution fails, or if the type of the first
 | |
|     //   parameter of the selected constructor is not an rvalue reference
 | |
|     //   to the object's type (possibly cv-qualified), overload resolution
 | |
|     //   is performed again, considering the object as an lvalue.
 | |
|     if (Seq.getKind() != InitializationSequence::FailedSequence) {
 | |
|       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
 | |
|            StepEnd = Seq.step_end();
 | |
|            Step != StepEnd; ++Step) {
 | |
|         if (Step->Kind
 | |
|             != InitializationSequence::SK_ConstructorInitialization)
 | |
|           continue;
 | |
| 
 | |
|         CXXConstructorDecl *Constructor
 | |
|         = cast<CXXConstructorDecl>(Step->Function.Function);
 | |
| 
 | |
|         const RValueReferenceType *RRefType
 | |
|           = Constructor->getParamDecl(0)->getType()
 | |
|                                                  ->getAs<RValueReferenceType>();
 | |
| 
 | |
|         // If we don't meet the criteria, break out now.
 | |
|         if (!RRefType ||
 | |
|             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
 | |
|                             Context.getTypeDeclType(Constructor->getParent())))
 | |
|           break;
 | |
| 
 | |
|         // Promote "AsRvalue" to the heap, since we now need this
 | |
|         // expression node to persist.
 | |
|         Value = ImplicitCastExpr::Create(Context, Value->getType(),
 | |
|                                          CK_LValueToRValue, Value, 0,
 | |
|                                          VK_XValue);
 | |
| 
 | |
|         // Complete type-checking the initialization of the return type
 | |
|         // using the constructor we found.
 | |
|         Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
 | |
|   // above, or overload resolution failed. Either way, we need to try
 | |
|   // (again) now with the return value expression as written.
 | |
|   if (Res.isInvalid())
 | |
|     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
 | |
| ///
 | |
| StmtResult
 | |
| Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
 | |
|   // If this is the first return we've seen in the block, infer the type of
 | |
|   // the block from it.
 | |
|   BlockScopeInfo *CurBlock = getCurBlock();
 | |
|   if (CurBlock->ReturnType.isNull()) {
 | |
|     if (RetValExp) {
 | |
|       // Don't call UsualUnaryConversions(), since we don't want to do
 | |
|       // integer promotions here.
 | |
|       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
 | |
|       if (Result.isInvalid())
 | |
|         return StmtError();
 | |
|       RetValExp = Result.take();
 | |
|       CurBlock->ReturnType = RetValExp->getType();
 | |
|       if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
 | |
|         // We have to remove a 'const' added to copied-in variable which was
 | |
|         // part of the implementation spec. and not the actual qualifier for
 | |
|         // the variable.
 | |
|         if (CDRE->isConstQualAdded())
 | |
|           CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
 | |
|       }
 | |
|     } else
 | |
|       CurBlock->ReturnType = Context.VoidTy;
 | |
|   }
 | |
|   QualType FnRetType = CurBlock->ReturnType;
 | |
| 
 | |
|   if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
 | |
|     Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
 | |
|       << getCurFunctionOrMethodDecl()->getDeclName();
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   // Otherwise, verify that this result type matches the previous one.  We are
 | |
|   // pickier with blocks than for normal functions because we don't have GCC
 | |
|   // compatibility to worry about here.
 | |
|   ReturnStmt *Result = 0;
 | |
|   if (CurBlock->ReturnType->isVoidType()) {
 | |
|     if (RetValExp) {
 | |
|       Diag(ReturnLoc, diag::err_return_block_has_expr);
 | |
|       RetValExp = 0;
 | |
|     }
 | |
|     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
 | |
|   } else if (!RetValExp) {
 | |
|     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
 | |
|   } else {
 | |
|     const VarDecl *NRVOCandidate = 0;
 | |
| 
 | |
|     if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
 | |
|       // we have a non-void block with an expression, continue checking
 | |
| 
 | |
|       // C99 6.8.6.4p3(136): The return statement is not an assignment. The
 | |
|       // overlap restriction of subclause 6.5.16.1 does not apply to the case of
 | |
|       // function return.
 | |
| 
 | |
|       // In C++ the return statement is handled via a copy initialization.
 | |
|       // the C version of which boils down to CheckSingleAssignmentConstraints.
 | |
|       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
 | |
|       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
 | |
|                                                                      FnRetType,
 | |
|                                                            NRVOCandidate != 0);
 | |
|       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
 | |
|                                                        FnRetType, RetValExp);
 | |
|       if (Res.isInvalid()) {
 | |
|         // FIXME: Cleanup temporaries here, anyway?
 | |
|         return StmtError();
 | |
|       }
 | |
| 
 | |
|       if (RetValExp) {
 | |
|         CheckImplicitConversions(RetValExp, ReturnLoc);
 | |
|         RetValExp = MaybeCreateExprWithCleanups(RetValExp);
 | |
|       }
 | |
| 
 | |
|       RetValExp = Res.takeAs<Expr>();
 | |
|       if (RetValExp)
 | |
|         CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
 | |
|     }
 | |
| 
 | |
|     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
 | |
|   }
 | |
| 
 | |
|   // If we need to check for the named return value optimization, save the
 | |
|   // return statement in our scope for later processing.
 | |
|   if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
 | |
|       !CurContext->isDependentContext())
 | |
|     FunctionScopes.back()->Returns.push_back(Result);
 | |
| 
 | |
|   return Owned(Result);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
 | |
|   if (getCurBlock())
 | |
|     return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
 | |
| 
 | |
|   QualType FnRetType;
 | |
|   if (const FunctionDecl *FD = getCurFunctionDecl()) {
 | |
|     FnRetType = FD->getResultType();
 | |
|     if (FD->hasAttr<NoReturnAttr>() ||
 | |
|         FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
 | |
|       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
 | |
|         << getCurFunctionOrMethodDecl()->getDeclName();
 | |
|   } else if (ObjCMethodDecl *MD = getCurMethodDecl())
 | |
|     FnRetType = MD->getResultType();
 | |
|   else // If we don't have a function/method context, bail.
 | |
|     return StmtError();
 | |
| 
 | |
|   ReturnStmt *Result = 0;
 | |
|   if (FnRetType->isVoidType()) {
 | |
|     if (RetValExp && !RetValExp->isTypeDependent()) {
 | |
|       // C99 6.8.6.4p1 (ext_ since GCC warns)
 | |
|       unsigned D = diag::ext_return_has_expr;
 | |
|       if (RetValExp->getType()->isVoidType())
 | |
|         D = diag::ext_return_has_void_expr;
 | |
|       else {
 | |
|         ExprResult Result = Owned(RetValExp);
 | |
|         Result = IgnoredValueConversions(Result.take());
 | |
|         if (Result.isInvalid())
 | |
|           return StmtError();
 | |
|         RetValExp = Result.take();
 | |
|         RetValExp = ImpCastExprToType(RetValExp, Context.VoidTy, CK_ToVoid).take();
 | |
|       }
 | |
| 
 | |
|       // return (some void expression); is legal in C++.
 | |
|       if (D != diag::ext_return_has_void_expr ||
 | |
|           !getLangOptions().CPlusPlus) {
 | |
|         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
 | |
|         Diag(ReturnLoc, D)
 | |
|           << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
 | |
|           << RetValExp->getSourceRange();
 | |
|       }
 | |
| 
 | |
|       CheckImplicitConversions(RetValExp, ReturnLoc);
 | |
|       RetValExp = MaybeCreateExprWithCleanups(RetValExp);
 | |
|     }
 | |
| 
 | |
|     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
 | |
|   } else if (!RetValExp && !FnRetType->isDependentType()) {
 | |
|     unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
 | |
|     // C99 6.8.6.4p1 (ext_ since GCC warns)
 | |
|     if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
 | |
| 
 | |
|     if (FunctionDecl *FD = getCurFunctionDecl())
 | |
|       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
 | |
|     else
 | |
|       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
 | |
|     Result = new (Context) ReturnStmt(ReturnLoc);
 | |
|   } else {
 | |
|     const VarDecl *NRVOCandidate = 0;
 | |
|     if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
 | |
|       // we have a non-void function with an expression, continue checking
 | |
| 
 | |
|       // C99 6.8.6.4p3(136): The return statement is not an assignment. The
 | |
|       // overlap restriction of subclause 6.5.16.1 does not apply to the case of
 | |
|       // function return.
 | |
| 
 | |
|       // In C++ the return statement is handled via a copy initialization.
 | |
|       // the C version of which boils down to CheckSingleAssignmentConstraints.
 | |
|       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
 | |
|       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
 | |
|                                                                      FnRetType,
 | |
|                                                                      NRVOCandidate != 0);
 | |
|       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
 | |
|                                                        FnRetType, RetValExp);
 | |
|       if (Res.isInvalid()) {
 | |
|         // FIXME: Cleanup temporaries here, anyway?
 | |
|         return StmtError();
 | |
|       }
 | |
| 
 | |
|       RetValExp = Res.takeAs<Expr>();
 | |
|       if (RetValExp)
 | |
|         CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
 | |
|     }
 | |
| 
 | |
|     if (RetValExp) {
 | |
|       CheckImplicitConversions(RetValExp, ReturnLoc);
 | |
|       RetValExp = MaybeCreateExprWithCleanups(RetValExp);
 | |
|     }
 | |
|     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
 | |
|   }
 | |
| 
 | |
|   // If we need to check for the named return value optimization, save the
 | |
|   // return statement in our scope for later processing.
 | |
|   if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
 | |
|       !CurContext->isDependentContext())
 | |
|     FunctionScopes.back()->Returns.push_back(Result);
 | |
| 
 | |
|   return Owned(Result);
 | |
| }
 | |
| 
 | |
| /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
 | |
| /// ignore "noop" casts in places where an lvalue is required by an inline asm.
 | |
| /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
 | |
| /// provide a strong guidance to not use it.
 | |
| ///
 | |
| /// This method checks to see if the argument is an acceptable l-value and
 | |
| /// returns false if it is a case we can handle.
 | |
| static bool CheckAsmLValue(const Expr *E, Sema &S) {
 | |
|   // Type dependent expressions will be checked during instantiation.
 | |
|   if (E->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   if (E->isLValue())
 | |
|     return false;  // Cool, this is an lvalue.
 | |
| 
 | |
|   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
 | |
|   // are supposed to allow.
 | |
|   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
 | |
|   if (E != E2 && E2->isLValue()) {
 | |
|     if (!S.getLangOptions().HeinousExtensions)
 | |
|       S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
 | |
|         << E->getSourceRange();
 | |
|     else
 | |
|       S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
 | |
|         << E->getSourceRange();
 | |
|     // Accept, even if we emitted an error diagnostic.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // None of the above, just randomly invalid non-lvalue.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isOperandMentioned - Return true if the specified operand # is mentioned
 | |
| /// anywhere in the decomposed asm string.
 | |
| static bool isOperandMentioned(unsigned OpNo, 
 | |
|                          llvm::ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
 | |
|   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
 | |
|     const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
 | |
|     if (!Piece.isOperand()) continue;
 | |
|     
 | |
|     // If this is a reference to the input and if the input was the smaller
 | |
|     // one, then we have to reject this asm.
 | |
|     if (Piece.getOperandNo() == OpNo)
 | |
|       return true;
 | |
|   }
 | |
|  
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
 | |
|                               bool IsVolatile, unsigned NumOutputs,
 | |
|                               unsigned NumInputs, IdentifierInfo **Names,
 | |
|                               MultiExprArg constraints, MultiExprArg exprs,
 | |
|                               Expr *asmString, MultiExprArg clobbers,
 | |
|                               SourceLocation RParenLoc, bool MSAsm) {
 | |
|   unsigned NumClobbers = clobbers.size();
 | |
|   StringLiteral **Constraints =
 | |
|     reinterpret_cast<StringLiteral**>(constraints.get());
 | |
|   Expr **Exprs = exprs.get();
 | |
|   StringLiteral *AsmString = cast<StringLiteral>(asmString);
 | |
|   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
 | |
| 
 | |
|   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
 | |
| 
 | |
|   // The parser verifies that there is a string literal here.
 | |
|   if (AsmString->isWide())
 | |
|     return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
 | |
|       << AsmString->getSourceRange());
 | |
| 
 | |
|   for (unsigned i = 0; i != NumOutputs; i++) {
 | |
|     StringLiteral *Literal = Constraints[i];
 | |
|     if (Literal->isWide())
 | |
|       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | |
|         << Literal->getSourceRange());
 | |
| 
 | |
|     llvm::StringRef OutputName;
 | |
|     if (Names[i])
 | |
|       OutputName = Names[i]->getName();
 | |
| 
 | |
|     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
 | |
|     if (!Context.Target.validateOutputConstraint(Info))
 | |
|       return StmtError(Diag(Literal->getLocStart(),
 | |
|                             diag::err_asm_invalid_output_constraint)
 | |
|                        << Info.getConstraintStr());
 | |
| 
 | |
|     // Check that the output exprs are valid lvalues.
 | |
|     Expr *OutputExpr = Exprs[i];
 | |
|     if (CheckAsmLValue(OutputExpr, *this)) {
 | |
|       return StmtError(Diag(OutputExpr->getLocStart(),
 | |
|                   diag::err_asm_invalid_lvalue_in_output)
 | |
|         << OutputExpr->getSourceRange());
 | |
|     }
 | |
| 
 | |
|     OutputConstraintInfos.push_back(Info);
 | |
|   }
 | |
| 
 | |
|   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
 | |
| 
 | |
|   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
 | |
|     StringLiteral *Literal = Constraints[i];
 | |
|     if (Literal->isWide())
 | |
|       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | |
|         << Literal->getSourceRange());
 | |
| 
 | |
|     llvm::StringRef InputName;
 | |
|     if (Names[i])
 | |
|       InputName = Names[i]->getName();
 | |
| 
 | |
|     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
 | |
|     if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
 | |
|                                                 NumOutputs, Info)) {
 | |
|       return StmtError(Diag(Literal->getLocStart(),
 | |
|                             diag::err_asm_invalid_input_constraint)
 | |
|                        << Info.getConstraintStr());
 | |
|     }
 | |
| 
 | |
|     Expr *InputExpr = Exprs[i];
 | |
| 
 | |
|     // Only allow void types for memory constraints.
 | |
|     if (Info.allowsMemory() && !Info.allowsRegister()) {
 | |
|       if (CheckAsmLValue(InputExpr, *this))
 | |
|         return StmtError(Diag(InputExpr->getLocStart(),
 | |
|                               diag::err_asm_invalid_lvalue_in_input)
 | |
|                          << Info.getConstraintStr()
 | |
|                          << InputExpr->getSourceRange());
 | |
|     }
 | |
| 
 | |
|     if (Info.allowsRegister()) {
 | |
|       if (InputExpr->getType()->isVoidType()) {
 | |
|         return StmtError(Diag(InputExpr->getLocStart(),
 | |
|                               diag::err_asm_invalid_type_in_input)
 | |
|           << InputExpr->getType() << Info.getConstraintStr()
 | |
|           << InputExpr->getSourceRange());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
 | |
|     if (Result.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     Exprs[i] = Result.take();
 | |
|     InputConstraintInfos.push_back(Info);
 | |
|   }
 | |
| 
 | |
|   // Check that the clobbers are valid.
 | |
|   for (unsigned i = 0; i != NumClobbers; i++) {
 | |
|     StringLiteral *Literal = Clobbers[i];
 | |
|     if (Literal->isWide())
 | |
|       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | |
|         << Literal->getSourceRange());
 | |
| 
 | |
|     llvm::StringRef Clobber = Literal->getString();
 | |
| 
 | |
|     if (!Context.Target.isValidGCCRegisterName(Clobber))
 | |
|       return StmtError(Diag(Literal->getLocStart(),
 | |
|                   diag::err_asm_unknown_register_name) << Clobber);
 | |
|   }
 | |
| 
 | |
|   AsmStmt *NS =
 | |
|     new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
 | |
|                           NumOutputs, NumInputs, Names, Constraints, Exprs,
 | |
|                           AsmString, NumClobbers, Clobbers, RParenLoc);
 | |
|   // Validate the asm string, ensuring it makes sense given the operands we
 | |
|   // have.
 | |
|   llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
 | |
|   unsigned DiagOffs;
 | |
|   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
 | |
|     Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
 | |
|            << AsmString->getSourceRange();
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   // Validate tied input operands for type mismatches.
 | |
|   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
 | |
|     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | |
| 
 | |
|     // If this is a tied constraint, verify that the output and input have
 | |
|     // either exactly the same type, or that they are int/ptr operands with the
 | |
|     // same size (int/long, int*/long, are ok etc).
 | |
|     if (!Info.hasTiedOperand()) continue;
 | |
| 
 | |
|     unsigned TiedTo = Info.getTiedOperand();
 | |
|     unsigned InputOpNo = i+NumOutputs;
 | |
|     Expr *OutputExpr = Exprs[TiedTo];
 | |
|     Expr *InputExpr = Exprs[InputOpNo];
 | |
|     QualType InTy = InputExpr->getType();
 | |
|     QualType OutTy = OutputExpr->getType();
 | |
|     if (Context.hasSameType(InTy, OutTy))
 | |
|       continue;  // All types can be tied to themselves.
 | |
| 
 | |
|     // Decide if the input and output are in the same domain (integer/ptr or
 | |
|     // floating point.
 | |
|     enum AsmDomain {
 | |
|       AD_Int, AD_FP, AD_Other
 | |
|     } InputDomain, OutputDomain;
 | |
| 
 | |
|     if (InTy->isIntegerType() || InTy->isPointerType())
 | |
|       InputDomain = AD_Int;
 | |
|     else if (InTy->isRealFloatingType())
 | |
|       InputDomain = AD_FP;
 | |
|     else
 | |
|       InputDomain = AD_Other;
 | |
| 
 | |
|     if (OutTy->isIntegerType() || OutTy->isPointerType())
 | |
|       OutputDomain = AD_Int;
 | |
|     else if (OutTy->isRealFloatingType())
 | |
|       OutputDomain = AD_FP;
 | |
|     else
 | |
|       OutputDomain = AD_Other;
 | |
| 
 | |
|     // They are ok if they are the same size and in the same domain.  This
 | |
|     // allows tying things like:
 | |
|     //   void* to int*
 | |
|     //   void* to int            if they are the same size.
 | |
|     //   double to long double   if they are the same size.
 | |
|     //
 | |
|     uint64_t OutSize = Context.getTypeSize(OutTy);
 | |
|     uint64_t InSize = Context.getTypeSize(InTy);
 | |
|     if (OutSize == InSize && InputDomain == OutputDomain &&
 | |
|         InputDomain != AD_Other)
 | |
|       continue;
 | |
| 
 | |
|     // If the smaller input/output operand is not mentioned in the asm string,
 | |
|     // then we can promote the smaller one to a larger input and the asm string
 | |
|     // won't notice.
 | |
|     bool SmallerValueMentioned = false;
 | |
|     
 | |
|     // If this is a reference to the input and if the input was the smaller
 | |
|     // one, then we have to reject this asm.
 | |
|     if (isOperandMentioned(InputOpNo, Pieces)) {
 | |
|       // This is a use in the asm string of the smaller operand.  Since we
 | |
|       // codegen this by promoting to a wider value, the asm will get printed
 | |
|       // "wrong".
 | |
|       SmallerValueMentioned |= InSize < OutSize;
 | |
|     }
 | |
|     if (isOperandMentioned(TiedTo, Pieces)) {
 | |
|       // If this is a reference to the output, and if the output is the larger
 | |
|       // value, then it's ok because we'll promote the input to the larger type.
 | |
|       SmallerValueMentioned |= OutSize < InSize;
 | |
|     }
 | |
| 
 | |
|     // If the smaller value wasn't mentioned in the asm string, and if the
 | |
|     // output was a register, just extend the shorter one to the size of the
 | |
|     // larger one.
 | |
|     if (!SmallerValueMentioned && InputDomain != AD_Other &&
 | |
|         OutputConstraintInfos[TiedTo].allowsRegister())
 | |
|       continue;
 | |
|     
 | |
|     // Either both of the operands were mentioned or the smaller one was
 | |
|     // mentioned.  One more special case that we'll allow: if the tied input is
 | |
|     // integer, unmentioned, and is a constant, then we'll allow truncating it
 | |
|     // down to the size of the destination.
 | |
|     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
 | |
|         !isOperandMentioned(InputOpNo, Pieces) &&
 | |
|         InputExpr->isEvaluatable(Context)) {
 | |
|       InputExpr = ImpCastExprToType(InputExpr, OutTy, CK_IntegralCast).take();
 | |
|       Exprs[InputOpNo] = InputExpr;
 | |
|       NS->setInputExpr(i, InputExpr);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     Diag(InputExpr->getLocStart(),
 | |
|          diag::err_asm_tying_incompatible_types)
 | |
|       << InTy << OutTy << OutputExpr->getSourceRange()
 | |
|       << InputExpr->getSourceRange();
 | |
|     return StmtError();
 | |
|   }
 | |
| 
 | |
|   return Owned(NS);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
 | |
|                            SourceLocation RParen, Decl *Parm,
 | |
|                            Stmt *Body) {
 | |
|   VarDecl *Var = cast_or_null<VarDecl>(Parm);
 | |
|   if (Var && Var->isInvalidDecl())
 | |
|     return StmtError();
 | |
| 
 | |
|   return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
 | |
|   return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
 | |
|                          MultiStmtArg CatchStmts, Stmt *Finally) {
 | |
|   if (!getLangOptions().ObjCExceptions)
 | |
|     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
 | |
| 
 | |
|   getCurFunction()->setHasBranchProtectedScope();
 | |
|   unsigned NumCatchStmts = CatchStmts.size();
 | |
|   return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
 | |
|                                      CatchStmts.release(),
 | |
|                                      NumCatchStmts,
 | |
|                                      Finally));
 | |
| }
 | |
| 
 | |
| StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
 | |
|                                                   Expr *Throw) {
 | |
|   if (Throw) {
 | |
|     ExprResult Result = DefaultLvalueConversion(Throw);
 | |
|     if (Result.isInvalid())
 | |
|       return StmtError();
 | |
| 
 | |
|     Throw = Result.take();
 | |
|     QualType ThrowType = Throw->getType();
 | |
|     // Make sure the expression type is an ObjC pointer or "void *".
 | |
|     if (!ThrowType->isDependentType() &&
 | |
|         !ThrowType->isObjCObjectPointerType()) {
 | |
|       const PointerType *PT = ThrowType->getAs<PointerType>();
 | |
|       if (!PT || !PT->getPointeeType()->isVoidType())
 | |
|         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
 | |
|                          << Throw->getType() << Throw->getSourceRange());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
 | |
|                            Scope *CurScope) {
 | |
|   if (!getLangOptions().ObjCExceptions)
 | |
|     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
 | |
| 
 | |
|   if (!Throw) {
 | |
|     // @throw without an expression designates a rethrow (which much occur
 | |
|     // in the context of an @catch clause).
 | |
|     Scope *AtCatchParent = CurScope;
 | |
|     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
 | |
|       AtCatchParent = AtCatchParent->getParent();
 | |
|     if (!AtCatchParent)
 | |
|       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
 | |
|   }
 | |
| 
 | |
|   return BuildObjCAtThrowStmt(AtLoc, Throw);
 | |
| }
 | |
| 
 | |
| StmtResult
 | |
| Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
 | |
|                                   Stmt *SyncBody) {
 | |
|   getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|   ExprResult Result = DefaultLvalueConversion(SyncExpr);
 | |
|   if (Result.isInvalid())
 | |
|     return StmtError();
 | |
| 
 | |
|   SyncExpr = Result.take();
 | |
|   // Make sure the expression type is an ObjC pointer or "void *".
 | |
|   if (!SyncExpr->getType()->isDependentType() &&
 | |
|       !SyncExpr->getType()->isObjCObjectPointerType()) {
 | |
|     const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
 | |
|     if (!PT || !PT->getPointeeType()->isVoidType())
 | |
|       return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
 | |
|                        << SyncExpr->getType() << SyncExpr->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
 | |
| }
 | |
| 
 | |
| /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
 | |
| /// and creates a proper catch handler from them.
 | |
| StmtResult
 | |
| Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
 | |
|                          Stmt *HandlerBlock) {
 | |
|   // There's nothing to test that ActOnExceptionDecl didn't already test.
 | |
|   return Owned(new (Context) CXXCatchStmt(CatchLoc,
 | |
|                                           cast_or_null<VarDecl>(ExDecl),
 | |
|                                           HandlerBlock));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class TypeWithHandler {
 | |
|   QualType t;
 | |
|   CXXCatchStmt *stmt;
 | |
| public:
 | |
|   TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
 | |
|   : t(type), stmt(statement) {}
 | |
| 
 | |
|   // An arbitrary order is fine as long as it places identical
 | |
|   // types next to each other.
 | |
|   bool operator<(const TypeWithHandler &y) const {
 | |
|     if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
 | |
|       return true;
 | |
|     if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
 | |
|       return false;
 | |
|     else
 | |
|       return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
 | |
|   }
 | |
| 
 | |
|   bool operator==(const TypeWithHandler& other) const {
 | |
|     return t == other.t;
 | |
|   }
 | |
| 
 | |
|   CXXCatchStmt *getCatchStmt() const { return stmt; }
 | |
|   SourceLocation getTypeSpecStartLoc() const {
 | |
|     return stmt->getExceptionDecl()->getTypeSpecStartLoc();
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
 | |
| /// handlers and creates a try statement from them.
 | |
| StmtResult
 | |
| Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
 | |
|                        MultiStmtArg RawHandlers) {
 | |
|   // Don't report an error if 'try' is used in system headers.
 | |
|   if (!getLangOptions().CXXExceptions &&
 | |
|       !getSourceManager().isInSystemHeader(TryLoc))
 | |
|       Diag(TryLoc, diag::err_exceptions_disabled) << "try";
 | |
| 
 | |
|   unsigned NumHandlers = RawHandlers.size();
 | |
|   assert(NumHandlers > 0 &&
 | |
|          "The parser shouldn't call this if there are no handlers.");
 | |
|   Stmt **Handlers = RawHandlers.get();
 | |
| 
 | |
|   llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumHandlers; ++i) {
 | |
|     CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
 | |
|     if (!Handler->getExceptionDecl()) {
 | |
|       if (i < NumHandlers - 1)
 | |
|         return StmtError(Diag(Handler->getLocStart(),
 | |
|                               diag::err_early_catch_all));
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const QualType CaughtType = Handler->getCaughtType();
 | |
|     const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
 | |
|     TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
 | |
|   }
 | |
| 
 | |
|   // Detect handlers for the same type as an earlier one.
 | |
|   if (NumHandlers > 1) {
 | |
|     llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
 | |
| 
 | |
|     TypeWithHandler prev = TypesWithHandlers[0];
 | |
|     for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
 | |
|       TypeWithHandler curr = TypesWithHandlers[i];
 | |
| 
 | |
|       if (curr == prev) {
 | |
|         Diag(curr.getTypeSpecStartLoc(),
 | |
|              diag::warn_exception_caught_by_earlier_handler)
 | |
|           << curr.getCatchStmt()->getCaughtType().getAsString();
 | |
|         Diag(prev.getTypeSpecStartLoc(),
 | |
|              diag::note_previous_exception_handler)
 | |
|           << prev.getCatchStmt()->getCaughtType().getAsString();
 | |
|       }
 | |
| 
 | |
|       prev = curr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|   // FIXME: We should detect handlers that cannot catch anything because an
 | |
|   // earlier handler catches a superclass. Need to find a method that is not
 | |
|   // quadratic for this.
 | |
|   // Neither of these are explicitly forbidden, but every compiler detects them
 | |
|   // and warns.
 | |
| 
 | |
|   return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
 | |
|                                   Handlers, NumHandlers));
 | |
| }
 |