forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			339 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines BasicConstraintManager, a class that tracks simple
 | 
						|
//  equality and inequality constraints on symbolic values of GRState.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SimpleConstraintManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/GRStateTrait.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/TransferFuncs.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
 | 
						|
namespace { class ConstNotEq {}; }
 | 
						|
namespace { class ConstEq {}; }
 | 
						|
 | 
						|
typedef llvm::ImmutableMap<SymbolRef,GRState::IntSetTy> ConstNotEqTy;
 | 
						|
typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy;
 | 
						|
 | 
						|
static int ConstEqIndex = 0;
 | 
						|
static int ConstNotEqIndex = 0;
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace ento {
 | 
						|
template<>
 | 
						|
struct GRStateTrait<ConstNotEq> : public GRStatePartialTrait<ConstNotEqTy> {
 | 
						|
  static inline void* GDMIndex() { return &ConstNotEqIndex; }
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct GRStateTrait<ConstEq> : public GRStatePartialTrait<ConstEqTy> {
 | 
						|
  static inline void* GDMIndex() { return &ConstEqIndex; }
 | 
						|
};
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// BasicConstraintManager only tracks equality and inequality constraints of
 | 
						|
// constants and integer variables.
 | 
						|
class BasicConstraintManager
 | 
						|
  : public SimpleConstraintManager {
 | 
						|
  GRState::IntSetTy::Factory ISetFactory;
 | 
						|
public:
 | 
						|
  BasicConstraintManager(GRStateManager &statemgr, SubEngine &subengine)
 | 
						|
    : SimpleConstraintManager(subengine), 
 | 
						|
      ISetFactory(statemgr.getAllocator()) {}
 | 
						|
 | 
						|
  const GRState *assumeSymNE(const GRState* state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  const GRState *assumeSymEQ(const GRState* state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  const GRState *assumeSymLT(const GRState* state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  const GRState *assumeSymGT(const GRState* state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  const GRState *assumeSymGE(const GRState* state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  const GRState *assumeSymLE(const GRState* state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& V,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  const GRState* AddEQ(const GRState* state, SymbolRef sym, const llvm::APSInt& V);
 | 
						|
 | 
						|
  const GRState* AddNE(const GRState* state, SymbolRef sym, const llvm::APSInt& V);
 | 
						|
 | 
						|
  const llvm::APSInt* getSymVal(const GRState* state, SymbolRef sym) const;
 | 
						|
  bool isNotEqual(const GRState* state, SymbolRef sym, const llvm::APSInt& V)
 | 
						|
      const;
 | 
						|
  bool isEqual(const GRState* state, SymbolRef sym, const llvm::APSInt& V)
 | 
						|
      const;
 | 
						|
 | 
						|
  const GRState* removeDeadBindings(const GRState* state, SymbolReaper& SymReaper);
 | 
						|
 | 
						|
  void print(const GRState* state, llvm::raw_ostream& Out,
 | 
						|
             const char* nl, const char *sep);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
ConstraintManager* ento::CreateBasicConstraintManager(GRStateManager& statemgr,
 | 
						|
                                                       SubEngine &subengine) {
 | 
						|
  return new BasicConstraintManager(statemgr, subengine);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const GRState*
 | 
						|
BasicConstraintManager::assumeSymNE(const GRState *state, SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // First, determine if sym == X, where X+Adjustment != V.
 | 
						|
  llvm::APSInt Adjusted = V-Adjustment;
 | 
						|
  if (const llvm::APSInt* X = getSymVal(state, sym)) {
 | 
						|
    bool isFeasible = (*X != Adjusted);
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Second, determine if sym+Adjustment != V.
 | 
						|
  if (isNotEqual(state, sym, Adjusted))
 | 
						|
    return state;
 | 
						|
 | 
						|
  // If we reach here, sym is not a constant and we don't know if it is != V.
 | 
						|
  // Make that assumption.
 | 
						|
  return AddNE(state, sym, Adjusted);
 | 
						|
}
 | 
						|
 | 
						|
const GRState*
 | 
						|
BasicConstraintManager::assumeSymEQ(const GRState *state, SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // First, determine if sym == X, where X+Adjustment != V.
 | 
						|
  llvm::APSInt Adjusted = V-Adjustment;
 | 
						|
  if (const llvm::APSInt* X = getSymVal(state, sym)) {
 | 
						|
    bool isFeasible = (*X == Adjusted);
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Second, determine if sym+Adjustment != V.
 | 
						|
  if (isNotEqual(state, sym, Adjusted))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  // If we reach here, sym is not a constant and we don't know if it is == V.
 | 
						|
  // Make that assumption.
 | 
						|
  return AddEQ(state, sym, Adjusted);
 | 
						|
}
 | 
						|
 | 
						|
// The logic for these will be handled in another ConstraintManager.
 | 
						|
const GRState*
 | 
						|
BasicConstraintManager::assumeSymLT(const GRState *state, SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Is 'V' the smallest possible value?
 | 
						|
  if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
 | 
						|
    // sym cannot be any value less than 'V'.  This path is infeasible.
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: For now have assuming x < y be the same as assuming sym != V;
 | 
						|
  return assumeSymNE(state, sym, V, Adjustment);
 | 
						|
}
 | 
						|
 | 
						|
const GRState*
 | 
						|
BasicConstraintManager::assumeSymGT(const GRState *state, SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Is 'V' the largest possible value?
 | 
						|
  if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
 | 
						|
    // sym cannot be any value greater than 'V'.  This path is infeasible.
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: For now have assuming x > y be the same as assuming sym != V;
 | 
						|
  return assumeSymNE(state, sym, V, Adjustment);
 | 
						|
}
 | 
						|
 | 
						|
const GRState*
 | 
						|
BasicConstraintManager::assumeSymGE(const GRState *state, SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
 | 
						|
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
 | 
						|
    bool isFeasible = (*X >= V-Adjustment);
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Sym is not a constant, but it is worth looking to see if V is the
 | 
						|
  // maximum integer value.
 | 
						|
  if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
 | 
						|
    llvm::APSInt Adjusted = V-Adjustment;
 | 
						|
 | 
						|
    // If we know that sym != V (after adjustment), then this condition
 | 
						|
    // is infeasible since there is no other value greater than V.
 | 
						|
    bool isFeasible = !isNotEqual(state, sym, Adjusted);
 | 
						|
 | 
						|
    // If the path is still feasible then as a consequence we know that
 | 
						|
    // 'sym+Adjustment == V' because there are no larger values.
 | 
						|
    // Add this constraint.
 | 
						|
    return isFeasible ? AddEQ(state, sym, Adjusted) : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  return state;
 | 
						|
}
 | 
						|
 | 
						|
const GRState*
 | 
						|
BasicConstraintManager::assumeSymLE(const GRState *state, SymbolRef sym,
 | 
						|
                                    const llvm::APSInt &V,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Reject a path if the value of sym is a constant X and !(X+Adj <= V).
 | 
						|
  if (const llvm::APSInt* X = getSymVal(state, sym)) {
 | 
						|
    bool isFeasible = (*X <= V-Adjustment);
 | 
						|
    return isFeasible ? state : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Sym is not a constant, but it is worth looking to see if V is the
 | 
						|
  // minimum integer value.
 | 
						|
  if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
 | 
						|
    llvm::APSInt Adjusted = V-Adjustment;
 | 
						|
 | 
						|
    // If we know that sym != V (after adjustment), then this condition
 | 
						|
    // is infeasible since there is no other value less than V.
 | 
						|
    bool isFeasible = !isNotEqual(state, sym, Adjusted);
 | 
						|
 | 
						|
    // If the path is still feasible then as a consequence we know that
 | 
						|
    // 'sym+Adjustment == V' because there are no smaller values.
 | 
						|
    // Add this constraint.
 | 
						|
    return isFeasible ? AddEQ(state, sym, Adjusted) : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  return state;
 | 
						|
}
 | 
						|
 | 
						|
const GRState* BasicConstraintManager::AddEQ(const GRState* state, SymbolRef sym,
 | 
						|
                                             const llvm::APSInt& V) {
 | 
						|
  // Create a new state with the old binding replaced.
 | 
						|
  return state->set<ConstEq>(sym, &state->getBasicVals().getValue(V));
 | 
						|
}
 | 
						|
 | 
						|
const GRState* BasicConstraintManager::AddNE(const GRState* state, SymbolRef sym,
 | 
						|
                                             const llvm::APSInt& V) {
 | 
						|
 | 
						|
  // First, retrieve the NE-set associated with the given symbol.
 | 
						|
  ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
 | 
						|
  GRState::IntSetTy S = T ? *T : ISetFactory.getEmptySet();
 | 
						|
 | 
						|
  // Now add V to the NE set.
 | 
						|
  S = ISetFactory.add(S, &state->getBasicVals().getValue(V));
 | 
						|
 | 
						|
  // Create a new state with the old binding replaced.
 | 
						|
  return state->set<ConstNotEq>(sym, S);
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt* BasicConstraintManager::getSymVal(const GRState* state,
 | 
						|
                                                      SymbolRef sym) const {
 | 
						|
  const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
 | 
						|
  return T ? *T : NULL;
 | 
						|
}
 | 
						|
 | 
						|
bool BasicConstraintManager::isNotEqual(const GRState* state, SymbolRef sym,
 | 
						|
                                        const llvm::APSInt& V) const {
 | 
						|
 | 
						|
  // Retrieve the NE-set associated with the given symbol.
 | 
						|
  const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
 | 
						|
 | 
						|
  // See if V is present in the NE-set.
 | 
						|
  return T ? T->contains(&state->getBasicVals().getValue(V)) : false;
 | 
						|
}
 | 
						|
 | 
						|
bool BasicConstraintManager::isEqual(const GRState* state, SymbolRef sym,
 | 
						|
                                     const llvm::APSInt& V) const {
 | 
						|
  // Retrieve the EQ-set associated with the given symbol.
 | 
						|
  const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
 | 
						|
  // See if V is present in the EQ-set.
 | 
						|
  return T ? **T == V : false;
 | 
						|
}
 | 
						|
 | 
						|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
 | 
						|
/// as marked in LSymbols, mark it as dead in DSymbols.
 | 
						|
const GRState*
 | 
						|
BasicConstraintManager::removeDeadBindings(const GRState* state,
 | 
						|
                                           SymbolReaper& SymReaper) {
 | 
						|
 | 
						|
  ConstEqTy CE = state->get<ConstEq>();
 | 
						|
  ConstEqTy::Factory& CEFactory = state->get_context<ConstEq>();
 | 
						|
 | 
						|
  for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
 | 
						|
    SymbolRef sym = I.getKey();
 | 
						|
    if (SymReaper.maybeDead(sym))
 | 
						|
      CE = CEFactory.remove(CE, sym);
 | 
						|
  }
 | 
						|
  state = state->set<ConstEq>(CE);
 | 
						|
 | 
						|
  ConstNotEqTy CNE = state->get<ConstNotEq>();
 | 
						|
  ConstNotEqTy::Factory& CNEFactory = state->get_context<ConstNotEq>();
 | 
						|
 | 
						|
  for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
 | 
						|
    SymbolRef sym = I.getKey();
 | 
						|
    if (SymReaper.maybeDead(sym))
 | 
						|
      CNE = CNEFactory.remove(CNE, sym);
 | 
						|
  }
 | 
						|
 | 
						|
  return state->set<ConstNotEq>(CNE);
 | 
						|
}
 | 
						|
 | 
						|
void BasicConstraintManager::print(const GRState* state, llvm::raw_ostream& Out,
 | 
						|
                                   const char* nl, const char *sep) {
 | 
						|
  // Print equality constraints.
 | 
						|
 | 
						|
  ConstEqTy CE = state->get<ConstEq>();
 | 
						|
 | 
						|
  if (!CE.isEmpty()) {
 | 
						|
    Out << nl << sep << "'==' constraints:";
 | 
						|
    for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I)
 | 
						|
      Out << nl << " $" << I.getKey() << " : " << *I.getData();
 | 
						|
  }
 | 
						|
 | 
						|
  // Print != constraints.
 | 
						|
 | 
						|
  ConstNotEqTy CNE = state->get<ConstNotEq>();
 | 
						|
 | 
						|
  if (!CNE.isEmpty()) {
 | 
						|
    Out << nl << sep << "'!=' constraints:";
 | 
						|
 | 
						|
    for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
 | 
						|
      Out << nl << " $" << I.getKey() << " : ";
 | 
						|
      bool isFirst = true;
 | 
						|
 | 
						|
      GRState::IntSetTy::iterator J = I.getData().begin(),
 | 
						|
                                  EJ = I.getData().end();
 | 
						|
 | 
						|
      for ( ; J != EJ; ++J) {
 | 
						|
        if (isFirst) isFirst = false;
 | 
						|
        else Out << ", ";
 | 
						|
 | 
						|
        Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |