forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1366 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1366 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the X86-specific support for the FastISel class. Much
 | 
						|
// of the target-specific code is generated by tablegen in the file
 | 
						|
// X86GenFastISel.inc, which is #included here.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86ISelLowering.h"
 | 
						|
#include "X86RegisterInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/CodeGen/FastISel.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
class X86FastISel : public FastISel {
 | 
						|
  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | 
						|
  /// make the right decision when generating code for different targets.
 | 
						|
  const X86Subtarget *Subtarget;
 | 
						|
 | 
						|
  /// StackPtr - Register used as the stack pointer.
 | 
						|
  ///
 | 
						|
  unsigned StackPtr;
 | 
						|
 | 
						|
  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 
 | 
						|
  /// floating point ops.
 | 
						|
  /// When SSE is available, use it for f32 operations.
 | 
						|
  /// When SSE2 is available, use it for f64 operations.
 | 
						|
  bool X86ScalarSSEf64;
 | 
						|
  bool X86ScalarSSEf32;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit X86FastISel(MachineFunction &mf,
 | 
						|
                       MachineModuleInfo *mmi,
 | 
						|
                       DenseMap<const Value *, unsigned> &vm,
 | 
						|
                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
 | 
						|
                       DenseMap<const AllocaInst *, int> &am
 | 
						|
#ifndef NDEBUG
 | 
						|
                       , SmallSet<Instruction*, 8> &cil
 | 
						|
#endif
 | 
						|
                       )
 | 
						|
    : FastISel(mf, mmi, vm, bm, am
 | 
						|
#ifndef NDEBUG
 | 
						|
               , cil
 | 
						|
#endif
 | 
						|
               ) {
 | 
						|
    Subtarget = &TM.getSubtarget<X86Subtarget>();
 | 
						|
    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
 | 
						|
    X86ScalarSSEf64 = Subtarget->hasSSE2();
 | 
						|
    X86ScalarSSEf32 = Subtarget->hasSSE1();
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool TargetSelectInstruction(Instruction *I);
 | 
						|
 | 
						|
#include "X86GenFastISel.inc"
 | 
						|
 | 
						|
private:
 | 
						|
  bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
 | 
						|
  
 | 
						|
  bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
 | 
						|
 | 
						|
  bool X86FastEmitStore(MVT VT, Value *Val,
 | 
						|
                        const X86AddressMode &AM);
 | 
						|
  bool X86FastEmitStore(MVT VT, unsigned Val,
 | 
						|
                        const X86AddressMode &AM);
 | 
						|
 | 
						|
  bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
 | 
						|
                         unsigned &ResultReg);
 | 
						|
  
 | 
						|
  bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall);
 | 
						|
 | 
						|
  bool X86SelectLoad(Instruction *I);
 | 
						|
  
 | 
						|
  bool X86SelectStore(Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectCmp(Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectZExt(Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectBranch(Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectShift(Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectSelect(Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectTrunc(Instruction *I);
 | 
						|
 
 | 
						|
  bool X86SelectFPExt(Instruction *I);
 | 
						|
  bool X86SelectFPTrunc(Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectCall(Instruction *I);
 | 
						|
 | 
						|
  CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
 | 
						|
 | 
						|
  const X86InstrInfo *getInstrInfo() const {
 | 
						|
    return getTargetMachine()->getInstrInfo();
 | 
						|
  }
 | 
						|
  const X86TargetMachine *getTargetMachine() const {
 | 
						|
    return static_cast<const X86TargetMachine *>(&TM);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned TargetMaterializeConstant(Constant *C);
 | 
						|
 | 
						|
  unsigned TargetMaterializeAlloca(AllocaInst *C);
 | 
						|
 | 
						|
  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
 | 
						|
  /// computed in an SSE register, not on the X87 floating point stack.
 | 
						|
  bool isScalarFPTypeInSSEReg(MVT VT) const {
 | 
						|
    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
 | 
						|
      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
 | 
						|
  }
 | 
						|
 | 
						|
  bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
 | 
						|
};
 | 
						|
 | 
						|
bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
 | 
						|
  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
 | 
						|
  if (VT == MVT::Other || !VT.isSimple())
 | 
						|
    // Unhandled type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // For now, require SSE/SSE2 for performing floating-point operations,
 | 
						|
  // since x87 requires additional work.
 | 
						|
  if (VT == MVT::f64 && !X86ScalarSSEf64)
 | 
						|
     return false;
 | 
						|
  if (VT == MVT::f32 && !X86ScalarSSEf32)
 | 
						|
     return false;
 | 
						|
  // Similarly, no f80 support yet.
 | 
						|
  if (VT == MVT::f80)
 | 
						|
    return false;
 | 
						|
  // We only handle legal types. For example, on x86-32 the instruction
 | 
						|
  // selector contains all of the 64-bit instructions from x86-64,
 | 
						|
  // under the assumption that i64 won't be used if the target doesn't
 | 
						|
  // support it.
 | 
						|
  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
 | 
						|
}
 | 
						|
 | 
						|
#include "X86GenCallingConv.inc"
 | 
						|
 | 
						|
/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
 | 
						|
/// convention.
 | 
						|
CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
 | 
						|
  if (Subtarget->is64Bit()) {
 | 
						|
    if (Subtarget->isTargetWin64())
 | 
						|
      return CC_X86_Win64_C;
 | 
						|
    else if (CC == CallingConv::Fast && isTaillCall)
 | 
						|
      return CC_X86_64_TailCall;
 | 
						|
    else
 | 
						|
      return CC_X86_64_C;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CC == CallingConv::X86_FastCall)
 | 
						|
    return CC_X86_32_FastCall;
 | 
						|
  else if (CC == CallingConv::Fast)
 | 
						|
    return CC_X86_32_FastCC;
 | 
						|
  else
 | 
						|
    return CC_X86_32_C;
 | 
						|
}
 | 
						|
 | 
						|
/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
 | 
						|
/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
 | 
						|
/// Return true and the result register by reference if it is possible.
 | 
						|
bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
 | 
						|
                                  unsigned &ResultReg) {
 | 
						|
  // Get opcode and regclass of the output for the given load instruction.
 | 
						|
  unsigned Opc = 0;
 | 
						|
  const TargetRegisterClass *RC = NULL;
 | 
						|
  switch (VT.getSimpleVT()) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i8:
 | 
						|
    Opc = X86::MOV8rm;
 | 
						|
    RC  = X86::GR8RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i16:
 | 
						|
    Opc = X86::MOV16rm;
 | 
						|
    RC  = X86::GR16RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i32:
 | 
						|
    Opc = X86::MOV32rm;
 | 
						|
    RC  = X86::GR32RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    // Must be in x86-64 mode.
 | 
						|
    Opc = X86::MOV64rm;
 | 
						|
    RC  = X86::GR64RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::f32:
 | 
						|
    if (Subtarget->hasSSE1()) {
 | 
						|
      Opc = X86::MOVSSrm;
 | 
						|
      RC  = X86::FR32RegisterClass;
 | 
						|
    } else {
 | 
						|
      Opc = X86::LD_Fp32m;
 | 
						|
      RC  = X86::RFP32RegisterClass;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case MVT::f64:
 | 
						|
    if (Subtarget->hasSSE2()) {
 | 
						|
      Opc = X86::MOVSDrm;
 | 
						|
      RC  = X86::FR64RegisterClass;
 | 
						|
    } else {
 | 
						|
      Opc = X86::LD_Fp64m;
 | 
						|
      RC  = X86::RFP64RegisterClass;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case MVT::f80:
 | 
						|
    // No f80 support yet.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ResultReg = createResultReg(RC);
 | 
						|
  addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// X86FastEmitStore - Emit a machine instruction to store a value Val of
 | 
						|
/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
 | 
						|
/// and a displacement offset, or a GlobalAddress,
 | 
						|
/// i.e. V. Return true if it is possible.
 | 
						|
bool
 | 
						|
X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
 | 
						|
                              const X86AddressMode &AM) {
 | 
						|
  // Get opcode and regclass of the output for the given store instruction.
 | 
						|
  unsigned Opc = 0;
 | 
						|
  switch (VT.getSimpleVT()) {
 | 
						|
  case MVT::f80: // No f80 support yet.
 | 
						|
  default: return false;
 | 
						|
  case MVT::i8:  Opc = X86::MOV8mr;  break;
 | 
						|
  case MVT::i16: Opc = X86::MOV16mr; break;
 | 
						|
  case MVT::i32: Opc = X86::MOV32mr; break;
 | 
						|
  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
 | 
						|
  case MVT::f32:
 | 
						|
    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
 | 
						|
    break;
 | 
						|
  case MVT::f64:
 | 
						|
    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addReg(Val);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
 | 
						|
                                   const X86AddressMode &AM) {
 | 
						|
  // Handle 'null' like i32/i64 0.
 | 
						|
  if (isa<ConstantPointerNull>(Val))
 | 
						|
    Val = Constant::getNullValue(TD.getIntPtrType());
 | 
						|
  
 | 
						|
  // If this is a store of a simple constant, fold the constant into the store.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    switch (VT.getSimpleVT()) {
 | 
						|
    default: break;
 | 
						|
    case MVT::i8:  Opc = X86::MOV8mi;  break;
 | 
						|
    case MVT::i16: Opc = X86::MOV16mi; break;
 | 
						|
    case MVT::i32: Opc = X86::MOV32mi; break;
 | 
						|
    case MVT::i64:
 | 
						|
      // Must be a 32-bit sign extended value.
 | 
						|
      if ((int)CI->getSExtValue() == CI->getSExtValue())
 | 
						|
        Opc = X86::MOV64mi32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (Opc) {
 | 
						|
      addFullAddress(BuildMI(MBB, TII.get(Opc)), AM).addImm(CI->getSExtValue());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned ValReg = getRegForValue(Val);
 | 
						|
  if (ValReg == 0)
 | 
						|
    return false;    
 | 
						|
 
 | 
						|
  return X86FastEmitStore(VT, ValReg, AM);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
 | 
						|
/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
 | 
						|
/// ISD::SIGN_EXTEND).
 | 
						|
bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
 | 
						|
                                    unsigned Src, MVT SrcVT,
 | 
						|
                                    unsigned &ResultReg) {
 | 
						|
  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
 | 
						|
  
 | 
						|
  if (RR != 0) {
 | 
						|
    ResultReg = RR;
 | 
						|
    return true;
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/// X86SelectAddress - Attempt to fill in an address from the given value.
 | 
						|
///
 | 
						|
bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
 | 
						|
  User *U;
 | 
						|
  unsigned Opcode = Instruction::UserOp1;
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    Opcode = I->getOpcode();
 | 
						|
    U = I;
 | 
						|
  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | 
						|
    Opcode = C->getOpcode();
 | 
						|
    U = C;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // Look past bitcasts.
 | 
						|
    return X86SelectAddress(U->getOperand(0), AM, isCall);
 | 
						|
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // Look past no-op inttoptrs.
 | 
						|
    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
 | 
						|
      return X86SelectAddress(U->getOperand(0), AM, isCall);
 | 
						|
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // Look past no-op ptrtoints.
 | 
						|
    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
 | 
						|
      return X86SelectAddress(U->getOperand(0), AM, isCall);
 | 
						|
 | 
						|
  case Instruction::Alloca: {
 | 
						|
    if (isCall) break;
 | 
						|
    // Do static allocas.
 | 
						|
    const AllocaInst *A = cast<AllocaInst>(V);
 | 
						|
    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
 | 
						|
    if (SI != StaticAllocaMap.end()) {
 | 
						|
      AM.BaseType = X86AddressMode::FrameIndexBase;
 | 
						|
      AM.Base.FrameIndex = SI->second;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Add: {
 | 
						|
    if (isCall) break;
 | 
						|
    // Adds of constants are common and easy enough.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
 | 
						|
      // They have to fit in the 32-bit signed displacement field though.
 | 
						|
      if (isInt32(Disp)) {
 | 
						|
        AM.Disp = (uint32_t)Disp;
 | 
						|
        return X86SelectAddress(U->getOperand(0), AM, isCall);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    if (isCall) break;
 | 
						|
    // Pattern-match simple GEPs.
 | 
						|
    uint64_t Disp = (int32_t)AM.Disp;
 | 
						|
    unsigned IndexReg = AM.IndexReg;
 | 
						|
    unsigned Scale = AM.Scale;
 | 
						|
    gep_type_iterator GTI = gep_type_begin(U);
 | 
						|
    // Look at all but the last index. Constants can be folded,
 | 
						|
    // and one dynamic index can be handled, if the scale is supported.
 | 
						|
    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
 | 
						|
         i != e; ++i, ++GTI) {
 | 
						|
      Value *Op = *i;
 | 
						|
      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
        const StructLayout *SL = TD.getStructLayout(STy);
 | 
						|
        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
 | 
						|
        Disp += SL->getElementOffset(Idx);
 | 
						|
      } else {
 | 
						|
        uint64_t S = TD.getABITypeSize(GTI.getIndexedType());
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | 
						|
          // Constant-offset addressing.
 | 
						|
          Disp += CI->getSExtValue() * S;
 | 
						|
        } else if (IndexReg == 0 &&
 | 
						|
                   (!AM.GV ||
 | 
						|
                    !getTargetMachine()->symbolicAddressesAreRIPRel()) &&
 | 
						|
                   (S == 1 || S == 2 || S == 4 || S == 8)) {
 | 
						|
          // Scaled-index addressing.
 | 
						|
          Scale = S;
 | 
						|
          IndexReg = getRegForValue(Op);
 | 
						|
          if (IndexReg == 0)
 | 
						|
            return false;
 | 
						|
        } else
 | 
						|
          // Unsupported.
 | 
						|
          goto unsupported_gep;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Check for displacement overflow.
 | 
						|
    if (!isInt32(Disp))
 | 
						|
      break;
 | 
						|
    // Ok, the GEP indices were covered by constant-offset and scaled-index
 | 
						|
    // addressing. Update the address state and move on to examining the base.
 | 
						|
    AM.IndexReg = IndexReg;
 | 
						|
    AM.Scale = Scale;
 | 
						|
    AM.Disp = (uint32_t)Disp;
 | 
						|
    return X86SelectAddress(U->getOperand(0), AM, isCall);
 | 
						|
  unsupported_gep:
 | 
						|
    // Ok, the GEP indices weren't all covered.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle constant address.
 | 
						|
  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    // Can't handle alternate code models yet.
 | 
						|
    if (TM.getCodeModel() != CodeModel::Default &&
 | 
						|
        TM.getCodeModel() != CodeModel::Small)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // RIP-relative addresses can't have additional register operands.
 | 
						|
    if (getTargetMachine()->symbolicAddressesAreRIPRel() &&
 | 
						|
        (AM.Base.Reg != 0 || AM.IndexReg != 0))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Set up the basic address.
 | 
						|
    AM.GV = GV;
 | 
						|
    if (!isCall &&
 | 
						|
        TM.getRelocationModel() == Reloc::PIC_ &&
 | 
						|
        !Subtarget->is64Bit())
 | 
						|
      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
 | 
						|
 | 
						|
    // Emit an extra load if the ABI requires it.
 | 
						|
    if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
 | 
						|
      // Check to see if we've already materialized this
 | 
						|
      // value in a register in this block.
 | 
						|
      if (unsigned Reg = LocalValueMap[V]) {
 | 
						|
        AM.Base.Reg = Reg;
 | 
						|
        AM.GV = 0;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      // Issue load from stub if necessary.
 | 
						|
      unsigned Opc = 0;
 | 
						|
      const TargetRegisterClass *RC = NULL;
 | 
						|
      if (TLI.getPointerTy() == MVT::i32) {
 | 
						|
        Opc = X86::MOV32rm;
 | 
						|
        RC  = X86::GR32RegisterClass;
 | 
						|
      } else {
 | 
						|
        Opc = X86::MOV64rm;
 | 
						|
        RC  = X86::GR64RegisterClass;
 | 
						|
      }
 | 
						|
 | 
						|
      X86AddressMode StubAM;
 | 
						|
      StubAM.Base.Reg = AM.Base.Reg;
 | 
						|
      StubAM.GV = AM.GV;
 | 
						|
      unsigned ResultReg = createResultReg(RC);
 | 
						|
      addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), StubAM);
 | 
						|
 | 
						|
      // Now construct the final address. Note that the Disp, Scale,
 | 
						|
      // and Index values may already be set here.
 | 
						|
      AM.Base.Reg = ResultReg;
 | 
						|
      AM.GV = 0;
 | 
						|
 | 
						|
      // Prevent loading GV stub multiple times in same MBB.
 | 
						|
      LocalValueMap[V] = AM.Base.Reg;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all else fails, try to materialize the value in a register.
 | 
						|
  if (!AM.GV || !getTargetMachine()->symbolicAddressesAreRIPRel()) {
 | 
						|
    if (AM.Base.Reg == 0) {
 | 
						|
      AM.Base.Reg = getRegForValue(V);
 | 
						|
      return AM.Base.Reg != 0;
 | 
						|
    }
 | 
						|
    if (AM.IndexReg == 0) {
 | 
						|
      assert(AM.Scale == 1 && "Scale with no index!");
 | 
						|
      AM.IndexReg = getRegForValue(V);
 | 
						|
      return AM.IndexReg != 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// X86SelectStore - Select and emit code to implement store instructions.
 | 
						|
bool X86FastISel::X86SelectStore(Instruction* I) {
 | 
						|
  MVT VT;
 | 
						|
  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  X86AddressMode AM;
 | 
						|
  if (!X86SelectAddress(I->getOperand(1), AM, false))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return X86FastEmitStore(VT, I->getOperand(0), AM);
 | 
						|
}
 | 
						|
 | 
						|
/// X86SelectLoad - Select and emit code to implement load instructions.
 | 
						|
///
 | 
						|
bool X86FastISel::X86SelectLoad(Instruction *I)  {
 | 
						|
  MVT VT;
 | 
						|
  if (!isTypeLegal(I->getType(), VT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  X86AddressMode AM;
 | 
						|
  if (!X86SelectAddress(I->getOperand(0), AM, false))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned ResultReg = 0;
 | 
						|
  if (X86FastEmitLoad(VT, AM, ResultReg)) {
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned X86ChooseCmpOpcode(MVT VT) {
 | 
						|
  switch (VT.getSimpleVT()) {
 | 
						|
  default:       return 0;
 | 
						|
  case MVT::i8:  return X86::CMP8rr;
 | 
						|
  case MVT::i16: return X86::CMP16rr;
 | 
						|
  case MVT::i32: return X86::CMP32rr;
 | 
						|
  case MVT::i64: return X86::CMP64rr;
 | 
						|
  case MVT::f32: return X86::UCOMISSrr;
 | 
						|
  case MVT::f64: return X86::UCOMISDrr;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
 | 
						|
/// of the comparison, return an opcode that works for the compare (e.g.
 | 
						|
/// CMP32ri) otherwise return 0.
 | 
						|
static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
 | 
						|
  switch (VT.getSimpleVT()) {
 | 
						|
  // Otherwise, we can't fold the immediate into this comparison.
 | 
						|
  default: return 0;
 | 
						|
  case MVT::i8: return X86::CMP8ri;
 | 
						|
  case MVT::i16: return X86::CMP16ri;
 | 
						|
  case MVT::i32: return X86::CMP32ri;
 | 
						|
  case MVT::i64:
 | 
						|
    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
 | 
						|
    // field.
 | 
						|
    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
 | 
						|
      return X86::CMP64ri32;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
 | 
						|
  unsigned Op0Reg = getRegForValue(Op0);
 | 
						|
  if (Op0Reg == 0) return false;
 | 
						|
  
 | 
						|
  // Handle 'null' like i32/i64 0.
 | 
						|
  if (isa<ConstantPointerNull>(Op1))
 | 
						|
    Op1 = Constant::getNullValue(TD.getIntPtrType());
 | 
						|
  
 | 
						|
  // We have two options: compare with register or immediate.  If the RHS of
 | 
						|
  // the compare is an immediate that we can fold into this compare, use
 | 
						|
  // CMPri, otherwise use CMPrr.
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
 | 
						|
      BuildMI(MBB, TII.get(CompareImmOpc)).addReg(Op0Reg)
 | 
						|
                                          .addImm(Op1C->getSExtValue());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
 | 
						|
  if (CompareOpc == 0) return false;
 | 
						|
    
 | 
						|
  unsigned Op1Reg = getRegForValue(Op1);
 | 
						|
  if (Op1Reg == 0) return false;
 | 
						|
  BuildMI(MBB, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectCmp(Instruction *I) {
 | 
						|
  CmpInst *CI = cast<CmpInst>(I);
 | 
						|
 | 
						|
  MVT VT;
 | 
						|
  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
 | 
						|
  unsigned SetCCOpc;
 | 
						|
  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
 | 
						|
  switch (CI->getPredicate()) {
 | 
						|
  case CmpInst::FCMP_OEQ: {
 | 
						|
    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    unsigned EReg = createResultReg(&X86::GR8RegClass);
 | 
						|
    unsigned NPReg = createResultReg(&X86::GR8RegClass);
 | 
						|
    BuildMI(MBB, TII.get(X86::SETEr), EReg);
 | 
						|
    BuildMI(MBB, TII.get(X86::SETNPr), NPReg);
 | 
						|
    BuildMI(MBB, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case CmpInst::FCMP_UNE: {
 | 
						|
    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned NEReg = createResultReg(&X86::GR8RegClass);
 | 
						|
    unsigned PReg = createResultReg(&X86::GR8RegClass);
 | 
						|
    BuildMI(MBB, TII.get(X86::SETNEr), NEReg);
 | 
						|
    BuildMI(MBB, TII.get(X86::SETPr), PReg);
 | 
						|
    BuildMI(MBB, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
 | 
						|
  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
 | 
						|
  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
 | 
						|
  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
 | 
						|
  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
 | 
						|
  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
 | 
						|
  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
 | 
						|
  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
 | 
						|
  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
 | 
						|
  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
 | 
						|
  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
 | 
						|
  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
 | 
						|
  
 | 
						|
  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
 | 
						|
  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
 | 
						|
  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
 | 
						|
  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
 | 
						|
  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
 | 
						|
  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
 | 
						|
  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
 | 
						|
  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
 | 
						|
  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
 | 
						|
  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | 
						|
  if (SwapArgs)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  // Emit a compare of Op0/Op1.
 | 
						|
  if (!X86FastEmitCompare(Op0, Op1, VT))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  BuildMI(MBB, TII.get(SetCCOpc), ResultReg);
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectZExt(Instruction *I) {
 | 
						|
  // Special-case hack: The only i1 values we know how to produce currently
 | 
						|
  // set the upper bits of an i8 value to zero.
 | 
						|
  if (I->getType() == Type::Int8Ty &&
 | 
						|
      I->getOperand(0)->getType() == Type::Int1Ty) {
 | 
						|
    unsigned ResultReg = getRegForValue(I->getOperand(0));
 | 
						|
    if (ResultReg == 0) return false;
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool X86FastISel::X86SelectBranch(Instruction *I) {
 | 
						|
  // Unconditional branches are selected by tablegen-generated code.
 | 
						|
  // Handle a conditional branch.
 | 
						|
  BranchInst *BI = cast<BranchInst>(I);
 | 
						|
  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
 | 
						|
  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
 | 
						|
 | 
						|
  // Fold the common case of a conditional branch with a comparison.
 | 
						|
  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
 | 
						|
    if (CI->hasOneUse()) {
 | 
						|
      MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
 | 
						|
 | 
						|
      // Try to take advantage of fallthrough opportunities.
 | 
						|
      CmpInst::Predicate Predicate = CI->getPredicate();
 | 
						|
      if (MBB->isLayoutSuccessor(TrueMBB)) {
 | 
						|
        std::swap(TrueMBB, FalseMBB);
 | 
						|
        Predicate = CmpInst::getInversePredicate(Predicate);
 | 
						|
      }
 | 
						|
 | 
						|
      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
 | 
						|
      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
 | 
						|
 | 
						|
      switch (Predicate) {
 | 
						|
      case CmpInst::FCMP_OEQ:
 | 
						|
        std::swap(TrueMBB, FalseMBB);
 | 
						|
        Predicate = CmpInst::FCMP_UNE;
 | 
						|
        // FALL THROUGH
 | 
						|
      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE; break;
 | 
						|
      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA;  break;
 | 
						|
      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE; break;
 | 
						|
      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA;  break;
 | 
						|
      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE; break;
 | 
						|
      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE; break;
 | 
						|
      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP; break;
 | 
						|
      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP;  break;
 | 
						|
      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE;  break;
 | 
						|
      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB;  break;
 | 
						|
      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE; break;
 | 
						|
      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
 | 
						|
      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
 | 
						|
          
 | 
						|
      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE;  break;
 | 
						|
      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE; break;
 | 
						|
      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA;  break;
 | 
						|
      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE; break;
 | 
						|
      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
 | 
						|
      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
 | 
						|
      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG;  break;
 | 
						|
      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE; break;
 | 
						|
      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL;  break;
 | 
						|
      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE; break;
 | 
						|
      default:
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      
 | 
						|
      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | 
						|
      if (SwapArgs)
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
 | 
						|
      // Emit a compare of the LHS and RHS, setting the flags.
 | 
						|
      if (!X86FastEmitCompare(Op0, Op1, VT))
 | 
						|
        return false;
 | 
						|
      
 | 
						|
      BuildMI(MBB, TII.get(BranchOpc)).addMBB(TrueMBB);
 | 
						|
 | 
						|
      if (Predicate == CmpInst::FCMP_UNE) {
 | 
						|
        // X86 requires a second branch to handle UNE (and OEQ,
 | 
						|
        // which is mapped to UNE above).
 | 
						|
        BuildMI(MBB, TII.get(X86::JP)).addMBB(TrueMBB);
 | 
						|
      }
 | 
						|
 | 
						|
      FastEmitBranch(FalseMBB);
 | 
						|
      MBB->addSuccessor(TrueMBB);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise do a clumsy setcc and re-test it.
 | 
						|
  unsigned OpReg = getRegForValue(BI->getCondition());
 | 
						|
  if (OpReg == 0) return false;
 | 
						|
 | 
						|
  BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
 | 
						|
  BuildMI(MBB, TII.get(X86::JNE)).addMBB(TrueMBB);
 | 
						|
  FastEmitBranch(FalseMBB);
 | 
						|
  MBB->addSuccessor(TrueMBB);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectShift(Instruction *I) {
 | 
						|
  unsigned CReg = 0, OpReg = 0, OpImm = 0;
 | 
						|
  const TargetRegisterClass *RC = NULL;
 | 
						|
  if (I->getType() == Type::Int8Ty) {
 | 
						|
    CReg = X86::CL;
 | 
						|
    RC = &X86::GR8RegClass;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
 | 
						|
    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
 | 
						|
    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
 | 
						|
    default: return false;
 | 
						|
    }
 | 
						|
  } else if (I->getType() == Type::Int16Ty) {
 | 
						|
    CReg = X86::CX;
 | 
						|
    RC = &X86::GR16RegClass;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
 | 
						|
    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
 | 
						|
    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
 | 
						|
    default: return false;
 | 
						|
    }
 | 
						|
  } else if (I->getType() == Type::Int32Ty) {
 | 
						|
    CReg = X86::ECX;
 | 
						|
    RC = &X86::GR32RegClass;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
 | 
						|
    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
 | 
						|
    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
 | 
						|
    default: return false;
 | 
						|
    }
 | 
						|
  } else if (I->getType() == Type::Int64Ty) {
 | 
						|
    CReg = X86::RCX;
 | 
						|
    RC = &X86::GR64RegClass;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
 | 
						|
    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
 | 
						|
    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
 | 
						|
    default: return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
 | 
						|
  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | 
						|
  if (Op0Reg == 0) return false;
 | 
						|
  
 | 
						|
  // Fold immediate in shl(x,3).
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
    unsigned ResultReg = createResultReg(RC);
 | 
						|
    BuildMI(MBB, TII.get(OpImm), 
 | 
						|
            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue());
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | 
						|
  if (Op1Reg == 0) return false;
 | 
						|
  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
 | 
						|
 | 
						|
  // The shift instruction uses X86::CL. If we defined a super-register
 | 
						|
  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
 | 
						|
  // we're doing here.
 | 
						|
  if (CReg != X86::CL)
 | 
						|
    BuildMI(MBB, TII.get(TargetInstrInfo::EXTRACT_SUBREG), X86::CL)
 | 
						|
      .addReg(CReg).addImm(X86::SUBREG_8BIT);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  BuildMI(MBB, TII.get(OpReg), ResultReg).addReg(Op0Reg);
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectSelect(Instruction *I) {
 | 
						|
  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
 | 
						|
  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  unsigned Opc = 0;
 | 
						|
  const TargetRegisterClass *RC = NULL;
 | 
						|
  if (VT.getSimpleVT() == MVT::i16) {
 | 
						|
    Opc = X86::CMOVE16rr;
 | 
						|
    RC = &X86::GR16RegClass;
 | 
						|
  } else if (VT.getSimpleVT() == MVT::i32) {
 | 
						|
    Opc = X86::CMOVE32rr;
 | 
						|
    RC = &X86::GR32RegClass;
 | 
						|
  } else if (VT.getSimpleVT() == MVT::i64) {
 | 
						|
    Opc = X86::CMOVE64rr;
 | 
						|
    RC = &X86::GR64RegClass;
 | 
						|
  } else {
 | 
						|
    return false; 
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | 
						|
  if (Op0Reg == 0) return false;
 | 
						|
  unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | 
						|
  if (Op1Reg == 0) return false;
 | 
						|
  unsigned Op2Reg = getRegForValue(I->getOperand(2));
 | 
						|
  if (Op2Reg == 0) return false;
 | 
						|
 | 
						|
  BuildMI(MBB, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  BuildMI(MBB, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectFPExt(Instruction *I) {
 | 
						|
  // fpext from float to double.
 | 
						|
  if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
 | 
						|
    Value *V = I->getOperand(0);
 | 
						|
    if (V->getType() == Type::FloatTy) {
 | 
						|
      unsigned OpReg = getRegForValue(V);
 | 
						|
      if (OpReg == 0) return false;
 | 
						|
      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
 | 
						|
      BuildMI(MBB, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
 | 
						|
      UpdateValueMap(I, ResultReg);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
 | 
						|
  if (Subtarget->hasSSE2()) {
 | 
						|
    if (I->getType() == Type::FloatTy) {
 | 
						|
      Value *V = I->getOperand(0);
 | 
						|
      if (V->getType() == Type::DoubleTy) {
 | 
						|
        unsigned OpReg = getRegForValue(V);
 | 
						|
        if (OpReg == 0) return false;
 | 
						|
        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
 | 
						|
        BuildMI(MBB, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
 | 
						|
        UpdateValueMap(I, ResultReg);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectTrunc(Instruction *I) {
 | 
						|
  if (Subtarget->is64Bit())
 | 
						|
    // All other cases should be handled by the tblgen generated code.
 | 
						|
    return false;
 | 
						|
  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
  MVT DstVT = TLI.getValueType(I->getType());
 | 
						|
  if (DstVT != MVT::i8)
 | 
						|
    // All other cases should be handled by the tblgen generated code.
 | 
						|
    return false;
 | 
						|
  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
 | 
						|
    // All other cases should be handled by the tblgen generated code.
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned InputReg = getRegForValue(I->getOperand(0));
 | 
						|
  if (!InputReg)
 | 
						|
    // Unhandled operand.  Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // First issue a copy to GR16_ or GR32_.
 | 
						|
  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16to16_ : X86::MOV32to32_;
 | 
						|
  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
 | 
						|
    ? X86::GR16_RegisterClass : X86::GR32_RegisterClass;
 | 
						|
  unsigned CopyReg = createResultReg(CopyRC);
 | 
						|
  BuildMI(MBB, TII.get(CopyOpc), CopyReg).addReg(InputReg);
 | 
						|
 | 
						|
  // Then issue an extract_subreg.
 | 
						|
  unsigned ResultReg = FastEmitInst_extractsubreg(CopyReg, X86::SUBREG_8BIT);
 | 
						|
  if (!ResultReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectCall(Instruction *I) {
 | 
						|
  CallInst *CI = cast<CallInst>(I);
 | 
						|
  Value *Callee = I->getOperand(0);
 | 
						|
 | 
						|
  // Can't handle inline asm yet.
 | 
						|
  if (isa<InlineAsm>(Callee))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Handle some intrinsics.
 | 
						|
  if (Function *F = CI->getCalledFunction()) {
 | 
						|
    if (F->isDeclaration() &&F->getIntrinsicID())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle only C and fastcc calling conventions for now.
 | 
						|
  CallSite CS(CI);
 | 
						|
  unsigned CC = CS.getCallingConv();
 | 
						|
  if (CC != CallingConv::C &&
 | 
						|
      CC != CallingConv::Fast &&
 | 
						|
      CC != CallingConv::X86_FastCall)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Let SDISel handle vararg functions.
 | 
						|
  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | 
						|
  if (FTy->isVarArg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle *simple* calls for now.
 | 
						|
  const Type *RetTy = CS.getType();
 | 
						|
  MVT RetVT;
 | 
						|
  if (RetTy == Type::VoidTy)
 | 
						|
    RetVT = MVT::isVoid;
 | 
						|
  else if (!isTypeLegal(RetTy, RetVT, true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Materialize callee address in a register. FIXME: GV address can be
 | 
						|
  // handled with a CALLpcrel32 instead.
 | 
						|
  X86AddressMode CalleeAM;
 | 
						|
  if (!X86SelectAddress(Callee, CalleeAM, true))
 | 
						|
    return false;
 | 
						|
  unsigned CalleeOp = 0;
 | 
						|
  GlobalValue *GV = 0;
 | 
						|
  if (CalleeAM.Base.Reg != 0) {
 | 
						|
    assert(CalleeAM.GV == 0);
 | 
						|
    CalleeOp = CalleeAM.Base.Reg;
 | 
						|
  } else if (CalleeAM.GV != 0) {
 | 
						|
    assert(CalleeAM.GV != 0);
 | 
						|
    GV = CalleeAM.GV;
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Allow calls which produce i1 results.
 | 
						|
  bool AndToI1 = false;
 | 
						|
  if (RetVT == MVT::i1) {
 | 
						|
    RetVT = MVT::i8;
 | 
						|
    AndToI1 = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Deal with call operands first.
 | 
						|
  SmallVector<Value*, 8> ArgVals;
 | 
						|
  SmallVector<unsigned, 8> Args;
 | 
						|
  SmallVector<MVT, 8> ArgVTs;
 | 
						|
  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
 | 
						|
  Args.reserve(CS.arg_size());
 | 
						|
  ArgVals.reserve(CS.arg_size());
 | 
						|
  ArgVTs.reserve(CS.arg_size());
 | 
						|
  ArgFlags.reserve(CS.arg_size());
 | 
						|
  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    unsigned Arg = getRegForValue(*i);
 | 
						|
    if (Arg == 0)
 | 
						|
      return false;
 | 
						|
    ISD::ArgFlagsTy Flags;
 | 
						|
    unsigned AttrInd = i - CS.arg_begin() + 1;
 | 
						|
    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
 | 
						|
      Flags.setSExt();
 | 
						|
    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
 | 
						|
      Flags.setZExt();
 | 
						|
 | 
						|
    // FIXME: Only handle *easy* calls for now.
 | 
						|
    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
 | 
						|
        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
 | 
						|
        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
 | 
						|
        CS.paramHasAttr(AttrInd, Attribute::ByVal))
 | 
						|
      return false;
 | 
						|
 | 
						|
    const Type *ArgTy = (*i)->getType();
 | 
						|
    MVT ArgVT;
 | 
						|
    if (!isTypeLegal(ArgTy, ArgVT))
 | 
						|
      return false;
 | 
						|
    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
 | 
						|
    Flags.setOrigAlign(OriginalAlignment);
 | 
						|
 | 
						|
    Args.push_back(Arg);
 | 
						|
    ArgVals.push_back(*i);
 | 
						|
    ArgVTs.push_back(ArgVT);
 | 
						|
    ArgFlags.push_back(Flags);
 | 
						|
  }
 | 
						|
 | 
						|
  // Analyze operands of the call, assigning locations to each operand.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CC, false, TM, ArgLocs);
 | 
						|
  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
 | 
						|
 | 
						|
  // Get a count of how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = CCInfo.getNextStackOffset();
 | 
						|
 | 
						|
  // Issue CALLSEQ_START
 | 
						|
  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
 | 
						|
  BuildMI(MBB, TII.get(AdjStackDown)).addImm(NumBytes);
 | 
						|
 | 
						|
  // Process argument: walk the register/memloc assignments, inserting
 | 
						|
  // copies / loads.
 | 
						|
  SmallVector<unsigned, 4> RegArgs;
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    unsigned Arg = Args[VA.getValNo()];
 | 
						|
    MVT ArgVT = ArgVTs[VA.getValNo()];
 | 
						|
  
 | 
						|
    // Promote the value if needed.
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: assert(0 && "Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::SExt: {
 | 
						|
      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
 | 
						|
                                       Arg, ArgVT, Arg);
 | 
						|
      assert(Emitted && "Failed to emit a sext!");
 | 
						|
      ArgVT = VA.getLocVT();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case CCValAssign::ZExt: {
 | 
						|
      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
 | 
						|
                                       Arg, ArgVT, Arg);
 | 
						|
      assert(Emitted && "Failed to emit a zext!");
 | 
						|
      ArgVT = VA.getLocVT();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case CCValAssign::AExt: {
 | 
						|
      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
 | 
						|
                                       Arg, ArgVT, Arg);
 | 
						|
      if (!Emitted)
 | 
						|
        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
 | 
						|
                                    Arg, ArgVT, Arg);
 | 
						|
      if (!Emitted)
 | 
						|
        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
 | 
						|
                                    Arg, ArgVT, Arg);
 | 
						|
      
 | 
						|
      assert(Emitted && "Failed to emit a aext!");
 | 
						|
      ArgVT = VA.getLocVT();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
 | 
						|
      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
 | 
						|
                                      Arg, RC, RC);
 | 
						|
      assert(Emitted && "Failed to emit a copy instruction!");
 | 
						|
      RegArgs.push_back(VA.getLocReg());
 | 
						|
    } else {
 | 
						|
      unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
      X86AddressMode AM;
 | 
						|
      AM.Base.Reg = StackPtr;
 | 
						|
      AM.Disp = LocMemOffset;
 | 
						|
      Value *ArgVal = ArgVals[VA.getValNo()];
 | 
						|
      
 | 
						|
      // If this is a really simple value, emit this with the Value* version of
 | 
						|
      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
 | 
						|
      // can cause us to reevaluate the argument.
 | 
						|
      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
 | 
						|
        X86FastEmitStore(ArgVT, ArgVal, AM);
 | 
						|
      else
 | 
						|
        X86FastEmitStore(ArgVT, Arg, AM);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | 
						|
  // GOT pointer.  
 | 
						|
  if (!Subtarget->is64Bit() &&
 | 
						|
      TM.getRelocationModel() == Reloc::PIC_ &&
 | 
						|
      Subtarget->isPICStyleGOT()) {
 | 
						|
    TargetRegisterClass *RC = X86::GR32RegisterClass;
 | 
						|
    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
 | 
						|
    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
 | 
						|
    assert(Emitted && "Failed to emit a copy instruction!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Issue the call.
 | 
						|
  unsigned CallOpc = CalleeOp
 | 
						|
    ? (Subtarget->is64Bit() ? X86::CALL64r       : X86::CALL32r)
 | 
						|
    : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
 | 
						|
  MachineInstrBuilder MIB = CalleeOp
 | 
						|
    ? BuildMI(MBB, TII.get(CallOpc)).addReg(CalleeOp)
 | 
						|
    : BuildMI(MBB, TII.get(CallOpc)).addGlobalAddress(GV);
 | 
						|
 | 
						|
  // Add an implicit use GOT pointer in EBX.
 | 
						|
  if (!Subtarget->is64Bit() &&
 | 
						|
      TM.getRelocationModel() == Reloc::PIC_ &&
 | 
						|
      Subtarget->isPICStyleGOT())
 | 
						|
    MIB.addReg(X86::EBX);
 | 
						|
 | 
						|
  // Add implicit physical register uses to the call.
 | 
						|
  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
 | 
						|
    MIB.addReg(RegArgs[i]);
 | 
						|
 | 
						|
  // Issue CALLSEQ_END
 | 
						|
  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
 | 
						|
  BuildMI(MBB, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
 | 
						|
 | 
						|
  // Now handle call return value (if any).
 | 
						|
  if (RetVT.getSimpleVT() != MVT::isVoid) {
 | 
						|
    SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
    CCState CCInfo(CC, false, TM, RVLocs);
 | 
						|
    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
 | 
						|
 | 
						|
    // Copy all of the result registers out of their specified physreg.
 | 
						|
    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
 | 
						|
    MVT CopyVT = RVLocs[0].getValVT();
 | 
						|
    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
 | 
						|
    TargetRegisterClass *SrcRC = DstRC;
 | 
						|
    
 | 
						|
    // If this is a call to a function that returns an fp value on the x87 fp
 | 
						|
    // stack, but where we prefer to use the value in xmm registers, copy it
 | 
						|
    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
 | 
						|
    if ((RVLocs[0].getLocReg() == X86::ST0 ||
 | 
						|
         RVLocs[0].getLocReg() == X86::ST1) &&
 | 
						|
        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
 | 
						|
      CopyVT = MVT::f80;
 | 
						|
      SrcRC = X86::RSTRegisterClass;
 | 
						|
      DstRC = X86::RFP80RegisterClass;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned ResultReg = createResultReg(DstRC);
 | 
						|
    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
 | 
						|
    assert(Emitted && "Failed to emit a copy instruction!");
 | 
						|
    if (CopyVT != RVLocs[0].getValVT()) {
 | 
						|
      // Round the F80 the right size, which also moves to the appropriate xmm
 | 
						|
      // register. This is accomplished by storing the F80 value in memory and
 | 
						|
      // then loading it back. Ewww...
 | 
						|
      MVT ResVT = RVLocs[0].getValVT();
 | 
						|
      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
 | 
						|
      unsigned MemSize = ResVT.getSizeInBits()/8;
 | 
						|
      int FI = MFI.CreateStackObject(MemSize, MemSize);
 | 
						|
      addFrameReference(BuildMI(MBB, TII.get(Opc)), FI).addReg(ResultReg);
 | 
						|
      DstRC = ResVT == MVT::f32
 | 
						|
        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
 | 
						|
      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
 | 
						|
      ResultReg = createResultReg(DstRC);
 | 
						|
      addFrameReference(BuildMI(MBB, TII.get(Opc), ResultReg), FI);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AndToI1) {
 | 
						|
      // Mask out all but lowest bit for some call which produces an i1.
 | 
						|
      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
 | 
						|
      BuildMI(MBB, TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
 | 
						|
      ResultReg = AndResult;
 | 
						|
    }
 | 
						|
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
X86FastISel::TargetSelectInstruction(Instruction *I)  {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::Load:
 | 
						|
    return X86SelectLoad(I);
 | 
						|
  case Instruction::Store:
 | 
						|
    return X86SelectStore(I);
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp:
 | 
						|
    return X86SelectCmp(I);
 | 
						|
  case Instruction::ZExt:
 | 
						|
    return X86SelectZExt(I);
 | 
						|
  case Instruction::Br:
 | 
						|
    return X86SelectBranch(I);
 | 
						|
  case Instruction::Call:
 | 
						|
    return X86SelectCall(I);
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::Shl:
 | 
						|
    return X86SelectShift(I);
 | 
						|
  case Instruction::Select:
 | 
						|
    return X86SelectSelect(I);
 | 
						|
  case Instruction::Trunc:
 | 
						|
    return X86SelectTrunc(I);
 | 
						|
  case Instruction::FPExt:
 | 
						|
    return X86SelectFPExt(I);
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
    return X86SelectFPTrunc(I);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
 | 
						|
  MVT VT;
 | 
						|
  if (!isTypeLegal(C->getType(), VT))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Get opcode and regclass of the output for the given load instruction.
 | 
						|
  unsigned Opc = 0;
 | 
						|
  const TargetRegisterClass *RC = NULL;
 | 
						|
  switch (VT.getSimpleVT()) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i8:
 | 
						|
    Opc = X86::MOV8rm;
 | 
						|
    RC  = X86::GR8RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i16:
 | 
						|
    Opc = X86::MOV16rm;
 | 
						|
    RC  = X86::GR16RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i32:
 | 
						|
    Opc = X86::MOV32rm;
 | 
						|
    RC  = X86::GR32RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    // Must be in x86-64 mode.
 | 
						|
    Opc = X86::MOV64rm;
 | 
						|
    RC  = X86::GR64RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::f32:
 | 
						|
    if (Subtarget->hasSSE1()) {
 | 
						|
      Opc = X86::MOVSSrm;
 | 
						|
      RC  = X86::FR32RegisterClass;
 | 
						|
    } else {
 | 
						|
      Opc = X86::LD_Fp32m;
 | 
						|
      RC  = X86::RFP32RegisterClass;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case MVT::f64:
 | 
						|
    if (Subtarget->hasSSE2()) {
 | 
						|
      Opc = X86::MOVSDrm;
 | 
						|
      RC  = X86::FR64RegisterClass;
 | 
						|
    } else {
 | 
						|
      Opc = X86::LD_Fp64m;
 | 
						|
      RC  = X86::RFP64RegisterClass;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case MVT::f80:
 | 
						|
    // No f80 support yet.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Materialize addresses with LEA instructions.
 | 
						|
  if (isa<GlobalValue>(C)) {
 | 
						|
    X86AddressMode AM;
 | 
						|
    if (X86SelectAddress(C, AM, false)) {
 | 
						|
      if (TLI.getPointerTy() == MVT::i32)
 | 
						|
        Opc = X86::LEA32r;
 | 
						|
      else
 | 
						|
        Opc = X86::LEA64r;
 | 
						|
      unsigned ResultReg = createResultReg(RC);
 | 
						|
      addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
 | 
						|
      return ResultReg;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // MachineConstantPool wants an explicit alignment.
 | 
						|
  unsigned Align = TD.getPreferredTypeAlignmentShift(C->getType());
 | 
						|
  if (Align == 0) {
 | 
						|
    // Alignment of vector types.  FIXME!
 | 
						|
    Align = TD.getABITypeSize(C->getType());
 | 
						|
    Align = Log2_64(Align);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // x86-32 PIC requires a PIC base register for constant pools.
 | 
						|
  unsigned PICBase = 0;
 | 
						|
  if (TM.getRelocationModel() == Reloc::PIC_ &&
 | 
						|
      !Subtarget->is64Bit())
 | 
						|
    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
 | 
						|
 | 
						|
  // Create the load from the constant pool.
 | 
						|
  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  addConstantPoolReference(BuildMI(MBB, TII.get(Opc), ResultReg), MCPOffset,
 | 
						|
                           PICBase);
 | 
						|
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
 | 
						|
  // Fail on dynamic allocas. At this point, getRegForValue has already
 | 
						|
  // checked its CSE maps, so if we're here trying to handle a dynamic
 | 
						|
  // alloca, we're not going to succeed. X86SelectAddress has a
 | 
						|
  // check for dynamic allocas, because it's called directly from
 | 
						|
  // various places, but TargetMaterializeAlloca also needs a check
 | 
						|
  // in order to avoid recursion between getRegForValue,
 | 
						|
  // X86SelectAddrss, and TargetMaterializeAlloca.
 | 
						|
  if (!StaticAllocaMap.count(C))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  X86AddressMode AM;
 | 
						|
  if (!X86SelectAddress(C, AM, false))
 | 
						|
    return 0;
 | 
						|
  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
 | 
						|
  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  addFullAddress(BuildMI(MBB, TII.get(Opc), ResultReg), AM);
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
 | 
						|
                        MachineModuleInfo *mmi,
 | 
						|
                        DenseMap<const Value *, unsigned> &vm,
 | 
						|
                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
 | 
						|
                        DenseMap<const AllocaInst *, int> &am
 | 
						|
#ifndef NDEBUG
 | 
						|
                        , SmallSet<Instruction*, 8> &cil
 | 
						|
#endif
 | 
						|
                        ) {
 | 
						|
    return new X86FastISel(mf, mmi, vm, bm, am
 | 
						|
#ifndef NDEBUG
 | 
						|
                           , cil
 | 
						|
#endif
 | 
						|
                           );
 | 
						|
  }
 | 
						|
}
 |