forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			515 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			515 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This class parses the Schedule.td file and produces an API that can be used
 | |
| // to reason about whether an instruction can be added to a packet on a VLIW
 | |
| // architecture. The class internally generates a deterministic finite
 | |
| // automaton (DFA) that models all possible mappings of machine instructions
 | |
| // to functional units as instructions are added to a packet.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/TableGen/Record.h"
 | |
| #include "CodeGenTarget.h"
 | |
| #include "DFAPacketizerEmitter.h"
 | |
| #include <list>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| //
 | |
| //
 | |
| // State represents the usage of machine resources if the packet contains
 | |
| // a set of instruction classes.
 | |
| //
 | |
| // Specifically, currentState is a set of bit-masks.
 | |
| // The nth bit in a bit-mask indicates whether the nth resource is being used
 | |
| // by this state. The set of bit-masks in a state represent the different
 | |
| // possible outcomes of transitioning to this state.
 | |
| // For example: consider a two resource architecture: resource L and resource M
 | |
| // with three instruction classes: L, M, and L_or_M.
 | |
| // From the initial state (currentState = 0x00), if we add instruction class
 | |
| // L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
 | |
| // represents the possible resource states that can result from adding a L_or_M
 | |
| // instruction
 | |
| //
 | |
| // Another way of thinking about this transition is we are mapping a NDFA with
 | |
| // two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
 | |
| //
 | |
| //
 | |
| namespace {
 | |
| class State {
 | |
|  public:
 | |
|   static int currentStateNum;
 | |
|   int stateNum;
 | |
|   bool isInitial;
 | |
|   std::set<unsigned> stateInfo;
 | |
| 
 | |
|   State();
 | |
|   State(const State &S);
 | |
| 
 | |
|   //
 | |
|   // canAddInsnClass - Returns true if an instruction of type InsnClass is a
 | |
|   // valid transition from this state, i.e., can an instruction of type InsnClass
 | |
|   // be added to the packet represented by this state.
 | |
|   //
 | |
|   // PossibleStates is the set of valid resource states that ensue from valid
 | |
|   // transitions.
 | |
|   //
 | |
|   bool canAddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates);
 | |
| };
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| struct Transition {
 | |
|  public:
 | |
|   static int currentTransitionNum;
 | |
|   int transitionNum;
 | |
|   State *from;
 | |
|   unsigned input;
 | |
|   State *to;
 | |
| 
 | |
|   Transition(State *from_, unsigned input_, State *to_);
 | |
| };
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| 
 | |
| //
 | |
| // Comparators to keep set of states sorted.
 | |
| //
 | |
| namespace {
 | |
| struct ltState {
 | |
|   bool operator()(const State *s1, const State *s2) const;
 | |
| };
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| 
 | |
| //
 | |
| // class DFA: deterministic finite automaton for processor resource tracking.
 | |
| //
 | |
| namespace {
 | |
| class DFA {
 | |
| public:
 | |
|   DFA();
 | |
| 
 | |
|   // Set of states. Need to keep this sorted to emit the transition table.
 | |
|   std::set<State*, ltState> states;
 | |
| 
 | |
|   // Map from a state to the list of transitions with that state as source.
 | |
|   std::map<State*, SmallVector<Transition*, 16>, ltState> stateTransitions;
 | |
|   State *currentState;
 | |
| 
 | |
|   // Highest valued Input seen.
 | |
|   unsigned LargestInput;
 | |
| 
 | |
|   //
 | |
|   // Modify the DFA.
 | |
|   //
 | |
|   void initialize();
 | |
|   void addState(State *);
 | |
|   void addTransition(Transition *);
 | |
| 
 | |
|   //
 | |
|   // getTransition -  Return the state when a transition is made from
 | |
|   // State From with Input I. If a transition is not found, return NULL.
 | |
|   //
 | |
|   State *getTransition(State *, unsigned);
 | |
| 
 | |
|   //
 | |
|   // isValidTransition: Predicate that checks if there is a valid transition
 | |
|   // from state From on input InsnClass.
 | |
|   //
 | |
|   bool isValidTransition(State *From, unsigned InsnClass);
 | |
| 
 | |
|   //
 | |
|   // writeTable: Print out a table representing the DFA.
 | |
|   //
 | |
|   void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
 | |
| };
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| 
 | |
| //
 | |
| // Constructors for State, Transition, and DFA
 | |
| //
 | |
| State::State() :
 | |
|   stateNum(currentStateNum++), isInitial(false) {}
 | |
| 
 | |
| 
 | |
| State::State(const State &S) :
 | |
|   stateNum(currentStateNum++), isInitial(S.isInitial),
 | |
|   stateInfo(S.stateInfo) {}
 | |
| 
 | |
| 
 | |
| Transition::Transition(State *from_, unsigned input_, State *to_) :
 | |
|   transitionNum(currentTransitionNum++), from(from_), input(input_),
 | |
|   to(to_) {}
 | |
| 
 | |
| 
 | |
| DFA::DFA() :
 | |
|   LargestInput(0) {}
 | |
| 
 | |
| 
 | |
| bool ltState::operator()(const State *s1, const State *s2) const {
 | |
|     return (s1->stateNum < s2->stateNum);
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // canAddInsnClass - Returns true if an instruction of type InsnClass is a
 | |
| // valid transition from this state i.e., can an instruction of type InsnClass
 | |
| // be added to the packet represented by this state.
 | |
| //
 | |
| // PossibleStates is the set of valid resource states that ensue from valid
 | |
| // transitions.
 | |
| //
 | |
| bool State::canAddInsnClass(unsigned InsnClass,
 | |
|                             std::set<unsigned> &PossibleStates) {
 | |
|   //
 | |
|   // Iterate over all resource states in currentState.
 | |
|   //
 | |
|   bool AddedState = false;
 | |
| 
 | |
|   for (std::set<unsigned>::iterator SI = stateInfo.begin();
 | |
|        SI != stateInfo.end(); ++SI) {
 | |
|     unsigned thisState = *SI;
 | |
| 
 | |
|     //
 | |
|     // Iterate over all possible resources used in InsnClass.
 | |
|     // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
 | |
|     //
 | |
| 
 | |
|     DenseSet<unsigned> VisitedResourceStates;
 | |
|     for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
 | |
|       if ((0x1 << j) & InsnClass) {
 | |
|         //
 | |
|         // For each possible resource used in InsnClass, generate the
 | |
|         // resource state if that resource was used.
 | |
|         //
 | |
|         unsigned ResultingResourceState = thisState | (0x1 << j);
 | |
|         //
 | |
|         // Check if the resulting resource state can be accommodated in this
 | |
|         // packet.
 | |
|         // We compute ResultingResourceState OR thisState.
 | |
|         // If the result of the OR is different than thisState, it implies
 | |
|         // that there is at least one resource that can be used to schedule
 | |
|         // InsnClass in the current packet.
 | |
|         // Insert ResultingResourceState into PossibleStates only if we haven't
 | |
|         // processed ResultingResourceState before.
 | |
|         //
 | |
|         if ((ResultingResourceState != thisState) &&
 | |
|             (VisitedResourceStates.count(ResultingResourceState) == 0)) {
 | |
|           VisitedResourceStates.insert(ResultingResourceState);
 | |
|           PossibleStates.insert(ResultingResourceState);
 | |
|           AddedState = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return AddedState;
 | |
| }
 | |
| 
 | |
| 
 | |
| void DFA::initialize() {
 | |
|   currentState->isInitial = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| void DFA::addState(State *S) {
 | |
|   assert(!states.count(S) && "State already exists");
 | |
|   states.insert(S);
 | |
| }
 | |
| 
 | |
| 
 | |
| void DFA::addTransition(Transition *T) {
 | |
|   // Update LargestInput.
 | |
|   if (T->input > LargestInput)
 | |
|     LargestInput = T->input;
 | |
| 
 | |
|   // Add the new transition.
 | |
|   stateTransitions[T->from].push_back(T);
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // getTransition - Return the state when a transition is made from
 | |
| // State From with Input I. If a transition is not found, return NULL.
 | |
| //
 | |
| State *DFA::getTransition(State *From, unsigned I) {
 | |
|   // Do we have a transition from state From?
 | |
|   if (!stateTransitions.count(From))
 | |
|     return NULL;
 | |
| 
 | |
|   // Do we have a transition from state From with Input I?
 | |
|   for (SmallVector<Transition*, 16>::iterator VI =
 | |
|          stateTransitions[From].begin();
 | |
|          VI != stateTransitions[From].end(); ++VI)
 | |
|     if ((*VI)->input == I)
 | |
|       return (*VI)->to;
 | |
| 
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool DFA::isValidTransition(State *From, unsigned InsnClass) {
 | |
|   return (getTransition(From, InsnClass) != NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| int State::currentStateNum = 0;
 | |
| int Transition::currentTransitionNum = 0;
 | |
| 
 | |
| DFAGen::DFAGen(RecordKeeper &R):
 | |
|   TargetName(CodeGenTarget(R).getName()),
 | |
|   allInsnClasses(), Records(R) {}
 | |
| 
 | |
| 
 | |
| //
 | |
| // writeTableAndAPI - Print out a table representing the DFA and the
 | |
| // associated API to create a DFA packetizer.
 | |
| //
 | |
| // Format:
 | |
| // DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
 | |
| //                           transitions.
 | |
| // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
 | |
| //                         the ith state.
 | |
| //
 | |
| //
 | |
| void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
 | |
|   std::set<State*, ltState>::iterator SI = states.begin();
 | |
|   // This table provides a map to the beginning of the transitions for State s
 | |
|   // in DFAStateInputTable.
 | |
|   std::vector<int> StateEntry(states.size());
 | |
| 
 | |
|   OS << "namespace llvm {\n\n";
 | |
|   OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
 | |
| 
 | |
|   // Tracks the total valid transitions encountered so far. It is used
 | |
|   // to construct the StateEntry table.
 | |
|   int ValidTransitions = 0;
 | |
|   for (unsigned i = 0; i < states.size(); ++i, ++SI) {
 | |
|     StateEntry[i] = ValidTransitions;
 | |
|     for (unsigned j = 0; j <= LargestInput; ++j) {
 | |
|       assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
 | |
|       if (!isValidTransition(*SI, j))
 | |
|         continue;
 | |
| 
 | |
|       OS << "{" << j << ", "
 | |
|          << getTransition(*SI, j)->stateNum
 | |
|          << "},    ";
 | |
|       ++ValidTransitions;
 | |
|     }
 | |
| 
 | |
|     // If there are no valid transitions from this stage, we need a sentinel
 | |
|     // transition.
 | |
|     if (ValidTransitions == StateEntry[i]) {
 | |
|       OS << "{-1, -1},";
 | |
|       ++ValidTransitions;
 | |
|     }
 | |
| 
 | |
|     OS << "\n";
 | |
|   }
 | |
|   OS << "};\n\n";
 | |
|   OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
 | |
| 
 | |
|   // Multiply i by 2 since each entry in DFAStateInputTable is a set of
 | |
|   // two numbers.
 | |
|   for (unsigned i = 0; i < states.size(); ++i)
 | |
|     OS << StateEntry[i] << ", ";
 | |
| 
 | |
|   OS << "\n};\n";
 | |
|   OS << "} // namespace\n";
 | |
| 
 | |
| 
 | |
|   //
 | |
|   // Emit DFA Packetizer tables if the target is a VLIW machine.
 | |
|   //
 | |
|   std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
 | |
|   OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
 | |
|   OS << "namespace llvm {\n";
 | |
|   OS << "DFAPacketizer *" << SubTargetClassName << "::"
 | |
|      << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
 | |
|      << "   return new DFAPacketizer(IID, " << TargetName
 | |
|      << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
 | |
|   OS << "} // End llvm namespace \n";
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // collectAllInsnClasses - Populate allInsnClasses which is a set of units
 | |
| // used in each stage.
 | |
| //
 | |
| void DFAGen::collectAllInsnClasses(const std::string &Name,
 | |
|                                   Record *ItinData,
 | |
|                                   unsigned &NStages,
 | |
|                                   raw_ostream &OS) {
 | |
|   // Collect processor itineraries.
 | |
|   std::vector<Record*> ProcItinList =
 | |
|     Records.getAllDerivedDefinitions("ProcessorItineraries");
 | |
| 
 | |
|   // If just no itinerary then don't bother.
 | |
|   if (ProcItinList.size() < 2)
 | |
|     return;
 | |
|   std::map<std::string, unsigned> NameToBitsMap;
 | |
| 
 | |
|   // Parse functional units for all the itineraries.
 | |
|   for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
 | |
|     Record *Proc = ProcItinList[i];
 | |
|     std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
 | |
| 
 | |
|     // Convert macros to bits for each stage.
 | |
|     for (unsigned i = 0, N = FUs.size(); i < N; ++i)
 | |
|       NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
 | |
|   }
 | |
| 
 | |
|   const std::vector<Record*> &StageList =
 | |
|     ItinData->getValueAsListOfDefs("Stages");
 | |
| 
 | |
|   // The number of stages.
 | |
|   NStages = StageList.size();
 | |
| 
 | |
|   // For each unit.
 | |
|   unsigned UnitBitValue = 0;
 | |
| 
 | |
|   // Compute the bitwise or of each unit used in this stage.
 | |
|   for (unsigned i = 0; i < NStages; ++i) {
 | |
|     const Record *Stage = StageList[i];
 | |
| 
 | |
|     // Get unit list.
 | |
|     const std::vector<Record*> &UnitList =
 | |
|       Stage->getValueAsListOfDefs("Units");
 | |
| 
 | |
|     for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
 | |
|       // Conduct bitwise or.
 | |
|       std::string UnitName = UnitList[j]->getName();
 | |
|       assert(NameToBitsMap.count(UnitName));
 | |
|       UnitBitValue |= NameToBitsMap[UnitName];
 | |
|     }
 | |
| 
 | |
|     if (UnitBitValue != 0)
 | |
|       allInsnClasses.insert(UnitBitValue);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // Run the worklist algorithm to generate the DFA.
 | |
| //
 | |
| void DFAGen::run(raw_ostream &OS) {
 | |
|   EmitSourceFileHeader("Target DFA Packetizer Tables", OS);
 | |
| 
 | |
|   // Collect processor iteraries.
 | |
|   std::vector<Record*> ProcItinList =
 | |
|     Records.getAllDerivedDefinitions("ProcessorItineraries");
 | |
| 
 | |
|   //
 | |
|   // Collect the instruction classes.
 | |
|   //
 | |
|   for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
 | |
|     Record *Proc = ProcItinList[i];
 | |
| 
 | |
|     // Get processor itinerary name.
 | |
|     const std::string &Name = Proc->getName();
 | |
| 
 | |
|     // Skip default.
 | |
|     if (Name == "NoItineraries")
 | |
|       continue;
 | |
| 
 | |
|     // Sanity check for at least one instruction itinerary class.
 | |
|     unsigned NItinClasses =
 | |
|       Records.getAllDerivedDefinitions("InstrItinClass").size();
 | |
|     if (NItinClasses == 0)
 | |
|       return;
 | |
| 
 | |
|     // Get itinerary data list.
 | |
|     std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
 | |
| 
 | |
|     // Collect instruction classes for all itinerary data.
 | |
|     for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
 | |
|       Record *ItinData = ItinDataList[j];
 | |
|       unsigned NStages;
 | |
|       collectAllInsnClasses(Name, ItinData, NStages, OS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //
 | |
|   // Run a worklist algorithm to generate the DFA.
 | |
|   //
 | |
|   DFA D;
 | |
|   State *Initial = new State;
 | |
|   Initial->isInitial = true;
 | |
|   Initial->stateInfo.insert(0x0);
 | |
|   D.addState(Initial);
 | |
|   SmallVector<State*, 32> WorkList;
 | |
|   std::map<std::set<unsigned>, State*> Visited;
 | |
| 
 | |
|   WorkList.push_back(Initial);
 | |
| 
 | |
|   //
 | |
|   // Worklist algorithm to create a DFA for processor resource tracking.
 | |
|   // C = {set of InsnClasses}
 | |
|   // Begin with initial node in worklist. Initial node does not have
 | |
|   // any consumed resources,
 | |
|   //     ResourceState = 0x0
 | |
|   // Visited = {}
 | |
|   // While worklist != empty
 | |
|   //    S = first element of worklist
 | |
|   //    For every instruction class C
 | |
|   //      if we can accommodate C in S:
 | |
|   //          S' = state with resource states = {S Union C}
 | |
|   //          Add a new transition: S x C -> S'
 | |
|   //          If S' is not in Visited:
 | |
|   //             Add S' to worklist
 | |
|   //             Add S' to Visited
 | |
|   //
 | |
|   while (!WorkList.empty()) {
 | |
|     State *current = WorkList.pop_back_val();
 | |
|     for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
 | |
|            CE = allInsnClasses.end(); CI != CE; ++CI) {
 | |
|       unsigned InsnClass = *CI;
 | |
| 
 | |
|       std::set<unsigned> NewStateResources;
 | |
|       //
 | |
|       // If we haven't already created a transition for this input
 | |
|       // and the state can accommodate this InsnClass, create a transition.
 | |
|       //
 | |
|       if (!D.getTransition(current, InsnClass) &&
 | |
|           current->canAddInsnClass(InsnClass, NewStateResources)) {
 | |
|         State *NewState = NULL;
 | |
| 
 | |
|         //
 | |
|         // If we have seen this state before, then do not create a new state.
 | |
|         //
 | |
|         //
 | |
|         std::map<std::set<unsigned>, State*>::iterator VI;
 | |
|         if ((VI = Visited.find(NewStateResources)) != Visited.end())
 | |
|           NewState = VI->second;
 | |
|         else {
 | |
|           NewState = new State;
 | |
|           NewState->stateInfo = NewStateResources;
 | |
|           D.addState(NewState);
 | |
|           Visited[NewStateResources] = NewState;
 | |
|           WorkList.push_back(NewState);
 | |
|         }
 | |
| 
 | |
|         Transition *NewTransition = new Transition(current, InsnClass,
 | |
|                                                    NewState);
 | |
|         D.addTransition(NewTransition);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Print out the table.
 | |
|   D.writeTableAndAPI(OS, TargetName);
 | |
| }
 |