forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4393 lines
		
	
	
		
			168 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4393 lines
		
	
	
		
			168 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGCall.cpp - Encapsulate calling convention details --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// These classes wrap the information about a call or function
 | 
						|
// definition used to handle ABI compliancy.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CGCall.h"
 | 
						|
#include "ABIInfo.h"
 | 
						|
#include "CGBlocks.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CGCleanup.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "TargetInfo.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/Basic/TargetBuiltins.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/CodeGen/CGFunctionInfo.h"
 | 
						|
#include "clang/CodeGen/SwiftCallingConv.h"
 | 
						|
#include "clang/Frontend/CodeGenOptions.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
/***/
 | 
						|
 | 
						|
unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
 | 
						|
  switch (CC) {
 | 
						|
  default: return llvm::CallingConv::C;
 | 
						|
  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
 | 
						|
  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
 | 
						|
  case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
 | 
						|
  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
 | 
						|
  case CC_Win64: return llvm::CallingConv::Win64;
 | 
						|
  case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
 | 
						|
  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
 | 
						|
  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
 | 
						|
  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
 | 
						|
  // TODO: Add support for __pascal to LLVM.
 | 
						|
  case CC_X86Pascal: return llvm::CallingConv::C;
 | 
						|
  // TODO: Add support for __vectorcall to LLVM.
 | 
						|
  case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
 | 
						|
  case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
 | 
						|
  case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
 | 
						|
  case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
 | 
						|
  case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
 | 
						|
  case CC_Swift: return llvm::CallingConv::Swift;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Derives the 'this' type for codegen purposes, i.e. ignoring method
 | 
						|
/// qualification.
 | 
						|
/// FIXME: address space qualification?
 | 
						|
static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
 | 
						|
  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
 | 
						|
  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the canonical formal type of the given C++ method.
 | 
						|
static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
 | 
						|
  return MD->getType()->getCanonicalTypeUnqualified()
 | 
						|
           .getAs<FunctionProtoType>();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the "extra-canonicalized" return type, which discards
 | 
						|
/// qualifiers on the return type.  Codegen doesn't care about them,
 | 
						|
/// and it makes ABI code a little easier to be able to assume that
 | 
						|
/// all parameter and return types are top-level unqualified.
 | 
						|
static CanQualType GetReturnType(QualType RetTy) {
 | 
						|
  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the argument and result information for a value of the given
 | 
						|
/// unprototyped freestanding function type.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
 | 
						|
  // When translating an unprototyped function type, always use a
 | 
						|
  // variadic type.
 | 
						|
  return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
 | 
						|
                                 /*instanceMethod=*/false,
 | 
						|
                                 /*chainCall=*/false, None,
 | 
						|
                                 FTNP->getExtInfo(), {}, RequiredArgs(0));
 | 
						|
}
 | 
						|
 | 
						|
static void addExtParameterInfosForCall(
 | 
						|
         llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
 | 
						|
                                        const FunctionProtoType *proto,
 | 
						|
                                        unsigned prefixArgs,
 | 
						|
                                        unsigned totalArgs) {
 | 
						|
  assert(proto->hasExtParameterInfos());
 | 
						|
  assert(paramInfos.size() <= prefixArgs);
 | 
						|
  assert(proto->getNumParams() + prefixArgs <= totalArgs);
 | 
						|
 | 
						|
  paramInfos.reserve(totalArgs);
 | 
						|
 | 
						|
  // Add default infos for any prefix args that don't already have infos.
 | 
						|
  paramInfos.resize(prefixArgs);
 | 
						|
 | 
						|
  // Add infos for the prototype.
 | 
						|
  for (const auto &ParamInfo : proto->getExtParameterInfos()) {
 | 
						|
    paramInfos.push_back(ParamInfo);
 | 
						|
    // pass_object_size params have no parameter info.
 | 
						|
    if (ParamInfo.hasPassObjectSize())
 | 
						|
      paramInfos.emplace_back();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(paramInfos.size() <= totalArgs &&
 | 
						|
         "Did we forget to insert pass_object_size args?");
 | 
						|
  // Add default infos for the variadic and/or suffix arguments.
 | 
						|
  paramInfos.resize(totalArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// Adds the formal parameters in FPT to the given prefix. If any parameter in
 | 
						|
/// FPT has pass_object_size attrs, then we'll add parameters for those, too.
 | 
						|
static void appendParameterTypes(const CodeGenTypes &CGT,
 | 
						|
                                 SmallVectorImpl<CanQualType> &prefix,
 | 
						|
              SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
 | 
						|
                                 CanQual<FunctionProtoType> FPT) {
 | 
						|
  // Fast path: don't touch param info if we don't need to.
 | 
						|
  if (!FPT->hasExtParameterInfos()) {
 | 
						|
    assert(paramInfos.empty() &&
 | 
						|
           "We have paramInfos, but the prototype doesn't?");
 | 
						|
    prefix.append(FPT->param_type_begin(), FPT->param_type_end());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned PrefixSize = prefix.size();
 | 
						|
  // In the vast majority of cases, we'll have precisely FPT->getNumParams()
 | 
						|
  // parameters; the only thing that can change this is the presence of
 | 
						|
  // pass_object_size. So, we preallocate for the common case.
 | 
						|
  prefix.reserve(prefix.size() + FPT->getNumParams());
 | 
						|
 | 
						|
  auto ExtInfos = FPT->getExtParameterInfos();
 | 
						|
  assert(ExtInfos.size() == FPT->getNumParams());
 | 
						|
  for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
 | 
						|
    prefix.push_back(FPT->getParamType(I));
 | 
						|
    if (ExtInfos[I].hasPassObjectSize())
 | 
						|
      prefix.push_back(CGT.getContext().getSizeType());
 | 
						|
  }
 | 
						|
 | 
						|
  addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
 | 
						|
                              prefix.size());
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the LLVM function layout for a value of the given function
 | 
						|
/// type, on top of any implicit parameters already stored.
 | 
						|
static const CGFunctionInfo &
 | 
						|
arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
 | 
						|
                        SmallVectorImpl<CanQualType> &prefix,
 | 
						|
                        CanQual<FunctionProtoType> FTP,
 | 
						|
                        const FunctionDecl *FD) {
 | 
						|
  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
 | 
						|
  RequiredArgs Required =
 | 
						|
      RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
 | 
						|
  // FIXME: Kill copy.
 | 
						|
  appendParameterTypes(CGT, prefix, paramInfos, FTP);
 | 
						|
  CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
 | 
						|
 | 
						|
  return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
 | 
						|
                                     /*chainCall=*/false, prefix,
 | 
						|
                                     FTP->getExtInfo(), paramInfos,
 | 
						|
                                     Required);
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the argument and result information for a value of the
 | 
						|
/// given freestanding function type.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
 | 
						|
                                      const FunctionDecl *FD) {
 | 
						|
  SmallVector<CanQualType, 16> argTypes;
 | 
						|
  return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
 | 
						|
                                   FTP, FD);
 | 
						|
}
 | 
						|
 | 
						|
static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
 | 
						|
  // Set the appropriate calling convention for the Function.
 | 
						|
  if (D->hasAttr<StdCallAttr>())
 | 
						|
    return CC_X86StdCall;
 | 
						|
 | 
						|
  if (D->hasAttr<FastCallAttr>())
 | 
						|
    return CC_X86FastCall;
 | 
						|
 | 
						|
  if (D->hasAttr<RegCallAttr>())
 | 
						|
    return CC_X86RegCall;
 | 
						|
 | 
						|
  if (D->hasAttr<ThisCallAttr>())
 | 
						|
    return CC_X86ThisCall;
 | 
						|
 | 
						|
  if (D->hasAttr<VectorCallAttr>())
 | 
						|
    return CC_X86VectorCall;
 | 
						|
 | 
						|
  if (D->hasAttr<PascalAttr>())
 | 
						|
    return CC_X86Pascal;
 | 
						|
 | 
						|
  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
 | 
						|
    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
 | 
						|
 | 
						|
  if (D->hasAttr<IntelOclBiccAttr>())
 | 
						|
    return CC_IntelOclBicc;
 | 
						|
 | 
						|
  if (D->hasAttr<MSABIAttr>())
 | 
						|
    return IsWindows ? CC_C : CC_Win64;
 | 
						|
 | 
						|
  if (D->hasAttr<SysVABIAttr>())
 | 
						|
    return IsWindows ? CC_X86_64SysV : CC_C;
 | 
						|
 | 
						|
  if (D->hasAttr<PreserveMostAttr>())
 | 
						|
    return CC_PreserveMost;
 | 
						|
 | 
						|
  if (D->hasAttr<PreserveAllAttr>())
 | 
						|
    return CC_PreserveAll;
 | 
						|
 | 
						|
  return CC_C;
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the argument and result information for a call to an
 | 
						|
/// unknown C++ non-static member function of the given abstract type.
 | 
						|
/// (Zero value of RD means we don't have any meaningful "this" argument type,
 | 
						|
///  so fall back to a generic pointer type).
 | 
						|
/// The member function must be an ordinary function, i.e. not a
 | 
						|
/// constructor or destructor.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
 | 
						|
                                   const FunctionProtoType *FTP,
 | 
						|
                                   const CXXMethodDecl *MD) {
 | 
						|
  SmallVector<CanQualType, 16> argTypes;
 | 
						|
 | 
						|
  // Add the 'this' pointer.
 | 
						|
  if (RD)
 | 
						|
    argTypes.push_back(GetThisType(Context, RD));
 | 
						|
  else
 | 
						|
    argTypes.push_back(Context.VoidPtrTy);
 | 
						|
 | 
						|
  return ::arrangeLLVMFunctionInfo(
 | 
						|
      *this, true, argTypes,
 | 
						|
      FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the argument and result information for a declaration or
 | 
						|
/// definition of the given C++ non-static member function.  The
 | 
						|
/// member function must be an ordinary function, i.e. not a
 | 
						|
/// constructor or destructor.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
 | 
						|
  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
 | 
						|
  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
 | 
						|
 | 
						|
  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
 | 
						|
 | 
						|
  if (MD->isInstance()) {
 | 
						|
    // The abstract case is perfectly fine.
 | 
						|
    const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
 | 
						|
    return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
 | 
						|
  }
 | 
						|
 | 
						|
  return arrangeFreeFunctionType(prototype, MD);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenTypes::inheritingCtorHasParams(
 | 
						|
    const InheritedConstructor &Inherited, CXXCtorType Type) {
 | 
						|
  // Parameters are unnecessary if we're constructing a base class subobject
 | 
						|
  // and the inherited constructor lives in a virtual base.
 | 
						|
  return Type == Ctor_Complete ||
 | 
						|
         !Inherited.getShadowDecl()->constructsVirtualBase() ||
 | 
						|
         !Target.getCXXABI().hasConstructorVariants();
 | 
						|
  }
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
 | 
						|
                                            StructorType Type) {
 | 
						|
 | 
						|
  SmallVector<CanQualType, 16> argTypes;
 | 
						|
  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
 | 
						|
  argTypes.push_back(GetThisType(Context, MD->getParent()));
 | 
						|
 | 
						|
  bool PassParams = true;
 | 
						|
 | 
						|
  GlobalDecl GD;
 | 
						|
  if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
 | 
						|
    GD = GlobalDecl(CD, toCXXCtorType(Type));
 | 
						|
 | 
						|
    // A base class inheriting constructor doesn't get forwarded arguments
 | 
						|
    // needed to construct a virtual base (or base class thereof).
 | 
						|
    if (auto Inherited = CD->getInheritedConstructor())
 | 
						|
      PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
 | 
						|
  } else {
 | 
						|
    auto *DD = dyn_cast<CXXDestructorDecl>(MD);
 | 
						|
    GD = GlobalDecl(DD, toCXXDtorType(Type));
 | 
						|
  }
 | 
						|
 | 
						|
  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
 | 
						|
 | 
						|
  // Add the formal parameters.
 | 
						|
  if (PassParams)
 | 
						|
    appendParameterTypes(*this, argTypes, paramInfos, FTP);
 | 
						|
 | 
						|
  CGCXXABI::AddedStructorArgs AddedArgs =
 | 
						|
      TheCXXABI.buildStructorSignature(MD, Type, argTypes);
 | 
						|
  if (!paramInfos.empty()) {
 | 
						|
    // Note: prefix implies after the first param.
 | 
						|
    if (AddedArgs.Prefix)
 | 
						|
      paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
 | 
						|
                        FunctionProtoType::ExtParameterInfo{});
 | 
						|
    if (AddedArgs.Suffix)
 | 
						|
      paramInfos.append(AddedArgs.Suffix,
 | 
						|
                        FunctionProtoType::ExtParameterInfo{});
 | 
						|
  }
 | 
						|
 | 
						|
  RequiredArgs required =
 | 
						|
      (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
 | 
						|
                                      : RequiredArgs::All);
 | 
						|
 | 
						|
  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
 | 
						|
  CanQualType resultType = TheCXXABI.HasThisReturn(GD)
 | 
						|
                               ? argTypes.front()
 | 
						|
                               : TheCXXABI.hasMostDerivedReturn(GD)
 | 
						|
                                     ? CGM.getContext().VoidPtrTy
 | 
						|
                                     : Context.VoidTy;
 | 
						|
  return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
 | 
						|
                                 /*chainCall=*/false, argTypes, extInfo,
 | 
						|
                                 paramInfos, required);
 | 
						|
}
 | 
						|
 | 
						|
static SmallVector<CanQualType, 16>
 | 
						|
getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
 | 
						|
  SmallVector<CanQualType, 16> argTypes;
 | 
						|
  for (auto &arg : args)
 | 
						|
    argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
 | 
						|
  return argTypes;
 | 
						|
}
 | 
						|
 | 
						|
static SmallVector<CanQualType, 16>
 | 
						|
getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
 | 
						|
  SmallVector<CanQualType, 16> argTypes;
 | 
						|
  for (auto &arg : args)
 | 
						|
    argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
 | 
						|
  return argTypes;
 | 
						|
}
 | 
						|
 | 
						|
static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
 | 
						|
getExtParameterInfosForCall(const FunctionProtoType *proto,
 | 
						|
                            unsigned prefixArgs, unsigned totalArgs) {
 | 
						|
  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
 | 
						|
  if (proto->hasExtParameterInfos()) {
 | 
						|
    addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange a call to a C++ method, passing the given arguments.
 | 
						|
///
 | 
						|
/// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
 | 
						|
/// parameter.
 | 
						|
/// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
 | 
						|
/// args.
 | 
						|
/// PassProtoArgs indicates whether `args` has args for the parameters in the
 | 
						|
/// given CXXConstructorDecl.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
 | 
						|
                                        const CXXConstructorDecl *D,
 | 
						|
                                        CXXCtorType CtorKind,
 | 
						|
                                        unsigned ExtraPrefixArgs,
 | 
						|
                                        unsigned ExtraSuffixArgs,
 | 
						|
                                        bool PassProtoArgs) {
 | 
						|
  // FIXME: Kill copy.
 | 
						|
  SmallVector<CanQualType, 16> ArgTypes;
 | 
						|
  for (const auto &Arg : args)
 | 
						|
    ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
 | 
						|
 | 
						|
  // +1 for implicit this, which should always be args[0].
 | 
						|
  unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
 | 
						|
 | 
						|
  CanQual<FunctionProtoType> FPT = GetFormalType(D);
 | 
						|
  RequiredArgs Required =
 | 
						|
      RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
 | 
						|
  GlobalDecl GD(D, CtorKind);
 | 
						|
  CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
 | 
						|
                               ? ArgTypes.front()
 | 
						|
                               : TheCXXABI.hasMostDerivedReturn(GD)
 | 
						|
                                     ? CGM.getContext().VoidPtrTy
 | 
						|
                                     : Context.VoidTy;
 | 
						|
 | 
						|
  FunctionType::ExtInfo Info = FPT->getExtInfo();
 | 
						|
  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
 | 
						|
  // If the prototype args are elided, we should only have ABI-specific args,
 | 
						|
  // which never have param info.
 | 
						|
  if (PassProtoArgs && FPT->hasExtParameterInfos()) {
 | 
						|
    // ABI-specific suffix arguments are treated the same as variadic arguments.
 | 
						|
    addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
 | 
						|
                                ArgTypes.size());
 | 
						|
  }
 | 
						|
  return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
 | 
						|
                                 /*chainCall=*/false, ArgTypes, Info,
 | 
						|
                                 ParamInfos, Required);
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the argument and result information for the declaration or
 | 
						|
/// definition of the given function.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
 | 
						|
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
 | 
						|
    if (MD->isInstance())
 | 
						|
      return arrangeCXXMethodDeclaration(MD);
 | 
						|
 | 
						|
  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
 | 
						|
 | 
						|
  assert(isa<FunctionType>(FTy));
 | 
						|
 | 
						|
  // When declaring a function without a prototype, always use a
 | 
						|
  // non-variadic type.
 | 
						|
  if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
 | 
						|
    return arrangeLLVMFunctionInfo(
 | 
						|
        noProto->getReturnType(), /*instanceMethod=*/false,
 | 
						|
        /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
 | 
						|
  }
 | 
						|
 | 
						|
  return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the argument and result information for the declaration or
 | 
						|
/// definition of an Objective-C method.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
 | 
						|
  // It happens that this is the same as a call with no optional
 | 
						|
  // arguments, except also using the formal 'self' type.
 | 
						|
  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the argument and result information for the function type
 | 
						|
/// through which to perform a send to the given Objective-C method,
 | 
						|
/// using the given receiver type.  The receiver type is not always
 | 
						|
/// the 'self' type of the method or even an Objective-C pointer type.
 | 
						|
/// This is *not* the right method for actually performing such a
 | 
						|
/// message send, due to the possibility of optional arguments.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
 | 
						|
                                              QualType receiverType) {
 | 
						|
  SmallVector<CanQualType, 16> argTys;
 | 
						|
  SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
 | 
						|
  argTys.push_back(Context.getCanonicalParamType(receiverType));
 | 
						|
  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
 | 
						|
  // FIXME: Kill copy?
 | 
						|
  for (const auto *I : MD->parameters()) {
 | 
						|
    argTys.push_back(Context.getCanonicalParamType(I->getType()));
 | 
						|
    auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
 | 
						|
        I->hasAttr<NoEscapeAttr>());
 | 
						|
    extParamInfos.push_back(extParamInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionType::ExtInfo einfo;
 | 
						|
  bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
 | 
						|
  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
 | 
						|
 | 
						|
  if (getContext().getLangOpts().ObjCAutoRefCount &&
 | 
						|
      MD->hasAttr<NSReturnsRetainedAttr>())
 | 
						|
    einfo = einfo.withProducesResult(true);
 | 
						|
 | 
						|
  RequiredArgs required =
 | 
						|
    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
 | 
						|
 | 
						|
  return arrangeLLVMFunctionInfo(
 | 
						|
      GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
 | 
						|
      /*chainCall=*/false, argTys, einfo, extParamInfos, required);
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
 | 
						|
                                                 const CallArgList &args) {
 | 
						|
  auto argTypes = getArgTypesForCall(Context, args);
 | 
						|
  FunctionType::ExtInfo einfo;
 | 
						|
 | 
						|
  return arrangeLLVMFunctionInfo(
 | 
						|
      GetReturnType(returnType), /*instanceMethod=*/false,
 | 
						|
      /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
 | 
						|
  // FIXME: Do we need to handle ObjCMethodDecl?
 | 
						|
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | 
						|
 | 
						|
  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
 | 
						|
    return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
 | 
						|
 | 
						|
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
 | 
						|
    return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
 | 
						|
 | 
						|
  return arrangeFunctionDeclaration(FD);
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange a thunk that takes 'this' as the first parameter followed by
 | 
						|
/// varargs.  Return a void pointer, regardless of the actual return type.
 | 
						|
/// The body of the thunk will end in a musttail call to a function of the
 | 
						|
/// correct type, and the caller will bitcast the function to the correct
 | 
						|
/// prototype.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
 | 
						|
  assert(MD->isVirtual() && "only virtual memptrs have thunks");
 | 
						|
  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
 | 
						|
  CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
 | 
						|
  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
 | 
						|
                                 /*chainCall=*/false, ArgTys,
 | 
						|
                                 FTP->getExtInfo(), {}, RequiredArgs(1));
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
 | 
						|
                                   CXXCtorType CT) {
 | 
						|
  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
 | 
						|
 | 
						|
  CanQual<FunctionProtoType> FTP = GetFormalType(CD);
 | 
						|
  SmallVector<CanQualType, 2> ArgTys;
 | 
						|
  const CXXRecordDecl *RD = CD->getParent();
 | 
						|
  ArgTys.push_back(GetThisType(Context, RD));
 | 
						|
  if (CT == Ctor_CopyingClosure)
 | 
						|
    ArgTys.push_back(*FTP->param_type_begin());
 | 
						|
  if (RD->getNumVBases() > 0)
 | 
						|
    ArgTys.push_back(Context.IntTy);
 | 
						|
  CallingConv CC = Context.getDefaultCallingConvention(
 | 
						|
      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
 | 
						|
  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
 | 
						|
                                 /*chainCall=*/false, ArgTys,
 | 
						|
                                 FunctionType::ExtInfo(CC), {},
 | 
						|
                                 RequiredArgs::All);
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange a call as unto a free function, except possibly with an
 | 
						|
/// additional number of formal parameters considered required.
 | 
						|
static const CGFunctionInfo &
 | 
						|
arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
 | 
						|
                            CodeGenModule &CGM,
 | 
						|
                            const CallArgList &args,
 | 
						|
                            const FunctionType *fnType,
 | 
						|
                            unsigned numExtraRequiredArgs,
 | 
						|
                            bool chainCall) {
 | 
						|
  assert(args.size() >= numExtraRequiredArgs);
 | 
						|
 | 
						|
  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
 | 
						|
 | 
						|
  // In most cases, there are no optional arguments.
 | 
						|
  RequiredArgs required = RequiredArgs::All;
 | 
						|
 | 
						|
  // If we have a variadic prototype, the required arguments are the
 | 
						|
  // extra prefix plus the arguments in the prototype.
 | 
						|
  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
 | 
						|
    if (proto->isVariadic())
 | 
						|
      required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
 | 
						|
 | 
						|
    if (proto->hasExtParameterInfos())
 | 
						|
      addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
 | 
						|
                                  args.size());
 | 
						|
 | 
						|
  // If we don't have a prototype at all, but we're supposed to
 | 
						|
  // explicitly use the variadic convention for unprototyped calls,
 | 
						|
  // treat all of the arguments as required but preserve the nominal
 | 
						|
  // possibility of variadics.
 | 
						|
  } else if (CGM.getTargetCodeGenInfo()
 | 
						|
                .isNoProtoCallVariadic(args,
 | 
						|
                                       cast<FunctionNoProtoType>(fnType))) {
 | 
						|
    required = RequiredArgs(args.size());
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Kill copy.
 | 
						|
  SmallVector<CanQualType, 16> argTypes;
 | 
						|
  for (const auto &arg : args)
 | 
						|
    argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
 | 
						|
  return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
 | 
						|
                                     /*instanceMethod=*/false, chainCall,
 | 
						|
                                     argTypes, fnType->getExtInfo(), paramInfos,
 | 
						|
                                     required);
 | 
						|
}
 | 
						|
 | 
						|
/// Figure out the rules for calling a function with the given formal
 | 
						|
/// type using the given arguments.  The arguments are necessary
 | 
						|
/// because the function might be unprototyped, in which case it's
 | 
						|
/// target-dependent in crazy ways.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
 | 
						|
                                      const FunctionType *fnType,
 | 
						|
                                      bool chainCall) {
 | 
						|
  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
 | 
						|
                                     chainCall ? 1 : 0, chainCall);
 | 
						|
}
 | 
						|
 | 
						|
/// A block function is essentially a free function with an
 | 
						|
/// extra implicit argument.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
 | 
						|
                                       const FunctionType *fnType) {
 | 
						|
  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
 | 
						|
                                     /*chainCall=*/false);
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
 | 
						|
                                              const FunctionArgList ¶ms) {
 | 
						|
  auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
 | 
						|
  auto argTypes = getArgTypesForDeclaration(Context, params);
 | 
						|
 | 
						|
  return arrangeLLVMFunctionInfo(
 | 
						|
      GetReturnType(proto->getReturnType()),
 | 
						|
      /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
 | 
						|
      proto->getExtInfo(), paramInfos,
 | 
						|
      RequiredArgs::forPrototypePlus(proto, 1, nullptr));
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
 | 
						|
                                         const CallArgList &args) {
 | 
						|
  // FIXME: Kill copy.
 | 
						|
  SmallVector<CanQualType, 16> argTypes;
 | 
						|
  for (const auto &Arg : args)
 | 
						|
    argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
 | 
						|
  return arrangeLLVMFunctionInfo(
 | 
						|
      GetReturnType(resultType), /*instanceMethod=*/false,
 | 
						|
      /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
 | 
						|
      /*paramInfos=*/ {}, RequiredArgs::All);
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
 | 
						|
                                                const FunctionArgList &args) {
 | 
						|
  auto argTypes = getArgTypesForDeclaration(Context, args);
 | 
						|
 | 
						|
  return arrangeLLVMFunctionInfo(
 | 
						|
      GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
 | 
						|
      argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
 | 
						|
                                              ArrayRef<CanQualType> argTypes) {
 | 
						|
  return arrangeLLVMFunctionInfo(
 | 
						|
      resultType, /*instanceMethod=*/false, /*chainCall=*/false,
 | 
						|
      argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange a call to a C++ method, passing the given arguments.
 | 
						|
///
 | 
						|
/// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
 | 
						|
/// does not count `this`.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
 | 
						|
                                   const FunctionProtoType *proto,
 | 
						|
                                   RequiredArgs required,
 | 
						|
                                   unsigned numPrefixArgs) {
 | 
						|
  assert(numPrefixArgs + 1 <= args.size() &&
 | 
						|
         "Emitting a call with less args than the required prefix?");
 | 
						|
  // Add one to account for `this`. It's a bit awkward here, but we don't count
 | 
						|
  // `this` in similar places elsewhere.
 | 
						|
  auto paramInfos =
 | 
						|
    getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
 | 
						|
 | 
						|
  // FIXME: Kill copy.
 | 
						|
  auto argTypes = getArgTypesForCall(Context, args);
 | 
						|
 | 
						|
  FunctionType::ExtInfo info = proto->getExtInfo();
 | 
						|
  return arrangeLLVMFunctionInfo(
 | 
						|
      GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
 | 
						|
      /*chainCall=*/false, argTypes, info, paramInfos, required);
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
 | 
						|
  return arrangeLLVMFunctionInfo(
 | 
						|
      getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
 | 
						|
      None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
 | 
						|
}
 | 
						|
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
 | 
						|
                          const CallArgList &args) {
 | 
						|
  assert(signature.arg_size() <= args.size());
 | 
						|
  if (signature.arg_size() == args.size())
 | 
						|
    return signature;
 | 
						|
 | 
						|
  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
 | 
						|
  auto sigParamInfos = signature.getExtParameterInfos();
 | 
						|
  if (!sigParamInfos.empty()) {
 | 
						|
    paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
 | 
						|
    paramInfos.resize(args.size());
 | 
						|
  }
 | 
						|
 | 
						|
  auto argTypes = getArgTypesForCall(Context, args);
 | 
						|
 | 
						|
  assert(signature.getRequiredArgs().allowsOptionalArgs());
 | 
						|
  return arrangeLLVMFunctionInfo(signature.getReturnType(),
 | 
						|
                                 signature.isInstanceMethod(),
 | 
						|
                                 signature.isChainCall(),
 | 
						|
                                 argTypes,
 | 
						|
                                 signature.getExtInfo(),
 | 
						|
                                 paramInfos,
 | 
						|
                                 signature.getRequiredArgs());
 | 
						|
}
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace CodeGen {
 | 
						|
void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
/// Arrange the argument and result information for an abstract value
 | 
						|
/// of a given function type.  This is the method which all of the
 | 
						|
/// above functions ultimately defer to.
 | 
						|
const CGFunctionInfo &
 | 
						|
CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
 | 
						|
                                      bool instanceMethod,
 | 
						|
                                      bool chainCall,
 | 
						|
                                      ArrayRef<CanQualType> argTypes,
 | 
						|
                                      FunctionType::ExtInfo info,
 | 
						|
                     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
 | 
						|
                                      RequiredArgs required) {
 | 
						|
  assert(std::all_of(argTypes.begin(), argTypes.end(),
 | 
						|
                     [](CanQualType T) { return T.isCanonicalAsParam(); }));
 | 
						|
 | 
						|
  // Lookup or create unique function info.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
 | 
						|
                          required, resultType, argTypes);
 | 
						|
 | 
						|
  void *insertPos = nullptr;
 | 
						|
  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
 | 
						|
  if (FI)
 | 
						|
    return *FI;
 | 
						|
 | 
						|
  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
 | 
						|
 | 
						|
  // Construct the function info.  We co-allocate the ArgInfos.
 | 
						|
  FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
 | 
						|
                              paramInfos, resultType, argTypes, required);
 | 
						|
  FunctionInfos.InsertNode(FI, insertPos);
 | 
						|
 | 
						|
  bool inserted = FunctionsBeingProcessed.insert(FI).second;
 | 
						|
  (void)inserted;
 | 
						|
  assert(inserted && "Recursively being processed?");
 | 
						|
 | 
						|
  // Compute ABI information.
 | 
						|
  if (CC == llvm::CallingConv::SPIR_KERNEL) {
 | 
						|
    // Force target independent argument handling for the host visible
 | 
						|
    // kernel functions.
 | 
						|
    computeSPIRKernelABIInfo(CGM, *FI);
 | 
						|
  } else if (info.getCC() == CC_Swift) {
 | 
						|
    swiftcall::computeABIInfo(CGM, *FI);
 | 
						|
  } else {
 | 
						|
    getABIInfo().computeInfo(*FI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the computed argument and return value info.  If any of
 | 
						|
  // them are direct or extend without a specified coerce type, specify the
 | 
						|
  // default now.
 | 
						|
  ABIArgInfo &retInfo = FI->getReturnInfo();
 | 
						|
  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
 | 
						|
    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
 | 
						|
 | 
						|
  for (auto &I : FI->arguments())
 | 
						|
    if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
 | 
						|
      I.info.setCoerceToType(ConvertType(I.type));
 | 
						|
 | 
						|
  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
 | 
						|
  assert(erased && "Not in set?");
 | 
						|
  
 | 
						|
  return *FI;
 | 
						|
}
 | 
						|
 | 
						|
CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
 | 
						|
                                       bool instanceMethod,
 | 
						|
                                       bool chainCall,
 | 
						|
                                       const FunctionType::ExtInfo &info,
 | 
						|
                                       ArrayRef<ExtParameterInfo> paramInfos,
 | 
						|
                                       CanQualType resultType,
 | 
						|
                                       ArrayRef<CanQualType> argTypes,
 | 
						|
                                       RequiredArgs required) {
 | 
						|
  assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
 | 
						|
 | 
						|
  void *buffer =
 | 
						|
    operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
 | 
						|
                                  argTypes.size() + 1, paramInfos.size()));
 | 
						|
 | 
						|
  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
 | 
						|
  FI->CallingConvention = llvmCC;
 | 
						|
  FI->EffectiveCallingConvention = llvmCC;
 | 
						|
  FI->ASTCallingConvention = info.getCC();
 | 
						|
  FI->InstanceMethod = instanceMethod;
 | 
						|
  FI->ChainCall = chainCall;
 | 
						|
  FI->NoReturn = info.getNoReturn();
 | 
						|
  FI->ReturnsRetained = info.getProducesResult();
 | 
						|
  FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
 | 
						|
  FI->Required = required;
 | 
						|
  FI->HasRegParm = info.getHasRegParm();
 | 
						|
  FI->RegParm = info.getRegParm();
 | 
						|
  FI->ArgStruct = nullptr;
 | 
						|
  FI->ArgStructAlign = 0;
 | 
						|
  FI->NumArgs = argTypes.size();
 | 
						|
  FI->HasExtParameterInfos = !paramInfos.empty();
 | 
						|
  FI->getArgsBuffer()[0].type = resultType;
 | 
						|
  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
 | 
						|
    FI->getArgsBuffer()[i + 1].type = argTypes[i];
 | 
						|
  for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
 | 
						|
    FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
 | 
						|
  return FI;
 | 
						|
}
 | 
						|
 | 
						|
/***/
 | 
						|
 | 
						|
namespace {
 | 
						|
// ABIArgInfo::Expand implementation.
 | 
						|
 | 
						|
// Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
 | 
						|
struct TypeExpansion {
 | 
						|
  enum TypeExpansionKind {
 | 
						|
    // Elements of constant arrays are expanded recursively.
 | 
						|
    TEK_ConstantArray,
 | 
						|
    // Record fields are expanded recursively (but if record is a union, only
 | 
						|
    // the field with the largest size is expanded).
 | 
						|
    TEK_Record,
 | 
						|
    // For complex types, real and imaginary parts are expanded recursively.
 | 
						|
    TEK_Complex,
 | 
						|
    // All other types are not expandable.
 | 
						|
    TEK_None
 | 
						|
  };
 | 
						|
 | 
						|
  const TypeExpansionKind Kind;
 | 
						|
 | 
						|
  TypeExpansion(TypeExpansionKind K) : Kind(K) {}
 | 
						|
  virtual ~TypeExpansion() {}
 | 
						|
};
 | 
						|
 | 
						|
struct ConstantArrayExpansion : TypeExpansion {
 | 
						|
  QualType EltTy;
 | 
						|
  uint64_t NumElts;
 | 
						|
 | 
						|
  ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
 | 
						|
      : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
 | 
						|
  static bool classof(const TypeExpansion *TE) {
 | 
						|
    return TE->Kind == TEK_ConstantArray;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct RecordExpansion : TypeExpansion {
 | 
						|
  SmallVector<const CXXBaseSpecifier *, 1> Bases;
 | 
						|
 | 
						|
  SmallVector<const FieldDecl *, 1> Fields;
 | 
						|
 | 
						|
  RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
 | 
						|
                  SmallVector<const FieldDecl *, 1> &&Fields)
 | 
						|
      : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
 | 
						|
        Fields(std::move(Fields)) {}
 | 
						|
  static bool classof(const TypeExpansion *TE) {
 | 
						|
    return TE->Kind == TEK_Record;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct ComplexExpansion : TypeExpansion {
 | 
						|
  QualType EltTy;
 | 
						|
 | 
						|
  ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
 | 
						|
  static bool classof(const TypeExpansion *TE) {
 | 
						|
    return TE->Kind == TEK_Complex;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct NoExpansion : TypeExpansion {
 | 
						|
  NoExpansion() : TypeExpansion(TEK_None) {}
 | 
						|
  static bool classof(const TypeExpansion *TE) {
 | 
						|
    return TE->Kind == TEK_None;
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // namespace
 | 
						|
 | 
						|
static std::unique_ptr<TypeExpansion>
 | 
						|
getTypeExpansion(QualType Ty, const ASTContext &Context) {
 | 
						|
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
 | 
						|
    return llvm::make_unique<ConstantArrayExpansion>(
 | 
						|
        AT->getElementType(), AT->getSize().getZExtValue());
 | 
						|
  }
 | 
						|
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
    SmallVector<const CXXBaseSpecifier *, 1> Bases;
 | 
						|
    SmallVector<const FieldDecl *, 1> Fields;
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
    assert(!RD->hasFlexibleArrayMember() &&
 | 
						|
           "Cannot expand structure with flexible array.");
 | 
						|
    if (RD->isUnion()) {
 | 
						|
      // Unions can be here only in degenerative cases - all the fields are same
 | 
						|
      // after flattening. Thus we have to use the "largest" field.
 | 
						|
      const FieldDecl *LargestFD = nullptr;
 | 
						|
      CharUnits UnionSize = CharUnits::Zero();
 | 
						|
 | 
						|
      for (const auto *FD : RD->fields()) {
 | 
						|
        // Skip zero length bitfields.
 | 
						|
        if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
 | 
						|
          continue;
 | 
						|
        assert(!FD->isBitField() &&
 | 
						|
               "Cannot expand structure with bit-field members.");
 | 
						|
        CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
 | 
						|
        if (UnionSize < FieldSize) {
 | 
						|
          UnionSize = FieldSize;
 | 
						|
          LargestFD = FD;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (LargestFD)
 | 
						|
        Fields.push_back(LargestFD);
 | 
						|
    } else {
 | 
						|
      if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
        assert(!CXXRD->isDynamicClass() &&
 | 
						|
               "cannot expand vtable pointers in dynamic classes");
 | 
						|
        for (const CXXBaseSpecifier &BS : CXXRD->bases())
 | 
						|
          Bases.push_back(&BS);
 | 
						|
      }
 | 
						|
 | 
						|
      for (const auto *FD : RD->fields()) {
 | 
						|
        // Skip zero length bitfields.
 | 
						|
        if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
 | 
						|
          continue;
 | 
						|
        assert(!FD->isBitField() &&
 | 
						|
               "Cannot expand structure with bit-field members.");
 | 
						|
        Fields.push_back(FD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return llvm::make_unique<RecordExpansion>(std::move(Bases),
 | 
						|
                                              std::move(Fields));
 | 
						|
  }
 | 
						|
  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
 | 
						|
    return llvm::make_unique<ComplexExpansion>(CT->getElementType());
 | 
						|
  }
 | 
						|
  return llvm::make_unique<NoExpansion>();
 | 
						|
}
 | 
						|
 | 
						|
static int getExpansionSize(QualType Ty, const ASTContext &Context) {
 | 
						|
  auto Exp = getTypeExpansion(Ty, Context);
 | 
						|
  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
 | 
						|
    return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
 | 
						|
  }
 | 
						|
  if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
 | 
						|
    int Res = 0;
 | 
						|
    for (auto BS : RExp->Bases)
 | 
						|
      Res += getExpansionSize(BS->getType(), Context);
 | 
						|
    for (auto FD : RExp->Fields)
 | 
						|
      Res += getExpansionSize(FD->getType(), Context);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  if (isa<ComplexExpansion>(Exp.get()))
 | 
						|
    return 2;
 | 
						|
  assert(isa<NoExpansion>(Exp.get()));
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CodeGenTypes::getExpandedTypes(QualType Ty,
 | 
						|
                               SmallVectorImpl<llvm::Type *>::iterator &TI) {
 | 
						|
  auto Exp = getTypeExpansion(Ty, Context);
 | 
						|
  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
 | 
						|
    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
 | 
						|
      getExpandedTypes(CAExp->EltTy, TI);
 | 
						|
    }
 | 
						|
  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
 | 
						|
    for (auto BS : RExp->Bases)
 | 
						|
      getExpandedTypes(BS->getType(), TI);
 | 
						|
    for (auto FD : RExp->Fields)
 | 
						|
      getExpandedTypes(FD->getType(), TI);
 | 
						|
  } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
 | 
						|
    llvm::Type *EltTy = ConvertType(CExp->EltTy);
 | 
						|
    *TI++ = EltTy;
 | 
						|
    *TI++ = EltTy;
 | 
						|
  } else {
 | 
						|
    assert(isa<NoExpansion>(Exp.get()));
 | 
						|
    *TI++ = ConvertType(Ty);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void forConstantArrayExpansion(CodeGenFunction &CGF,
 | 
						|
                                      ConstantArrayExpansion *CAE,
 | 
						|
                                      Address BaseAddr,
 | 
						|
                                      llvm::function_ref<void(Address)> Fn) {
 | 
						|
  CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
 | 
						|
  CharUnits EltAlign =
 | 
						|
    BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
 | 
						|
 | 
						|
  for (int i = 0, n = CAE->NumElts; i < n; i++) {
 | 
						|
    llvm::Value *EltAddr =
 | 
						|
      CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
 | 
						|
    Fn(Address(EltAddr, EltAlign));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::ExpandTypeFromArgs(
 | 
						|
    QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
 | 
						|
  assert(LV.isSimple() &&
 | 
						|
         "Unexpected non-simple lvalue during struct expansion.");
 | 
						|
 | 
						|
  auto Exp = getTypeExpansion(Ty, getContext());
 | 
						|
  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
 | 
						|
    forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
 | 
						|
                              [&](Address EltAddr) {
 | 
						|
      LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
 | 
						|
      ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
 | 
						|
    });
 | 
						|
  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
 | 
						|
    Address This = LV.getAddress();
 | 
						|
    for (const CXXBaseSpecifier *BS : RExp->Bases) {
 | 
						|
      // Perform a single step derived-to-base conversion.
 | 
						|
      Address Base =
 | 
						|
          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
 | 
						|
                                /*NullCheckValue=*/false, SourceLocation());
 | 
						|
      LValue SubLV = MakeAddrLValue(Base, BS->getType());
 | 
						|
 | 
						|
      // Recurse onto bases.
 | 
						|
      ExpandTypeFromArgs(BS->getType(), SubLV, AI);
 | 
						|
    }
 | 
						|
    for (auto FD : RExp->Fields) {
 | 
						|
      // FIXME: What are the right qualifiers here?
 | 
						|
      LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
 | 
						|
      ExpandTypeFromArgs(FD->getType(), SubLV, AI);
 | 
						|
    }
 | 
						|
  } else if (isa<ComplexExpansion>(Exp.get())) {
 | 
						|
    auto realValue = *AI++;
 | 
						|
    auto imagValue = *AI++;
 | 
						|
    EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
 | 
						|
  } else {
 | 
						|
    assert(isa<NoExpansion>(Exp.get()));
 | 
						|
    EmitStoreThroughLValue(RValue::get(*AI++), LV);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::ExpandTypeToArgs(
 | 
						|
    QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
 | 
						|
    SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
 | 
						|
  auto Exp = getTypeExpansion(Ty, getContext());
 | 
						|
  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
 | 
						|
    forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
 | 
						|
                              [&](Address EltAddr) {
 | 
						|
      RValue EltRV =
 | 
						|
          convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
 | 
						|
      ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
 | 
						|
    });
 | 
						|
  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
 | 
						|
    Address This = RV.getAggregateAddress();
 | 
						|
    for (const CXXBaseSpecifier *BS : RExp->Bases) {
 | 
						|
      // Perform a single step derived-to-base conversion.
 | 
						|
      Address Base =
 | 
						|
          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
 | 
						|
                                /*NullCheckValue=*/false, SourceLocation());
 | 
						|
      RValue BaseRV = RValue::getAggregate(Base);
 | 
						|
 | 
						|
      // Recurse onto bases.
 | 
						|
      ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
 | 
						|
                       IRCallArgPos);
 | 
						|
    }
 | 
						|
 | 
						|
    LValue LV = MakeAddrLValue(This, Ty);
 | 
						|
    for (auto FD : RExp->Fields) {
 | 
						|
      RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
 | 
						|
      ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
 | 
						|
                       IRCallArgPos);
 | 
						|
    }
 | 
						|
  } else if (isa<ComplexExpansion>(Exp.get())) {
 | 
						|
    ComplexPairTy CV = RV.getComplexVal();
 | 
						|
    IRCallArgs[IRCallArgPos++] = CV.first;
 | 
						|
    IRCallArgs[IRCallArgPos++] = CV.second;
 | 
						|
  } else {
 | 
						|
    assert(isa<NoExpansion>(Exp.get()));
 | 
						|
    assert(RV.isScalar() &&
 | 
						|
           "Unexpected non-scalar rvalue during struct expansion.");
 | 
						|
 | 
						|
    // Insert a bitcast as needed.
 | 
						|
    llvm::Value *V = RV.getScalarVal();
 | 
						|
    if (IRCallArgPos < IRFuncTy->getNumParams() &&
 | 
						|
        V->getType() != IRFuncTy->getParamType(IRCallArgPos))
 | 
						|
      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
 | 
						|
 | 
						|
    IRCallArgs[IRCallArgPos++] = V;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create a temporary allocation for the purposes of coercion.
 | 
						|
static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
 | 
						|
                                           CharUnits MinAlign) {
 | 
						|
  // Don't use an alignment that's worse than what LLVM would prefer.
 | 
						|
  auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
 | 
						|
  CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
 | 
						|
 | 
						|
  return CGF.CreateTempAlloca(Ty, Align);
 | 
						|
}
 | 
						|
 | 
						|
/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
 | 
						|
/// accessing some number of bytes out of it, try to gep into the struct to get
 | 
						|
/// at its inner goodness.  Dive as deep as possible without entering an element
 | 
						|
/// with an in-memory size smaller than DstSize.
 | 
						|
static Address
 | 
						|
EnterStructPointerForCoercedAccess(Address SrcPtr,
 | 
						|
                                   llvm::StructType *SrcSTy,
 | 
						|
                                   uint64_t DstSize, CodeGenFunction &CGF) {
 | 
						|
  // We can't dive into a zero-element struct.
 | 
						|
  if (SrcSTy->getNumElements() == 0) return SrcPtr;
 | 
						|
 | 
						|
  llvm::Type *FirstElt = SrcSTy->getElementType(0);
 | 
						|
 | 
						|
  // If the first elt is at least as large as what we're looking for, or if the
 | 
						|
  // first element is the same size as the whole struct, we can enter it. The
 | 
						|
  // comparison must be made on the store size and not the alloca size. Using
 | 
						|
  // the alloca size may overstate the size of the load.
 | 
						|
  uint64_t FirstEltSize =
 | 
						|
    CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
 | 
						|
  if (FirstEltSize < DstSize &&
 | 
						|
      FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
 | 
						|
    return SrcPtr;
 | 
						|
 | 
						|
  // GEP into the first element.
 | 
						|
  SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
 | 
						|
 | 
						|
  // If the first element is a struct, recurse.
 | 
						|
  llvm::Type *SrcTy = SrcPtr.getElementType();
 | 
						|
  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
 | 
						|
    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
 | 
						|
 | 
						|
  return SrcPtr;
 | 
						|
}
 | 
						|
 | 
						|
/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
 | 
						|
/// are either integers or pointers.  This does a truncation of the value if it
 | 
						|
/// is too large or a zero extension if it is too small.
 | 
						|
///
 | 
						|
/// This behaves as if the value were coerced through memory, so on big-endian
 | 
						|
/// targets the high bits are preserved in a truncation, while little-endian
 | 
						|
/// targets preserve the low bits.
 | 
						|
static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
 | 
						|
                                             llvm::Type *Ty,
 | 
						|
                                             CodeGenFunction &CGF) {
 | 
						|
  if (Val->getType() == Ty)
 | 
						|
    return Val;
 | 
						|
 | 
						|
  if (isa<llvm::PointerType>(Val->getType())) {
 | 
						|
    // If this is Pointer->Pointer avoid conversion to and from int.
 | 
						|
    if (isa<llvm::PointerType>(Ty))
 | 
						|
      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
 | 
						|
 | 
						|
    // Convert the pointer to an integer so we can play with its width.
 | 
						|
    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Type *DestIntTy = Ty;
 | 
						|
  if (isa<llvm::PointerType>(DestIntTy))
 | 
						|
    DestIntTy = CGF.IntPtrTy;
 | 
						|
 | 
						|
  if (Val->getType() != DestIntTy) {
 | 
						|
    const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
 | 
						|
    if (DL.isBigEndian()) {
 | 
						|
      // Preserve the high bits on big-endian targets.
 | 
						|
      // That is what memory coercion does.
 | 
						|
      uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
 | 
						|
      uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
 | 
						|
 | 
						|
      if (SrcSize > DstSize) {
 | 
						|
        Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
 | 
						|
        Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
 | 
						|
      } else {
 | 
						|
        Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
 | 
						|
        Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Little-endian targets preserve the low bits. No shifts required.
 | 
						|
      Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<llvm::PointerType>(Ty))
 | 
						|
    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
 | 
						|
/// a pointer to an object of type \arg Ty, known to be aligned to
 | 
						|
/// \arg SrcAlign bytes.
 | 
						|
///
 | 
						|
/// This safely handles the case when the src type is smaller than the
 | 
						|
/// destination type; in this situation the values of bits which not
 | 
						|
/// present in the src are undefined.
 | 
						|
static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
 | 
						|
                                      CodeGenFunction &CGF) {
 | 
						|
  llvm::Type *SrcTy = Src.getElementType();
 | 
						|
 | 
						|
  // If SrcTy and Ty are the same, just do a load.
 | 
						|
  if (SrcTy == Ty)
 | 
						|
    return CGF.Builder.CreateLoad(Src);
 | 
						|
 | 
						|
  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
 | 
						|
 | 
						|
  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
 | 
						|
    Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
 | 
						|
    SrcTy = Src.getType()->getElementType();
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
 | 
						|
 | 
						|
  // If the source and destination are integer or pointer types, just do an
 | 
						|
  // extension or truncation to the desired type.
 | 
						|
  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
 | 
						|
      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
 | 
						|
    llvm::Value *Load = CGF.Builder.CreateLoad(Src);
 | 
						|
    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
 | 
						|
  }
 | 
						|
 | 
						|
  // If load is legal, just bitcast the src pointer.
 | 
						|
  if (SrcSize >= DstSize) {
 | 
						|
    // Generally SrcSize is never greater than DstSize, since this means we are
 | 
						|
    // losing bits. However, this can happen in cases where the structure has
 | 
						|
    // additional padding, for example due to a user specified alignment.
 | 
						|
    //
 | 
						|
    // FIXME: Assert that we aren't truncating non-padding bits when have access
 | 
						|
    // to that information.
 | 
						|
    Src = CGF.Builder.CreateBitCast(Src,
 | 
						|
                                    Ty->getPointerTo(Src.getAddressSpace()));
 | 
						|
    return CGF.Builder.CreateLoad(Src);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise do coercion through memory. This is stupid, but simple.
 | 
						|
  Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
 | 
						|
  Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
 | 
						|
  Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
 | 
						|
  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
 | 
						|
      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
 | 
						|
      false);
 | 
						|
  return CGF.Builder.CreateLoad(Tmp);
 | 
						|
}
 | 
						|
 | 
						|
// Function to store a first-class aggregate into memory.  We prefer to
 | 
						|
// store the elements rather than the aggregate to be more friendly to
 | 
						|
// fast-isel.
 | 
						|
// FIXME: Do we need to recurse here?
 | 
						|
static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
 | 
						|
                          Address Dest, bool DestIsVolatile) {
 | 
						|
  // Prefer scalar stores to first-class aggregate stores.
 | 
						|
  if (llvm::StructType *STy =
 | 
						|
        dyn_cast<llvm::StructType>(Val->getType())) {
 | 
						|
    const llvm::StructLayout *Layout =
 | 
						|
      CGF.CGM.getDataLayout().getStructLayout(STy);
 | 
						|
 | 
						|
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
      auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
 | 
						|
      Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
 | 
						|
      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
 | 
						|
      CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
 | 
						|
/// where the source and destination may have different types.  The
 | 
						|
/// destination is known to be aligned to \arg DstAlign bytes.
 | 
						|
///
 | 
						|
/// This safely handles the case when the src type is larger than the
 | 
						|
/// destination type; the upper bits of the src will be lost.
 | 
						|
static void CreateCoercedStore(llvm::Value *Src,
 | 
						|
                               Address Dst,
 | 
						|
                               bool DstIsVolatile,
 | 
						|
                               CodeGenFunction &CGF) {
 | 
						|
  llvm::Type *SrcTy = Src->getType();
 | 
						|
  llvm::Type *DstTy = Dst.getType()->getElementType();
 | 
						|
  if (SrcTy == DstTy) {
 | 
						|
    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
 | 
						|
 | 
						|
  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
 | 
						|
    Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
 | 
						|
    DstTy = Dst.getType()->getElementType();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the source and destination are integer or pointer types, just do an
 | 
						|
  // extension or truncation to the desired type.
 | 
						|
  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
 | 
						|
      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
 | 
						|
    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
 | 
						|
    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
 | 
						|
 | 
						|
  // If store is legal, just bitcast the src pointer.
 | 
						|
  if (SrcSize <= DstSize) {
 | 
						|
    Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
 | 
						|
    BuildAggStore(CGF, Src, Dst, DstIsVolatile);
 | 
						|
  } else {
 | 
						|
    // Otherwise do coercion through memory. This is stupid, but
 | 
						|
    // simple.
 | 
						|
 | 
						|
    // Generally SrcSize is never greater than DstSize, since this means we are
 | 
						|
    // losing bits. However, this can happen in cases where the structure has
 | 
						|
    // additional padding, for example due to a user specified alignment.
 | 
						|
    //
 | 
						|
    // FIXME: Assert that we aren't truncating non-padding bits when have access
 | 
						|
    // to that information.
 | 
						|
    Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
 | 
						|
    CGF.Builder.CreateStore(Src, Tmp);
 | 
						|
    Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
 | 
						|
    Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
 | 
						|
    CGF.Builder.CreateMemCpy(DstCasted, Casted,
 | 
						|
        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
 | 
						|
        false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
 | 
						|
                                   const ABIArgInfo &info) {      
 | 
						|
  if (unsigned offset = info.getDirectOffset()) {
 | 
						|
    addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
 | 
						|
    addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
 | 
						|
                                             CharUnits::fromQuantity(offset));
 | 
						|
    addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
 | 
						|
  }
 | 
						|
  return addr;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Encapsulates information about the way function arguments from
 | 
						|
/// CGFunctionInfo should be passed to actual LLVM IR function.
 | 
						|
class ClangToLLVMArgMapping {
 | 
						|
  static const unsigned InvalidIndex = ~0U;
 | 
						|
  unsigned InallocaArgNo;
 | 
						|
  unsigned SRetArgNo;
 | 
						|
  unsigned TotalIRArgs;
 | 
						|
 | 
						|
  /// Arguments of LLVM IR function corresponding to single Clang argument.
 | 
						|
  struct IRArgs {
 | 
						|
    unsigned PaddingArgIndex;
 | 
						|
    // Argument is expanded to IR arguments at positions
 | 
						|
    // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
 | 
						|
    unsigned FirstArgIndex;
 | 
						|
    unsigned NumberOfArgs;
 | 
						|
 | 
						|
    IRArgs()
 | 
						|
        : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
 | 
						|
          NumberOfArgs(0) {}
 | 
						|
  };
 | 
						|
 | 
						|
  SmallVector<IRArgs, 8> ArgInfo;
 | 
						|
 | 
						|
public:
 | 
						|
  ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
 | 
						|
                        bool OnlyRequiredArgs = false)
 | 
						|
      : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
 | 
						|
        ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
 | 
						|
    construct(Context, FI, OnlyRequiredArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
 | 
						|
  unsigned getInallocaArgNo() const {
 | 
						|
    assert(hasInallocaArg());
 | 
						|
    return InallocaArgNo;
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
 | 
						|
  unsigned getSRetArgNo() const {
 | 
						|
    assert(hasSRetArg());
 | 
						|
    return SRetArgNo;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned totalIRArgs() const { return TotalIRArgs; }
 | 
						|
 | 
						|
  bool hasPaddingArg(unsigned ArgNo) const {
 | 
						|
    assert(ArgNo < ArgInfo.size());
 | 
						|
    return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
 | 
						|
  }
 | 
						|
  unsigned getPaddingArgNo(unsigned ArgNo) const {
 | 
						|
    assert(hasPaddingArg(ArgNo));
 | 
						|
    return ArgInfo[ArgNo].PaddingArgIndex;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns index of first IR argument corresponding to ArgNo, and their
 | 
						|
  /// quantity.
 | 
						|
  std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
 | 
						|
    assert(ArgNo < ArgInfo.size());
 | 
						|
    return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
 | 
						|
                          ArgInfo[ArgNo].NumberOfArgs);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void construct(const ASTContext &Context, const CGFunctionInfo &FI,
 | 
						|
                 bool OnlyRequiredArgs);
 | 
						|
};
 | 
						|
 | 
						|
void ClangToLLVMArgMapping::construct(const ASTContext &Context,
 | 
						|
                                      const CGFunctionInfo &FI,
 | 
						|
                                      bool OnlyRequiredArgs) {
 | 
						|
  unsigned IRArgNo = 0;
 | 
						|
  bool SwapThisWithSRet = false;
 | 
						|
  const ABIArgInfo &RetAI = FI.getReturnInfo();
 | 
						|
 | 
						|
  if (RetAI.getKind() == ABIArgInfo::Indirect) {
 | 
						|
    SwapThisWithSRet = RetAI.isSRetAfterThis();
 | 
						|
    SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
 | 
						|
  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
 | 
						|
       ++I, ++ArgNo) {
 | 
						|
    assert(I != FI.arg_end());
 | 
						|
    QualType ArgType = I->type;
 | 
						|
    const ABIArgInfo &AI = I->info;
 | 
						|
    // Collect data about IR arguments corresponding to Clang argument ArgNo.
 | 
						|
    auto &IRArgs = ArgInfo[ArgNo];
 | 
						|
 | 
						|
    if (AI.getPaddingType())
 | 
						|
      IRArgs.PaddingArgIndex = IRArgNo++;
 | 
						|
 | 
						|
    switch (AI.getKind()) {
 | 
						|
    case ABIArgInfo::Extend:
 | 
						|
    case ABIArgInfo::Direct: {
 | 
						|
      // FIXME: handle sseregparm someday...
 | 
						|
      llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
 | 
						|
      if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
 | 
						|
        IRArgs.NumberOfArgs = STy->getNumElements();
 | 
						|
      } else {
 | 
						|
        IRArgs.NumberOfArgs = 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ABIArgInfo::Indirect:
 | 
						|
      IRArgs.NumberOfArgs = 1;
 | 
						|
      break;
 | 
						|
    case ABIArgInfo::Ignore:
 | 
						|
    case ABIArgInfo::InAlloca:
 | 
						|
      // ignore and inalloca doesn't have matching LLVM parameters.
 | 
						|
      IRArgs.NumberOfArgs = 0;
 | 
						|
      break;
 | 
						|
    case ABIArgInfo::CoerceAndExpand:
 | 
						|
      IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
 | 
						|
      break;
 | 
						|
    case ABIArgInfo::Expand:
 | 
						|
      IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IRArgs.NumberOfArgs > 0) {
 | 
						|
      IRArgs.FirstArgIndex = IRArgNo;
 | 
						|
      IRArgNo += IRArgs.NumberOfArgs;
 | 
						|
    }
 | 
						|
 | 
						|
    // Skip over the sret parameter when it comes second.  We already handled it
 | 
						|
    // above.
 | 
						|
    if (IRArgNo == 1 && SwapThisWithSRet)
 | 
						|
      IRArgNo++;
 | 
						|
  }
 | 
						|
  assert(ArgNo == ArgInfo.size());
 | 
						|
 | 
						|
  if (FI.usesInAlloca())
 | 
						|
    InallocaArgNo = IRArgNo++;
 | 
						|
 | 
						|
  TotalIRArgs = IRArgNo;
 | 
						|
}
 | 
						|
}  // namespace
 | 
						|
 | 
						|
/***/
 | 
						|
 | 
						|
bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
 | 
						|
  return FI.getReturnInfo().isIndirect();
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
 | 
						|
  return ReturnTypeUsesSRet(FI) &&
 | 
						|
         getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
 | 
						|
  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
 | 
						|
    switch (BT->getKind()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case BuiltinType::Float:
 | 
						|
      return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
 | 
						|
    case BuiltinType::Double:
 | 
						|
      return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
 | 
						|
    case BuiltinType::LongDouble:
 | 
						|
      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
 | 
						|
  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
 | 
						|
    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
 | 
						|
      if (BT->getKind() == BuiltinType::LongDouble)
 | 
						|
        return getTarget().useObjCFP2RetForComplexLongDouble();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
 | 
						|
  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
 | 
						|
  return GetFunctionType(FI);
 | 
						|
}
 | 
						|
 | 
						|
llvm::FunctionType *
 | 
						|
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
 | 
						|
 | 
						|
  bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
 | 
						|
  (void)Inserted;
 | 
						|
  assert(Inserted && "Recursively being processed?");
 | 
						|
 | 
						|
  llvm::Type *resultType = nullptr;
 | 
						|
  const ABIArgInfo &retAI = FI.getReturnInfo();
 | 
						|
  switch (retAI.getKind()) {
 | 
						|
  case ABIArgInfo::Expand:
 | 
						|
    llvm_unreachable("Invalid ABI kind for return argument");
 | 
						|
 | 
						|
  case ABIArgInfo::Extend:
 | 
						|
  case ABIArgInfo::Direct:
 | 
						|
    resultType = retAI.getCoerceToType();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::InAlloca:
 | 
						|
    if (retAI.getInAllocaSRet()) {
 | 
						|
      // sret things on win32 aren't void, they return the sret pointer.
 | 
						|
      QualType ret = FI.getReturnType();
 | 
						|
      llvm::Type *ty = ConvertType(ret);
 | 
						|
      unsigned addressSpace = Context.getTargetAddressSpace(ret);
 | 
						|
      resultType = llvm::PointerType::get(ty, addressSpace);
 | 
						|
    } else {
 | 
						|
      resultType = llvm::Type::getVoidTy(getLLVMContext());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::Indirect:
 | 
						|
  case ABIArgInfo::Ignore:
 | 
						|
    resultType = llvm::Type::getVoidTy(getLLVMContext());
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::CoerceAndExpand:
 | 
						|
    resultType = retAI.getUnpaddedCoerceAndExpandType();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
 | 
						|
  SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
 | 
						|
 | 
						|
  // Add type for sret argument.
 | 
						|
  if (IRFunctionArgs.hasSRetArg()) {
 | 
						|
    QualType Ret = FI.getReturnType();
 | 
						|
    llvm::Type *Ty = ConvertType(Ret);
 | 
						|
    unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
 | 
						|
    ArgTypes[IRFunctionArgs.getSRetArgNo()] =
 | 
						|
        llvm::PointerType::get(Ty, AddressSpace);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add type for inalloca argument.
 | 
						|
  if (IRFunctionArgs.hasInallocaArg()) {
 | 
						|
    auto ArgStruct = FI.getArgStruct();
 | 
						|
    assert(ArgStruct);
 | 
						|
    ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
 | 
						|
  }
 | 
						|
 | 
						|
  // Add in all of the required arguments.
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
 | 
						|
                                     ie = it + FI.getNumRequiredArgs();
 | 
						|
  for (; it != ie; ++it, ++ArgNo) {
 | 
						|
    const ABIArgInfo &ArgInfo = it->info;
 | 
						|
 | 
						|
    // Insert a padding type to ensure proper alignment.
 | 
						|
    if (IRFunctionArgs.hasPaddingArg(ArgNo))
 | 
						|
      ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
 | 
						|
          ArgInfo.getPaddingType();
 | 
						|
 | 
						|
    unsigned FirstIRArg, NumIRArgs;
 | 
						|
    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
 | 
						|
 | 
						|
    switch (ArgInfo.getKind()) {
 | 
						|
    case ABIArgInfo::Ignore:
 | 
						|
    case ABIArgInfo::InAlloca:
 | 
						|
      assert(NumIRArgs == 0);
 | 
						|
      break;
 | 
						|
 | 
						|
    case ABIArgInfo::Indirect: {
 | 
						|
      assert(NumIRArgs == 1);
 | 
						|
      // indirect arguments are always on the stack, which is alloca addr space.
 | 
						|
      llvm::Type *LTy = ConvertTypeForMem(it->type);
 | 
						|
      ArgTypes[FirstIRArg] = LTy->getPointerTo(
 | 
						|
          CGM.getDataLayout().getAllocaAddrSpace());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Extend:
 | 
						|
    case ABIArgInfo::Direct: {
 | 
						|
      // Fast-isel and the optimizer generally like scalar values better than
 | 
						|
      // FCAs, so we flatten them if this is safe to do for this argument.
 | 
						|
      llvm::Type *argType = ArgInfo.getCoerceToType();
 | 
						|
      llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
 | 
						|
      if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
 | 
						|
        assert(NumIRArgs == st->getNumElements());
 | 
						|
        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
 | 
						|
          ArgTypes[FirstIRArg + i] = st->getElementType(i);
 | 
						|
      } else {
 | 
						|
        assert(NumIRArgs == 1);
 | 
						|
        ArgTypes[FirstIRArg] = argType;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::CoerceAndExpand: {
 | 
						|
      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
 | 
						|
      for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
 | 
						|
        *ArgTypesIter++ = EltTy;
 | 
						|
      }
 | 
						|
      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Expand:
 | 
						|
      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
 | 
						|
      getExpandedTypes(it->type, ArgTypesIter);
 | 
						|
      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
 | 
						|
  assert(Erased && "Not in set?");
 | 
						|
 | 
						|
  return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
 | 
						|
}
 | 
						|
 | 
						|
llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
 | 
						|
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | 
						|
  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
  if (!isFuncTypeConvertible(FPT))
 | 
						|
    return llvm::StructType::get(getLLVMContext());
 | 
						|
    
 | 
						|
  const CGFunctionInfo *Info;
 | 
						|
  if (isa<CXXDestructorDecl>(MD))
 | 
						|
    Info =
 | 
						|
        &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
 | 
						|
  else
 | 
						|
    Info = &arrangeCXXMethodDeclaration(MD);
 | 
						|
  return GetFunctionType(*Info);
 | 
						|
}
 | 
						|
 | 
						|
static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
 | 
						|
                                               llvm::AttrBuilder &FuncAttrs,
 | 
						|
                                               const FunctionProtoType *FPT) {
 | 
						|
  if (!FPT)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
 | 
						|
      FPT->isNothrow(Ctx))
 | 
						|
    FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
 | 
						|
                                               bool AttrOnCallSite,
 | 
						|
                                               llvm::AttrBuilder &FuncAttrs) {
 | 
						|
  // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
 | 
						|
  if (!HasOptnone) {
 | 
						|
    if (CodeGenOpts.OptimizeSize)
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
 | 
						|
    if (CodeGenOpts.OptimizeSize == 2)
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::MinSize);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CodeGenOpts.DisableRedZone)
 | 
						|
    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
 | 
						|
  if (CodeGenOpts.NoImplicitFloat)
 | 
						|
    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
 | 
						|
 | 
						|
  if (AttrOnCallSite) {
 | 
						|
    // Attributes that should go on the call site only.
 | 
						|
    if (!CodeGenOpts.SimplifyLibCalls ||
 | 
						|
        CodeGenOpts.isNoBuiltinFunc(Name.data()))
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
 | 
						|
    if (!CodeGenOpts.TrapFuncName.empty())
 | 
						|
      FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
 | 
						|
  } else {
 | 
						|
    // Attributes that should go on the function, but not the call site.
 | 
						|
    if (!CodeGenOpts.DisableFPElim) {
 | 
						|
      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
 | 
						|
    } else if (CodeGenOpts.OmitLeafFramePointer) {
 | 
						|
      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
 | 
						|
      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
 | 
						|
    } else {
 | 
						|
      FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
 | 
						|
      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
 | 
						|
    }
 | 
						|
 | 
						|
    FuncAttrs.addAttribute("less-precise-fpmad",
 | 
						|
                           llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
 | 
						|
 | 
						|
    if (!CodeGenOpts.FPDenormalMode.empty())
 | 
						|
      FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
 | 
						|
 | 
						|
    FuncAttrs.addAttribute("no-trapping-math",
 | 
						|
                           llvm::toStringRef(CodeGenOpts.NoTrappingMath));
 | 
						|
 | 
						|
    // TODO: Are these all needed?
 | 
						|
    // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
 | 
						|
    FuncAttrs.addAttribute("no-infs-fp-math",
 | 
						|
                           llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
 | 
						|
    FuncAttrs.addAttribute("no-nans-fp-math",
 | 
						|
                           llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
 | 
						|
    FuncAttrs.addAttribute("unsafe-fp-math",
 | 
						|
                           llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
 | 
						|
    FuncAttrs.addAttribute("use-soft-float",
 | 
						|
                           llvm::toStringRef(CodeGenOpts.SoftFloat));
 | 
						|
    FuncAttrs.addAttribute("stack-protector-buffer-size",
 | 
						|
                           llvm::utostr(CodeGenOpts.SSPBufferSize));
 | 
						|
    FuncAttrs.addAttribute("no-signed-zeros-fp-math",
 | 
						|
                           llvm::toStringRef(CodeGenOpts.NoSignedZeros));
 | 
						|
    FuncAttrs.addAttribute(
 | 
						|
        "correctly-rounded-divide-sqrt-fp-math",
 | 
						|
        llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
 | 
						|
 | 
						|
    // TODO: Reciprocal estimate codegen options should apply to instructions?
 | 
						|
    std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals;
 | 
						|
    if (!Recips.empty())
 | 
						|
      FuncAttrs.addAttribute("reciprocal-estimates",
 | 
						|
                             llvm::join(Recips.begin(), Recips.end(), ","));
 | 
						|
 | 
						|
    if (CodeGenOpts.StackRealignment)
 | 
						|
      FuncAttrs.addAttribute("stackrealign");
 | 
						|
    if (CodeGenOpts.Backchain)
 | 
						|
      FuncAttrs.addAttribute("backchain");
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().assumeFunctionsAreConvergent()) {
 | 
						|
    // Conservatively, mark all functions and calls in CUDA and OpenCL as
 | 
						|
    // convergent (meaning, they may call an intrinsically convergent op, such
 | 
						|
    // as __syncthreads() / barrier(), and so can't have certain optimizations
 | 
						|
    // applied around them).  LLVM will remove this attribute where it safely
 | 
						|
    // can.
 | 
						|
    FuncAttrs.addAttribute(llvm::Attribute::Convergent);
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
 | 
						|
    // Exceptions aren't supported in CUDA device code.
 | 
						|
    FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | 
						|
 | 
						|
    // Respect -fcuda-flush-denormals-to-zero.
 | 
						|
    if (getLangOpts().CUDADeviceFlushDenormalsToZero)
 | 
						|
      FuncAttrs.addAttribute("nvptx-f32ftz", "true");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
 | 
						|
  llvm::AttrBuilder FuncAttrs;
 | 
						|
  ConstructDefaultFnAttrList(F.getName(),
 | 
						|
                             F.hasFnAttribute(llvm::Attribute::OptimizeNone),
 | 
						|
                             /* AttrOnCallsite = */ false, FuncAttrs);
 | 
						|
  F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::ConstructAttributeList(
 | 
						|
    StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
 | 
						|
    llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
 | 
						|
  llvm::AttrBuilder FuncAttrs;
 | 
						|
  llvm::AttrBuilder RetAttrs;
 | 
						|
 | 
						|
  CallingConv = FI.getEffectiveCallingConvention();
 | 
						|
  if (FI.isNoReturn())
 | 
						|
    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
 | 
						|
 | 
						|
  // If we have information about the function prototype, we can learn
 | 
						|
  // attributes form there.
 | 
						|
  AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
 | 
						|
                                     CalleeInfo.getCalleeFunctionProtoType());
 | 
						|
 | 
						|
  const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
 | 
						|
 | 
						|
  bool HasOptnone = false;
 | 
						|
  // FIXME: handle sseregparm someday...
 | 
						|
  if (TargetDecl) {
 | 
						|
    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
 | 
						|
    if (TargetDecl->hasAttr<NoThrowAttr>())
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | 
						|
    if (TargetDecl->hasAttr<NoReturnAttr>())
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
 | 
						|
    if (TargetDecl->hasAttr<ColdAttr>())
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::Cold);
 | 
						|
    if (TargetDecl->hasAttr<NoDuplicateAttr>())
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
 | 
						|
    if (TargetDecl->hasAttr<ConvergentAttr>())
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::Convergent);
 | 
						|
 | 
						|
    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
 | 
						|
      AddAttributesFromFunctionProtoType(
 | 
						|
          getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
 | 
						|
      // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
 | 
						|
      // These attributes are not inherited by overloads.
 | 
						|
      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
 | 
						|
      if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
 | 
						|
        FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
 | 
						|
    }
 | 
						|
 | 
						|
    // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
 | 
						|
    if (TargetDecl->hasAttr<ConstAttr>()) {
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | 
						|
    } else if (TargetDecl->hasAttr<PureAttr>()) {
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | 
						|
    } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
 | 
						|
      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
 | 
						|
    }
 | 
						|
    if (TargetDecl->hasAttr<RestrictAttr>())
 | 
						|
      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
 | 
						|
    if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
 | 
						|
      RetAttrs.addAttribute(llvm::Attribute::NonNull);
 | 
						|
    if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
 | 
						|
      FuncAttrs.addAttribute("no_caller_saved_registers");
 | 
						|
 | 
						|
    HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
 | 
						|
    if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
 | 
						|
      Optional<unsigned> NumElemsParam;
 | 
						|
      // alloc_size args are base-1, 0 means not present.
 | 
						|
      if (unsigned N = AllocSize->getNumElemsParam())
 | 
						|
        NumElemsParam = N - 1;
 | 
						|
      FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1,
 | 
						|
                                 NumElemsParam);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
 | 
						|
 | 
						|
  if (CodeGenOpts.EnableSegmentedStacks &&
 | 
						|
      !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
 | 
						|
    FuncAttrs.addAttribute("split-stack");
 | 
						|
 | 
						|
  if (!AttrOnCallSite) {
 | 
						|
    bool DisableTailCalls =
 | 
						|
        CodeGenOpts.DisableTailCalls ||
 | 
						|
        (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
 | 
						|
                        TargetDecl->hasAttr<AnyX86InterruptAttr>()));
 | 
						|
    FuncAttrs.addAttribute("disable-tail-calls",
 | 
						|
                           llvm::toStringRef(DisableTailCalls));
 | 
						|
 | 
						|
    // Add target-cpu and target-features attributes to functions. If
 | 
						|
    // we have a decl for the function and it has a target attribute then
 | 
						|
    // parse that and add it to the feature set.
 | 
						|
    StringRef TargetCPU = getTarget().getTargetOpts().CPU;
 | 
						|
    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
 | 
						|
    if (FD && FD->hasAttr<TargetAttr>()) {
 | 
						|
      llvm::StringMap<bool> FeatureMap;
 | 
						|
      getFunctionFeatureMap(FeatureMap, FD);
 | 
						|
 | 
						|
      // Produce the canonical string for this set of features.
 | 
						|
      std::vector<std::string> Features;
 | 
						|
      for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
 | 
						|
                                                 ie = FeatureMap.end();
 | 
						|
           it != ie; ++it)
 | 
						|
        Features.push_back((it->second ? "+" : "-") + it->first().str());
 | 
						|
 | 
						|
      // Now add the target-cpu and target-features to the function.
 | 
						|
      // While we populated the feature map above, we still need to
 | 
						|
      // get and parse the target attribute so we can get the cpu for
 | 
						|
      // the function.
 | 
						|
      const auto *TD = FD->getAttr<TargetAttr>();
 | 
						|
      TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
 | 
						|
      if (ParsedAttr.Architecture != "")
 | 
						|
        TargetCPU = ParsedAttr.Architecture;
 | 
						|
      if (TargetCPU != "")
 | 
						|
        FuncAttrs.addAttribute("target-cpu", TargetCPU);
 | 
						|
      if (!Features.empty()) {
 | 
						|
        std::sort(Features.begin(), Features.end());
 | 
						|
        FuncAttrs.addAttribute(
 | 
						|
            "target-features",
 | 
						|
            llvm::join(Features.begin(), Features.end(), ","));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Otherwise just add the existing target cpu and target features to the
 | 
						|
      // function.
 | 
						|
      std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
 | 
						|
      if (TargetCPU != "")
 | 
						|
        FuncAttrs.addAttribute("target-cpu", TargetCPU);
 | 
						|
      if (!Features.empty()) {
 | 
						|
        std::sort(Features.begin(), Features.end());
 | 
						|
        FuncAttrs.addAttribute(
 | 
						|
            "target-features",
 | 
						|
            llvm::join(Features.begin(), Features.end(), ","));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
 | 
						|
 | 
						|
  QualType RetTy = FI.getReturnType();
 | 
						|
  const ABIArgInfo &RetAI = FI.getReturnInfo();
 | 
						|
  switch (RetAI.getKind()) {
 | 
						|
  case ABIArgInfo::Extend:
 | 
						|
    if (RetTy->hasSignedIntegerRepresentation())
 | 
						|
      RetAttrs.addAttribute(llvm::Attribute::SExt);
 | 
						|
    else if (RetTy->hasUnsignedIntegerRepresentation())
 | 
						|
      RetAttrs.addAttribute(llvm::Attribute::ZExt);
 | 
						|
    // FALL THROUGH
 | 
						|
  case ABIArgInfo::Direct:
 | 
						|
    if (RetAI.getInReg())
 | 
						|
      RetAttrs.addAttribute(llvm::Attribute::InReg);
 | 
						|
    break;
 | 
						|
  case ABIArgInfo::Ignore:
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::InAlloca:
 | 
						|
  case ABIArgInfo::Indirect: {
 | 
						|
    // inalloca and sret disable readnone and readonly
 | 
						|
    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
 | 
						|
      .removeAttribute(llvm::Attribute::ReadNone);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ABIArgInfo::CoerceAndExpand:
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::Expand:
 | 
						|
    llvm_unreachable("Invalid ABI kind for return argument");
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
 | 
						|
    QualType PTy = RefTy->getPointeeType();
 | 
						|
    if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
 | 
						|
      RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
 | 
						|
                                        .getQuantity());
 | 
						|
    else if (getContext().getTargetAddressSpace(PTy) == 0)
 | 
						|
      RetAttrs.addAttribute(llvm::Attribute::NonNull);
 | 
						|
  }
 | 
						|
 | 
						|
  bool hasUsedSRet = false;
 | 
						|
  SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
 | 
						|
 | 
						|
  // Attach attributes to sret.
 | 
						|
  if (IRFunctionArgs.hasSRetArg()) {
 | 
						|
    llvm::AttrBuilder SRETAttrs;
 | 
						|
    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
 | 
						|
    hasUsedSRet = true;
 | 
						|
    if (RetAI.getInReg())
 | 
						|
      SRETAttrs.addAttribute(llvm::Attribute::InReg);
 | 
						|
    ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
 | 
						|
        llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Attach attributes to inalloca argument.
 | 
						|
  if (IRFunctionArgs.hasInallocaArg()) {
 | 
						|
    llvm::AttrBuilder Attrs;
 | 
						|
    Attrs.addAttribute(llvm::Attribute::InAlloca);
 | 
						|
    ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
 | 
						|
        llvm::AttributeSet::get(getLLVMContext(), Attrs);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
 | 
						|
                                          E = FI.arg_end();
 | 
						|
       I != E; ++I, ++ArgNo) {
 | 
						|
    QualType ParamType = I->type;
 | 
						|
    const ABIArgInfo &AI = I->info;
 | 
						|
    llvm::AttrBuilder Attrs;
 | 
						|
 | 
						|
    // Add attribute for padding argument, if necessary.
 | 
						|
    if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
 | 
						|
      if (AI.getPaddingInReg()) {
 | 
						|
        ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
 | 
						|
            llvm::AttributeSet::get(
 | 
						|
                getLLVMContext(),
 | 
						|
                llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
 | 
						|
    // have the corresponding parameter variable.  It doesn't make
 | 
						|
    // sense to do it here because parameters are so messed up.
 | 
						|
    switch (AI.getKind()) {
 | 
						|
    case ABIArgInfo::Extend:
 | 
						|
      if (ParamType->isSignedIntegerOrEnumerationType())
 | 
						|
        Attrs.addAttribute(llvm::Attribute::SExt);
 | 
						|
      else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
 | 
						|
        if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
 | 
						|
          Attrs.addAttribute(llvm::Attribute::SExt);
 | 
						|
        else
 | 
						|
          Attrs.addAttribute(llvm::Attribute::ZExt);
 | 
						|
      }
 | 
						|
      // FALL THROUGH
 | 
						|
    case ABIArgInfo::Direct:
 | 
						|
      if (ArgNo == 0 && FI.isChainCall())
 | 
						|
        Attrs.addAttribute(llvm::Attribute::Nest);
 | 
						|
      else if (AI.getInReg())
 | 
						|
        Attrs.addAttribute(llvm::Attribute::InReg);
 | 
						|
      break;
 | 
						|
 | 
						|
    case ABIArgInfo::Indirect: {
 | 
						|
      if (AI.getInReg())
 | 
						|
        Attrs.addAttribute(llvm::Attribute::InReg);
 | 
						|
 | 
						|
      if (AI.getIndirectByVal())
 | 
						|
        Attrs.addAttribute(llvm::Attribute::ByVal);
 | 
						|
 | 
						|
      CharUnits Align = AI.getIndirectAlign();
 | 
						|
 | 
						|
      // In a byval argument, it is important that the required
 | 
						|
      // alignment of the type is honored, as LLVM might be creating a
 | 
						|
      // *new* stack object, and needs to know what alignment to give
 | 
						|
      // it. (Sometimes it can deduce a sensible alignment on its own,
 | 
						|
      // but not if clang decides it must emit a packed struct, or the
 | 
						|
      // user specifies increased alignment requirements.)
 | 
						|
      //
 | 
						|
      // This is different from indirect *not* byval, where the object
 | 
						|
      // exists already, and the align attribute is purely
 | 
						|
      // informative.
 | 
						|
      assert(!Align.isZero());
 | 
						|
 | 
						|
      // For now, only add this when we have a byval argument.
 | 
						|
      // TODO: be less lazy about updating test cases.
 | 
						|
      if (AI.getIndirectByVal())
 | 
						|
        Attrs.addAlignmentAttr(Align.getQuantity());
 | 
						|
 | 
						|
      // byval disables readnone and readonly.
 | 
						|
      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
 | 
						|
        .removeAttribute(llvm::Attribute::ReadNone);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ABIArgInfo::Ignore:
 | 
						|
    case ABIArgInfo::Expand:
 | 
						|
    case ABIArgInfo::CoerceAndExpand:
 | 
						|
      break;
 | 
						|
 | 
						|
    case ABIArgInfo::InAlloca:
 | 
						|
      // inalloca disables readnone and readonly.
 | 
						|
      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
 | 
						|
          .removeAttribute(llvm::Attribute::ReadNone);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
 | 
						|
      QualType PTy = RefTy->getPointeeType();
 | 
						|
      if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
 | 
						|
        Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
 | 
						|
                                       .getQuantity());
 | 
						|
      else if (getContext().getTargetAddressSpace(PTy) == 0)
 | 
						|
        Attrs.addAttribute(llvm::Attribute::NonNull);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (FI.getExtParameterInfo(ArgNo).getABI()) {
 | 
						|
    case ParameterABI::Ordinary:
 | 
						|
      break;
 | 
						|
 | 
						|
    case ParameterABI::SwiftIndirectResult: {
 | 
						|
      // Add 'sret' if we haven't already used it for something, but
 | 
						|
      // only if the result is void.
 | 
						|
      if (!hasUsedSRet && RetTy->isVoidType()) {
 | 
						|
        Attrs.addAttribute(llvm::Attribute::StructRet);
 | 
						|
        hasUsedSRet = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add 'noalias' in either case.
 | 
						|
      Attrs.addAttribute(llvm::Attribute::NoAlias);
 | 
						|
 | 
						|
      // Add 'dereferenceable' and 'alignment'.
 | 
						|
      auto PTy = ParamType->getPointeeType();
 | 
						|
      if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
 | 
						|
        auto info = getContext().getTypeInfoInChars(PTy);
 | 
						|
        Attrs.addDereferenceableAttr(info.first.getQuantity());
 | 
						|
        Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
 | 
						|
                                                 info.second.getQuantity()));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ParameterABI::SwiftErrorResult:
 | 
						|
      Attrs.addAttribute(llvm::Attribute::SwiftError);
 | 
						|
      break;
 | 
						|
 | 
						|
    case ParameterABI::SwiftContext:
 | 
						|
      Attrs.addAttribute(llvm::Attribute::SwiftSelf);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FI.getExtParameterInfo(ArgNo).isNoEscape())
 | 
						|
      Attrs.addAttribute(llvm::Attribute::NoCapture);
 | 
						|
 | 
						|
    if (Attrs.hasAttributes()) {
 | 
						|
      unsigned FirstIRArg, NumIRArgs;
 | 
						|
      std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
 | 
						|
      for (unsigned i = 0; i < NumIRArgs; i++)
 | 
						|
        ArgAttrs[FirstIRArg + i] =
 | 
						|
            llvm::AttributeSet::get(getLLVMContext(), Attrs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(ArgNo == FI.arg_size());
 | 
						|
 | 
						|
  AttrList = llvm::AttributeList::get(
 | 
						|
      getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
 | 
						|
      llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
 | 
						|
}
 | 
						|
 | 
						|
/// An argument came in as a promoted argument; demote it back to its
 | 
						|
/// declared type.
 | 
						|
static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
 | 
						|
                                         const VarDecl *var,
 | 
						|
                                         llvm::Value *value) {
 | 
						|
  llvm::Type *varType = CGF.ConvertType(var->getType());
 | 
						|
 | 
						|
  // This can happen with promotions that actually don't change the
 | 
						|
  // underlying type, like the enum promotions.
 | 
						|
  if (value->getType() == varType) return value;
 | 
						|
 | 
						|
  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
 | 
						|
         && "unexpected promotion type");
 | 
						|
 | 
						|
  if (isa<llvm::IntegerType>(varType))
 | 
						|
    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
 | 
						|
 | 
						|
  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the attribute (either parameter attribute, or function
 | 
						|
/// attribute), which declares argument ArgNo to be non-null.
 | 
						|
static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
 | 
						|
                                         QualType ArgType, unsigned ArgNo) {
 | 
						|
  // FIXME: __attribute__((nonnull)) can also be applied to:
 | 
						|
  //   - references to pointers, where the pointee is known to be
 | 
						|
  //     nonnull (apparently a Clang extension)
 | 
						|
  //   - transparent unions containing pointers
 | 
						|
  // In the former case, LLVM IR cannot represent the constraint. In
 | 
						|
  // the latter case, we have no guarantee that the transparent union
 | 
						|
  // is in fact passed as a pointer.
 | 
						|
  if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
 | 
						|
    return nullptr;
 | 
						|
  // First, check attribute on parameter itself.
 | 
						|
  if (PVD) {
 | 
						|
    if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
 | 
						|
      return ParmNNAttr;
 | 
						|
  }
 | 
						|
  // Check function attributes.
 | 
						|
  if (!FD)
 | 
						|
    return nullptr;
 | 
						|
  for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
 | 
						|
    if (NNAttr->isNonNull(ArgNo))
 | 
						|
      return NNAttr;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct CopyBackSwiftError final : EHScopeStack::Cleanup {
 | 
						|
    Address Temp;
 | 
						|
    Address Arg;
 | 
						|
    CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
 | 
						|
      CGF.Builder.CreateStore(errorValue, Arg);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
 | 
						|
                                         llvm::Function *Fn,
 | 
						|
                                         const FunctionArgList &Args) {
 | 
						|
  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
 | 
						|
    // Naked functions don't have prologues.
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is an implicit-return-zero function, go ahead and
 | 
						|
  // initialize the return value.  TODO: it might be nice to have
 | 
						|
  // a more general mechanism for this that didn't require synthesized
 | 
						|
  // return statements.
 | 
						|
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
 | 
						|
    if (FD->hasImplicitReturnZero()) {
 | 
						|
      QualType RetTy = FD->getReturnType().getUnqualifiedType();
 | 
						|
      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
 | 
						|
      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
 | 
						|
      Builder.CreateStore(Zero, ReturnValue);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We no longer need the types from FunctionArgList; lift up and
 | 
						|
  // simplify.
 | 
						|
 | 
						|
  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
 | 
						|
  // Flattened function arguments.
 | 
						|
  SmallVector<llvm::Value *, 16> FnArgs;
 | 
						|
  FnArgs.reserve(IRFunctionArgs.totalIRArgs());
 | 
						|
  for (auto &Arg : Fn->args()) {
 | 
						|
    FnArgs.push_back(&Arg);
 | 
						|
  }
 | 
						|
  assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
 | 
						|
 | 
						|
  // If we're using inalloca, all the memory arguments are GEPs off of the last
 | 
						|
  // parameter, which is a pointer to the complete memory area.
 | 
						|
  Address ArgStruct = Address::invalid();
 | 
						|
  const llvm::StructLayout *ArgStructLayout = nullptr;
 | 
						|
  if (IRFunctionArgs.hasInallocaArg()) {
 | 
						|
    ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
 | 
						|
    ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
 | 
						|
                        FI.getArgStructAlignment());
 | 
						|
 | 
						|
    assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
 | 
						|
  }
 | 
						|
 | 
						|
  // Name the struct return parameter.
 | 
						|
  if (IRFunctionArgs.hasSRetArg()) {
 | 
						|
    auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
 | 
						|
    AI->setName("agg.result");
 | 
						|
    AI->addAttr(llvm::Attribute::NoAlias);
 | 
						|
  }
 | 
						|
 | 
						|
  // Track if we received the parameter as a pointer (indirect, byval, or
 | 
						|
  // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
 | 
						|
  // into a local alloca for us.
 | 
						|
  SmallVector<ParamValue, 16> ArgVals;
 | 
						|
  ArgVals.reserve(Args.size());
 | 
						|
 | 
						|
  // Create a pointer value for every parameter declaration.  This usually
 | 
						|
  // entails copying one or more LLVM IR arguments into an alloca.  Don't push
 | 
						|
  // any cleanups or do anything that might unwind.  We do that separately, so
 | 
						|
  // we can push the cleanups in the correct order for the ABI.
 | 
						|
  assert(FI.arg_size() == Args.size() &&
 | 
						|
         "Mismatch between function signature & arguments.");
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
 | 
						|
  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
 | 
						|
       i != e; ++i, ++info_it, ++ArgNo) {
 | 
						|
    const VarDecl *Arg = *i;
 | 
						|
    QualType Ty = info_it->type;
 | 
						|
    const ABIArgInfo &ArgI = info_it->info;
 | 
						|
 | 
						|
    bool isPromoted =
 | 
						|
      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
 | 
						|
 | 
						|
    unsigned FirstIRArg, NumIRArgs;
 | 
						|
    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
 | 
						|
 | 
						|
    switch (ArgI.getKind()) {
 | 
						|
    case ABIArgInfo::InAlloca: {
 | 
						|
      assert(NumIRArgs == 0);
 | 
						|
      auto FieldIndex = ArgI.getInAllocaFieldIndex();
 | 
						|
      CharUnits FieldOffset =
 | 
						|
        CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
 | 
						|
      Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
 | 
						|
                                          Arg->getName());
 | 
						|
      ArgVals.push_back(ParamValue::forIndirect(V));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Indirect: {
 | 
						|
      assert(NumIRArgs == 1);
 | 
						|
      Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
 | 
						|
 | 
						|
      if (!hasScalarEvaluationKind(Ty)) {
 | 
						|
        // Aggregates and complex variables are accessed by reference.  All we
 | 
						|
        // need to do is realign the value, if requested.
 | 
						|
        Address V = ParamAddr;
 | 
						|
        if (ArgI.getIndirectRealign()) {
 | 
						|
          Address AlignedTemp = CreateMemTemp(Ty, "coerce");
 | 
						|
 | 
						|
          // Copy from the incoming argument pointer to the temporary with the
 | 
						|
          // appropriate alignment.
 | 
						|
          //
 | 
						|
          // FIXME: We should have a common utility for generating an aggregate
 | 
						|
          // copy.
 | 
						|
          CharUnits Size = getContext().getTypeSizeInChars(Ty);
 | 
						|
          auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
 | 
						|
          Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
 | 
						|
          Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
 | 
						|
          Builder.CreateMemCpy(Dst, Src, SizeVal, false);
 | 
						|
          V = AlignedTemp;
 | 
						|
        }
 | 
						|
        ArgVals.push_back(ParamValue::forIndirect(V));
 | 
						|
      } else {
 | 
						|
        // Load scalar value from indirect argument.
 | 
						|
        llvm::Value *V =
 | 
						|
          EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
 | 
						|
 | 
						|
        if (isPromoted)
 | 
						|
          V = emitArgumentDemotion(*this, Arg, V);
 | 
						|
        ArgVals.push_back(ParamValue::forDirect(V));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Extend:
 | 
						|
    case ABIArgInfo::Direct: {
 | 
						|
 | 
						|
      // If we have the trivial case, handle it with no muss and fuss.
 | 
						|
      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
 | 
						|
          ArgI.getCoerceToType() == ConvertType(Ty) &&
 | 
						|
          ArgI.getDirectOffset() == 0) {
 | 
						|
        assert(NumIRArgs == 1);
 | 
						|
        llvm::Value *V = FnArgs[FirstIRArg];
 | 
						|
        auto AI = cast<llvm::Argument>(V);
 | 
						|
 | 
						|
        if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
 | 
						|
          if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
 | 
						|
                             PVD->getFunctionScopeIndex()))
 | 
						|
            AI->addAttr(llvm::Attribute::NonNull);
 | 
						|
 | 
						|
          QualType OTy = PVD->getOriginalType();
 | 
						|
          if (const auto *ArrTy =
 | 
						|
              getContext().getAsConstantArrayType(OTy)) {
 | 
						|
            // A C99 array parameter declaration with the static keyword also
 | 
						|
            // indicates dereferenceability, and if the size is constant we can
 | 
						|
            // use the dereferenceable attribute (which requires the size in
 | 
						|
            // bytes).
 | 
						|
            if (ArrTy->getSizeModifier() == ArrayType::Static) {
 | 
						|
              QualType ETy = ArrTy->getElementType();
 | 
						|
              uint64_t ArrSize = ArrTy->getSize().getZExtValue();
 | 
						|
              if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
 | 
						|
                  ArrSize) {
 | 
						|
                llvm::AttrBuilder Attrs;
 | 
						|
                Attrs.addDereferenceableAttr(
 | 
						|
                  getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
 | 
						|
                AI->addAttrs(Attrs);
 | 
						|
              } else if (getContext().getTargetAddressSpace(ETy) == 0) {
 | 
						|
                AI->addAttr(llvm::Attribute::NonNull);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          } else if (const auto *ArrTy =
 | 
						|
                     getContext().getAsVariableArrayType(OTy)) {
 | 
						|
            // For C99 VLAs with the static keyword, we don't know the size so
 | 
						|
            // we can't use the dereferenceable attribute, but in addrspace(0)
 | 
						|
            // we know that it must be nonnull.
 | 
						|
            if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
 | 
						|
                !getContext().getTargetAddressSpace(ArrTy->getElementType()))
 | 
						|
              AI->addAttr(llvm::Attribute::NonNull);
 | 
						|
          }
 | 
						|
 | 
						|
          const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
 | 
						|
          if (!AVAttr)
 | 
						|
            if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
 | 
						|
              AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
 | 
						|
          if (AVAttr) {
 | 
						|
            llvm::Value *AlignmentValue =
 | 
						|
              EmitScalarExpr(AVAttr->getAlignment());
 | 
						|
            llvm::ConstantInt *AlignmentCI =
 | 
						|
              cast<llvm::ConstantInt>(AlignmentValue);
 | 
						|
            unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
 | 
						|
                                          +llvm::Value::MaximumAlignment);
 | 
						|
            AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (Arg->getType().isRestrictQualified())
 | 
						|
          AI->addAttr(llvm::Attribute::NoAlias);
 | 
						|
 | 
						|
        // LLVM expects swifterror parameters to be used in very restricted
 | 
						|
        // ways.  Copy the value into a less-restricted temporary.
 | 
						|
        if (FI.getExtParameterInfo(ArgNo).getABI()
 | 
						|
              == ParameterABI::SwiftErrorResult) {
 | 
						|
          QualType pointeeTy = Ty->getPointeeType();
 | 
						|
          assert(pointeeTy->isPointerType());
 | 
						|
          Address temp =
 | 
						|
            CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
 | 
						|
          Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
 | 
						|
          llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
 | 
						|
          Builder.CreateStore(incomingErrorValue, temp);
 | 
						|
          V = temp.getPointer();
 | 
						|
 | 
						|
          // Push a cleanup to copy the value back at the end of the function.
 | 
						|
          // The convention does not guarantee that the value will be written
 | 
						|
          // back if the function exits with an unwind exception.
 | 
						|
          EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
 | 
						|
        }
 | 
						|
 | 
						|
        // Ensure the argument is the correct type.
 | 
						|
        if (V->getType() != ArgI.getCoerceToType())
 | 
						|
          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
 | 
						|
 | 
						|
        if (isPromoted)
 | 
						|
          V = emitArgumentDemotion(*this, Arg, V);
 | 
						|
 | 
						|
        // Because of merging of function types from multiple decls it is
 | 
						|
        // possible for the type of an argument to not match the corresponding
 | 
						|
        // type in the function type. Since we are codegening the callee
 | 
						|
        // in here, add a cast to the argument type.
 | 
						|
        llvm::Type *LTy = ConvertType(Arg->getType());
 | 
						|
        if (V->getType() != LTy)
 | 
						|
          V = Builder.CreateBitCast(V, LTy);
 | 
						|
 | 
						|
        ArgVals.push_back(ParamValue::forDirect(V));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
 | 
						|
                                     Arg->getName());
 | 
						|
 | 
						|
      // Pointer to store into.
 | 
						|
      Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
 | 
						|
 | 
						|
      // Fast-isel and the optimizer generally like scalar values better than
 | 
						|
      // FCAs, so we flatten them if this is safe to do for this argument.
 | 
						|
      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
 | 
						|
      if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
 | 
						|
          STy->getNumElements() > 1) {
 | 
						|
        auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
 | 
						|
        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
 | 
						|
        llvm::Type *DstTy = Ptr.getElementType();
 | 
						|
        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
 | 
						|
 | 
						|
        Address AddrToStoreInto = Address::invalid();
 | 
						|
        if (SrcSize <= DstSize) {
 | 
						|
          AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
 | 
						|
        } else {
 | 
						|
          AddrToStoreInto =
 | 
						|
            CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
 | 
						|
        }
 | 
						|
 | 
						|
        assert(STy->getNumElements() == NumIRArgs);
 | 
						|
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
          auto AI = FnArgs[FirstIRArg + i];
 | 
						|
          AI->setName(Arg->getName() + ".coerce" + Twine(i));
 | 
						|
          auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
 | 
						|
          Address EltPtr =
 | 
						|
            Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
 | 
						|
          Builder.CreateStore(AI, EltPtr);
 | 
						|
        }
 | 
						|
 | 
						|
        if (SrcSize > DstSize) {
 | 
						|
          Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
 | 
						|
        }
 | 
						|
 | 
						|
      } else {
 | 
						|
        // Simple case, just do a coerced store of the argument into the alloca.
 | 
						|
        assert(NumIRArgs == 1);
 | 
						|
        auto AI = FnArgs[FirstIRArg];
 | 
						|
        AI->setName(Arg->getName() + ".coerce");
 | 
						|
        CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
 | 
						|
      }
 | 
						|
 | 
						|
      // Match to what EmitParmDecl is expecting for this type.
 | 
						|
      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
 | 
						|
        llvm::Value *V =
 | 
						|
          EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
 | 
						|
        if (isPromoted)
 | 
						|
          V = emitArgumentDemotion(*this, Arg, V);
 | 
						|
        ArgVals.push_back(ParamValue::forDirect(V));
 | 
						|
      } else {
 | 
						|
        ArgVals.push_back(ParamValue::forIndirect(Alloca));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::CoerceAndExpand: {
 | 
						|
      // Reconstruct into a temporary.
 | 
						|
      Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
 | 
						|
      ArgVals.push_back(ParamValue::forIndirect(alloca));
 | 
						|
 | 
						|
      auto coercionType = ArgI.getCoerceAndExpandType();
 | 
						|
      alloca = Builder.CreateElementBitCast(alloca, coercionType);
 | 
						|
      auto layout = CGM.getDataLayout().getStructLayout(coercionType);
 | 
						|
 | 
						|
      unsigned argIndex = FirstIRArg;
 | 
						|
      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
 | 
						|
        llvm::Type *eltType = coercionType->getElementType(i);
 | 
						|
        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
 | 
						|
          continue;
 | 
						|
 | 
						|
        auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
 | 
						|
        auto elt = FnArgs[argIndex++];
 | 
						|
        Builder.CreateStore(elt, eltAddr);
 | 
						|
      }
 | 
						|
      assert(argIndex == FirstIRArg + NumIRArgs);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Expand: {
 | 
						|
      // If this structure was expanded into multiple arguments then
 | 
						|
      // we need to create a temporary and reconstruct it from the
 | 
						|
      // arguments.
 | 
						|
      Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
 | 
						|
      LValue LV = MakeAddrLValue(Alloca, Ty);
 | 
						|
      ArgVals.push_back(ParamValue::forIndirect(Alloca));
 | 
						|
 | 
						|
      auto FnArgIter = FnArgs.begin() + FirstIRArg;
 | 
						|
      ExpandTypeFromArgs(Ty, LV, FnArgIter);
 | 
						|
      assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
 | 
						|
      for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
 | 
						|
        auto AI = FnArgs[FirstIRArg + i];
 | 
						|
        AI->setName(Arg->getName() + "." + Twine(i));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Ignore:
 | 
						|
      assert(NumIRArgs == 0);
 | 
						|
      // Initialize the local variable appropriately.
 | 
						|
      if (!hasScalarEvaluationKind(Ty)) {
 | 
						|
        ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
 | 
						|
      } else {
 | 
						|
        llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
 | 
						|
        ArgVals.push_back(ParamValue::forDirect(U));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
 | 
						|
    for (int I = Args.size() - 1; I >= 0; --I)
 | 
						|
      EmitParmDecl(*Args[I], ArgVals[I], I + 1);
 | 
						|
  } else {
 | 
						|
    for (unsigned I = 0, E = Args.size(); I != E; ++I)
 | 
						|
      EmitParmDecl(*Args[I], ArgVals[I], I + 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void eraseUnusedBitCasts(llvm::Instruction *insn) {
 | 
						|
  while (insn->use_empty()) {
 | 
						|
    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
 | 
						|
    if (!bitcast) return;
 | 
						|
 | 
						|
    // This is "safe" because we would have used a ConstantExpr otherwise.
 | 
						|
    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
 | 
						|
    bitcast->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Try to emit a fused autorelease of a return result.
 | 
						|
static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
 | 
						|
                                                    llvm::Value *result) {
 | 
						|
  // We must be immediately followed the cast.
 | 
						|
  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
 | 
						|
  if (BB->empty()) return nullptr;
 | 
						|
  if (&BB->back() != result) return nullptr;
 | 
						|
 | 
						|
  llvm::Type *resultType = result->getType();
 | 
						|
 | 
						|
  // result is in a BasicBlock and is therefore an Instruction.
 | 
						|
  llvm::Instruction *generator = cast<llvm::Instruction>(result);
 | 
						|
 | 
						|
  SmallVector<llvm::Instruction *, 4> InstsToKill;
 | 
						|
 | 
						|
  // Look for:
 | 
						|
  //  %generator = bitcast %type1* %generator2 to %type2*
 | 
						|
  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
 | 
						|
    // We would have emitted this as a constant if the operand weren't
 | 
						|
    // an Instruction.
 | 
						|
    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
 | 
						|
 | 
						|
    // Require the generator to be immediately followed by the cast.
 | 
						|
    if (generator->getNextNode() != bitcast)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    InstsToKill.push_back(bitcast);
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for:
 | 
						|
  //   %generator = call i8* @objc_retain(i8* %originalResult)
 | 
						|
  // or
 | 
						|
  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
 | 
						|
  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
 | 
						|
  if (!call) return nullptr;
 | 
						|
 | 
						|
  bool doRetainAutorelease;
 | 
						|
 | 
						|
  if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
 | 
						|
    doRetainAutorelease = true;
 | 
						|
  } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
 | 
						|
                                          .objc_retainAutoreleasedReturnValue) {
 | 
						|
    doRetainAutorelease = false;
 | 
						|
 | 
						|
    // If we emitted an assembly marker for this call (and the
 | 
						|
    // ARCEntrypoints field should have been set if so), go looking
 | 
						|
    // for that call.  If we can't find it, we can't do this
 | 
						|
    // optimization.  But it should always be the immediately previous
 | 
						|
    // instruction, unless we needed bitcasts around the call.
 | 
						|
    if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
 | 
						|
      llvm::Instruction *prev = call->getPrevNode();
 | 
						|
      assert(prev);
 | 
						|
      if (isa<llvm::BitCastInst>(prev)) {
 | 
						|
        prev = prev->getPrevNode();
 | 
						|
        assert(prev);
 | 
						|
      }
 | 
						|
      assert(isa<llvm::CallInst>(prev));
 | 
						|
      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
 | 
						|
               CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
 | 
						|
      InstsToKill.push_back(prev);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  result = call->getArgOperand(0);
 | 
						|
  InstsToKill.push_back(call);
 | 
						|
 | 
						|
  // Keep killing bitcasts, for sanity.  Note that we no longer care
 | 
						|
  // about precise ordering as long as there's exactly one use.
 | 
						|
  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
 | 
						|
    if (!bitcast->hasOneUse()) break;
 | 
						|
    InstsToKill.push_back(bitcast);
 | 
						|
    result = bitcast->getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete all the unnecessary instructions, from latest to earliest.
 | 
						|
  for (auto *I : InstsToKill)
 | 
						|
    I->eraseFromParent();
 | 
						|
 | 
						|
  // Do the fused retain/autorelease if we were asked to.
 | 
						|
  if (doRetainAutorelease)
 | 
						|
    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
 | 
						|
 | 
						|
  // Cast back to the result type.
 | 
						|
  return CGF.Builder.CreateBitCast(result, resultType);
 | 
						|
}
 | 
						|
 | 
						|
/// If this is a +1 of the value of an immutable 'self', remove it.
 | 
						|
static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
 | 
						|
                                          llvm::Value *result) {
 | 
						|
  // This is only applicable to a method with an immutable 'self'.
 | 
						|
  const ObjCMethodDecl *method =
 | 
						|
    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
 | 
						|
  if (!method) return nullptr;
 | 
						|
  const VarDecl *self = method->getSelfDecl();
 | 
						|
  if (!self->getType().isConstQualified()) return nullptr;
 | 
						|
 | 
						|
  // Look for a retain call.
 | 
						|
  llvm::CallInst *retainCall =
 | 
						|
    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
 | 
						|
  if (!retainCall ||
 | 
						|
      retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Look for an ordinary load of 'self'.
 | 
						|
  llvm::Value *retainedValue = retainCall->getArgOperand(0);
 | 
						|
  llvm::LoadInst *load =
 | 
						|
    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
 | 
						|
  if (!load || load->isAtomic() || load->isVolatile() || 
 | 
						|
      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Okay!  Burn it all down.  This relies for correctness on the
 | 
						|
  // assumption that the retain is emitted as part of the return and
 | 
						|
  // that thereafter everything is used "linearly".
 | 
						|
  llvm::Type *resultType = result->getType();
 | 
						|
  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
 | 
						|
  assert(retainCall->use_empty());
 | 
						|
  retainCall->eraseFromParent();
 | 
						|
  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
 | 
						|
 | 
						|
  return CGF.Builder.CreateBitCast(load, resultType);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit an ARC autorelease of the result of a function.
 | 
						|
///
 | 
						|
/// \return the value to actually return from the function
 | 
						|
static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
 | 
						|
                                            llvm::Value *result) {
 | 
						|
  // If we're returning 'self', kill the initial retain.  This is a
 | 
						|
  // heuristic attempt to "encourage correctness" in the really unfortunate
 | 
						|
  // case where we have a return of self during a dealloc and we desperately
 | 
						|
  // need to avoid the possible autorelease.
 | 
						|
  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
 | 
						|
    return self;
 | 
						|
 | 
						|
  // At -O0, try to emit a fused retain/autorelease.
 | 
						|
  if (CGF.shouldUseFusedARCCalls())
 | 
						|
    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
 | 
						|
      return fused;
 | 
						|
 | 
						|
  return CGF.EmitARCAutoreleaseReturnValue(result);
 | 
						|
}
 | 
						|
 | 
						|
/// Heuristically search for a dominating store to the return-value slot.
 | 
						|
static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
 | 
						|
  // Check if a User is a store which pointerOperand is the ReturnValue.
 | 
						|
  // We are looking for stores to the ReturnValue, not for stores of the
 | 
						|
  // ReturnValue to some other location.
 | 
						|
  auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
 | 
						|
    auto *SI = dyn_cast<llvm::StoreInst>(U);
 | 
						|
    if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
 | 
						|
      return nullptr;
 | 
						|
    // These aren't actually possible for non-coerced returns, and we
 | 
						|
    // only care about non-coerced returns on this code path.
 | 
						|
    assert(!SI->isAtomic() && !SI->isVolatile());
 | 
						|
    return SI;
 | 
						|
  };
 | 
						|
  // If there are multiple uses of the return-value slot, just check
 | 
						|
  // for something immediately preceding the IP.  Sometimes this can
 | 
						|
  // happen with how we generate implicit-returns; it can also happen
 | 
						|
  // with noreturn cleanups.
 | 
						|
  if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
 | 
						|
    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
 | 
						|
    if (IP->empty()) return nullptr;
 | 
						|
    llvm::Instruction *I = &IP->back();
 | 
						|
 | 
						|
    // Skip lifetime markers
 | 
						|
    for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
 | 
						|
                                            IE = IP->rend();
 | 
						|
         II != IE; ++II) {
 | 
						|
      if (llvm::IntrinsicInst *Intrinsic =
 | 
						|
              dyn_cast<llvm::IntrinsicInst>(&*II)) {
 | 
						|
        if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
 | 
						|
          const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
 | 
						|
          ++II;
 | 
						|
          if (II == IE)
 | 
						|
            break;
 | 
						|
          if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      I = &*II;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return GetStoreIfValid(I);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::StoreInst *store =
 | 
						|
      GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
 | 
						|
  if (!store) return nullptr;
 | 
						|
 | 
						|
  // Now do a first-and-dirty dominance check: just walk up the
 | 
						|
  // single-predecessors chain from the current insertion point.
 | 
						|
  llvm::BasicBlock *StoreBB = store->getParent();
 | 
						|
  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
 | 
						|
  while (IP != StoreBB) {
 | 
						|
    if (!(IP = IP->getSinglePredecessor()))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, the store's basic block dominates the insertion point; we
 | 
						|
  // can do our thing.
 | 
						|
  return store;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
 | 
						|
                                         bool EmitRetDbgLoc,
 | 
						|
                                         SourceLocation EndLoc) {
 | 
						|
  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
 | 
						|
    // Naked functions don't have epilogues.
 | 
						|
    Builder.CreateUnreachable();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Functions with no result always return void.
 | 
						|
  if (!ReturnValue.isValid()) {
 | 
						|
    Builder.CreateRetVoid();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::DebugLoc RetDbgLoc;
 | 
						|
  llvm::Value *RV = nullptr;
 | 
						|
  QualType RetTy = FI.getReturnType();
 | 
						|
  const ABIArgInfo &RetAI = FI.getReturnInfo();
 | 
						|
 | 
						|
  switch (RetAI.getKind()) {
 | 
						|
  case ABIArgInfo::InAlloca:
 | 
						|
    // Aggregrates get evaluated directly into the destination.  Sometimes we
 | 
						|
    // need to return the sret value in a register, though.
 | 
						|
    assert(hasAggregateEvaluationKind(RetTy));
 | 
						|
    if (RetAI.getInAllocaSRet()) {
 | 
						|
      llvm::Function::arg_iterator EI = CurFn->arg_end();
 | 
						|
      --EI;
 | 
						|
      llvm::Value *ArgStruct = &*EI;
 | 
						|
      llvm::Value *SRet = Builder.CreateStructGEP(
 | 
						|
          nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
 | 
						|
      RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::Indirect: {
 | 
						|
    auto AI = CurFn->arg_begin();
 | 
						|
    if (RetAI.isSRetAfterThis())
 | 
						|
      ++AI;
 | 
						|
    switch (getEvaluationKind(RetTy)) {
 | 
						|
    case TEK_Complex: {
 | 
						|
      ComplexPairTy RT =
 | 
						|
        EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
 | 
						|
      EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
 | 
						|
                         /*isInit*/ true);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TEK_Aggregate:
 | 
						|
      // Do nothing; aggregrates get evaluated directly into the destination.
 | 
						|
      break;
 | 
						|
    case TEK_Scalar:
 | 
						|
      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
 | 
						|
                        MakeNaturalAlignAddrLValue(&*AI, RetTy),
 | 
						|
                        /*isInit*/ true);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ABIArgInfo::Extend:
 | 
						|
  case ABIArgInfo::Direct:
 | 
						|
    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
 | 
						|
        RetAI.getDirectOffset() == 0) {
 | 
						|
      // The internal return value temp always will have pointer-to-return-type
 | 
						|
      // type, just do a load.
 | 
						|
 | 
						|
      // If there is a dominating store to ReturnValue, we can elide
 | 
						|
      // the load, zap the store, and usually zap the alloca.
 | 
						|
      if (llvm::StoreInst *SI =
 | 
						|
              findDominatingStoreToReturnValue(*this)) {
 | 
						|
        // Reuse the debug location from the store unless there is
 | 
						|
        // cleanup code to be emitted between the store and return
 | 
						|
        // instruction.
 | 
						|
        if (EmitRetDbgLoc && !AutoreleaseResult)
 | 
						|
          RetDbgLoc = SI->getDebugLoc();
 | 
						|
        // Get the stored value and nuke the now-dead store.
 | 
						|
        RV = SI->getValueOperand();
 | 
						|
        SI->eraseFromParent();
 | 
						|
 | 
						|
        // If that was the only use of the return value, nuke it as well now.
 | 
						|
        auto returnValueInst = ReturnValue.getPointer();
 | 
						|
        if (returnValueInst->use_empty()) {
 | 
						|
          if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
 | 
						|
            alloca->eraseFromParent();
 | 
						|
            ReturnValue = Address::invalid();
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      // Otherwise, we have to do a simple load.
 | 
						|
      } else {
 | 
						|
        RV = Builder.CreateLoad(ReturnValue);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // If the value is offset in memory, apply the offset now.
 | 
						|
      Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
 | 
						|
 | 
						|
      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
 | 
						|
    }
 | 
						|
 | 
						|
    // In ARC, end functions that return a retainable type with a call
 | 
						|
    // to objc_autoreleaseReturnValue.
 | 
						|
    if (AutoreleaseResult) {
 | 
						|
#ifndef NDEBUG
 | 
						|
      // Type::isObjCRetainabletype has to be called on a QualType that hasn't
 | 
						|
      // been stripped of the typedefs, so we cannot use RetTy here. Get the
 | 
						|
      // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
 | 
						|
      // CurCodeDecl or BlockInfo.
 | 
						|
      QualType RT;
 | 
						|
 | 
						|
      if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
 | 
						|
        RT = FD->getReturnType();
 | 
						|
      else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
 | 
						|
        RT = MD->getReturnType();
 | 
						|
      else if (isa<BlockDecl>(CurCodeDecl))
 | 
						|
        RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
 | 
						|
      else
 | 
						|
        llvm_unreachable("Unexpected function/method type");
 | 
						|
 | 
						|
      assert(getLangOpts().ObjCAutoRefCount &&
 | 
						|
             !FI.isReturnsRetained() &&
 | 
						|
             RT->isObjCRetainableType());
 | 
						|
#endif
 | 
						|
      RV = emitAutoreleaseOfResult(*this, RV);
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::Ignore:
 | 
						|
    break;
 | 
						|
 | 
						|
  case ABIArgInfo::CoerceAndExpand: {
 | 
						|
    auto coercionType = RetAI.getCoerceAndExpandType();
 | 
						|
    auto layout = CGM.getDataLayout().getStructLayout(coercionType);
 | 
						|
 | 
						|
    // Load all of the coerced elements out into results.
 | 
						|
    llvm::SmallVector<llvm::Value*, 4> results;
 | 
						|
    Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
 | 
						|
    for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
 | 
						|
      auto coercedEltType = coercionType->getElementType(i);
 | 
						|
      if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
 | 
						|
      auto elt = Builder.CreateLoad(eltAddr);
 | 
						|
      results.push_back(elt);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have one result, it's the single direct result type.
 | 
						|
    if (results.size() == 1) {
 | 
						|
      RV = results[0];
 | 
						|
 | 
						|
    // Otherwise, we need to make a first-class aggregate.
 | 
						|
    } else {
 | 
						|
      // Construct a return type that lacks padding elements.
 | 
						|
      llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
 | 
						|
 | 
						|
      RV = llvm::UndefValue::get(returnType);
 | 
						|
      for (unsigned i = 0, e = results.size(); i != e; ++i) {
 | 
						|
        RV = Builder.CreateInsertValue(RV, results[i], i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ABIArgInfo::Expand:
 | 
						|
    llvm_unreachable("Invalid ABI kind for return argument");
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Instruction *Ret;
 | 
						|
  if (RV) {
 | 
						|
    EmitReturnValueCheck(RV);
 | 
						|
    Ret = Builder.CreateRet(RV);
 | 
						|
  } else {
 | 
						|
    Ret = Builder.CreateRetVoid();
 | 
						|
  }
 | 
						|
 | 
						|
  if (RetDbgLoc)
 | 
						|
    Ret->setDebugLoc(std::move(RetDbgLoc));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
 | 
						|
  // A current decl may not be available when emitting vtable thunks.
 | 
						|
  if (!CurCodeDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  ReturnsNonNullAttr *RetNNAttr = nullptr;
 | 
						|
  if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
 | 
						|
    RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
 | 
						|
 | 
						|
  if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Prefer the returns_nonnull attribute if it's present.
 | 
						|
  SourceLocation AttrLoc;
 | 
						|
  SanitizerMask CheckKind;
 | 
						|
  SanitizerHandler Handler;
 | 
						|
  if (RetNNAttr) {
 | 
						|
    assert(!requiresReturnValueNullabilityCheck() &&
 | 
						|
           "Cannot check nullability and the nonnull attribute");
 | 
						|
    AttrLoc = RetNNAttr->getLocation();
 | 
						|
    CheckKind = SanitizerKind::ReturnsNonnullAttribute;
 | 
						|
    Handler = SanitizerHandler::NonnullReturn;
 | 
						|
  } else {
 | 
						|
    if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
 | 
						|
      if (auto *TSI = DD->getTypeSourceInfo())
 | 
						|
        if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
 | 
						|
          AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
 | 
						|
    CheckKind = SanitizerKind::NullabilityReturn;
 | 
						|
    Handler = SanitizerHandler::NullabilityReturn;
 | 
						|
  }
 | 
						|
 | 
						|
  SanitizerScope SanScope(this);
 | 
						|
 | 
						|
  // Make sure the "return" source location is valid. If we're checking a
 | 
						|
  // nullability annotation, make sure the preconditions for the check are met.
 | 
						|
  llvm::BasicBlock *Check = createBasicBlock("nullcheck");
 | 
						|
  llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
 | 
						|
  llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
 | 
						|
  llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
 | 
						|
  if (requiresReturnValueNullabilityCheck())
 | 
						|
    CanNullCheck =
 | 
						|
        Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
 | 
						|
  Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
 | 
						|
  EmitBlock(Check);
 | 
						|
 | 
						|
  // Now do the null check.
 | 
						|
  llvm::Value *Cond = Builder.CreateIsNotNull(RV);
 | 
						|
  llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
 | 
						|
  llvm::Value *DynamicData[] = {SLocPtr};
 | 
						|
  EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
 | 
						|
 | 
						|
  EmitBlock(NoCheck);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // The return location should not be used after the check has been emitted.
 | 
						|
  ReturnLocation = Address::invalid();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
 | 
						|
  const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
 | 
						|
  return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
 | 
						|
}
 | 
						|
 | 
						|
static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
 | 
						|
                                          QualType Ty) {
 | 
						|
  // FIXME: Generate IR in one pass, rather than going back and fixing up these
 | 
						|
  // placeholders.
 | 
						|
  llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
 | 
						|
  llvm::Type *IRPtrTy = IRTy->getPointerTo();
 | 
						|
  llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
 | 
						|
 | 
						|
  // FIXME: When we generate this IR in one pass, we shouldn't need
 | 
						|
  // this win32-specific alignment hack.
 | 
						|
  CharUnits Align = CharUnits::fromQuantity(4);
 | 
						|
  Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
 | 
						|
 | 
						|
  return AggValueSlot::forAddr(Address(Placeholder, Align),
 | 
						|
                               Ty.getQualifiers(),
 | 
						|
                               AggValueSlot::IsNotDestructed,
 | 
						|
                               AggValueSlot::DoesNotNeedGCBarriers,
 | 
						|
                               AggValueSlot::IsNotAliased);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
 | 
						|
                                          const VarDecl *param,
 | 
						|
                                          SourceLocation loc) {
 | 
						|
  // StartFunction converted the ABI-lowered parameter(s) into a
 | 
						|
  // local alloca.  We need to turn that into an r-value suitable
 | 
						|
  // for EmitCall.
 | 
						|
  Address local = GetAddrOfLocalVar(param);
 | 
						|
 | 
						|
  QualType type = param->getType();
 | 
						|
 | 
						|
  assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
 | 
						|
         "cannot emit delegate call arguments for inalloca arguments!");
 | 
						|
 | 
						|
  // GetAddrOfLocalVar returns a pointer-to-pointer for references,
 | 
						|
  // but the argument needs to be the original pointer.
 | 
						|
  if (type->isReferenceType()) {
 | 
						|
    args.add(RValue::get(Builder.CreateLoad(local)), type);
 | 
						|
 | 
						|
  // In ARC, move out of consumed arguments so that the release cleanup
 | 
						|
  // entered by StartFunction doesn't cause an over-release.  This isn't
 | 
						|
  // optimal -O0 code generation, but it should get cleaned up when
 | 
						|
  // optimization is enabled.  This also assumes that delegate calls are
 | 
						|
  // performed exactly once for a set of arguments, but that should be safe.
 | 
						|
  } else if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
             param->hasAttr<NSConsumedAttr>() &&
 | 
						|
             type->isObjCRetainableType()) {
 | 
						|
    llvm::Value *ptr = Builder.CreateLoad(local);
 | 
						|
    auto null =
 | 
						|
      llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
 | 
						|
    Builder.CreateStore(null, local);
 | 
						|
    args.add(RValue::get(ptr), type);
 | 
						|
 | 
						|
  // For the most part, we just need to load the alloca, except that
 | 
						|
  // aggregate r-values are actually pointers to temporaries.
 | 
						|
  } else {
 | 
						|
    args.add(convertTempToRValue(local, type, loc), type);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isProvablyNull(llvm::Value *addr) {
 | 
						|
  return isa<llvm::ConstantPointerNull>(addr);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit the actual writing-back of a writeback.
 | 
						|
static void emitWriteback(CodeGenFunction &CGF,
 | 
						|
                          const CallArgList::Writeback &writeback) {
 | 
						|
  const LValue &srcLV = writeback.Source;
 | 
						|
  Address srcAddr = srcLV.getAddress();
 | 
						|
  assert(!isProvablyNull(srcAddr.getPointer()) &&
 | 
						|
         "shouldn't have writeback for provably null argument");
 | 
						|
 | 
						|
  llvm::BasicBlock *contBB = nullptr;
 | 
						|
 | 
						|
  // If the argument wasn't provably non-null, we need to null check
 | 
						|
  // before doing the store.
 | 
						|
  bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
 | 
						|
                                              CGF.CGM.getDataLayout());
 | 
						|
  if (!provablyNonNull) {
 | 
						|
    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
 | 
						|
    contBB = CGF.createBasicBlock("icr.done");
 | 
						|
 | 
						|
    llvm::Value *isNull =
 | 
						|
      CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
 | 
						|
    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
 | 
						|
    CGF.EmitBlock(writebackBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Load the value to writeback.
 | 
						|
  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
 | 
						|
 | 
						|
  // Cast it back, in case we're writing an id to a Foo* or something.
 | 
						|
  value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
 | 
						|
                                    "icr.writeback-cast");
 | 
						|
  
 | 
						|
  // Perform the writeback.
 | 
						|
 | 
						|
  // If we have a "to use" value, it's something we need to emit a use
 | 
						|
  // of.  This has to be carefully threaded in: if it's done after the
 | 
						|
  // release it's potentially undefined behavior (and the optimizer
 | 
						|
  // will ignore it), and if it happens before the retain then the
 | 
						|
  // optimizer could move the release there.
 | 
						|
  if (writeback.ToUse) {
 | 
						|
    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
 | 
						|
 | 
						|
    // Retain the new value.  No need to block-copy here:  the block's
 | 
						|
    // being passed up the stack.
 | 
						|
    value = CGF.EmitARCRetainNonBlock(value);
 | 
						|
 | 
						|
    // Emit the intrinsic use here.
 | 
						|
    CGF.EmitARCIntrinsicUse(writeback.ToUse);
 | 
						|
 | 
						|
    // Load the old value (primitively).
 | 
						|
    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
 | 
						|
 | 
						|
    // Put the new value in place (primitively).
 | 
						|
    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
 | 
						|
 | 
						|
    // Release the old value.
 | 
						|
    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
 | 
						|
 | 
						|
  // Otherwise, we can just do a normal lvalue store.
 | 
						|
  } else {
 | 
						|
    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
 | 
						|
  }
 | 
						|
 | 
						|
  // Jump to the continuation block.
 | 
						|
  if (!provablyNonNull)
 | 
						|
    CGF.EmitBlock(contBB);
 | 
						|
}
 | 
						|
 | 
						|
static void emitWritebacks(CodeGenFunction &CGF,
 | 
						|
                           const CallArgList &args) {
 | 
						|
  for (const auto &I : args.writebacks())
 | 
						|
    emitWriteback(CGF, I);
 | 
						|
}
 | 
						|
 | 
						|
static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
 | 
						|
                                            const CallArgList &CallArgs) {
 | 
						|
  assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
 | 
						|
  ArrayRef<CallArgList::CallArgCleanup> Cleanups =
 | 
						|
    CallArgs.getCleanupsToDeactivate();
 | 
						|
  // Iterate in reverse to increase the likelihood of popping the cleanup.
 | 
						|
  for (const auto &I : llvm::reverse(Cleanups)) {
 | 
						|
    CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
 | 
						|
    I.IsActiveIP->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
 | 
						|
  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
 | 
						|
    if (uop->getOpcode() == UO_AddrOf)
 | 
						|
      return uop->getSubExpr();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Emit an argument that's being passed call-by-writeback.  That is,
 | 
						|
/// we are passing the address of an __autoreleased temporary; it
 | 
						|
/// might be copy-initialized with the current value of the given
 | 
						|
/// address, but it will definitely be copied out of after the call.
 | 
						|
static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
 | 
						|
                             const ObjCIndirectCopyRestoreExpr *CRE) {
 | 
						|
  LValue srcLV;
 | 
						|
 | 
						|
  // Make an optimistic effort to emit the address as an l-value.
 | 
						|
  // This can fail if the argument expression is more complicated.
 | 
						|
  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
 | 
						|
    srcLV = CGF.EmitLValue(lvExpr);
 | 
						|
 | 
						|
  // Otherwise, just emit it as a scalar.
 | 
						|
  } else {
 | 
						|
    Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
 | 
						|
 | 
						|
    QualType srcAddrType =
 | 
						|
      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
 | 
						|
    srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
 | 
						|
  }
 | 
						|
  Address srcAddr = srcLV.getAddress();
 | 
						|
 | 
						|
  // The dest and src types don't necessarily match in LLVM terms
 | 
						|
  // because of the crazy ObjC compatibility rules.
 | 
						|
 | 
						|
  llvm::PointerType *destType =
 | 
						|
    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
 | 
						|
 | 
						|
  // If the address is a constant null, just pass the appropriate null.
 | 
						|
  if (isProvablyNull(srcAddr.getPointer())) {
 | 
						|
    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
 | 
						|
             CRE->getType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the temporary.
 | 
						|
  Address temp = CGF.CreateTempAlloca(destType->getElementType(),
 | 
						|
                                      CGF.getPointerAlign(),
 | 
						|
                                      "icr.temp");
 | 
						|
  // Loading an l-value can introduce a cleanup if the l-value is __weak,
 | 
						|
  // and that cleanup will be conditional if we can't prove that the l-value
 | 
						|
  // isn't null, so we need to register a dominating point so that the cleanups
 | 
						|
  // system will make valid IR.
 | 
						|
  CodeGenFunction::ConditionalEvaluation condEval(CGF);
 | 
						|
  
 | 
						|
  // Zero-initialize it if we're not doing a copy-initialization.
 | 
						|
  bool shouldCopy = CRE->shouldCopy();
 | 
						|
  if (!shouldCopy) {
 | 
						|
    llvm::Value *null =
 | 
						|
      llvm::ConstantPointerNull::get(
 | 
						|
        cast<llvm::PointerType>(destType->getElementType()));
 | 
						|
    CGF.Builder.CreateStore(null, temp);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::BasicBlock *contBB = nullptr;
 | 
						|
  llvm::BasicBlock *originBB = nullptr;
 | 
						|
 | 
						|
  // If the address is *not* known to be non-null, we need to switch.
 | 
						|
  llvm::Value *finalArgument;
 | 
						|
 | 
						|
  bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
 | 
						|
                                              CGF.CGM.getDataLayout());
 | 
						|
  if (provablyNonNull) {
 | 
						|
    finalArgument = temp.getPointer();
 | 
						|
  } else {
 | 
						|
    llvm::Value *isNull =
 | 
						|
      CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
 | 
						|
 | 
						|
    finalArgument = CGF.Builder.CreateSelect(isNull, 
 | 
						|
                                   llvm::ConstantPointerNull::get(destType),
 | 
						|
                                             temp.getPointer(), "icr.argument");
 | 
						|
 | 
						|
    // If we need to copy, then the load has to be conditional, which
 | 
						|
    // means we need control flow.
 | 
						|
    if (shouldCopy) {
 | 
						|
      originBB = CGF.Builder.GetInsertBlock();
 | 
						|
      contBB = CGF.createBasicBlock("icr.cont");
 | 
						|
      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
 | 
						|
      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
 | 
						|
      CGF.EmitBlock(copyBB);
 | 
						|
      condEval.begin(CGF);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *valueToUse = nullptr;
 | 
						|
 | 
						|
  // Perform a copy if necessary.
 | 
						|
  if (shouldCopy) {
 | 
						|
    RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
 | 
						|
    assert(srcRV.isScalar());
 | 
						|
 | 
						|
    llvm::Value *src = srcRV.getScalarVal();
 | 
						|
    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
 | 
						|
                                    "icr.cast");
 | 
						|
 | 
						|
    // Use an ordinary store, not a store-to-lvalue.
 | 
						|
    CGF.Builder.CreateStore(src, temp);
 | 
						|
 | 
						|
    // If optimization is enabled, and the value was held in a
 | 
						|
    // __strong variable, we need to tell the optimizer that this
 | 
						|
    // value has to stay alive until we're doing the store back.
 | 
						|
    // This is because the temporary is effectively unretained,
 | 
						|
    // and so otherwise we can violate the high-level semantics.
 | 
						|
    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
 | 
						|
        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
 | 
						|
      valueToUse = src;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finish the control flow if we needed it.
 | 
						|
  if (shouldCopy && !provablyNonNull) {
 | 
						|
    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
 | 
						|
    CGF.EmitBlock(contBB);
 | 
						|
 | 
						|
    // Make a phi for the value to intrinsically use.
 | 
						|
    if (valueToUse) {
 | 
						|
      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
 | 
						|
                                                      "icr.to-use");
 | 
						|
      phiToUse->addIncoming(valueToUse, copyBB);
 | 
						|
      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
 | 
						|
                            originBB);
 | 
						|
      valueToUse = phiToUse;
 | 
						|
    }
 | 
						|
 | 
						|
    condEval.end(CGF);
 | 
						|
  }
 | 
						|
 | 
						|
  args.addWriteback(srcLV, temp, valueToUse);
 | 
						|
  args.add(RValue::get(finalArgument), CRE->getType());
 | 
						|
}
 | 
						|
 | 
						|
void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
 | 
						|
  assert(!StackBase);
 | 
						|
 | 
						|
  // Save the stack.
 | 
						|
  llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
 | 
						|
  StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
 | 
						|
}
 | 
						|
 | 
						|
void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
 | 
						|
  if (StackBase) {
 | 
						|
    // Restore the stack after the call.
 | 
						|
    llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
 | 
						|
    CGF.Builder.CreateCall(F, StackBase);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
 | 
						|
                                          SourceLocation ArgLoc,
 | 
						|
                                          AbstractCallee AC,
 | 
						|
                                          unsigned ParmNum) {
 | 
						|
  if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
 | 
						|
                         SanOpts.has(SanitizerKind::NullabilityArg)))
 | 
						|
    return;
 | 
						|
 | 
						|
  // The param decl may be missing in a variadic function.
 | 
						|
  auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
 | 
						|
  unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
 | 
						|
 | 
						|
  // Prefer the nonnull attribute if it's present. 
 | 
						|
  const NonNullAttr *NNAttr = nullptr;
 | 
						|
  if (SanOpts.has(SanitizerKind::NonnullAttribute))
 | 
						|
    NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
 | 
						|
 | 
						|
  bool CanCheckNullability = false;
 | 
						|
  if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
 | 
						|
    auto Nullability = PVD->getType()->getNullability(getContext());
 | 
						|
    CanCheckNullability = Nullability &&
 | 
						|
                          *Nullability == NullabilityKind::NonNull &&
 | 
						|
                          PVD->getTypeSourceInfo();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NNAttr && !CanCheckNullability)
 | 
						|
    return;
 | 
						|
 | 
						|
  SourceLocation AttrLoc;
 | 
						|
  SanitizerMask CheckKind;
 | 
						|
  SanitizerHandler Handler;
 | 
						|
  if (NNAttr) {
 | 
						|
    AttrLoc = NNAttr->getLocation();
 | 
						|
    CheckKind = SanitizerKind::NonnullAttribute;
 | 
						|
    Handler = SanitizerHandler::NonnullArg;
 | 
						|
  } else {
 | 
						|
    AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
 | 
						|
    CheckKind = SanitizerKind::NullabilityArg;
 | 
						|
    Handler = SanitizerHandler::NullabilityArg;
 | 
						|
  }
 | 
						|
 | 
						|
  SanitizerScope SanScope(this);
 | 
						|
  assert(RV.isScalar());
 | 
						|
  llvm::Value *V = RV.getScalarVal();
 | 
						|
  llvm::Value *Cond =
 | 
						|
      Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
 | 
						|
  llvm::Constant *StaticData[] = {
 | 
						|
      EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
 | 
						|
      llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
 | 
						|
  };
 | 
						|
  EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::EmitCallArgs(
 | 
						|
    CallArgList &Args, ArrayRef<QualType> ArgTypes,
 | 
						|
    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
 | 
						|
    AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
 | 
						|
  assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
 | 
						|
 | 
						|
  // We *have* to evaluate arguments from right to left in the MS C++ ABI,
 | 
						|
  // because arguments are destroyed left to right in the callee. As a special
 | 
						|
  // case, there are certain language constructs that require left-to-right
 | 
						|
  // evaluation, and in those cases we consider the evaluation order requirement
 | 
						|
  // to trump the "destruction order is reverse construction order" guarantee.
 | 
						|
  bool LeftToRight =
 | 
						|
      CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
 | 
						|
          ? Order == EvaluationOrder::ForceLeftToRight
 | 
						|
          : Order != EvaluationOrder::ForceRightToLeft;
 | 
						|
 | 
						|
  auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
 | 
						|
                                         RValue EmittedArg) {
 | 
						|
    if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
 | 
						|
      return;
 | 
						|
    auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
 | 
						|
    if (PS == nullptr)
 | 
						|
      return;
 | 
						|
 | 
						|
    const auto &Context = getContext();
 | 
						|
    auto SizeTy = Context.getSizeType();
 | 
						|
    auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
 | 
						|
    assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
 | 
						|
    llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
 | 
						|
                                                     EmittedArg.getScalarVal());
 | 
						|
    Args.add(RValue::get(V), SizeTy);
 | 
						|
    // If we're emitting args in reverse, be sure to do so with
 | 
						|
    // pass_object_size, as well.
 | 
						|
    if (!LeftToRight)
 | 
						|
      std::swap(Args.back(), *(&Args.back() - 1));
 | 
						|
  };
 | 
						|
 | 
						|
  // Insert a stack save if we're going to need any inalloca args.
 | 
						|
  bool HasInAllocaArgs = false;
 | 
						|
  if (CGM.getTarget().getCXXABI().isMicrosoft()) {
 | 
						|
    for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
 | 
						|
         I != E && !HasInAllocaArgs; ++I)
 | 
						|
      HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
 | 
						|
    if (HasInAllocaArgs) {
 | 
						|
      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
 | 
						|
      Args.allocateArgumentMemory(*this);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Evaluate each argument in the appropriate order.
 | 
						|
  size_t CallArgsStart = Args.size();
 | 
						|
  for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
 | 
						|
    unsigned Idx = LeftToRight ? I : E - I - 1;
 | 
						|
    CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
 | 
						|
    unsigned InitialArgSize = Args.size();
 | 
						|
    // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
 | 
						|
    // the argument and parameter match or the objc method is parameterized.
 | 
						|
    assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
 | 
						|
            getContext().hasSameUnqualifiedType((*Arg)->getType(),
 | 
						|
                                                ArgTypes[Idx]) ||
 | 
						|
            (isa<ObjCMethodDecl>(AC.getDecl()) &&
 | 
						|
             isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
 | 
						|
           "Argument and parameter types don't match");
 | 
						|
    EmitCallArg(Args, *Arg, ArgTypes[Idx]);
 | 
						|
    // In particular, we depend on it being the last arg in Args, and the
 | 
						|
    // objectsize bits depend on there only being one arg if !LeftToRight.
 | 
						|
    assert(InitialArgSize + 1 == Args.size() &&
 | 
						|
           "The code below depends on only adding one arg per EmitCallArg");
 | 
						|
    (void)InitialArgSize;
 | 
						|
    RValue RVArg = Args.back().RV;
 | 
						|
    EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
 | 
						|
                        ParamsToSkip + Idx);
 | 
						|
    // @llvm.objectsize should never have side-effects and shouldn't need
 | 
						|
    // destruction/cleanups, so we can safely "emit" it after its arg,
 | 
						|
    // regardless of right-to-leftness
 | 
						|
    MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LeftToRight) {
 | 
						|
    // Un-reverse the arguments we just evaluated so they match up with the LLVM
 | 
						|
    // IR function.
 | 
						|
    std::reverse(Args.begin() + CallArgsStart, Args.end());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
 | 
						|
  DestroyUnpassedArg(Address Addr, QualType Ty)
 | 
						|
      : Addr(Addr), Ty(Ty) {}
 | 
						|
 | 
						|
  Address Addr;
 | 
						|
  QualType Ty;
 | 
						|
 | 
						|
  void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
 | 
						|
    assert(!Dtor->isTrivial());
 | 
						|
    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
 | 
						|
                              /*Delegating=*/false, Addr);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct DisableDebugLocationUpdates {
 | 
						|
  CodeGenFunction &CGF;
 | 
						|
  bool disabledDebugInfo;
 | 
						|
  DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
 | 
						|
    if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
 | 
						|
      CGF.disableDebugInfo();
 | 
						|
  }
 | 
						|
  ~DisableDebugLocationUpdates() {
 | 
						|
    if (disabledDebugInfo)
 | 
						|
      CGF.enableDebugInfo();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
 | 
						|
                                  QualType type) {
 | 
						|
  DisableDebugLocationUpdates Dis(*this, E);
 | 
						|
  if (const ObjCIndirectCopyRestoreExpr *CRE
 | 
						|
        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
 | 
						|
    assert(getLangOpts().ObjCAutoRefCount);
 | 
						|
    return emitWritebackArg(*this, args, CRE);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(type->isReferenceType() == E->isGLValue() &&
 | 
						|
         "reference binding to unmaterialized r-value!");
 | 
						|
 | 
						|
  if (E->isGLValue()) {
 | 
						|
    assert(E->getObjectKind() == OK_Ordinary);
 | 
						|
    return args.add(EmitReferenceBindingToExpr(E), type);
 | 
						|
  }
 | 
						|
 | 
						|
  bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
 | 
						|
 | 
						|
  // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
 | 
						|
  // However, we still have to push an EH-only cleanup in case we unwind before
 | 
						|
  // we make it to the call.
 | 
						|
  if (HasAggregateEvalKind &&
 | 
						|
      CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
 | 
						|
    // If we're using inalloca, use the argument memory.  Otherwise, use a
 | 
						|
    // temporary.
 | 
						|
    AggValueSlot Slot;
 | 
						|
    if (args.isUsingInAlloca())
 | 
						|
      Slot = createPlaceholderSlot(*this, type);
 | 
						|
    else
 | 
						|
      Slot = CreateAggTemp(type, "agg.tmp");
 | 
						|
 | 
						|
    const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
 | 
						|
    bool DestroyedInCallee =
 | 
						|
        RD && RD->hasNonTrivialDestructor() &&
 | 
						|
        CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
 | 
						|
    if (DestroyedInCallee)
 | 
						|
      Slot.setExternallyDestructed();
 | 
						|
 | 
						|
    EmitAggExpr(E, Slot);
 | 
						|
    RValue RV = Slot.asRValue();
 | 
						|
    args.add(RV, type);
 | 
						|
 | 
						|
    if (DestroyedInCallee) {
 | 
						|
      // Create a no-op GEP between the placeholder and the cleanup so we can
 | 
						|
      // RAUW it successfully.  It also serves as a marker of the first
 | 
						|
      // instruction where the cleanup is active.
 | 
						|
      pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
 | 
						|
                                              type);
 | 
						|
      // This unreachable is a temporary marker which will be removed later.
 | 
						|
      llvm::Instruction *IsActive = Builder.CreateUnreachable();
 | 
						|
      args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
 | 
						|
      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
 | 
						|
    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
 | 
						|
    assert(L.isSimple());
 | 
						|
    if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
 | 
						|
      args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
 | 
						|
    } else {
 | 
						|
      // We can't represent a misaligned lvalue in the CallArgList, so copy
 | 
						|
      // to an aligned temporary now.
 | 
						|
      Address tmp = CreateMemTemp(type);
 | 
						|
      EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
 | 
						|
      args.add(RValue::getAggregate(tmp), type);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  args.add(EmitAnyExprToTemp(E), type);
 | 
						|
}
 | 
						|
 | 
						|
QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
 | 
						|
  // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
 | 
						|
  // implicitly widens null pointer constants that are arguments to varargs
 | 
						|
  // functions to pointer-sized ints.
 | 
						|
  if (!getTarget().getTriple().isOSWindows())
 | 
						|
    return Arg->getType();
 | 
						|
 | 
						|
  if (Arg->getType()->isIntegerType() &&
 | 
						|
      getContext().getTypeSize(Arg->getType()) <
 | 
						|
          getContext().getTargetInfo().getPointerWidth(0) &&
 | 
						|
      Arg->isNullPointerConstant(getContext(),
 | 
						|
                                 Expr::NPC_ValueDependentIsNotNull)) {
 | 
						|
    return getContext().getIntPtrType();
 | 
						|
  }
 | 
						|
 | 
						|
  return Arg->getType();
 | 
						|
}
 | 
						|
 | 
						|
// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
 | 
						|
// optimizer it can aggressively ignore unwind edges.
 | 
						|
void
 | 
						|
CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
 | 
						|
  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
 | 
						|
      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
 | 
						|
    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
 | 
						|
                      CGM.getNoObjCARCExceptionsMetadata());
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a call to the given no-arguments nounwind runtime function.
 | 
						|
llvm::CallInst *
 | 
						|
CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
 | 
						|
                                         const llvm::Twine &name) {
 | 
						|
  return EmitNounwindRuntimeCall(callee, None, name);
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a call to the given nounwind runtime function.
 | 
						|
llvm::CallInst *
 | 
						|
CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
 | 
						|
                                         ArrayRef<llvm::Value*> args,
 | 
						|
                                         const llvm::Twine &name) {
 | 
						|
  llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
 | 
						|
  call->setDoesNotThrow();
 | 
						|
  return call;
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a simple call (never an invoke) to the given no-arguments
 | 
						|
/// runtime function.
 | 
						|
llvm::CallInst *
 | 
						|
CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
 | 
						|
                                 const llvm::Twine &name) {
 | 
						|
  return EmitRuntimeCall(callee, None, name);
 | 
						|
}
 | 
						|
 | 
						|
// Calls which may throw must have operand bundles indicating which funclet
 | 
						|
// they are nested within.
 | 
						|
static void
 | 
						|
getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
 | 
						|
                     SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
 | 
						|
  // There is no need for a funclet operand bundle if we aren't inside a
 | 
						|
  // funclet.
 | 
						|
  if (!CurrentFuncletPad)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Skip intrinsics which cannot throw.
 | 
						|
  auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
 | 
						|
  if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
 | 
						|
    return;
 | 
						|
 | 
						|
  BundleList.emplace_back("funclet", CurrentFuncletPad);
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a simple call (never an invoke) to the given runtime function.
 | 
						|
llvm::CallInst *
 | 
						|
CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
 | 
						|
                                 ArrayRef<llvm::Value*> args,
 | 
						|
                                 const llvm::Twine &name) {
 | 
						|
  SmallVector<llvm::OperandBundleDef, 1> BundleList;
 | 
						|
  getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
 | 
						|
 | 
						|
  llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
 | 
						|
  call->setCallingConv(getRuntimeCC());
 | 
						|
  return call;
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a call or invoke to the given noreturn runtime function.
 | 
						|
void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
 | 
						|
                                               ArrayRef<llvm::Value*> args) {
 | 
						|
  SmallVector<llvm::OperandBundleDef, 1> BundleList;
 | 
						|
  getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
 | 
						|
 | 
						|
  if (getInvokeDest()) {
 | 
						|
    llvm::InvokeInst *invoke = 
 | 
						|
      Builder.CreateInvoke(callee,
 | 
						|
                           getUnreachableBlock(),
 | 
						|
                           getInvokeDest(),
 | 
						|
                           args,
 | 
						|
                           BundleList);
 | 
						|
    invoke->setDoesNotReturn();
 | 
						|
    invoke->setCallingConv(getRuntimeCC());
 | 
						|
  } else {
 | 
						|
    llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
 | 
						|
    call->setDoesNotReturn();
 | 
						|
    call->setCallingConv(getRuntimeCC());
 | 
						|
    Builder.CreateUnreachable();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a call or invoke instruction to the given nullary runtime function.
 | 
						|
llvm::CallSite
 | 
						|
CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
 | 
						|
                                         const Twine &name) {
 | 
						|
  return EmitRuntimeCallOrInvoke(callee, None, name);
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a call or invoke instruction to the given runtime function.
 | 
						|
llvm::CallSite
 | 
						|
CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
 | 
						|
                                         ArrayRef<llvm::Value*> args,
 | 
						|
                                         const Twine &name) {
 | 
						|
  llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
 | 
						|
  callSite.setCallingConv(getRuntimeCC());
 | 
						|
  return callSite;
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a call or invoke instruction to the given function, depending
 | 
						|
/// on the current state of the EH stack.
 | 
						|
llvm::CallSite
 | 
						|
CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
 | 
						|
                                  ArrayRef<llvm::Value *> Args,
 | 
						|
                                  const Twine &Name) {
 | 
						|
  llvm::BasicBlock *InvokeDest = getInvokeDest();
 | 
						|
  SmallVector<llvm::OperandBundleDef, 1> BundleList;
 | 
						|
  getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
 | 
						|
 | 
						|
  llvm::Instruction *Inst;
 | 
						|
  if (!InvokeDest)
 | 
						|
    Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
 | 
						|
  else {
 | 
						|
    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
 | 
						|
    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
 | 
						|
                                Name);
 | 
						|
    EmitBlock(ContBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
 | 
						|
  // optimizer it can aggressively ignore unwind edges.
 | 
						|
  if (CGM.getLangOpts().ObjCAutoRefCount)
 | 
						|
    AddObjCARCExceptionMetadata(Inst);
 | 
						|
 | 
						|
  return llvm::CallSite(Inst);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Store a non-aggregate value to an address to initialize it.  For
 | 
						|
/// initialization, a non-atomic store will be used.
 | 
						|
static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
 | 
						|
                                        LValue Dst) {
 | 
						|
  if (Src.isScalar())
 | 
						|
    CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
 | 
						|
  else
 | 
						|
    CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
 | 
						|
                                                  llvm::Value *New) {
 | 
						|
  DeferredReplacements.push_back(std::make_pair(Old, New));
 | 
						|
}
 | 
						|
 | 
						|
RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
 | 
						|
                                 const CGCallee &Callee,
 | 
						|
                                 ReturnValueSlot ReturnValue,
 | 
						|
                                 const CallArgList &CallArgs,
 | 
						|
                                 llvm::Instruction **callOrInvoke) {
 | 
						|
  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
 | 
						|
 | 
						|
  assert(Callee.isOrdinary());
 | 
						|
 | 
						|
  // Handle struct-return functions by passing a pointer to the
 | 
						|
  // location that we would like to return into.
 | 
						|
  QualType RetTy = CallInfo.getReturnType();
 | 
						|
  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
 | 
						|
 | 
						|
  llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
 | 
						|
 | 
						|
  // 1. Set up the arguments.
 | 
						|
 | 
						|
  // If we're using inalloca, insert the allocation after the stack save.
 | 
						|
  // FIXME: Do this earlier rather than hacking it in here!
 | 
						|
  Address ArgMemory = Address::invalid();
 | 
						|
  const llvm::StructLayout *ArgMemoryLayout = nullptr;
 | 
						|
  if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
 | 
						|
    const llvm::DataLayout &DL = CGM.getDataLayout();
 | 
						|
    ArgMemoryLayout = DL.getStructLayout(ArgStruct);
 | 
						|
    llvm::Instruction *IP = CallArgs.getStackBase();
 | 
						|
    llvm::AllocaInst *AI;
 | 
						|
    if (IP) {
 | 
						|
      IP = IP->getNextNode();
 | 
						|
      AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
 | 
						|
                                "argmem", IP);
 | 
						|
    } else {
 | 
						|
      AI = CreateTempAlloca(ArgStruct, "argmem");
 | 
						|
    }
 | 
						|
    auto Align = CallInfo.getArgStructAlignment();
 | 
						|
    AI->setAlignment(Align.getQuantity());
 | 
						|
    AI->setUsedWithInAlloca(true);
 | 
						|
    assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
 | 
						|
    ArgMemory = Address(AI, Align);
 | 
						|
  }
 | 
						|
 | 
						|
  // Helper function to drill into the inalloca allocation.
 | 
						|
  auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
 | 
						|
    auto FieldOffset =
 | 
						|
      CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
 | 
						|
    return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
 | 
						|
  };
 | 
						|
 | 
						|
  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
 | 
						|
  SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
 | 
						|
 | 
						|
  // If the call returns a temporary with struct return, create a temporary
 | 
						|
  // alloca to hold the result, unless one is given to us.
 | 
						|
  Address SRetPtr = Address::invalid();
 | 
						|
  size_t UnusedReturnSize = 0;
 | 
						|
  if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
 | 
						|
    if (!ReturnValue.isNull()) {
 | 
						|
      SRetPtr = ReturnValue.getValue();
 | 
						|
    } else {
 | 
						|
      SRetPtr = CreateMemTemp(RetTy);
 | 
						|
      if (HaveInsertPoint() && ReturnValue.isUnused()) {
 | 
						|
        uint64_t size =
 | 
						|
            CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
 | 
						|
        if (EmitLifetimeStart(size, SRetPtr.getPointer()))
 | 
						|
          UnusedReturnSize = size;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (IRFunctionArgs.hasSRetArg()) {
 | 
						|
      IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
 | 
						|
    } else if (RetAI.isInAlloca()) {
 | 
						|
      Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
 | 
						|
      Builder.CreateStore(SRetPtr.getPointer(), Addr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Address swiftErrorTemp = Address::invalid();
 | 
						|
  Address swiftErrorArg = Address::invalid();
 | 
						|
 | 
						|
  // Translate all of the arguments as necessary to match the IR lowering.
 | 
						|
  assert(CallInfo.arg_size() == CallArgs.size() &&
 | 
						|
         "Mismatch between function signature & arguments.");
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
 | 
						|
  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
 | 
						|
       I != E; ++I, ++info_it, ++ArgNo) {
 | 
						|
    const ABIArgInfo &ArgInfo = info_it->info;
 | 
						|
    RValue RV = I->RV;
 | 
						|
 | 
						|
    // Insert a padding argument to ensure proper alignment.
 | 
						|
    if (IRFunctionArgs.hasPaddingArg(ArgNo))
 | 
						|
      IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
 | 
						|
          llvm::UndefValue::get(ArgInfo.getPaddingType());
 | 
						|
 | 
						|
    unsigned FirstIRArg, NumIRArgs;
 | 
						|
    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
 | 
						|
 | 
						|
    switch (ArgInfo.getKind()) {
 | 
						|
    case ABIArgInfo::InAlloca: {
 | 
						|
      assert(NumIRArgs == 0);
 | 
						|
      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
 | 
						|
      if (RV.isAggregate()) {
 | 
						|
        // Replace the placeholder with the appropriate argument slot GEP.
 | 
						|
        llvm::Instruction *Placeholder =
 | 
						|
            cast<llvm::Instruction>(RV.getAggregatePointer());
 | 
						|
        CGBuilderTy::InsertPoint IP = Builder.saveIP();
 | 
						|
        Builder.SetInsertPoint(Placeholder);
 | 
						|
        Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
 | 
						|
        Builder.restoreIP(IP);
 | 
						|
        deferPlaceholderReplacement(Placeholder, Addr.getPointer());
 | 
						|
      } else {
 | 
						|
        // Store the RValue into the argument struct.
 | 
						|
        Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
 | 
						|
        unsigned AS = Addr.getType()->getPointerAddressSpace();
 | 
						|
        llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
 | 
						|
        // There are some cases where a trivial bitcast is not avoidable.  The
 | 
						|
        // definition of a type later in a translation unit may change it's type
 | 
						|
        // from {}* to (%struct.foo*)*.
 | 
						|
        if (Addr.getType() != MemType)
 | 
						|
          Addr = Builder.CreateBitCast(Addr, MemType);
 | 
						|
        LValue argLV = MakeAddrLValue(Addr, I->Ty);
 | 
						|
        EmitInitStoreOfNonAggregate(*this, RV, argLV);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Indirect: {
 | 
						|
      assert(NumIRArgs == 1);
 | 
						|
      if (RV.isScalar() || RV.isComplex()) {
 | 
						|
        // Make a temporary alloca to pass the argument.
 | 
						|
        Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
 | 
						|
                                     "indirect-arg-temp", false);
 | 
						|
        IRCallArgs[FirstIRArg] = Addr.getPointer();
 | 
						|
 | 
						|
        LValue argLV = MakeAddrLValue(Addr, I->Ty);
 | 
						|
        EmitInitStoreOfNonAggregate(*this, RV, argLV);
 | 
						|
      } else {
 | 
						|
        // We want to avoid creating an unnecessary temporary+copy here;
 | 
						|
        // however, we need one in three cases:
 | 
						|
        // 1. If the argument is not byval, and we are required to copy the
 | 
						|
        //    source.  (This case doesn't occur on any common architecture.)
 | 
						|
        // 2. If the argument is byval, RV is not sufficiently aligned, and
 | 
						|
        //    we cannot force it to be sufficiently aligned.
 | 
						|
        // 3. If the argument is byval, but RV is located in an address space
 | 
						|
        //    different than that of the argument (0).
 | 
						|
        Address Addr = RV.getAggregateAddress();
 | 
						|
        CharUnits Align = ArgInfo.getIndirectAlign();
 | 
						|
        const llvm::DataLayout *TD = &CGM.getDataLayout();
 | 
						|
        const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
 | 
						|
        const unsigned ArgAddrSpace =
 | 
						|
            (FirstIRArg < IRFuncTy->getNumParams()
 | 
						|
                 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
 | 
						|
                 : 0);
 | 
						|
        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
 | 
						|
            (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
 | 
						|
             llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
 | 
						|
                                              Align.getQuantity(), *TD)
 | 
						|
               < Align.getQuantity()) ||
 | 
						|
            (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
 | 
						|
          // Create an aligned temporary, and copy to it.
 | 
						|
          Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
 | 
						|
                                     "byval-temp", false);
 | 
						|
          IRCallArgs[FirstIRArg] = AI.getPointer();
 | 
						|
          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
 | 
						|
        } else {
 | 
						|
          // Skip the extra memcpy call.
 | 
						|
          IRCallArgs[FirstIRArg] = Addr.getPointer();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Ignore:
 | 
						|
      assert(NumIRArgs == 0);
 | 
						|
      break;
 | 
						|
 | 
						|
    case ABIArgInfo::Extend:
 | 
						|
    case ABIArgInfo::Direct: {
 | 
						|
      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
 | 
						|
          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
 | 
						|
          ArgInfo.getDirectOffset() == 0) {
 | 
						|
        assert(NumIRArgs == 1);
 | 
						|
        llvm::Value *V;
 | 
						|
        if (RV.isScalar())
 | 
						|
          V = RV.getScalarVal();
 | 
						|
        else
 | 
						|
          V = Builder.CreateLoad(RV.getAggregateAddress());
 | 
						|
 | 
						|
        // Implement swifterror by copying into a new swifterror argument.
 | 
						|
        // We'll write back in the normal path out of the call.
 | 
						|
        if (CallInfo.getExtParameterInfo(ArgNo).getABI()
 | 
						|
              == ParameterABI::SwiftErrorResult) {
 | 
						|
          assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
 | 
						|
 | 
						|
          QualType pointeeTy = I->Ty->getPointeeType();
 | 
						|
          swiftErrorArg =
 | 
						|
            Address(V, getContext().getTypeAlignInChars(pointeeTy));
 | 
						|
 | 
						|
          swiftErrorTemp =
 | 
						|
            CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
 | 
						|
          V = swiftErrorTemp.getPointer();
 | 
						|
          cast<llvm::AllocaInst>(V)->setSwiftError(true);
 | 
						|
 | 
						|
          llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
 | 
						|
          Builder.CreateStore(errorValue, swiftErrorTemp);
 | 
						|
        }
 | 
						|
 | 
						|
        // We might have to widen integers, but we should never truncate.
 | 
						|
        if (ArgInfo.getCoerceToType() != V->getType() &&
 | 
						|
            V->getType()->isIntegerTy())
 | 
						|
          V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
 | 
						|
 | 
						|
        // If the argument doesn't match, perform a bitcast to coerce it.  This
 | 
						|
        // can happen due to trivial type mismatches.
 | 
						|
        if (FirstIRArg < IRFuncTy->getNumParams() &&
 | 
						|
            V->getType() != IRFuncTy->getParamType(FirstIRArg))
 | 
						|
          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
 | 
						|
 | 
						|
        IRCallArgs[FirstIRArg] = V;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // FIXME: Avoid the conversion through memory if possible.
 | 
						|
      Address Src = Address::invalid();
 | 
						|
      if (RV.isScalar() || RV.isComplex()) {
 | 
						|
        Src = CreateMemTemp(I->Ty, "coerce");
 | 
						|
        LValue SrcLV = MakeAddrLValue(Src, I->Ty);
 | 
						|
        EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
 | 
						|
      } else {
 | 
						|
        Src = RV.getAggregateAddress();
 | 
						|
      }
 | 
						|
 | 
						|
      // If the value is offset in memory, apply the offset now.
 | 
						|
      Src = emitAddressAtOffset(*this, Src, ArgInfo);
 | 
						|
 | 
						|
      // Fast-isel and the optimizer generally like scalar values better than
 | 
						|
      // FCAs, so we flatten them if this is safe to do for this argument.
 | 
						|
      llvm::StructType *STy =
 | 
						|
            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
 | 
						|
      if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
 | 
						|
        llvm::Type *SrcTy = Src.getType()->getElementType();
 | 
						|
        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
 | 
						|
        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
 | 
						|
 | 
						|
        // If the source type is smaller than the destination type of the
 | 
						|
        // coerce-to logic, copy the source value into a temp alloca the size
 | 
						|
        // of the destination type to allow loading all of it. The bits past
 | 
						|
        // the source value are left undef.
 | 
						|
        if (SrcSize < DstSize) {
 | 
						|
          Address TempAlloca
 | 
						|
            = CreateTempAlloca(STy, Src.getAlignment(),
 | 
						|
                               Src.getName() + ".coerce");
 | 
						|
          Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
 | 
						|
          Src = TempAlloca;
 | 
						|
        } else {
 | 
						|
          Src = Builder.CreateBitCast(Src,
 | 
						|
                                      STy->getPointerTo(Src.getAddressSpace()));
 | 
						|
        }
 | 
						|
 | 
						|
        auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
 | 
						|
        assert(NumIRArgs == STy->getNumElements());
 | 
						|
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
          auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
 | 
						|
          Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
 | 
						|
          llvm::Value *LI = Builder.CreateLoad(EltPtr);
 | 
						|
          IRCallArgs[FirstIRArg + i] = LI;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // In the simple case, just pass the coerced loaded value.
 | 
						|
        assert(NumIRArgs == 1);
 | 
						|
        IRCallArgs[FirstIRArg] =
 | 
						|
          CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
 | 
						|
      }
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::CoerceAndExpand: {
 | 
						|
      auto coercionType = ArgInfo.getCoerceAndExpandType();
 | 
						|
      auto layout = CGM.getDataLayout().getStructLayout(coercionType);
 | 
						|
 | 
						|
      llvm::Value *tempSize = nullptr;
 | 
						|
      Address addr = Address::invalid();
 | 
						|
      if (RV.isAggregate()) {
 | 
						|
        addr = RV.getAggregateAddress();
 | 
						|
      } else {
 | 
						|
        assert(RV.isScalar()); // complex should always just be direct
 | 
						|
 | 
						|
        llvm::Type *scalarType = RV.getScalarVal()->getType();
 | 
						|
        auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
 | 
						|
        auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
 | 
						|
 | 
						|
        tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
 | 
						|
 | 
						|
        // Materialize to a temporary.
 | 
						|
        addr = CreateTempAlloca(RV.getScalarVal()->getType(),
 | 
						|
                 CharUnits::fromQuantity(std::max(layout->getAlignment(),
 | 
						|
                                                  scalarAlign)));
 | 
						|
        EmitLifetimeStart(scalarSize, addr.getPointer());
 | 
						|
 | 
						|
        Builder.CreateStore(RV.getScalarVal(), addr);
 | 
						|
      }
 | 
						|
 | 
						|
      addr = Builder.CreateElementBitCast(addr, coercionType);
 | 
						|
 | 
						|
      unsigned IRArgPos = FirstIRArg;
 | 
						|
      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
 | 
						|
        llvm::Type *eltType = coercionType->getElementType(i);
 | 
						|
        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
 | 
						|
        Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
 | 
						|
        llvm::Value *elt = Builder.CreateLoad(eltAddr);
 | 
						|
        IRCallArgs[IRArgPos++] = elt;
 | 
						|
      }
 | 
						|
      assert(IRArgPos == FirstIRArg + NumIRArgs);
 | 
						|
 | 
						|
      if (tempSize) {
 | 
						|
        EmitLifetimeEnd(tempSize, addr.getPointer());
 | 
						|
      }
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Expand:
 | 
						|
      unsigned IRArgPos = FirstIRArg;
 | 
						|
      ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
 | 
						|
      assert(IRArgPos == FirstIRArg + NumIRArgs);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *CalleePtr = Callee.getFunctionPointer();
 | 
						|
 | 
						|
  // If we're using inalloca, set up that argument.
 | 
						|
  if (ArgMemory.isValid()) {
 | 
						|
    llvm::Value *Arg = ArgMemory.getPointer();
 | 
						|
    if (CallInfo.isVariadic()) {
 | 
						|
      // When passing non-POD arguments by value to variadic functions, we will
 | 
						|
      // end up with a variadic prototype and an inalloca call site.  In such
 | 
						|
      // cases, we can't do any parameter mismatch checks.  Give up and bitcast
 | 
						|
      // the callee.
 | 
						|
      unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
 | 
						|
      auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
 | 
						|
      CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
 | 
						|
    } else {
 | 
						|
      llvm::Type *LastParamTy =
 | 
						|
          IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
 | 
						|
      if (Arg->getType() != LastParamTy) {
 | 
						|
#ifndef NDEBUG
 | 
						|
        // Assert that these structs have equivalent element types.
 | 
						|
        llvm::StructType *FullTy = CallInfo.getArgStruct();
 | 
						|
        llvm::StructType *DeclaredTy = cast<llvm::StructType>(
 | 
						|
            cast<llvm::PointerType>(LastParamTy)->getElementType());
 | 
						|
        assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
 | 
						|
        for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
 | 
						|
                                                DE = DeclaredTy->element_end(),
 | 
						|
                                                FI = FullTy->element_begin();
 | 
						|
             DI != DE; ++DI, ++FI)
 | 
						|
          assert(*DI == *FI);
 | 
						|
#endif
 | 
						|
        Arg = Builder.CreateBitCast(Arg, LastParamTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(IRFunctionArgs.hasInallocaArg());
 | 
						|
    IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  // 2. Prepare the function pointer.
 | 
						|
 | 
						|
  // If the callee is a bitcast of a non-variadic function to have a
 | 
						|
  // variadic function pointer type, check to see if we can remove the
 | 
						|
  // bitcast.  This comes up with unprototyped functions.
 | 
						|
  //
 | 
						|
  // This makes the IR nicer, but more importantly it ensures that we
 | 
						|
  // can inline the function at -O0 if it is marked always_inline.
 | 
						|
  auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
 | 
						|
    llvm::FunctionType *CalleeFT =
 | 
						|
      cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
 | 
						|
    if (!CalleeFT->isVarArg())
 | 
						|
      return Ptr;
 | 
						|
 | 
						|
    llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
 | 
						|
    if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
 | 
						|
      return Ptr;
 | 
						|
 | 
						|
    llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
 | 
						|
    if (!OrigFn)
 | 
						|
      return Ptr;
 | 
						|
 | 
						|
    llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
 | 
						|
 | 
						|
    // If the original type is variadic, or if any of the component types
 | 
						|
    // disagree, we cannot remove the cast.
 | 
						|
    if (OrigFT->isVarArg() ||
 | 
						|
        OrigFT->getNumParams() != CalleeFT->getNumParams() ||
 | 
						|
        OrigFT->getReturnType() != CalleeFT->getReturnType())
 | 
						|
      return Ptr;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
 | 
						|
      if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
 | 
						|
        return Ptr;
 | 
						|
 | 
						|
    return OrigFn;
 | 
						|
  };
 | 
						|
  CalleePtr = simplifyVariadicCallee(CalleePtr);
 | 
						|
 | 
						|
  // 3. Perform the actual call.
 | 
						|
 | 
						|
  // Deactivate any cleanups that we're supposed to do immediately before
 | 
						|
  // the call.
 | 
						|
  if (!CallArgs.getCleanupsToDeactivate().empty())
 | 
						|
    deactivateArgCleanupsBeforeCall(*this, CallArgs);
 | 
						|
 | 
						|
  // Assert that the arguments we computed match up.  The IR verifier
 | 
						|
  // will catch this, but this is a common enough source of problems
 | 
						|
  // during IRGen changes that it's way better for debugging to catch
 | 
						|
  // it ourselves here.
 | 
						|
#ifndef NDEBUG
 | 
						|
  assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
 | 
						|
  for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
 | 
						|
    // Inalloca argument can have different type.
 | 
						|
    if (IRFunctionArgs.hasInallocaArg() &&
 | 
						|
        i == IRFunctionArgs.getInallocaArgNo())
 | 
						|
      continue;
 | 
						|
    if (i < IRFuncTy->getNumParams())
 | 
						|
      assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Compute the calling convention and attributes.
 | 
						|
  unsigned CallingConv;
 | 
						|
  llvm::AttributeList Attrs;
 | 
						|
  CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
 | 
						|
                             Callee.getAbstractInfo(), Attrs, CallingConv,
 | 
						|
                             /*AttrOnCallSite=*/true);
 | 
						|
 | 
						|
  // Apply some call-site-specific attributes.
 | 
						|
  // TODO: work this into building the attribute set.
 | 
						|
 | 
						|
  // Apply always_inline to all calls within flatten functions.
 | 
						|
  // FIXME: should this really take priority over __try, below?
 | 
						|
  if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
 | 
						|
      !(Callee.getAbstractInfo().getCalleeDecl() &&
 | 
						|
        Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
 | 
						|
    Attrs =
 | 
						|
        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
 | 
						|
                           llvm::Attribute::AlwaysInline);
 | 
						|
  }
 | 
						|
 | 
						|
  // Disable inlining inside SEH __try blocks.
 | 
						|
  if (isSEHTryScope()) {
 | 
						|
    Attrs =
 | 
						|
        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
 | 
						|
                           llvm::Attribute::NoInline);
 | 
						|
  }
 | 
						|
 | 
						|
  // Decide whether to use a call or an invoke.
 | 
						|
  bool CannotThrow;
 | 
						|
  if (currentFunctionUsesSEHTry()) {
 | 
						|
    // SEH cares about asynchronous exceptions, so everything can "throw."
 | 
						|
    CannotThrow = false;
 | 
						|
  } else if (isCleanupPadScope() &&
 | 
						|
             EHPersonality::get(*this).isMSVCXXPersonality()) {
 | 
						|
    // The MSVC++ personality will implicitly terminate the program if an
 | 
						|
    // exception is thrown during a cleanup outside of a try/catch.
 | 
						|
    // We don't need to model anything in IR to get this behavior.
 | 
						|
    CannotThrow = true;
 | 
						|
  } else {
 | 
						|
    // Otherwise, nounwind call sites will never throw.
 | 
						|
    CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
 | 
						|
                                     llvm::Attribute::NoUnwind);
 | 
						|
  }
 | 
						|
  llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
 | 
						|
 | 
						|
  SmallVector<llvm::OperandBundleDef, 1> BundleList;
 | 
						|
  getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList);
 | 
						|
 | 
						|
  // Emit the actual call/invoke instruction.
 | 
						|
  llvm::CallSite CS;
 | 
						|
  if (!InvokeDest) {
 | 
						|
    CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
 | 
						|
  } else {
 | 
						|
    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
 | 
						|
    CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
 | 
						|
                              BundleList);
 | 
						|
    EmitBlock(Cont);
 | 
						|
  }
 | 
						|
  llvm::Instruction *CI = CS.getInstruction();
 | 
						|
  if (callOrInvoke)
 | 
						|
    *callOrInvoke = CI;
 | 
						|
 | 
						|
  // Apply the attributes and calling convention.
 | 
						|
  CS.setAttributes(Attrs);
 | 
						|
  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
 | 
						|
 | 
						|
  // Apply various metadata.
 | 
						|
 | 
						|
  if (!CI->getType()->isVoidTy())
 | 
						|
    CI->setName("call");
 | 
						|
 | 
						|
  // Insert instrumentation or attach profile metadata at indirect call sites.
 | 
						|
  // For more details, see the comment before the definition of
 | 
						|
  // IPVK_IndirectCallTarget in InstrProfData.inc.
 | 
						|
  if (!CS.getCalledFunction())
 | 
						|
    PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
 | 
						|
                     CI, CalleePtr);
 | 
						|
 | 
						|
  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
 | 
						|
  // optimizer it can aggressively ignore unwind edges.
 | 
						|
  if (CGM.getLangOpts().ObjCAutoRefCount)
 | 
						|
    AddObjCARCExceptionMetadata(CI);
 | 
						|
 | 
						|
  // Suppress tail calls if requested.
 | 
						|
  if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
 | 
						|
    const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
 | 
						|
    if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
 | 
						|
      Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
 | 
						|
  }
 | 
						|
 | 
						|
  // 4. Finish the call.
 | 
						|
 | 
						|
  // If the call doesn't return, finish the basic block and clear the
 | 
						|
  // insertion point; this allows the rest of IRGen to discard
 | 
						|
  // unreachable code.
 | 
						|
  if (CS.doesNotReturn()) {
 | 
						|
    if (UnusedReturnSize)
 | 
						|
      EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
 | 
						|
                      SRetPtr.getPointer());
 | 
						|
 | 
						|
    Builder.CreateUnreachable();
 | 
						|
    Builder.ClearInsertionPoint();
 | 
						|
 | 
						|
    // FIXME: For now, emit a dummy basic block because expr emitters in
 | 
						|
    // generally are not ready to handle emitting expressions at unreachable
 | 
						|
    // points.
 | 
						|
    EnsureInsertPoint();
 | 
						|
 | 
						|
    // Return a reasonable RValue.
 | 
						|
    return GetUndefRValue(RetTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform the swifterror writeback.
 | 
						|
  if (swiftErrorTemp.isValid()) {
 | 
						|
    llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
 | 
						|
    Builder.CreateStore(errorResult, swiftErrorArg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit any call-associated writebacks immediately.  Arguably this
 | 
						|
  // should happen after any return-value munging.
 | 
						|
  if (CallArgs.hasWritebacks())
 | 
						|
    emitWritebacks(*this, CallArgs);
 | 
						|
 | 
						|
  // The stack cleanup for inalloca arguments has to run out of the normal
 | 
						|
  // lexical order, so deactivate it and run it manually here.
 | 
						|
  CallArgs.freeArgumentMemory(*this);
 | 
						|
 | 
						|
  // Extract the return value.
 | 
						|
  RValue Ret = [&] {
 | 
						|
    switch (RetAI.getKind()) {
 | 
						|
    case ABIArgInfo::CoerceAndExpand: {
 | 
						|
      auto coercionType = RetAI.getCoerceAndExpandType();
 | 
						|
      auto layout = CGM.getDataLayout().getStructLayout(coercionType);
 | 
						|
 | 
						|
      Address addr = SRetPtr;
 | 
						|
      addr = Builder.CreateElementBitCast(addr, coercionType);
 | 
						|
 | 
						|
      assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
 | 
						|
      bool requiresExtract = isa<llvm::StructType>(CI->getType());
 | 
						|
 | 
						|
      unsigned unpaddedIndex = 0;
 | 
						|
      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
 | 
						|
        llvm::Type *eltType = coercionType->getElementType(i);
 | 
						|
        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
 | 
						|
        Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
 | 
						|
        llvm::Value *elt = CI;
 | 
						|
        if (requiresExtract)
 | 
						|
          elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
 | 
						|
        else
 | 
						|
          assert(unpaddedIndex == 0);
 | 
						|
        Builder.CreateStore(elt, eltAddr);
 | 
						|
      }
 | 
						|
      // FALLTHROUGH
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::InAlloca:
 | 
						|
    case ABIArgInfo::Indirect: {
 | 
						|
      RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
 | 
						|
      if (UnusedReturnSize)
 | 
						|
        EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
 | 
						|
                        SRetPtr.getPointer());
 | 
						|
      return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Ignore:
 | 
						|
      // If we are ignoring an argument that had a result, make sure to
 | 
						|
      // construct the appropriate return value for our caller.
 | 
						|
      return GetUndefRValue(RetTy);
 | 
						|
 | 
						|
    case ABIArgInfo::Extend:
 | 
						|
    case ABIArgInfo::Direct: {
 | 
						|
      llvm::Type *RetIRTy = ConvertType(RetTy);
 | 
						|
      if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
 | 
						|
        switch (getEvaluationKind(RetTy)) {
 | 
						|
        case TEK_Complex: {
 | 
						|
          llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
 | 
						|
          llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
 | 
						|
          return RValue::getComplex(std::make_pair(Real, Imag));
 | 
						|
        }
 | 
						|
        case TEK_Aggregate: {
 | 
						|
          Address DestPtr = ReturnValue.getValue();
 | 
						|
          bool DestIsVolatile = ReturnValue.isVolatile();
 | 
						|
 | 
						|
          if (!DestPtr.isValid()) {
 | 
						|
            DestPtr = CreateMemTemp(RetTy, "agg.tmp");
 | 
						|
            DestIsVolatile = false;
 | 
						|
          }
 | 
						|
          BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
 | 
						|
          return RValue::getAggregate(DestPtr);
 | 
						|
        }
 | 
						|
        case TEK_Scalar: {
 | 
						|
          // If the argument doesn't match, perform a bitcast to coerce it.  This
 | 
						|
          // can happen due to trivial type mismatches.
 | 
						|
          llvm::Value *V = CI;
 | 
						|
          if (V->getType() != RetIRTy)
 | 
						|
            V = Builder.CreateBitCast(V, RetIRTy);
 | 
						|
          return RValue::get(V);
 | 
						|
        }
 | 
						|
        }
 | 
						|
        llvm_unreachable("bad evaluation kind");
 | 
						|
      }
 | 
						|
 | 
						|
      Address DestPtr = ReturnValue.getValue();
 | 
						|
      bool DestIsVolatile = ReturnValue.isVolatile();
 | 
						|
 | 
						|
      if (!DestPtr.isValid()) {
 | 
						|
        DestPtr = CreateMemTemp(RetTy, "coerce");
 | 
						|
        DestIsVolatile = false;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the value is offset in memory, apply the offset now.
 | 
						|
      Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
 | 
						|
      CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
 | 
						|
 | 
						|
      return convertTempToRValue(DestPtr, RetTy, SourceLocation());
 | 
						|
    }
 | 
						|
 | 
						|
    case ABIArgInfo::Expand:
 | 
						|
      llvm_unreachable("Invalid ABI kind for return argument");
 | 
						|
    }
 | 
						|
 | 
						|
    llvm_unreachable("Unhandled ABIArgInfo::Kind");
 | 
						|
  } ();
 | 
						|
 | 
						|
  // Emit the assume_aligned check on the return value.
 | 
						|
  const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
 | 
						|
  if (Ret.isScalar() && TargetDecl) {
 | 
						|
    if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
 | 
						|
      llvm::Value *OffsetValue = nullptr;
 | 
						|
      if (const auto *Offset = AA->getOffset())
 | 
						|
        OffsetValue = EmitScalarExpr(Offset);
 | 
						|
 | 
						|
      llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
 | 
						|
      llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
 | 
						|
      EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
 | 
						|
                              OffsetValue);
 | 
						|
    } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
 | 
						|
      llvm::Value *ParamVal =
 | 
						|
          CallArgs[AA->getParamIndex() - 1].RV.getScalarVal();
 | 
						|
      EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
/* VarArg handling */
 | 
						|
 | 
						|
Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
 | 
						|
  VAListAddr = VE->isMicrosoftABI()
 | 
						|
                 ? EmitMSVAListRef(VE->getSubExpr())
 | 
						|
                 : EmitVAListRef(VE->getSubExpr());
 | 
						|
  QualType Ty = VE->getType();
 | 
						|
  if (VE->isMicrosoftABI())
 | 
						|
    return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
 | 
						|
  return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
 | 
						|
}
 |