forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			176 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			176 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=//
 | 
						|
//
 | 
						|
// This interface is used to identify and classify induction variables that
 | 
						|
// exist in the program.  Induction variables must contain a PHI node that
 | 
						|
// exists in a loop header.  Because of this, they are identified an managed by
 | 
						|
// this PHI node.
 | 
						|
//
 | 
						|
// Induction variables are classified into a type.  Knowing that an induction
 | 
						|
// variable is of a specific type can constrain the values of the start and
 | 
						|
// step.  For example, a SimpleLinear induction variable must have a start and
 | 
						|
// step values that are constants.
 | 
						|
//
 | 
						|
// Induction variables can be created with or without loop information.  If no
 | 
						|
// loop information is available, induction variables cannot be recognized to be
 | 
						|
// more than SimpleLinear variables.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/InductionVariable.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/Expressions.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/InstrTypes.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
 | 
						|
static bool isLoopInvariant(const Value *V, const Loop *L) {
 | 
						|
  if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  const Instruction *I = cast<Instruction>(V);
 | 
						|
  const BasicBlock *BB = I->getParent();
 | 
						|
 | 
						|
  return !L->contains(BB);
 | 
						|
}
 | 
						|
 | 
						|
enum InductionVariable::iType
 | 
						|
InductionVariable::Classify(const Value *Start, const Value *Step,
 | 
						|
			    const Loop *L) {
 | 
						|
  // Check for cannonical and simple linear expressions now...
 | 
						|
  if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
 | 
						|
    if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
 | 
						|
      if (CStart->equalsInt(0) && CStep->equalsInt(1))
 | 
						|
	return Cannonical;
 | 
						|
      else
 | 
						|
	return SimpleLinear;
 | 
						|
    }
 | 
						|
 | 
						|
  // Without loop information, we cannot do any better, so bail now...
 | 
						|
  if (L == 0) return Unknown;
 | 
						|
 | 
						|
  if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
 | 
						|
    return Linear;
 | 
						|
  return Unknown;
 | 
						|
}
 | 
						|
 | 
						|
// Create an induction variable for the specified value.  If it is a PHI, and
 | 
						|
// if it's recognizable, classify it and fill in instance variables.
 | 
						|
//
 | 
						|
InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo) {
 | 
						|
  InductionType = Unknown;     // Assume the worst
 | 
						|
  Phi = P;
 | 
						|
  
 | 
						|
  // If the PHI node has more than two predecessors, we don't know how to
 | 
						|
  // handle it.
 | 
						|
  //
 | 
						|
  if (Phi->getNumIncomingValues() != 2) return;
 | 
						|
 | 
						|
  // FIXME: Handle FP induction variables.
 | 
						|
  if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we have loop information, make sure that this PHI node is in the header
 | 
						|
  // of a loop...
 | 
						|
  //
 | 
						|
  const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
 | 
						|
  if (L && L->getHeader() != Phi->getParent())
 | 
						|
    return;
 | 
						|
 | 
						|
  Value *V1 = Phi->getIncomingValue(0);
 | 
						|
  Value *V2 = Phi->getIncomingValue(1);
 | 
						|
 | 
						|
  if (L == 0) {  // No loop information?  Base everything on expression analysis
 | 
						|
    ExprType E1 = ClassifyExpression(V1);
 | 
						|
    ExprType E2 = ClassifyExpression(V2);
 | 
						|
 | 
						|
    if (E1.ExprTy > E2.ExprTy)        // Make E1 be the simpler expression
 | 
						|
      std::swap(E1, E2);
 | 
						|
    
 | 
						|
    // E1 must be a constant incoming value, and E2 must be a linear expression
 | 
						|
    // with respect to the PHI node.
 | 
						|
    //
 | 
						|
    if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
 | 
						|
	E2.Var != Phi)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Okay, we have found an induction variable. Save the start and step values
 | 
						|
    const Type *ETy = Phi->getType();
 | 
						|
    if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | 
						|
 | 
						|
    Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0));
 | 
						|
    Step  = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0));
 | 
						|
  } else {
 | 
						|
    // Okay, at this point, we know that we have loop information...
 | 
						|
 | 
						|
    // Make sure that V1 is the incoming value, and V2 is from the backedge of
 | 
						|
    // the loop.
 | 
						|
    if (L->contains(Phi->getIncomingBlock(0)))     // Wrong order.  Swap now.
 | 
						|
      std::swap(V1, V2);
 | 
						|
    
 | 
						|
    Start = V1;     // We know that Start has to be loop invariant...
 | 
						|
    Step = 0;
 | 
						|
 | 
						|
    if (V2 == Phi) {  // referencing the PHI directly?  Must have zero step
 | 
						|
      Step = Constant::getNullValue(Phi->getType());
 | 
						|
    } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
 | 
						|
      // TODO: This could be much better...
 | 
						|
      if (I->getOpcode() == Instruction::Add) {
 | 
						|
	if (I->getOperand(0) == Phi)
 | 
						|
	  Step = I->getOperand(1);
 | 
						|
	else if (I->getOperand(1) == Phi)
 | 
						|
	  Step = I->getOperand(0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Step == 0) {                  // Unrecognized step value...
 | 
						|
      ExprType StepE = ClassifyExpression(V2);
 | 
						|
      if (StepE.ExprTy != ExprType::Linear ||
 | 
						|
	  StepE.Var != Phi) return;
 | 
						|
 | 
						|
      const Type *ETy = Phi->getType();
 | 
						|
      if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | 
						|
      Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
 | 
						|
    } else {   // We were able to get a step value, simplify with expr analysis
 | 
						|
      ExprType StepE = ClassifyExpression(Step);
 | 
						|
      if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
 | 
						|
        // No offset from variable?  Grab the variable
 | 
						|
        Step = StepE.Var;
 | 
						|
      } else if (StepE.ExprTy == ExprType::Constant) {
 | 
						|
        if (StepE.Offset)
 | 
						|
          Step = (Value*)StepE.Offset;
 | 
						|
        else
 | 
						|
          Step = Constant::getNullValue(Step->getType());
 | 
						|
        const Type *ETy = Phi->getType();
 | 
						|
        if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | 
						|
        Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Classify the induction variable type now...
 | 
						|
  InductionType = InductionVariable::Classify(Start, Step, L);
 | 
						|
}
 | 
						|
 | 
						|
void InductionVariable::print(std::ostream &o) const {
 | 
						|
  switch (InductionType) {
 | 
						|
  case InductionVariable::Cannonical:   o << "Cannonical ";   break;
 | 
						|
  case InductionVariable::SimpleLinear: o << "SimpleLinear "; break;
 | 
						|
  case InductionVariable::Linear:       o << "Linear ";       break;
 | 
						|
  case InductionVariable::Unknown:      o << "Unrecognized "; break;
 | 
						|
  }
 | 
						|
  o << "Induction Variable: ";
 | 
						|
  if (Phi) {
 | 
						|
    WriteAsOperand(o, Phi);
 | 
						|
    o << ":\n" << Phi;
 | 
						|
  } else {
 | 
						|
    o << "\n";
 | 
						|
  }
 | 
						|
  if (InductionType == InductionVariable::Unknown) return;
 | 
						|
 | 
						|
  o << "  Start = "; WriteAsOperand(o, Start);
 | 
						|
  o << "  Step = " ; WriteAsOperand(o, Step);
 | 
						|
  o << "\n";
 | 
						|
}
 |