forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2186 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2186 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SparcInstrSelection.cpp -------------------------------------------===//
 | 
						|
//
 | 
						|
//  BURS instruction selection for SPARC V9 architecture.      
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SparcInternals.h"
 | 
						|
#include "SparcInstrSelectionSupport.h"
 | 
						|
#include "SparcRegClassInfo.h"
 | 
						|
#include "llvm/CodeGen/InstrSelectionSupport.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrAnnot.h"
 | 
						|
#include "llvm/CodeGen/InstrForest.h"
 | 
						|
#include "llvm/CodeGen/InstrSelection.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForMethod.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "Support/MathExtras.h"
 | 
						|
#include <math.h>
 | 
						|
using std::vector;
 | 
						|
 | 
						|
//************************ Internal Functions ******************************/
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseBprInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode;
 | 
						|
  
 | 
						|
  Instruction* setCCInstr =
 | 
						|
    ((InstructionNode*) instrNode->leftChild())->getInstruction();
 | 
						|
  
 | 
						|
  switch(setCCInstr->getOpcode())
 | 
						|
    {
 | 
						|
    case Instruction::SetEQ: opCode = BRZ;   break;
 | 
						|
    case Instruction::SetNE: opCode = BRNZ;  break;
 | 
						|
    case Instruction::SetLE: opCode = BRLEZ; break;
 | 
						|
    case Instruction::SetGE: opCode = BRGEZ; break;
 | 
						|
    case Instruction::SetLT: opCode = BRLZ;  break;
 | 
						|
    case Instruction::SetGT: opCode = BRGZ;  break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Unrecognized VM instruction!");
 | 
						|
      opCode = INVALID_OPCODE;
 | 
						|
      break; 
 | 
						|
    }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseBpccInstruction(const InstructionNode* instrNode,
 | 
						|
                      const BinaryOperator* setCCInstr)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  
 | 
						|
  bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
 | 
						|
  
 | 
						|
  if (isSigned)
 | 
						|
    {
 | 
						|
      switch(setCCInstr->getOpcode())
 | 
						|
        {
 | 
						|
        case Instruction::SetEQ: opCode = BE;  break;
 | 
						|
        case Instruction::SetNE: opCode = BNE; break;
 | 
						|
        case Instruction::SetLE: opCode = BLE; break;
 | 
						|
        case Instruction::SetGE: opCode = BGE; break;
 | 
						|
        case Instruction::SetLT: opCode = BL;  break;
 | 
						|
        case Instruction::SetGT: opCode = BG;  break;
 | 
						|
        default:
 | 
						|
          assert(0 && "Unrecognized VM instruction!");
 | 
						|
          break; 
 | 
						|
        }
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      switch(setCCInstr->getOpcode())
 | 
						|
        {
 | 
						|
        case Instruction::SetEQ: opCode = BE;   break;
 | 
						|
        case Instruction::SetNE: opCode = BNE;  break;
 | 
						|
        case Instruction::SetLE: opCode = BLEU; break;
 | 
						|
        case Instruction::SetGE: opCode = BCC;  break;
 | 
						|
        case Instruction::SetLT: opCode = BCS;  break;
 | 
						|
        case Instruction::SetGT: opCode = BGU;  break;
 | 
						|
        default:
 | 
						|
          assert(0 && "Unrecognized VM instruction!");
 | 
						|
          break; 
 | 
						|
        }
 | 
						|
    }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseBFpccInstruction(const InstructionNode* instrNode,
 | 
						|
                       const BinaryOperator* setCCInstr)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  
 | 
						|
  switch(setCCInstr->getOpcode())
 | 
						|
    {
 | 
						|
    case Instruction::SetEQ: opCode = FBE;  break;
 | 
						|
    case Instruction::SetNE: opCode = FBNE; break;
 | 
						|
    case Instruction::SetLE: opCode = FBLE; break;
 | 
						|
    case Instruction::SetGE: opCode = FBGE; break;
 | 
						|
    case Instruction::SetLT: opCode = FBL;  break;
 | 
						|
    case Instruction::SetGT: opCode = FBG;  break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Unrecognized VM instruction!");
 | 
						|
      break; 
 | 
						|
    }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Create a unique TmpInstruction for a boolean value,
 | 
						|
// representing the CC register used by a branch on that value.
 | 
						|
// For now, hack this using a little static cache of TmpInstructions.
 | 
						|
// Eventually the entire BURG instruction selection should be put
 | 
						|
// into a separate class that can hold such information.
 | 
						|
// The static cache is not too bad because the memory for these
 | 
						|
// TmpInstructions will be freed along with the rest of the Function anyway.
 | 
						|
// 
 | 
						|
static TmpInstruction*
 | 
						|
GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType)
 | 
						|
{
 | 
						|
  typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
 | 
						|
  static BoolTmpCache boolToTmpCache;     // Map boolVal -> TmpInstruction*
 | 
						|
  static const Function *lastFunction = 0;// Use to flush cache between funcs
 | 
						|
  
 | 
						|
  assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
 | 
						|
  
 | 
						|
  if (lastFunction != F)
 | 
						|
    {
 | 
						|
      lastFunction = F;
 | 
						|
      boolToTmpCache.clear();
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Look for tmpI and create a new one otherwise.  The new value is
 | 
						|
  // directly written to map using the ref returned by operator[].
 | 
						|
  TmpInstruction*& tmpI = boolToTmpCache[boolVal];
 | 
						|
  if (tmpI == NULL)
 | 
						|
    tmpI = new TmpInstruction(ccType, boolVal);
 | 
						|
  
 | 
						|
  return tmpI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseBccInstruction(const InstructionNode* instrNode,
 | 
						|
                     bool& isFPBranch)
 | 
						|
{
 | 
						|
  InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
 | 
						|
  assert(setCCNode->getOpLabel() == SetCCOp);
 | 
						|
  BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
 | 
						|
  const Type* setCCType = setCCInstr->getOperand(0)->getType();
 | 
						|
  
 | 
						|
  isFPBranch = setCCType->isFloatingPoint(); // Return value: don't delete!
 | 
						|
  
 | 
						|
  if (isFPBranch)
 | 
						|
    return ChooseBFpccInstruction(instrNode, setCCInstr);
 | 
						|
  else
 | 
						|
    return ChooseBpccInstruction(instrNode, setCCInstr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseMovFpccInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  
 | 
						|
  switch(instrNode->getInstruction()->getOpcode())
 | 
						|
    {
 | 
						|
    case Instruction::SetEQ: opCode = MOVFE;  break;
 | 
						|
    case Instruction::SetNE: opCode = MOVFNE; break;
 | 
						|
    case Instruction::SetLE: opCode = MOVFLE; break;
 | 
						|
    case Instruction::SetGE: opCode = MOVFGE; break;
 | 
						|
    case Instruction::SetLT: opCode = MOVFL;  break;
 | 
						|
    case Instruction::SetGT: opCode = MOVFG;  break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Unrecognized VM instruction!");
 | 
						|
      break; 
 | 
						|
    }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Assumes that SUBcc v1, v2 -> v3 has been executed.
 | 
						|
// In most cases, we want to clear v3 and then follow it by instruction
 | 
						|
// MOVcc 1 -> v3.
 | 
						|
// Set mustClearReg=false if v3 need not be cleared before conditional move.
 | 
						|
// Set valueToMove=0 if we want to conditionally move 0 instead of 1
 | 
						|
//                      (i.e., we want to test inverse of a condition)
 | 
						|
// (The latter two cases do not seem to arise because SetNE needs nothing.)
 | 
						|
// 
 | 
						|
static MachineOpCode
 | 
						|
ChooseMovpccAfterSub(const InstructionNode* instrNode,
 | 
						|
                     bool& mustClearReg,
 | 
						|
                     int& valueToMove)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  mustClearReg = true;
 | 
						|
  valueToMove = 1;
 | 
						|
  
 | 
						|
  switch(instrNode->getInstruction()->getOpcode())
 | 
						|
    {
 | 
						|
    case Instruction::SetEQ: opCode = MOVE;  break;
 | 
						|
    case Instruction::SetLE: opCode = MOVLE; break;
 | 
						|
    case Instruction::SetGE: opCode = MOVGE; break;
 | 
						|
    case Instruction::SetLT: opCode = MOVL;  break;
 | 
						|
    case Instruction::SetGT: opCode = MOVG;  break;
 | 
						|
    case Instruction::SetNE: assert(0 && "No move required!"); break;
 | 
						|
    default:		     assert(0 && "Unrecognized VM instr!"); break; 
 | 
						|
    }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
static inline MachineOpCode
 | 
						|
ChooseConvertToFloatInstr(OpLabel vopCode, const Type* opType)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  
 | 
						|
  switch(vopCode)
 | 
						|
    {
 | 
						|
    case ToFloatTy: 
 | 
						|
      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
 | 
						|
        opCode = FITOS;
 | 
						|
      else if (opType == Type::LongTy)
 | 
						|
        opCode = FXTOS;
 | 
						|
      else if (opType == Type::DoubleTy)
 | 
						|
        opCode = FDTOS;
 | 
						|
      else if (opType == Type::FloatTy)
 | 
						|
        ;
 | 
						|
      else
 | 
						|
        assert(0 && "Cannot convert this type to FLOAT on SPARC");
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case ToDoubleTy: 
 | 
						|
      // This is usually used in conjunction with CreateCodeToCopyIntToFloat().
 | 
						|
      // Both functions should treat the integer as a 32-bit value for types
 | 
						|
      // of 4 bytes or less, and as a 64-bit value otherwise.
 | 
						|
      if (opType == Type::SByteTy || opType == Type::UByteTy ||
 | 
						|
          opType == Type::ShortTy || opType == Type::UShortTy ||
 | 
						|
          opType == Type::IntTy   || opType == Type::UIntTy)
 | 
						|
        opCode = FITOD;
 | 
						|
      else if (opType == Type::LongTy || opType == Type::ULongTy)
 | 
						|
        opCode = FXTOD;
 | 
						|
      else if (opType == Type::FloatTy)
 | 
						|
        opCode = FSTOD;
 | 
						|
      else if (opType == Type::DoubleTy)
 | 
						|
        ;
 | 
						|
      else
 | 
						|
        assert(0 && "Cannot convert this type to DOUBLE on SPARC");
 | 
						|
      break;
 | 
						|
      
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseConvertToIntInstr(Type::PrimitiveID tid, const Type* opType)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;;
 | 
						|
  
 | 
						|
  if (tid==Type::SByteTyID || tid==Type::ShortTyID  || tid==Type::IntTyID ||
 | 
						|
      tid==Type::UByteTyID || tid==Type::UShortTyID || tid==Type::UIntTyID)
 | 
						|
    {
 | 
						|
      switch (opType->getPrimitiveID())
 | 
						|
        {
 | 
						|
        case Type::FloatTyID:   opCode = FSTOI; break;
 | 
						|
        case Type::DoubleTyID:  opCode = FDTOI; break;
 | 
						|
        default:
 | 
						|
          assert(0 && "Non-numeric non-bool type cannot be converted to Int");
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  else if (tid==Type::LongTyID || tid==Type::ULongTyID)
 | 
						|
    {
 | 
						|
      switch (opType->getPrimitiveID())
 | 
						|
        {
 | 
						|
        case Type::FloatTyID:   opCode = FSTOX; break;
 | 
						|
        case Type::DoubleTyID:  opCode = FDTOX; break;
 | 
						|
        default:
 | 
						|
          assert(0 && "Non-numeric non-bool type cannot be converted to Long");
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  else
 | 
						|
      assert(0 && "Should not get here, Mo!");
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr*
 | 
						|
CreateConvertToIntInstr(Type::PrimitiveID destTID, Value* srcVal,Value* destVal)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = ChooseConvertToIntInstr(destTID, srcVal->getType());
 | 
						|
  assert(opCode != INVALID_OPCODE && "Expected to need conversion!");
 | 
						|
  
 | 
						|
  MachineInstr* M = new MachineInstr(opCode);
 | 
						|
  M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, srcVal);
 | 
						|
  M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, destVal);
 | 
						|
  return M;
 | 
						|
}
 | 
						|
 | 
						|
// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer
 | 
						|
// The FP value must be converted to the dest type in an FP register,
 | 
						|
// and the result is then copied from FP to int register via memory.
 | 
						|
//
 | 
						|
// Since fdtoi converts to signed integers, any FP value V between MAXINT+1
 | 
						|
// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly
 | 
						|
// *only* when converting to an unsigned int.  (Unsigned byte, short or long
 | 
						|
// don't have this problem.)
 | 
						|
// For unsigned int, we therefore have to generate the code sequence:
 | 
						|
// 
 | 
						|
//      if (V > (float) MAXINT) {
 | 
						|
//        unsigned result = (unsigned) (V  - (float) MAXINT);
 | 
						|
//        result = result + (unsigned) MAXINT;
 | 
						|
//      }
 | 
						|
//      else
 | 
						|
//        result = (unsigned int) V;
 | 
						|
// 
 | 
						|
static void
 | 
						|
CreateCodeToConvertFloatToInt(const TargetMachine& target,
 | 
						|
                              Value* opVal,
 | 
						|
                              Instruction* destI,
 | 
						|
                              std::vector<MachineInstr*>& mvec,
 | 
						|
                              MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  // Create a temporary to represent the FP register into which the
 | 
						|
  // int value will placed after conversion.  The type of this temporary
 | 
						|
  // depends on the type of FP register to use: single-prec for a 32-bit
 | 
						|
  // int or smaller; double-prec for a 64-bit int.
 | 
						|
  // 
 | 
						|
  size_t destSize = target.DataLayout.getTypeSize(destI->getType());
 | 
						|
  const Type* destTypeToUse = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
 | 
						|
  TmpInstruction* destForCast = new TmpInstruction(destTypeToUse, opVal);
 | 
						|
  mcfi.addTemp(destForCast);
 | 
						|
 | 
						|
  // Create the fp-to-int conversion code
 | 
						|
  MachineInstr* M = CreateConvertToIntInstr(destI->getType()->getPrimitiveID(),
 | 
						|
                                            opVal, destForCast);
 | 
						|
  mvec.push_back(M);
 | 
						|
 | 
						|
  // Create the fpreg-to-intreg copy code
 | 
						|
  target.getInstrInfo().
 | 
						|
    CreateCodeToCopyFloatToInt(target, destI->getParent()->getParent(),
 | 
						|
                               destForCast, destI, mvec, mcfi);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseAddInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineInstr* 
 | 
						|
CreateMovFloatInstruction(const InstructionNode* instrNode,
 | 
						|
                          const Type* resultType)
 | 
						|
{
 | 
						|
  MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
 | 
						|
                                          ? FMOVS : FMOVD);
 | 
						|
  minstr->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
 | 
						|
                               instrNode->leftChild()->getValue());
 | 
						|
  minstr->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,
 | 
						|
                               instrNode->getValue());
 | 
						|
  return minstr;
 | 
						|
}
 | 
						|
 | 
						|
static inline MachineInstr* 
 | 
						|
CreateAddConstInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineInstr* minstr = NULL;
 | 
						|
  
 | 
						|
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
 | 
						|
  assert(isa<Constant>(constOp));
 | 
						|
  
 | 
						|
  // Cases worth optimizing are:
 | 
						|
  // (1) Add with 0 for float or double: use an FMOV of appropriate type,
 | 
						|
  //	 instead of an FADD (1 vs 3 cycles).  There is no integer MOV.
 | 
						|
  // 
 | 
						|
  if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
 | 
						|
      double dval = FPC->getValue();
 | 
						|
      if (dval == 0.0)
 | 
						|
        minstr = CreateMovFloatInstruction(instrNode,
 | 
						|
                                   instrNode->getInstruction()->getType());
 | 
						|
    }
 | 
						|
  
 | 
						|
  return minstr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseSubInstructionByType(const Type* resultType)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  
 | 
						|
  if (resultType->isInteger() || isa<PointerType>(resultType))
 | 
						|
    {
 | 
						|
      opCode = SUB;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    switch(resultType->getPrimitiveID())
 | 
						|
      {
 | 
						|
      case Type::FloatTyID:  opCode = FSUBS; break;
 | 
						|
      case Type::DoubleTyID: opCode = FSUBD; break;
 | 
						|
      default: assert(0 && "Invalid type for SUB instruction"); break; 
 | 
						|
      }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineInstr* 
 | 
						|
CreateSubConstInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineInstr* minstr = NULL;
 | 
						|
  
 | 
						|
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
 | 
						|
  assert(isa<Constant>(constOp));
 | 
						|
  
 | 
						|
  // Cases worth optimizing are:
 | 
						|
  // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
 | 
						|
  //	 instead of an FSUB (1 vs 3 cycles).  There is no integer MOV.
 | 
						|
  // 
 | 
						|
  if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
 | 
						|
    double dval = FPC->getValue();
 | 
						|
    if (dval == 0.0)
 | 
						|
      minstr = CreateMovFloatInstruction(instrNode,
 | 
						|
                                        instrNode->getInstruction()->getType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  return minstr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseFcmpInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  
 | 
						|
  Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
 | 
						|
  switch(operand->getType()->getPrimitiveID()) {
 | 
						|
  case Type::FloatTyID:  opCode = FCMPS; break;
 | 
						|
  case Type::DoubleTyID: opCode = FCMPD; break;
 | 
						|
  default: assert(0 && "Invalid type for FCMP instruction"); break; 
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Assumes that leftArg and rightArg are both cast instructions.
 | 
						|
//
 | 
						|
static inline bool
 | 
						|
BothFloatToDouble(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  InstrTreeNode* leftArg = instrNode->leftChild();
 | 
						|
  InstrTreeNode* rightArg = instrNode->rightChild();
 | 
						|
  InstrTreeNode* leftArgArg = leftArg->leftChild();
 | 
						|
  InstrTreeNode* rightArgArg = rightArg->leftChild();
 | 
						|
  assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
 | 
						|
  
 | 
						|
  // Check if both arguments are floats cast to double
 | 
						|
  return (leftArg->getValue()->getType() == Type::DoubleTy &&
 | 
						|
          leftArgArg->getValue()->getType() == Type::FloatTy &&
 | 
						|
          rightArgArg->getValue()->getType() == Type::FloatTy);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseMulInstructionByType(const Type* resultType)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  
 | 
						|
  if (resultType->isInteger())
 | 
						|
    opCode = MULX;
 | 
						|
  else
 | 
						|
    switch(resultType->getPrimitiveID())
 | 
						|
      {
 | 
						|
      case Type::FloatTyID:  opCode = FMULS; break;
 | 
						|
      case Type::DoubleTyID: opCode = FMULD; break;
 | 
						|
      default: assert(0 && "Invalid type for MUL instruction"); break; 
 | 
						|
      }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static inline MachineInstr*
 | 
						|
CreateIntNegInstruction(const TargetMachine& target,
 | 
						|
                        Value* vreg)
 | 
						|
{
 | 
						|
  MachineInstr* minstr = new MachineInstr(SUB);
 | 
						|
  minstr->SetMachineOperandReg(0, target.getRegInfo().getZeroRegNum());
 | 
						|
  minstr->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, vreg);
 | 
						|
  minstr->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, vreg);
 | 
						|
  return minstr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Create instruction sequence for any shift operation.
 | 
						|
// SLL or SLLX on an operand smaller than the integer reg. size (64bits)
 | 
						|
// requires a second instruction for explicit sign-extension.
 | 
						|
// Note that we only have to worry about a sign-bit appearing in the
 | 
						|
// most significant bit of the operand after shifting (e.g., bit 32 of
 | 
						|
// Int or bit 16 of Short), so we do not have to worry about results
 | 
						|
// that are as large as a normal integer register.
 | 
						|
// 
 | 
						|
static inline void
 | 
						|
CreateShiftInstructions(const TargetMachine& target,
 | 
						|
                        Function* F,
 | 
						|
                        MachineOpCode shiftOpCode,
 | 
						|
                        Value* argVal1,
 | 
						|
                        Value* optArgVal2, /* Use optArgVal2 if not NULL */
 | 
						|
                        unsigned int optShiftNum, /* else use optShiftNum */
 | 
						|
                        Instruction* destVal,
 | 
						|
                        vector<MachineInstr*>& mvec,
 | 
						|
                        MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  assert((optArgVal2 != NULL || optShiftNum <= 64) &&
 | 
						|
         "Large shift sizes unexpected, but can be handled below: "
 | 
						|
         "You need to check whether or not it fits in immed field below");
 | 
						|
  
 | 
						|
  // If this is a logical left shift of a type smaller than the standard
 | 
						|
  // integer reg. size, we have to extend the sign-bit into upper bits
 | 
						|
  // of dest, so we need to put the result of the SLL into a temporary.
 | 
						|
  // 
 | 
						|
  Value* shiftDest = destVal;
 | 
						|
  const Type* opType = argVal1->getType();
 | 
						|
  unsigned opSize = target.DataLayout.getTypeSize(argVal1->getType());
 | 
						|
  if ((shiftOpCode == SLL || shiftOpCode == SLLX)
 | 
						|
      && opSize < target.DataLayout.getIntegerRegize())
 | 
						|
    { // put SLL result into a temporary
 | 
						|
      shiftDest = new TmpInstruction(argVal1, optArgVal2, "sllTmp");
 | 
						|
      mcfi.addTemp(shiftDest);
 | 
						|
    }
 | 
						|
  
 | 
						|
  MachineInstr* M = (optArgVal2 != NULL)
 | 
						|
    ? Create3OperandInstr(shiftOpCode, argVal1, optArgVal2, shiftDest)
 | 
						|
    : Create3OperandInstr_UImmed(shiftOpCode, argVal1, optShiftNum, shiftDest);
 | 
						|
  mvec.push_back(M);
 | 
						|
  
 | 
						|
  if (shiftDest != destVal)
 | 
						|
    { // extend the sign-bit of the result into all upper bits of dest
 | 
						|
      assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
 | 
						|
      target.getInstrInfo().
 | 
						|
        CreateSignExtensionInstructions(target, F, shiftDest, 8*opSize,
 | 
						|
                                        destVal, mvec, mcfi);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Does not create any instructions if we cannot exploit constant to
 | 
						|
// create a cheaper instruction.
 | 
						|
// This returns the approximate cost of the instructions generated,
 | 
						|
// which is used to pick the cheapest when both operands are constant.
 | 
						|
static inline unsigned int
 | 
						|
CreateMulConstInstruction(const TargetMachine &target, Function* F,
 | 
						|
                          Value* lval, Value* rval, Instruction* destVal,
 | 
						|
                          vector<MachineInstr*>& mvec,
 | 
						|
                          MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  /* Use max. multiply cost, viz., cost of MULX */
 | 
						|
  unsigned int cost = target.getInstrInfo().minLatency(MULX);
 | 
						|
  unsigned int firstNewInstr = mvec.size();
 | 
						|
  
 | 
						|
  Value* constOp = rval;
 | 
						|
  if (! isa<Constant>(constOp))
 | 
						|
    return cost;
 | 
						|
  
 | 
						|
  // Cases worth optimizing are:
 | 
						|
  // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
 | 
						|
  // (2) Multiply by 2^x for integer types: replace with Shift
 | 
						|
  // 
 | 
						|
  const Type* resultType = destVal->getType();
 | 
						|
  
 | 
						|
  if (resultType->isInteger() || isa<PointerType>(resultType))
 | 
						|
    {
 | 
						|
      bool isValidConst;
 | 
						|
      int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
 | 
						|
      if (isValidConst)
 | 
						|
        {
 | 
						|
          unsigned pow;
 | 
						|
          bool needNeg = false;
 | 
						|
          if (C < 0)
 | 
						|
            {
 | 
						|
              needNeg = true;
 | 
						|
              C = -C;
 | 
						|
            }
 | 
						|
          
 | 
						|
          if (C == 0 || C == 1)
 | 
						|
            {
 | 
						|
              cost = target.getInstrInfo().minLatency(ADD);
 | 
						|
              MachineInstr* M = (C == 0)
 | 
						|
                ? Create3OperandInstr_Reg(ADD,
 | 
						|
                                          target.getRegInfo().getZeroRegNum(),
 | 
						|
                                          target.getRegInfo().getZeroRegNum(),
 | 
						|
                                          destVal)
 | 
						|
                : Create3OperandInstr_Reg(ADD, lval,
 | 
						|
                                          target.getRegInfo().getZeroRegNum(),
 | 
						|
                                          destVal);
 | 
						|
              mvec.push_back(M);
 | 
						|
            }
 | 
						|
          else if (isPowerOf2(C, pow))
 | 
						|
            {
 | 
						|
              unsigned int opSize = target.DataLayout.getTypeSize(resultType);
 | 
						|
              MachineOpCode opCode = (opSize <= 32)? SLL : SLLX;
 | 
						|
              CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
 | 
						|
                                      destVal, mvec, mcfi); 
 | 
						|
            }
 | 
						|
          
 | 
						|
          if (mvec.size() > 0 && needNeg)
 | 
						|
            { // insert <reg = SUB 0, reg> after the instr to flip the sign
 | 
						|
              MachineInstr* M = CreateIntNegInstruction(target, destVal);
 | 
						|
              mvec.push_back(M);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp))
 | 
						|
        {
 | 
						|
          double dval = FPC->getValue();
 | 
						|
          if (fabs(dval) == 1)
 | 
						|
            {
 | 
						|
              MachineOpCode opCode =  (dval < 0)
 | 
						|
                ? (resultType == Type::FloatTy? FNEGS : FNEGD)
 | 
						|
                : (resultType == Type::FloatTy? FMOVS : FMOVD);
 | 
						|
              MachineInstr* M = Create2OperandInstr(opCode, lval, destVal);
 | 
						|
              mvec.push_back(M);
 | 
						|
            } 
 | 
						|
        }
 | 
						|
    }
 | 
						|
  
 | 
						|
  if (firstNewInstr < mvec.size())
 | 
						|
    {
 | 
						|
      cost = 0;
 | 
						|
      for (unsigned int i=firstNewInstr; i < mvec.size(); ++i)
 | 
						|
        cost += target.getInstrInfo().minLatency(mvec[i]->getOpCode());
 | 
						|
    }
 | 
						|
  
 | 
						|
  return cost;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Does not create any instructions if we cannot exploit constant to
 | 
						|
// create a cheaper instruction.
 | 
						|
// 
 | 
						|
static inline void
 | 
						|
CreateCheapestMulConstInstruction(const TargetMachine &target,
 | 
						|
                                  Function* F,
 | 
						|
                                  Value* lval, Value* rval,
 | 
						|
                                  Instruction* destVal,
 | 
						|
                                  vector<MachineInstr*>& mvec,
 | 
						|
                                  MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  Value* constOp;
 | 
						|
  if (isa<Constant>(lval) && isa<Constant>(rval))
 | 
						|
    { // both operands are constant: try both orders!
 | 
						|
      vector<MachineInstr*> mvec1, mvec2;
 | 
						|
      unsigned int lcost = CreateMulConstInstruction(target, F, lval, rval,
 | 
						|
                                                     destVal, mvec1, mcfi);
 | 
						|
      unsigned int rcost = CreateMulConstInstruction(target, F, rval, lval,
 | 
						|
                                                     destVal, mvec2, mcfi);
 | 
						|
      vector<MachineInstr*>& mincostMvec =  (lcost <= rcost)? mvec1 : mvec2;
 | 
						|
      vector<MachineInstr*>& maxcostMvec =  (lcost <= rcost)? mvec2 : mvec1;
 | 
						|
      mvec.insert(mvec.end(), mincostMvec.begin(), mincostMvec.end()); 
 | 
						|
 | 
						|
      for (unsigned int i=0; i < maxcostMvec.size(); ++i)
 | 
						|
        delete maxcostMvec[i];
 | 
						|
    }
 | 
						|
  else if (isa<Constant>(rval))         // rval is constant, but not lval
 | 
						|
    CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
 | 
						|
  else if (isa<Constant>(lval))         // lval is constant, but not rval
 | 
						|
    CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
 | 
						|
  
 | 
						|
  // else neither is constant
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
// Return NULL if we cannot exploit constant to create a cheaper instruction
 | 
						|
static inline void
 | 
						|
CreateMulInstruction(const TargetMachine &target, Function* F,
 | 
						|
                     Value* lval, Value* rval, Instruction* destVal,
 | 
						|
                     vector<MachineInstr*>& mvec,
 | 
						|
                     MachineCodeForInstruction& mcfi,
 | 
						|
                     MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE)
 | 
						|
{
 | 
						|
  unsigned int L = mvec.size();
 | 
						|
  CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
 | 
						|
  if (mvec.size() == L)
 | 
						|
    { // no instructions were added so create MUL reg, reg, reg.
 | 
						|
      // Use FSMULD if both operands are actually floats cast to doubles.
 | 
						|
      // Otherwise, use the default opcode for the appropriate type.
 | 
						|
      MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE)
 | 
						|
                             ? forceMulOp 
 | 
						|
                             : ChooseMulInstructionByType(destVal->getType()));
 | 
						|
      MachineInstr* M = new MachineInstr(mulOp);
 | 
						|
      M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, lval);
 | 
						|
      M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, rval);
 | 
						|
      M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, destVal);
 | 
						|
      mvec.push_back(M);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Generate a divide instruction for Div or Rem.
 | 
						|
// For Rem, this assumes that the operand type will be signed if the result
 | 
						|
// type is signed.  This is correct because they must have the same sign.
 | 
						|
// 
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseDivInstruction(TargetMachine &target,
 | 
						|
                     const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = INVALID_OPCODE;
 | 
						|
  
 | 
						|
  const Type* resultType = instrNode->getInstruction()->getType();
 | 
						|
  
 | 
						|
  if (resultType->isInteger())
 | 
						|
    opCode = resultType->isSigned()? SDIVX : UDIVX;
 | 
						|
  else
 | 
						|
    switch(resultType->getPrimitiveID())
 | 
						|
      {
 | 
						|
      case Type::FloatTyID:  opCode = FDIVS; break;
 | 
						|
      case Type::DoubleTyID: opCode = FDIVD; break;
 | 
						|
      default: assert(0 && "Invalid type for DIV instruction"); break; 
 | 
						|
      }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Return NULL if we cannot exploit constant to create a cheaper instruction
 | 
						|
static inline void
 | 
						|
CreateDivConstInstruction(TargetMachine &target,
 | 
						|
                          const InstructionNode* instrNode,
 | 
						|
                          vector<MachineInstr*>& mvec)
 | 
						|
{
 | 
						|
  MachineInstr* minstr1 = NULL;
 | 
						|
  MachineInstr* minstr2 = NULL;
 | 
						|
  
 | 
						|
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
 | 
						|
  if (! isa<Constant>(constOp))
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Cases worth optimizing are:
 | 
						|
  // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
 | 
						|
  // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
 | 
						|
  // 
 | 
						|
  const Type* resultType = instrNode->getInstruction()->getType();
 | 
						|
  
 | 
						|
  if (resultType->isInteger())
 | 
						|
    {
 | 
						|
      unsigned pow;
 | 
						|
      bool isValidConst;
 | 
						|
      int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
 | 
						|
      if (isValidConst)
 | 
						|
        {
 | 
						|
          bool needNeg = false;
 | 
						|
          if (C < 0)
 | 
						|
            {
 | 
						|
              needNeg = true;
 | 
						|
              C = -C;
 | 
						|
            }
 | 
						|
          
 | 
						|
          if (C == 1)
 | 
						|
            {
 | 
						|
              minstr1 = new MachineInstr(ADD);
 | 
						|
              minstr1->SetMachineOperandVal(0,
 | 
						|
                                           MachineOperand::MO_VirtualRegister,
 | 
						|
                                           instrNode->leftChild()->getValue());
 | 
						|
              minstr1->SetMachineOperandReg(1,
 | 
						|
                                        target.getRegInfo().getZeroRegNum());
 | 
						|
            }
 | 
						|
          else if (isPowerOf2(C, pow))
 | 
						|
            {
 | 
						|
              MachineOpCode opCode= ((resultType->isSigned())
 | 
						|
                                     ? (resultType==Type::LongTy)? SRAX : SRA
 | 
						|
                                     : (resultType==Type::LongTy)? SRLX : SRL);
 | 
						|
              minstr1 = new MachineInstr(opCode);
 | 
						|
              minstr1->SetMachineOperandVal(0,
 | 
						|
                                           MachineOperand::MO_VirtualRegister,
 | 
						|
                                           instrNode->leftChild()->getValue());
 | 
						|
              minstr1->SetMachineOperandConst(1,
 | 
						|
                                          MachineOperand::MO_UnextendedImmed,
 | 
						|
                                          pow);
 | 
						|
            }
 | 
						|
          
 | 
						|
          if (minstr1 && needNeg)
 | 
						|
            { // insert <reg = SUB 0, reg> after the instr to flip the sign
 | 
						|
              minstr2 = CreateIntNegInstruction(target,
 | 
						|
                                                   instrNode->getValue());
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp))
 | 
						|
        {
 | 
						|
          double dval = FPC->getValue();
 | 
						|
          if (fabs(dval) == 1)
 | 
						|
            {
 | 
						|
              bool needNeg = (dval < 0);
 | 
						|
              
 | 
						|
              MachineOpCode opCode = needNeg
 | 
						|
                ? (resultType == Type::FloatTy? FNEGS : FNEGD)
 | 
						|
                : (resultType == Type::FloatTy? FMOVS : FMOVD);
 | 
						|
              
 | 
						|
              minstr1 = new MachineInstr(opCode);
 | 
						|
              minstr1->SetMachineOperandVal(0,
 | 
						|
                                           MachineOperand::MO_VirtualRegister,
 | 
						|
                                           instrNode->leftChild()->getValue());
 | 
						|
            } 
 | 
						|
        }
 | 
						|
    }
 | 
						|
  
 | 
						|
  if (minstr1 != NULL)
 | 
						|
    minstr1->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,
 | 
						|
                                 instrNode->getValue());   
 | 
						|
  
 | 
						|
  if (minstr1)
 | 
						|
    mvec.push_back(minstr1);
 | 
						|
  if (minstr2)
 | 
						|
    mvec.push_back(minstr2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
CreateCodeForVariableSizeAlloca(const TargetMachine& target,
 | 
						|
                                Instruction* result,
 | 
						|
                                unsigned int tsize,
 | 
						|
                                Value* numElementsVal,
 | 
						|
                                vector<MachineInstr*>& getMvec)
 | 
						|
{
 | 
						|
  MachineInstr* M;
 | 
						|
  
 | 
						|
  // Create a Value to hold the (constant) element size
 | 
						|
  Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
 | 
						|
 | 
						|
  // Get the constant offset from SP for dynamically allocated storage
 | 
						|
  // and create a temporary Value to hold it.
 | 
						|
  assert(result && result->getParent() && "Result value is not part of a fn?");
 | 
						|
  Function *F = result->getParent()->getParent();
 | 
						|
  MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(F);
 | 
						|
  bool growUp;
 | 
						|
  ConstantSInt* dynamicAreaOffset =
 | 
						|
    ConstantSInt::get(Type::IntTy,
 | 
						|
                      target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp));
 | 
						|
  assert(! growUp && "Has SPARC v9 stack frame convention changed?");
 | 
						|
 | 
						|
  // Create a temporary value to hold the result of MUL
 | 
						|
  TmpInstruction* tmpProd = new TmpInstruction(numElementsVal, tsizeVal);
 | 
						|
  MachineCodeForInstruction::get(result).addTemp(tmpProd);
 | 
						|
  
 | 
						|
  // Instruction 1: mul numElements, typeSize -> tmpProd
 | 
						|
  M = new MachineInstr(MULX);
 | 
						|
  M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, numElementsVal);
 | 
						|
  M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, tsizeVal);
 | 
						|
  M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, tmpProd);
 | 
						|
  getMvec.push_back(M);
 | 
						|
        
 | 
						|
  // Instruction 2: sub %sp, tmpProd -> %sp
 | 
						|
  M = new MachineInstr(SUB);
 | 
						|
  M->SetMachineOperandReg(0, target.getRegInfo().getStackPointer());
 | 
						|
  M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, tmpProd);
 | 
						|
  M->SetMachineOperandReg(2, target.getRegInfo().getStackPointer());
 | 
						|
  getMvec.push_back(M);
 | 
						|
  
 | 
						|
  // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
 | 
						|
  M = new MachineInstr(ADD);
 | 
						|
  M->SetMachineOperandReg(0, target.getRegInfo().getStackPointer());
 | 
						|
  M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, dynamicAreaOffset);
 | 
						|
  M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, result);
 | 
						|
  getMvec.push_back(M);
 | 
						|
}        
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
CreateCodeForFixedSizeAlloca(const TargetMachine& target,
 | 
						|
                             Instruction* result,
 | 
						|
                             unsigned int tsize,
 | 
						|
                             unsigned int numElements,
 | 
						|
                             vector<MachineInstr*>& getMvec)
 | 
						|
{
 | 
						|
  assert(result && result->getParent() &&
 | 
						|
         "Result value is not part of a function?");
 | 
						|
  Function *F = result->getParent()->getParent();
 | 
						|
  MachineCodeForMethod &mcInfo = MachineCodeForMethod::get(F);
 | 
						|
 | 
						|
  // Check if the offset would small enough to use as an immediate in
 | 
						|
  // load/stores (check LDX because all load/stores have the same-size immediate
 | 
						|
  // field).  If not, put the variable in the dynamically sized area of the
 | 
						|
  // frame.
 | 
						|
  unsigned int paddedSizeIgnored;
 | 
						|
  int offsetFromFP = mcInfo.computeOffsetforLocalVar(target, result,
 | 
						|
                                                     paddedSizeIgnored,
 | 
						|
                                                     tsize * numElements);
 | 
						|
  if (! target.getInstrInfo().constantFitsInImmedField(LDX, offsetFromFP))
 | 
						|
    {
 | 
						|
      CreateCodeForVariableSizeAlloca(target, result, tsize, 
 | 
						|
                                      ConstantSInt::get(Type::IntTy,numElements),
 | 
						|
                                      getMvec);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // else offset fits in immediate field so go ahead and allocate it.
 | 
						|
  offsetFromFP = mcInfo.allocateLocalVar(target, result, tsize * numElements);
 | 
						|
  
 | 
						|
  // Create a temporary Value to hold the constant offset.
 | 
						|
  // This is needed because it may not fit in the immediate field.
 | 
						|
  ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
 | 
						|
  
 | 
						|
  // Instruction 1: add %fp, offsetFromFP -> result
 | 
						|
  MachineInstr* M = new MachineInstr(ADD);
 | 
						|
  M->SetMachineOperandReg(0, target.getRegInfo().getFramePointer());
 | 
						|
  M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, offsetVal); 
 | 
						|
  M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, result);
 | 
						|
  
 | 
						|
  getMvec.push_back(M);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// Function SetOperandsForMemInstr
 | 
						|
//
 | 
						|
// Choose addressing mode for the given load or store instruction.
 | 
						|
// Use [reg+reg] if it is an indexed reference, and the index offset is
 | 
						|
//		 not a constant or if it cannot fit in the offset field.
 | 
						|
// Use [reg+offset] in all other cases.
 | 
						|
// 
 | 
						|
// This assumes that all array refs are "lowered" to one of these forms:
 | 
						|
//	%x = load (subarray*) ptr, constant	; single constant offset
 | 
						|
//	%x = load (subarray*) ptr, offsetVal	; single non-constant offset
 | 
						|
// Generally, this should happen via strength reduction + LICM.
 | 
						|
// Also, strength reduction should take care of using the same register for
 | 
						|
// the loop index variable and an array index, when that is profitable.
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
static void
 | 
						|
SetOperandsForMemInstr(vector<MachineInstr*>& mvec,
 | 
						|
                       const InstructionNode* vmInstrNode,
 | 
						|
                       const TargetMachine& target)
 | 
						|
{
 | 
						|
  Instruction* memInst = vmInstrNode->getInstruction();
 | 
						|
  vector<MachineInstr*>::iterator mvecI = mvec.end() - 1;
 | 
						|
 | 
						|
  // Index vector, ptr value, and flag if all indices are const.
 | 
						|
  vector<Value*> idxVec;
 | 
						|
  bool allConstantIndices;
 | 
						|
  Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);
 | 
						|
 | 
						|
  // Now create the appropriate operands for the machine instruction.
 | 
						|
  // First, initialize so we default to storing the offset in a register.
 | 
						|
  int64_t smallConstOffset = 0;
 | 
						|
  Value* valueForRegOffset = NULL;
 | 
						|
  MachineOperand::MachineOperandType offsetOpType =
 | 
						|
    MachineOperand::MO_VirtualRegister;
 | 
						|
 | 
						|
  // Check if there is an index vector and if so, compute the
 | 
						|
  // right offset for structures and for arrays 
 | 
						|
  // 
 | 
						|
  if (!idxVec.empty())
 | 
						|
    {
 | 
						|
      const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
 | 
						|
      
 | 
						|
      // If all indices are constant, compute the combined offset directly.
 | 
						|
      if (allConstantIndices)
 | 
						|
        {
 | 
						|
          // Compute the offset value using the index vector. Create a
 | 
						|
          // virtual reg. for it since it may not fit in the immed field.
 | 
						|
          uint64_t offset = target.DataLayout.getIndexedOffset(ptrType,idxVec);
 | 
						|
          valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
          // There is at least one non-constant offset.  Therefore, this must
 | 
						|
          // be an array ref, and must have been lowered to a single non-zero
 | 
						|
          // offset.  (An extra leading zero offset, if any, can be ignored.)
 | 
						|
          // Generate code sequence to compute address from index.
 | 
						|
          // 
 | 
						|
          bool firstIdxIsZero =
 | 
						|
            (idxVec[0] == Constant::getNullValue(idxVec[0]->getType()));
 | 
						|
          assert(idxVec.size() == 1U + firstIdxIsZero 
 | 
						|
                 && "Array refs must be lowered before Instruction Selection");
 | 
						|
 | 
						|
          Value* idxVal = idxVec[firstIdxIsZero];
 | 
						|
          assert(! isa<Constant>(idxVal) && "Need to sign-extend uint to 64b!");
 | 
						|
 | 
						|
          vector<MachineInstr*> mulVec;
 | 
						|
          Instruction* addr = new TmpInstruction(Type::UIntTy, memInst);
 | 
						|
          MachineCodeForInstruction::get(memInst).addTemp(addr);
 | 
						|
 | 
						|
          // Get the array type indexed by idxVal, and compute its element size.
 | 
						|
          // The call to getTypeSize() will fail if size is not constant.
 | 
						|
          const Type* vecType = (firstIdxIsZero
 | 
						|
                                 ? GetElementPtrInst::getIndexedType(ptrType,
 | 
						|
                                           std::vector<Value*>(1U, idxVec[0]),
 | 
						|
                                           /*AllowCompositeLeaf*/ true)
 | 
						|
                                 : ptrType);
 | 
						|
          const Type* eltType = cast<SequentialType>(vecType)->getElementType();
 | 
						|
          ConstantUInt* eltSizeVal = ConstantUInt::get(Type::UIntTy,
 | 
						|
                                       target.DataLayout.getTypeSize(eltType));
 | 
						|
 | 
						|
          // CreateMulInstruction() folds constants intelligently enough.
 | 
						|
          CreateMulInstruction(target,
 | 
						|
                               memInst->getParent()->getParent(),
 | 
						|
                               idxVal,         /* lval, not likely to be const*/
 | 
						|
                               eltSizeVal,     /* rval, likely to be constant */
 | 
						|
                               addr,           /* result */
 | 
						|
                               mulVec,
 | 
						|
                               MachineCodeForInstruction::get(memInst),
 | 
						|
                               INVALID_MACHINE_OPCODE);
 | 
						|
 | 
						|
          // Sign-extend the result of MUL  from 32 to 64 bits.
 | 
						|
          target.getInstrInfo().CreateSignExtensionInstructions(target, memInst->getParent()->getParent(), addr, /*srcSizeInBits*/32, addr, mulVec, MachineCodeForInstruction::get(memInst));
 | 
						|
 | 
						|
          // Insert mulVec[] before *mvecI in mvec[] and update mvecI
 | 
						|
          // to point to the same instruction it pointed to before.
 | 
						|
          assert(mulVec.size() > 0 && "No multiply code created?");
 | 
						|
          vector<MachineInstr*>::iterator oldMvecI = mvecI;
 | 
						|
          for (unsigned i=0, N=mulVec.size(); i < N; ++i)
 | 
						|
            mvecI = mvec.insert(mvecI, mulVec[i]) + 1;  // pts to mem instr
 | 
						|
 | 
						|
          valueForRegOffset = addr;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      offsetOpType = MachineOperand::MO_SignExtendedImmed;
 | 
						|
      smallConstOffset = 0;
 | 
						|
    }
 | 
						|
 | 
						|
  // For STORE:
 | 
						|
  //   Operand 0 is value, operand 1 is ptr, operand 2 is offset
 | 
						|
  // For LOAD or GET_ELEMENT_PTR,
 | 
						|
  //   Operand 0 is ptr, operand 1 is offset, operand 2 is result.
 | 
						|
  // 
 | 
						|
  unsigned offsetOpNum, ptrOpNum;
 | 
						|
  if (memInst->getOpcode() == Instruction::Store)
 | 
						|
    {
 | 
						|
      (*mvecI)->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
 | 
						|
                                     vmInstrNode->leftChild()->getValue());
 | 
						|
      ptrOpNum = 1;
 | 
						|
      offsetOpNum = 2;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      ptrOpNum = 0;
 | 
						|
      offsetOpNum = 1;
 | 
						|
      (*mvecI)->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,
 | 
						|
                                     memInst);
 | 
						|
    }
 | 
						|
  
 | 
						|
  (*mvecI)->SetMachineOperandVal(ptrOpNum, MachineOperand::MO_VirtualRegister,
 | 
						|
                                 ptrVal);
 | 
						|
  
 | 
						|
  if (offsetOpType == MachineOperand::MO_VirtualRegister)
 | 
						|
    {
 | 
						|
      assert(valueForRegOffset != NULL);
 | 
						|
      (*mvecI)->SetMachineOperandVal(offsetOpNum, offsetOpType,
 | 
						|
                                     valueForRegOffset); 
 | 
						|
    }
 | 
						|
  else
 | 
						|
    (*mvecI)->SetMachineOperandConst(offsetOpNum, offsetOpType,
 | 
						|
                                     smallConstOffset);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// 
 | 
						|
// Substitute operand `operandNum' of the instruction in node `treeNode'
 | 
						|
// in place of the use(s) of that instruction in node `parent'.
 | 
						|
// Check both explicit and implicit operands!
 | 
						|
// Also make sure to skip over a parent who:
 | 
						|
// (1) is a list node in the Burg tree, or
 | 
						|
// (2) itself had its results forwarded to its parent
 | 
						|
// 
 | 
						|
static void
 | 
						|
ForwardOperand(InstructionNode* treeNode,
 | 
						|
               InstrTreeNode*   parent,
 | 
						|
               int operandNum)
 | 
						|
{
 | 
						|
  assert(treeNode && parent && "Invalid invocation of ForwardOperand");
 | 
						|
  
 | 
						|
  Instruction* unusedOp = treeNode->getInstruction();
 | 
						|
  Value* fwdOp = unusedOp->getOperand(operandNum);
 | 
						|
 | 
						|
  // The parent itself may be a list node, so find the real parent instruction
 | 
						|
  while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
 | 
						|
    {
 | 
						|
      parent = parent->parent();
 | 
						|
      assert(parent && "ERROR: Non-instruction node has no parent in tree.");
 | 
						|
    }
 | 
						|
  InstructionNode* parentInstrNode = (InstructionNode*) parent;
 | 
						|
  
 | 
						|
  Instruction* userInstr = parentInstrNode->getInstruction();
 | 
						|
  MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
 | 
						|
 | 
						|
  // The parent's mvec would be empty if it was itself forwarded.
 | 
						|
  // Recursively call ForwardOperand in that case...
 | 
						|
  //
 | 
						|
  if (mvec.size() == 0)
 | 
						|
    {
 | 
						|
      assert(parent->parent() != NULL &&
 | 
						|
             "Parent could not have been forwarded, yet has no instructions?");
 | 
						|
      ForwardOperand(treeNode, parent->parent(), operandNum);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      for (unsigned i=0, N=mvec.size(); i < N; i++)
 | 
						|
        {
 | 
						|
          MachineInstr* minstr = mvec[i];
 | 
						|
          for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
 | 
						|
            {
 | 
						|
              const MachineOperand& mop = minstr->getOperand(i);
 | 
						|
              if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
 | 
						|
                  mop.getVRegValue() == unusedOp)
 | 
						|
                minstr->SetMachineOperandVal(i,
 | 
						|
                                MachineOperand::MO_VirtualRegister, fwdOp);
 | 
						|
            }
 | 
						|
          
 | 
						|
          for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
 | 
						|
            if (minstr->getImplicitRef(i) == unusedOp)
 | 
						|
              minstr->setImplicitRef(i, fwdOp,
 | 
						|
                                     minstr->implicitRefIsDefined(i),
 | 
						|
                                     minstr->implicitRefIsDefinedAndUsed(i));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline bool
 | 
						|
AllUsesAreBranches(const Instruction* setccI)
 | 
						|
{
 | 
						|
  for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end();
 | 
						|
       UI != UE; ++UI)
 | 
						|
    if (! isa<TmpInstruction>(*UI)     // ignore tmp instructions here
 | 
						|
        && cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//******************* Externally Visible Functions *************************/
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// External Function: ThisIsAChainRule
 | 
						|
//
 | 
						|
// Purpose:
 | 
						|
//   Check if a given BURG rule is a chain rule.
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
extern bool
 | 
						|
ThisIsAChainRule(int eruleno)
 | 
						|
{
 | 
						|
  switch(eruleno)
 | 
						|
    {
 | 
						|
    case 111:	// stmt:  reg
 | 
						|
    case 123:
 | 
						|
    case 124:
 | 
						|
    case 125:
 | 
						|
    case 126:
 | 
						|
    case 127:
 | 
						|
    case 128:
 | 
						|
    case 129:
 | 
						|
    case 130:
 | 
						|
    case 131:
 | 
						|
    case 132:
 | 
						|
    case 133:
 | 
						|
    case 155:
 | 
						|
    case 221:
 | 
						|
    case 222:
 | 
						|
    case 241:
 | 
						|
    case 242:
 | 
						|
    case 243:
 | 
						|
    case 244:
 | 
						|
    case 245:
 | 
						|
    case 321:
 | 
						|
      return true; break;
 | 
						|
 | 
						|
    default:
 | 
						|
      return false; break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// External Function: GetInstructionsByRule
 | 
						|
//
 | 
						|
// Purpose:
 | 
						|
//   Choose machine instructions for the SPARC according to the
 | 
						|
//   patterns chosen by the BURG-generated parser.
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
void
 | 
						|
GetInstructionsByRule(InstructionNode* subtreeRoot,
 | 
						|
                      int ruleForNode,
 | 
						|
                      short* nts,
 | 
						|
                      TargetMachine &target,
 | 
						|
                      vector<MachineInstr*>& mvec)
 | 
						|
{
 | 
						|
  bool checkCast = false;		// initialize here to use fall-through
 | 
						|
  bool maskUnsignedResult = false;
 | 
						|
  int nextRule;
 | 
						|
  int forwardOperandNum = -1;
 | 
						|
  unsigned int allocaSize = 0;
 | 
						|
  MachineInstr* M, *M2;
 | 
						|
  unsigned int L;
 | 
						|
 | 
						|
  mvec.clear(); 
 | 
						|
  
 | 
						|
  // If the code for this instruction was folded into the parent (user),
 | 
						|
  // then do nothing!
 | 
						|
  if (subtreeRoot->isFoldedIntoParent())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // 
 | 
						|
  // Let's check for chain rules outside the switch so that we don't have
 | 
						|
  // to duplicate the list of chain rule production numbers here again
 | 
						|
  // 
 | 
						|
  if (ThisIsAChainRule(ruleForNode))
 | 
						|
    {
 | 
						|
      // Chain rules have a single nonterminal on the RHS.
 | 
						|
      // Get the rule that matches the RHS non-terminal and use that instead.
 | 
						|
      // 
 | 
						|
      assert(nts[0] && ! nts[1]
 | 
						|
             && "A chain rule should have only one RHS non-terminal!");
 | 
						|
      nextRule = burm_rule(subtreeRoot->state, nts[0]);
 | 
						|
      nts = burm_nts[nextRule];
 | 
						|
      GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      switch(ruleForNode) {
 | 
						|
      case 1:	// stmt:   Ret
 | 
						|
      case 2:	// stmt:   RetValue(reg)
 | 
						|
      {         // NOTE: Prepass of register allocation is responsible
 | 
						|
                //	 for moving return value to appropriate register.
 | 
						|
                // Mark the return-address register as a hidden virtual reg.
 | 
						|
                // Mark the return value   register as an implicit ref of
 | 
						|
                // the machine instruction.
 | 
						|
         	// Finally put a NOP in the delay slot.
 | 
						|
        ReturnInst *returnInstr =
 | 
						|
          cast<ReturnInst>(subtreeRoot->getInstruction());
 | 
						|
        assert(returnInstr->getOpcode() == Instruction::Ret);
 | 
						|
        
 | 
						|
        Instruction* returnReg = new TmpInstruction(returnInstr);
 | 
						|
        MachineCodeForInstruction::get(returnInstr).addTemp(returnReg);
 | 
						|
        
 | 
						|
        M = new MachineInstr(JMPLRET);
 | 
						|
        M->SetMachineOperandReg(0, MachineOperand::MO_VirtualRegister,
 | 
						|
                                      returnReg);
 | 
						|
        M->SetMachineOperandConst(1,MachineOperand::MO_SignExtendedImmed,
 | 
						|
                                   (int64_t)8);
 | 
						|
        M->SetMachineOperandReg(2, target.getRegInfo().getZeroRegNum());
 | 
						|
        
 | 
						|
        if (returnInstr->getReturnValue() != NULL)
 | 
						|
          M->addImplicitRef(returnInstr->getReturnValue());
 | 
						|
        
 | 
						|
        mvec.push_back(M);
 | 
						|
        mvec.push_back(new MachineInstr(NOP));
 | 
						|
        
 | 
						|
        break;
 | 
						|
      }  
 | 
						|
        
 | 
						|
      case 3:	// stmt:   Store(reg,reg)
 | 
						|
      case 4:	// stmt:   Store(reg,ptrreg)
 | 
						|
        mvec.push_back(new MachineInstr(
 | 
						|
                         ChooseStoreInstruction(
 | 
						|
                            subtreeRoot->leftChild()->getValue()->getType())));
 | 
						|
        SetOperandsForMemInstr(mvec, subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 5:	// stmt:   BrUncond
 | 
						|
        M = new MachineInstr(BA);
 | 
						|
        M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
 | 
						|
             cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(0));
 | 
						|
        mvec.push_back(M);
 | 
						|
        
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(new MachineInstr(NOP));
 | 
						|
        break;
 | 
						|
 | 
						|
      case 206:	// stmt:   BrCond(setCCconst)
 | 
						|
      { // setCCconst => boolean was computed with `%b = setCC type reg1 const'
 | 
						|
        // If the constant is ZERO, we can use the branch-on-integer-register
 | 
						|
        // instructions and avoid the SUBcc instruction entirely.
 | 
						|
        // Otherwise this is just the same as case 5, so just fall through.
 | 
						|
        // 
 | 
						|
        InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
 | 
						|
        assert(constNode &&
 | 
						|
               constNode->getNodeType() ==InstrTreeNode::NTConstNode);
 | 
						|
        Constant *constVal = cast<Constant>(constNode->getValue());
 | 
						|
        bool isValidConst;
 | 
						|
        
 | 
						|
        if ((constVal->getType()->isInteger()
 | 
						|
             || isa<PointerType>(constVal->getType()))
 | 
						|
            && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
 | 
						|
            && isValidConst)
 | 
						|
          {
 | 
						|
            // That constant is a zero after all...
 | 
						|
            // Use the left child of setCC as the first argument!
 | 
						|
            // Mark the setCC node so that no code is generated for it.
 | 
						|
            InstructionNode* setCCNode = (InstructionNode*)
 | 
						|
                                         subtreeRoot->leftChild();
 | 
						|
            assert(setCCNode->getOpLabel() == SetCCOp);
 | 
						|
            setCCNode->markFoldedIntoParent();
 | 
						|
            
 | 
						|
            BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
 | 
						|
            
 | 
						|
            M = new MachineInstr(ChooseBprInstruction(subtreeRoot));
 | 
						|
            M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
 | 
						|
                                    setCCNode->leftChild()->getValue());
 | 
						|
            M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp,
 | 
						|
                                    brInst->getSuccessor(0));
 | 
						|
            mvec.push_back(M);
 | 
						|
            
 | 
						|
            // delay slot
 | 
						|
            mvec.push_back(new MachineInstr(NOP));
 | 
						|
 | 
						|
            // false branch
 | 
						|
            M = new MachineInstr(BA);
 | 
						|
            M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
 | 
						|
                                    brInst->getSuccessor(1));
 | 
						|
            mvec.push_back(M);
 | 
						|
            
 | 
						|
            // delay slot
 | 
						|
            mvec.push_back(new MachineInstr(NOP));
 | 
						|
            
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
      }
 | 
						|
 | 
						|
      case 6:	// stmt:   BrCond(setCC)
 | 
						|
      { // bool => boolean was computed with SetCC.
 | 
						|
        // The branch to use depends on whether it is FP, signed, or unsigned.
 | 
						|
        // If it is an integer CC, we also need to find the unique
 | 
						|
        // TmpInstruction representing that CC.
 | 
						|
        // 
 | 
						|
        BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
 | 
						|
        bool isFPBranch;
 | 
						|
        M = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
 | 
						|
 | 
						|
        Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
 | 
						|
                                     brInst->getParent()->getParent(),
 | 
						|
                                     isFPBranch? Type::FloatTy : Type::IntTy);
 | 
						|
        
 | 
						|
        M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, ccValue);
 | 
						|
        M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp,
 | 
						|
                                   brInst->getSuccessor(0));
 | 
						|
        mvec.push_back(M);
 | 
						|
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(new MachineInstr(NOP));
 | 
						|
 | 
						|
        // false branch
 | 
						|
        M = new MachineInstr(BA);
 | 
						|
        M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
 | 
						|
                                   brInst->getSuccessor(1));
 | 
						|
        mvec.push_back(M);
 | 
						|
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(new MachineInstr(NOP));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case 208:	// stmt:   BrCond(boolconst)
 | 
						|
      {
 | 
						|
        // boolconst => boolean is a constant; use BA to first or second label
 | 
						|
        Constant* constVal = 
 | 
						|
          cast<Constant>(subtreeRoot->leftChild()->getValue());
 | 
						|
        unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
 | 
						|
        
 | 
						|
        M = new MachineInstr(BA);
 | 
						|
        M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
 | 
						|
          cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
 | 
						|
        mvec.push_back(M);
 | 
						|
        
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(new MachineInstr(NOP));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case   8:	// stmt:   BrCond(boolreg)
 | 
						|
      { // boolreg   => boolean is stored in an existing register.
 | 
						|
        // Just use the branch-on-integer-register instruction!
 | 
						|
        // 
 | 
						|
        M = new MachineInstr(BRNZ);
 | 
						|
        M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
 | 
						|
                                      subtreeRoot->leftChild()->getValue());
 | 
						|
        M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp,
 | 
						|
              cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(0));
 | 
						|
        mvec.push_back(M);
 | 
						|
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(new MachineInstr(NOP));
 | 
						|
 | 
						|
        // false branch
 | 
						|
        M = new MachineInstr(BA);
 | 
						|
        M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
 | 
						|
              cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(1));
 | 
						|
        mvec.push_back(M);
 | 
						|
        
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(new MachineInstr(NOP));
 | 
						|
        break;
 | 
						|
      }  
 | 
						|
      
 | 
						|
      case 9:	// stmt:   Switch(reg)
 | 
						|
        assert(0 && "*** SWITCH instruction is not implemented yet.");
 | 
						|
        break;
 | 
						|
 | 
						|
      case 10:	// reg:   VRegList(reg, reg)
 | 
						|
        assert(0 && "VRegList should never be the topmost non-chain rule");
 | 
						|
        break;
 | 
						|
 | 
						|
      case 21:	// bool:  Not(bool,reg): Both these are implemented as:
 | 
						|
      case 421:	// reg:   BNot(reg,reg):	reg = reg XOR-NOT 0
 | 
						|
      { // First find the unary operand. It may be left or right, usually right.
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(subtreeRoot->getInstruction()));
 | 
						|
        mvec.push_back(Create3OperandInstr_Reg(XNOR, notArg,
 | 
						|
                                          target.getRegInfo().getZeroRegNum(),
 | 
						|
                                          subtreeRoot->getValue()));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case 22:	// reg:   ToBoolTy(reg):
 | 
						|
      {
 | 
						|
        const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
 | 
						|
        assert(opType->isIntegral() || isa<PointerType>(opType));
 | 
						|
        forwardOperandNum = 0;          // forward first operand to user
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 23:	// reg:   ToUByteTy(reg)
 | 
						|
      case 25:	// reg:   ToUShortTy(reg)
 | 
						|
      case 27:	// reg:   ToUIntTy(reg)
 | 
						|
      case 29:	// reg:   ToULongTy(reg)
 | 
						|
      {
 | 
						|
        Instruction* destI =  subtreeRoot->getInstruction();
 | 
						|
        Value* opVal = subtreeRoot->leftChild()->getValue();
 | 
						|
        const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
 | 
						|
        if (opType->isIntegral() || isa<PointerType>(opType))
 | 
						|
          {
 | 
						|
            unsigned opSize = target.DataLayout.getTypeSize(opType);
 | 
						|
            unsigned destSize = target.DataLayout.getTypeSize(destI->getType());
 | 
						|
            if (opSize > destSize ||
 | 
						|
                (opType->isSigned()
 | 
						|
                 && destSize < target.DataLayout.getIntegerRegize()))
 | 
						|
              { // operand is larger than dest,
 | 
						|
                //    OR both are equal but smaller than the full register size
 | 
						|
                //       AND operand is signed, so it may have extra sign bits:
 | 
						|
                // mask high bits using AND
 | 
						|
                M = Create3OperandInstr(AND, opVal,
 | 
						|
                                        ConstantUInt::get(Type::ULongTy,
 | 
						|
                                              ((uint64_t) 1 << 8*destSize) - 1),
 | 
						|
                                        destI);
 | 
						|
                mvec.push_back(M);
 | 
						|
              }
 | 
						|
            else
 | 
						|
              forwardOperandNum = 0;          // forward first operand to user
 | 
						|
          }
 | 
						|
        else if (opType->isFloatingPoint())
 | 
						|
          {
 | 
						|
            CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
 | 
						|
                                         MachineCodeForInstruction::get(destI));
 | 
						|
            maskUnsignedResult = true;  // not handled by convert code
 | 
						|
          }
 | 
						|
        else
 | 
						|
          assert(0 && "Unrecognized operand type for convert-to-unsigned");
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 24:	// reg:   ToSByteTy(reg)
 | 
						|
      case 26:	// reg:   ToShortTy(reg)
 | 
						|
      case 28:	// reg:   ToIntTy(reg)
 | 
						|
      case 30:	// reg:   ToLongTy(reg)
 | 
						|
      {
 | 
						|
        Instruction* destI =  subtreeRoot->getInstruction();
 | 
						|
        Value* opVal = subtreeRoot->leftChild()->getValue();
 | 
						|
        MachineCodeForInstruction& mcfi =MachineCodeForInstruction::get(destI);
 | 
						|
 | 
						|
        const Type* opType = opVal->getType();
 | 
						|
        if (opType->isIntegral() || isa<PointerType>(opType))
 | 
						|
          {
 | 
						|
            // These operand types have the same format as the destination,
 | 
						|
            // but may have different size: add sign bits or mask as needed.
 | 
						|
            // 
 | 
						|
            const Type* destType = destI->getType();
 | 
						|
            unsigned opSize = target.DataLayout.getTypeSize(opType);
 | 
						|
            unsigned destSize = target.DataLayout.getTypeSize(destType);
 | 
						|
            
 | 
						|
            if (opSize < destSize ||
 | 
						|
                (opSize == destSize &&
 | 
						|
                 opSize == target.DataLayout.getIntegerRegize()))
 | 
						|
              { // operand is smaller or both operand and result fill register
 | 
						|
                forwardOperandNum = 0;          // forward first operand to user
 | 
						|
              }
 | 
						|
            else
 | 
						|
              { // need to mask (possibly) and then sign-extend (definitely)
 | 
						|
                Value* srcForSignExt = opVal;
 | 
						|
                unsigned srcSizeForSignExt = 8 * opSize;
 | 
						|
                if (opSize > destSize)
 | 
						|
                  { // operand is larger than dest: mask high bits
 | 
						|
                    TmpInstruction *tmpI = new TmpInstruction(destType, opVal,
 | 
						|
                                                              destI, "maskHi");
 | 
						|
                    mcfi.addTemp(tmpI);
 | 
						|
                    M = Create3OperandInstr(AND, opVal,
 | 
						|
                                            ConstantUInt::get(Type::ULongTy,
 | 
						|
                                              ((uint64_t) 1 << 8*destSize)-1),
 | 
						|
                                            tmpI);
 | 
						|
                    mvec.push_back(M);
 | 
						|
                    srcForSignExt = tmpI;
 | 
						|
                    srcSizeForSignExt = 8 * destSize;
 | 
						|
                  }
 | 
						|
                
 | 
						|
                // sign-extend
 | 
						|
                target.getInstrInfo().CreateSignExtensionInstructions(target, destI->getParent()->getParent(), srcForSignExt, srcSizeForSignExt, destI, mvec, mcfi);
 | 
						|
              }
 | 
						|
          }
 | 
						|
        else if (opType->isFloatingPoint())
 | 
						|
          CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
 | 
						|
        else
 | 
						|
          assert(0 && "Unrecognized operand type for convert-to-signed");
 | 
						|
 | 
						|
        break;
 | 
						|
      }  
 | 
						|
 | 
						|
      case  31:	// reg:   ToFloatTy(reg):
 | 
						|
      case  32:	// reg:   ToDoubleTy(reg):
 | 
						|
      case 232:	// reg:   ToDoubleTy(Constant):
 | 
						|
      
 | 
						|
        // If this instruction has a parent (a user) in the tree 
 | 
						|
        // and the user is translated as an FsMULd instruction,
 | 
						|
        // then the cast is unnecessary.  So check that first.
 | 
						|
        // In the future, we'll want to do the same for the FdMULq instruction,
 | 
						|
        // so do the check here instead of only for ToFloatTy(reg).
 | 
						|
        // 
 | 
						|
        if (subtreeRoot->parent() != NULL)
 | 
						|
          {
 | 
						|
            const MachineCodeForInstruction& mcfi =
 | 
						|
              MachineCodeForInstruction::get(
 | 
						|
                cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
 | 
						|
            if (mcfi.size() == 0 || mcfi.front()->getOpCode() == FSMULD)
 | 
						|
              forwardOperandNum = 0;    // forward first operand to user
 | 
						|
          }
 | 
						|
 | 
						|
        if (forwardOperandNum != 0)     // we do need the cast
 | 
						|
          {
 | 
						|
            Value* leftVal = subtreeRoot->leftChild()->getValue();
 | 
						|
            const Type* opType = leftVal->getType();
 | 
						|
            MachineOpCode opCode=ChooseConvertToFloatInstr(
 | 
						|
                                       subtreeRoot->getOpLabel(), opType);
 | 
						|
            if (opCode == INVALID_OPCODE)	// no conversion needed
 | 
						|
              {
 | 
						|
                forwardOperandNum = 0;      // forward first operand to user
 | 
						|
              }
 | 
						|
            else
 | 
						|
              {
 | 
						|
                // If the source operand is a non-FP type it must be
 | 
						|
                // first copied from int to float register via memory!
 | 
						|
                Instruction *dest = subtreeRoot->getInstruction();
 | 
						|
                Value* srcForCast;
 | 
						|
                int n = 0;
 | 
						|
                if (! opType->isFloatingPoint())
 | 
						|
                  {
 | 
						|
                    // Create a temporary to represent the FP register
 | 
						|
                    // into which the integer will be copied via memory.
 | 
						|
                    // The type of this temporary will determine the FP
 | 
						|
                    // register used: single-prec for a 32-bit int or smaller,
 | 
						|
                    // double-prec for a 64-bit int.
 | 
						|
                    // 
 | 
						|
                    uint64_t srcSize =
 | 
						|
                      target.DataLayout.getTypeSize(leftVal->getType());
 | 
						|
                    Type* tmpTypeToUse =
 | 
						|
                      (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
 | 
						|
                    srcForCast = new TmpInstruction(tmpTypeToUse, dest);
 | 
						|
                    MachineCodeForInstruction &destMCFI = 
 | 
						|
                      MachineCodeForInstruction::get(dest);
 | 
						|
                    destMCFI.addTemp(srcForCast);
 | 
						|
 | 
						|
                    target.getInstrInfo().CreateCodeToCopyIntToFloat(target,
 | 
						|
                         dest->getParent()->getParent(),
 | 
						|
                         leftVal, cast<Instruction>(srcForCast),
 | 
						|
                         mvec, destMCFI);
 | 
						|
                  }
 | 
						|
                else
 | 
						|
                  srcForCast = leftVal;
 | 
						|
                
 | 
						|
                M = new MachineInstr(opCode);
 | 
						|
                M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
 | 
						|
                                           srcForCast);
 | 
						|
                M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,
 | 
						|
                                           dest);
 | 
						|
                mvec.push_back(M);
 | 
						|
              }
 | 
						|
          }
 | 
						|
        break;
 | 
						|
 | 
						|
      case 19:	// reg:   ToArrayTy(reg):
 | 
						|
      case 20:	// reg:   ToPointerTy(reg):
 | 
						|
        forwardOperandNum = 0;          // forward first operand to user
 | 
						|
        break;
 | 
						|
 | 
						|
      case 233:	// reg:   Add(reg, Constant)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        M = CreateAddConstInstruction(subtreeRoot);
 | 
						|
        if (M != NULL)
 | 
						|
          {
 | 
						|
            mvec.push_back(M);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
        
 | 
						|
      case 33:	// reg:   Add(reg, reg)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        mvec.push_back(new MachineInstr(ChooseAddInstruction(subtreeRoot)));
 | 
						|
        Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 234:	// reg:   Sub(reg, Constant)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        M = CreateSubConstInstruction(subtreeRoot);
 | 
						|
        if (M != NULL)
 | 
						|
          {
 | 
						|
            mvec.push_back(M);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
        
 | 
						|
      case 34:	// reg:   Sub(reg, reg)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        mvec.push_back(new MachineInstr(ChooseSubInstructionByType(
 | 
						|
                                   subtreeRoot->getInstruction()->getType())));
 | 
						|
        Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 135:	// reg:   Mul(todouble, todouble)
 | 
						|
        checkCast = true;
 | 
						|
        // FALL THROUGH 
 | 
						|
 | 
						|
      case 35:	// reg:   Mul(reg, reg)
 | 
						|
      {
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
 | 
						|
                                 ? FSMULD
 | 
						|
                                 : INVALID_MACHINE_OPCODE);
 | 
						|
        Instruction* mulInstr = subtreeRoot->getInstruction();
 | 
						|
        CreateMulInstruction(target, mulInstr->getParent()->getParent(),
 | 
						|
                             subtreeRoot->leftChild()->getValue(),
 | 
						|
                             subtreeRoot->rightChild()->getValue(),
 | 
						|
                             mulInstr, mvec,
 | 
						|
                             MachineCodeForInstruction::get(mulInstr),forceOp);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case 335:	// reg:   Mul(todouble, todoubleConst)
 | 
						|
        checkCast = true;
 | 
						|
        // FALL THROUGH 
 | 
						|
 | 
						|
      case 235:	// reg:   Mul(reg, Constant)
 | 
						|
      {
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
 | 
						|
                                 ? FSMULD
 | 
						|
                                 : INVALID_MACHINE_OPCODE);
 | 
						|
        Instruction* mulInstr = subtreeRoot->getInstruction();
 | 
						|
        CreateMulInstruction(target, mulInstr->getParent()->getParent(),
 | 
						|
                             subtreeRoot->leftChild()->getValue(),
 | 
						|
                             subtreeRoot->rightChild()->getValue(),
 | 
						|
                             mulInstr, mvec,
 | 
						|
                             MachineCodeForInstruction::get(mulInstr),
 | 
						|
                             forceOp);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case 236:	// reg:   Div(reg, Constant)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        L = mvec.size();
 | 
						|
        CreateDivConstInstruction(target, subtreeRoot, mvec);
 | 
						|
        if (mvec.size() > L)
 | 
						|
          break;
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
      
 | 
						|
      case 36:	// reg:   Div(reg, reg)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        mvec.push_back(new MachineInstr(ChooseDivInstruction(target, subtreeRoot)));
 | 
						|
        Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case  37:	// reg:   Rem(reg, reg)
 | 
						|
      case 237:	// reg:   Rem(reg, Constant)
 | 
						|
      {
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        Instruction* remInstr = subtreeRoot->getInstruction();
 | 
						|
        
 | 
						|
        TmpInstruction* quot = new TmpInstruction(
 | 
						|
                                        subtreeRoot->leftChild()->getValue(),
 | 
						|
                                        subtreeRoot->rightChild()->getValue());
 | 
						|
        TmpInstruction* prod = new TmpInstruction(
 | 
						|
                                        quot,
 | 
						|
                                        subtreeRoot->rightChild()->getValue());
 | 
						|
        MachineCodeForInstruction::get(remInstr).addTemp(quot).addTemp(prod); 
 | 
						|
        
 | 
						|
        M = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
 | 
						|
        Set3OperandsFromInstr(M, subtreeRoot, target);
 | 
						|
        M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,quot);
 | 
						|
        mvec.push_back(M);
 | 
						|
        
 | 
						|
        M = Create3OperandInstr(ChooseMulInstructionByType(
 | 
						|
                                   subtreeRoot->getInstruction()->getType()),
 | 
						|
                                quot, subtreeRoot->rightChild()->getValue(),
 | 
						|
                                prod);
 | 
						|
        mvec.push_back(M);
 | 
						|
        
 | 
						|
        M = new MachineInstr(ChooseSubInstructionByType(
 | 
						|
                                   subtreeRoot->getInstruction()->getType()));
 | 
						|
        Set3OperandsFromInstr(M, subtreeRoot, target);
 | 
						|
        M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,prod);
 | 
						|
        mvec.push_back(M);
 | 
						|
        
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case  38:	// bool:   And(bool, bool)
 | 
						|
      case 238:	// bool:   And(bool, boolconst)
 | 
						|
      case 338:	// reg :   BAnd(reg, reg)
 | 
						|
      case 538:	// reg :   BAnd(reg, Constant)
 | 
						|
        mvec.push_back(new MachineInstr(AND));
 | 
						|
        Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 138:	// bool:   And(bool, not)
 | 
						|
      case 438:	// bool:   BAnd(bool, bnot)
 | 
						|
      { // Use the argument of NOT as the second argument!
 | 
						|
        // Mark the NOT node so that no code is generated for it.
 | 
						|
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(notNode->getInstruction()));
 | 
						|
        notNode->markFoldedIntoParent();
 | 
						|
        mvec.push_back(Create3OperandInstr(ANDN,
 | 
						|
                                           subtreeRoot->leftChild()->getValue(),
 | 
						|
                                           notArg, subtreeRoot->getValue()));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case  39:	// bool:   Or(bool, bool)
 | 
						|
      case 239:	// bool:   Or(bool, boolconst)
 | 
						|
      case 339:	// reg :   BOr(reg, reg)
 | 
						|
      case 539:	// reg :   BOr(reg, Constant)
 | 
						|
        mvec.push_back(new MachineInstr(OR));
 | 
						|
        Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 139:	// bool:   Or(bool, not)
 | 
						|
      case 439:	// bool:   BOr(bool, bnot)
 | 
						|
      { // Use the argument of NOT as the second argument!
 | 
						|
        // Mark the NOT node so that no code is generated for it.
 | 
						|
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(notNode->getInstruction()));
 | 
						|
        notNode->markFoldedIntoParent();
 | 
						|
        mvec.push_back(Create3OperandInstr(ORN,
 | 
						|
                                           subtreeRoot->leftChild()->getValue(),
 | 
						|
                                           notArg, subtreeRoot->getValue()));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case  40:	// bool:   Xor(bool, bool)
 | 
						|
      case 240:	// bool:   Xor(bool, boolconst)
 | 
						|
      case 340:	// reg :   BXor(reg, reg)
 | 
						|
      case 540:	// reg :   BXor(reg, Constant)
 | 
						|
        mvec.push_back(new MachineInstr(XOR));
 | 
						|
        Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 140:	// bool:   Xor(bool, not)
 | 
						|
      case 440:	// bool:   BXor(bool, bnot)
 | 
						|
      { // Use the argument of NOT as the second argument!
 | 
						|
        // Mark the NOT node so that no code is generated for it.
 | 
						|
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(notNode->getInstruction()));
 | 
						|
        notNode->markFoldedIntoParent();
 | 
						|
        mvec.push_back(Create3OperandInstr(XNOR,
 | 
						|
                                           subtreeRoot->leftChild()->getValue(),
 | 
						|
                                           notArg, subtreeRoot->getValue()));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case 41:	// boolconst:   SetCC(reg, Constant)
 | 
						|
        // 
 | 
						|
        // If the SetCC was folded into the user (parent), it will be
 | 
						|
        // caught above.  All other cases are the same as case 42,
 | 
						|
        // so just fall through.
 | 
						|
        // 
 | 
						|
      case 42:	// bool:   SetCC(reg, reg):
 | 
						|
      {
 | 
						|
        // This generates a SUBCC instruction, putting the difference in
 | 
						|
        // a result register, and setting a condition code.
 | 
						|
        // 
 | 
						|
        // If the boolean result of the SetCC is used by anything other
 | 
						|
        // than a branch instruction, or if it is used outside the current
 | 
						|
        // basic block, the boolean must be
 | 
						|
        // computed and stored in the result register.  Otherwise, discard
 | 
						|
        // the difference (by using %g0) and keep only the condition code.
 | 
						|
        // 
 | 
						|
        // To compute the boolean result in a register we use a conditional
 | 
						|
        // move, unless the result of the SUBCC instruction can be used as
 | 
						|
        // the bool!  This assumes that zero is FALSE and any non-zero
 | 
						|
        // integer is TRUE.
 | 
						|
        // 
 | 
						|
        InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
 | 
						|
        Instruction* setCCInstr = subtreeRoot->getInstruction();
 | 
						|
        
 | 
						|
        bool keepBoolVal = parentNode == NULL ||
 | 
						|
                           ! AllUsesAreBranches(setCCInstr);
 | 
						|
        bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE;
 | 
						|
        bool keepSubVal = keepBoolVal && subValIsBoolVal;
 | 
						|
        bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
 | 
						|
        
 | 
						|
        bool mustClearReg;
 | 
						|
        int valueToMove;
 | 
						|
        MachineOpCode movOpCode = 0;
 | 
						|
        
 | 
						|
        // Mark the 4th operand as being a CC register, and as a def
 | 
						|
        // A TmpInstruction is created to represent the CC "result".
 | 
						|
        // Unlike other instances of TmpInstruction, this one is used
 | 
						|
        // by machine code of multiple LLVM instructions, viz.,
 | 
						|
        // the SetCC and the branch.  Make sure to get the same one!
 | 
						|
        // Note that we do this even for FP CC registers even though they
 | 
						|
        // are explicit operands, because the type of the operand
 | 
						|
        // needs to be a floating point condition code, not an integer
 | 
						|
        // condition code.  Think of this as casting the bool result to
 | 
						|
        // a FP condition code register.
 | 
						|
        // 
 | 
						|
        Value* leftVal = subtreeRoot->leftChild()->getValue();
 | 
						|
        bool isFPCompare = leftVal->getType()->isFloatingPoint();
 | 
						|
        
 | 
						|
        TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
 | 
						|
                                     setCCInstr->getParent()->getParent(),
 | 
						|
                                     isFPCompare ? Type::FloatTy : Type::IntTy);
 | 
						|
        MachineCodeForInstruction::get(setCCInstr).addTemp(tmpForCC);
 | 
						|
        
 | 
						|
        if (! isFPCompare)
 | 
						|
          {
 | 
						|
            // Integer condition: dest. should be %g0 or an integer register.
 | 
						|
            // If result must be saved but condition is not SetEQ then we need
 | 
						|
            // a separate instruction to compute the bool result, so discard
 | 
						|
            // result of SUBcc instruction anyway.
 | 
						|
            // 
 | 
						|
            M = new MachineInstr(SUBcc);
 | 
						|
            Set3OperandsFromInstr(M, subtreeRoot, target, ! keepSubVal);
 | 
						|
            M->SetMachineOperandVal(3, MachineOperand::MO_CCRegister,
 | 
						|
                                    tmpForCC, /*def*/true);
 | 
						|
            mvec.push_back(M);
 | 
						|
            
 | 
						|
            if (computeBoolVal)
 | 
						|
              { // recompute bool using the integer condition codes
 | 
						|
                movOpCode =
 | 
						|
                  ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
 | 
						|
              }
 | 
						|
          }
 | 
						|
        else
 | 
						|
          {
 | 
						|
            // FP condition: dest of FCMP should be some FCCn register
 | 
						|
            M = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
 | 
						|
            M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister,
 | 
						|
                                          tmpForCC);
 | 
						|
            M->SetMachineOperandVal(1,MachineOperand::MO_VirtualRegister,
 | 
						|
                                         subtreeRoot->leftChild()->getValue());
 | 
						|
            M->SetMachineOperandVal(2,MachineOperand::MO_VirtualRegister,
 | 
						|
                                        subtreeRoot->rightChild()->getValue());
 | 
						|
            mvec.push_back(M);
 | 
						|
            
 | 
						|
            if (computeBoolVal)
 | 
						|
              {// recompute bool using the FP condition codes
 | 
						|
                mustClearReg = true;
 | 
						|
                valueToMove = 1;
 | 
						|
                movOpCode = ChooseMovFpccInstruction(subtreeRoot);
 | 
						|
              }
 | 
						|
          }
 | 
						|
        
 | 
						|
        if (computeBoolVal)
 | 
						|
          {
 | 
						|
            if (mustClearReg)
 | 
						|
              {// Unconditionally set register to 0
 | 
						|
                M = new MachineInstr(SETHI);
 | 
						|
                M->SetMachineOperandConst(0,MachineOperand::MO_UnextendedImmed,
 | 
						|
                                          (int64_t)0);
 | 
						|
                M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,
 | 
						|
                                        setCCInstr);
 | 
						|
                mvec.push_back(M);
 | 
						|
              }
 | 
						|
            
 | 
						|
            // Now conditionally move `valueToMove' (0 or 1) into the register
 | 
						|
            // Mark the register as a use (as well as a def) because the old
 | 
						|
            // value should be retained if the condition is false.
 | 
						|
            M = new MachineInstr(movOpCode);
 | 
						|
            M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister,
 | 
						|
                                    tmpForCC);
 | 
						|
            M->SetMachineOperandConst(1, MachineOperand::MO_UnextendedImmed,
 | 
						|
                                      valueToMove);
 | 
						|
            M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,
 | 
						|
                                    setCCInstr, /*isDef*/ true,
 | 
						|
                                    /*isDefAndUse*/ true);
 | 
						|
            mvec.push_back(M);
 | 
						|
          }
 | 
						|
        break;
 | 
						|
      }    
 | 
						|
 | 
						|
      case 51:	// reg:   Load(reg)
 | 
						|
      case 52:	// reg:   Load(ptrreg)
 | 
						|
        mvec.push_back(new MachineInstr(ChooseLoadInstruction(
 | 
						|
                                     subtreeRoot->getValue()->getType())));
 | 
						|
        SetOperandsForMemInstr(mvec, subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 55:	// reg:   GetElemPtr(reg)
 | 
						|
      case 56:	// reg:   GetElemPtrIdx(reg,reg)
 | 
						|
        // If the GetElemPtr was folded into the user (parent), it will be
 | 
						|
        // caught above.  For other cases, we have to compute the address.
 | 
						|
        mvec.push_back(new MachineInstr(ADD));
 | 
						|
        SetOperandsForMemInstr(mvec, subtreeRoot, target);
 | 
						|
        break;
 | 
						|
        
 | 
						|
      case 57:	// reg:  Alloca: Implement as 1 instruction:
 | 
						|
      {         //	    add %fp, offsetFromFP -> result
 | 
						|
        AllocationInst* instr =
 | 
						|
          cast<AllocationInst>(subtreeRoot->getInstruction());
 | 
						|
        unsigned int tsize =
 | 
						|
          target.findOptimalStorageSize(instr->getAllocatedType());
 | 
						|
        assert(tsize != 0);
 | 
						|
        CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 58:	// reg:   Alloca(reg): Implement as 3 instructions:
 | 
						|
                //	mul num, typeSz -> tmp
 | 
						|
                //	sub %sp, tmp    -> %sp
 | 
						|
      {         //	add %sp, frameSizeBelowDynamicArea -> result
 | 
						|
        AllocationInst* instr =
 | 
						|
          cast<AllocationInst>(subtreeRoot->getInstruction());
 | 
						|
        const Type* eltType = instr->getAllocatedType();
 | 
						|
        
 | 
						|
        // If #elements is constant, use simpler code for fixed-size allocas
 | 
						|
        int tsize = (int) target.findOptimalStorageSize(eltType);
 | 
						|
        Value* numElementsVal = NULL;
 | 
						|
        bool isArray = instr->isArrayAllocation();
 | 
						|
        
 | 
						|
        if (!isArray ||
 | 
						|
            isa<Constant>(numElementsVal = instr->getArraySize()))
 | 
						|
          { // total size is constant: generate code for fixed-size alloca
 | 
						|
            unsigned int numElements = isArray? 
 | 
						|
              cast<ConstantUInt>(numElementsVal)->getValue() : 1;
 | 
						|
            CreateCodeForFixedSizeAlloca(target, instr, tsize,
 | 
						|
                                         numElements, mvec);
 | 
						|
          }
 | 
						|
        else // total size is not constant.
 | 
						|
          CreateCodeForVariableSizeAlloca(target, instr, tsize,
 | 
						|
                                          numElementsVal, mvec);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 61:	// reg:   Call
 | 
						|
      {         // Generate a direct (CALL) or indirect (JMPL). depending
 | 
						|
                // Mark the return-address register and the indirection
 | 
						|
                // register (if any) as hidden virtual registers.
 | 
						|
                // Also, mark the operands of the Call and return value (if
 | 
						|
                // any) as implicit operands of the CALL machine instruction.
 | 
						|
                // 
 | 
						|
                // If this is a varargs function, floating point arguments
 | 
						|
                // have to passed in integer registers so insert
 | 
						|
                // copy-float-to-int instructions for each float operand.
 | 
						|
                // 
 | 
						|
        CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
 | 
						|
        Value *callee = callInstr->getCalledValue();
 | 
						|
        
 | 
						|
        // Create hidden virtual register for return address, with type void*. 
 | 
						|
        TmpInstruction* retAddrReg =
 | 
						|
          new TmpInstruction(PointerType::get(Type::VoidTy), callInstr);
 | 
						|
        MachineCodeForInstruction::get(callInstr).addTemp(retAddrReg);
 | 
						|
        
 | 
						|
        // Generate the machine instruction and its operands.
 | 
						|
        // Use CALL for direct function calls; this optimistically assumes
 | 
						|
        // the PC-relative address fits in the CALL address field (22 bits).
 | 
						|
        // Use JMPL for indirect calls.
 | 
						|
        // 
 | 
						|
        if (isa<Function>(callee))
 | 
						|
          { // direct function call
 | 
						|
            M = new MachineInstr(CALL);
 | 
						|
            M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
 | 
						|
                                    callee);
 | 
						|
          } 
 | 
						|
        else
 | 
						|
          { // indirect function call
 | 
						|
            M = new MachineInstr(JMPLCALL);
 | 
						|
            M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
 | 
						|
                                    callee);
 | 
						|
            M->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,
 | 
						|
                                      (int64_t) 0);
 | 
						|
            M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,
 | 
						|
                                    retAddrReg);
 | 
						|
          }
 | 
						|
        
 | 
						|
        mvec.push_back(M);
 | 
						|
 | 
						|
        const FunctionType* funcType =
 | 
						|
          cast<FunctionType>(cast<PointerType>(callee->getType())
 | 
						|
                             ->getElementType());
 | 
						|
        bool isVarArgs = funcType->isVarArg();
 | 
						|
        bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
 | 
						|
        
 | 
						|
        // Use an annotation to pass information about call arguments
 | 
						|
        // to the register allocator.
 | 
						|
        CallArgsDescriptor* argDesc = new CallArgsDescriptor(callInstr,
 | 
						|
                                         retAddrReg, isVarArgs, noPrototype);
 | 
						|
        M->addAnnotation(argDesc);
 | 
						|
        
 | 
						|
        assert(callInstr->getOperand(0) == callee
 | 
						|
               && "This is assumed in the loop below!");
 | 
						|
        
 | 
						|
        for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i)
 | 
						|
          {
 | 
						|
            Value* argVal = callInstr->getOperand(i);
 | 
						|
            Instruction* intArgReg = NULL;
 | 
						|
            
 | 
						|
            // Check for FP arguments to varargs functions.
 | 
						|
            // Any such argument in the first $K$ args must be passed in an
 | 
						|
            // integer register, where K = #integer argument registers.
 | 
						|
            if (isVarArgs && argVal->getType()->isFloatingPoint())
 | 
						|
              {
 | 
						|
                // If it is a function with no prototype, pass value
 | 
						|
                // as an FP value as well as a varargs value
 | 
						|
                if (noPrototype)
 | 
						|
                  argDesc->getArgInfo(i-1).setUseFPArgReg();
 | 
						|
                
 | 
						|
                // If this arg. is in the first $K$ regs, add a copy
 | 
						|
                // float-to-int instruction to pass the value as an integer.
 | 
						|
                if (i < target.getRegInfo().GetNumOfIntArgRegs())
 | 
						|
                  {
 | 
						|
                    MachineCodeForInstruction &destMCFI = 
 | 
						|
                      MachineCodeForInstruction::get(callInstr);   
 | 
						|
                    intArgReg = new TmpInstruction(Type::IntTy, argVal);
 | 
						|
                    destMCFI.addTemp(intArgReg);
 | 
						|
                    
 | 
						|
                    vector<MachineInstr*> copyMvec;
 | 
						|
                    target.getInstrInfo().CreateCodeToCopyFloatToInt(target,
 | 
						|
                                           callInstr->getParent()->getParent(),
 | 
						|
                                           argVal, (TmpInstruction*) intArgReg,
 | 
						|
                                           copyMvec, destMCFI);
 | 
						|
                    mvec.insert(mvec.begin(),copyMvec.begin(),copyMvec.end());
 | 
						|
                    
 | 
						|
                    argDesc->getArgInfo(i-1).setUseIntArgReg();
 | 
						|
                    argDesc->getArgInfo(i-1).setArgCopy(intArgReg);
 | 
						|
                  }
 | 
						|
                else
 | 
						|
                  // Cannot fit in first $K$ regs so pass the arg on the stack
 | 
						|
                  argDesc->getArgInfo(i-1).setUseStackSlot();
 | 
						|
              }
 | 
						|
            
 | 
						|
            if (intArgReg)
 | 
						|
              mvec.back()->addImplicitRef(intArgReg);
 | 
						|
            
 | 
						|
            mvec.back()->addImplicitRef(argVal);
 | 
						|
          }
 | 
						|
        
 | 
						|
        // Add the return value as an implicit ref.  The call operands
 | 
						|
        // were added above.
 | 
						|
        if (callInstr->getType() != Type::VoidTy)
 | 
						|
          mvec.back()->addImplicitRef(callInstr, /*isDef*/ true);
 | 
						|
        
 | 
						|
        // For the CALL instruction, the ret. addr. reg. is also implicit
 | 
						|
        if (isa<Function>(callee))
 | 
						|
          mvec.back()->addImplicitRef(retAddrReg, /*isDef*/ true);
 | 
						|
        
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(new MachineInstr(NOP));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 62:	// reg:   Shl(reg, reg)
 | 
						|
      {
 | 
						|
        Value* argVal1 = subtreeRoot->leftChild()->getValue();
 | 
						|
        Value* argVal2 = subtreeRoot->rightChild()->getValue();
 | 
						|
        Instruction* shlInstr = subtreeRoot->getInstruction();
 | 
						|
        
 | 
						|
        const Type* opType = argVal1->getType();
 | 
						|
        assert((opType->isInteger() || isa<PointerType>(opType)) &&
 | 
						|
               "Shl unsupported for other types");
 | 
						|
        
 | 
						|
        CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
 | 
						|
                                (opType == Type::LongTy)? SLLX : SLL,
 | 
						|
                                argVal1, argVal2, 0, shlInstr, mvec,
 | 
						|
                                MachineCodeForInstruction::get(shlInstr));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 63:	// reg:   Shr(reg, reg)
 | 
						|
      { const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
 | 
						|
        assert((opType->isInteger() || isa<PointerType>(opType)) &&
 | 
						|
               "Shr unsupported for other types");
 | 
						|
        mvec.push_back(new MachineInstr((opType->isSigned()
 | 
						|
                                   ? ((opType == Type::LongTy)? SRAX : SRA)
 | 
						|
                                   : ((opType == Type::LongTy)? SRLX : SRL))));
 | 
						|
        Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 64:	// reg:   Phi(reg,reg)
 | 
						|
        break;                          // don't forward the value
 | 
						|
 | 
						|
      case 71:	// reg:     VReg
 | 
						|
      case 72:	// reg:     Constant
 | 
						|
        break;                          // don't forward the value
 | 
						|
 | 
						|
      default:
 | 
						|
        assert(0 && "Unrecognized BURG rule");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (forwardOperandNum >= 0)
 | 
						|
    { // We did not generate a machine instruction but need to use operand.
 | 
						|
      // If user is in the same tree, replace Value in its machine operand.
 | 
						|
      // If not, insert a copy instruction which should get coalesced away
 | 
						|
      // by register allocation.
 | 
						|
      if (subtreeRoot->parent() != NULL)
 | 
						|
        ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
 | 
						|
      else
 | 
						|
        {
 | 
						|
          vector<MachineInstr*> minstrVec;
 | 
						|
          Instruction* instr = subtreeRoot->getInstruction();
 | 
						|
          target.getInstrInfo().
 | 
						|
            CreateCopyInstructionsByType(target,
 | 
						|
                                         instr->getParent()->getParent(),
 | 
						|
                                         instr->getOperand(forwardOperandNum),
 | 
						|
                                         instr, minstrVec,
 | 
						|
                                        MachineCodeForInstruction::get(instr));
 | 
						|
          assert(minstrVec.size() > 0);
 | 
						|
          mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  if (maskUnsignedResult)
 | 
						|
    { // If result is unsigned and smaller than int reg size,
 | 
						|
      // we need to clear high bits of result value.
 | 
						|
      assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
 | 
						|
      Instruction* dest = subtreeRoot->getInstruction();
 | 
						|
      if (dest->getType()->isUnsigned())
 | 
						|
        {
 | 
						|
          unsigned destSize = target.DataLayout.getTypeSize(dest->getType());
 | 
						|
          if (destSize <= 4)
 | 
						|
            { // Mask high bits.  Use a TmpInstruction to represent the
 | 
						|
              // intermediate result before masking.  Since those instructions
 | 
						|
              // have already been generated, go back and substitute tmpI
 | 
						|
              // for dest in the result position of each one of them.
 | 
						|
              TmpInstruction *tmpI = new TmpInstruction(dest->getType(), dest,
 | 
						|
                                                        NULL, "maskHi");
 | 
						|
              MachineCodeForInstruction::get(dest).addTemp(tmpI);
 | 
						|
 | 
						|
              for (unsigned i=0, N=mvec.size(); i < N; ++i)
 | 
						|
                mvec[i]->substituteValue(dest, tmpI);
 | 
						|
 | 
						|
              M = Create3OperandInstr_UImmed(SRL, tmpI, 4-destSize, dest);
 | 
						|
              mvec.push_back(M);
 | 
						|
            }
 | 
						|
          else if (destSize < target.DataLayout.getIntegerRegize())
 | 
						|
            assert(0 && "Unsupported type size: 32 < size < 64 bits");
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |