forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1518 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1518 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass munges the code in the input function to better prepare it for
 | 
						|
// SelectionDAG-based code generation. This works around limitations in it's
 | 
						|
// basic-block-at-a-time approach. It should eventually be removed.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "codegenprepare"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Target/TargetAsmInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
static cl::opt<bool> FactorCommonPreds("split-critical-paths-tweak",
 | 
						|
                                       cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
 | 
						|
    /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | 
						|
    /// transformation profitability.
 | 
						|
    const TargetLowering *TLI;
 | 
						|
 | 
						|
    /// BackEdges - Keep a set of all the loop back edges.
 | 
						|
    ///
 | 
						|
    SmallSet<std::pair<BasicBlock*,BasicBlock*>, 8> BackEdges;
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    explicit CodeGenPrepare(const TargetLowering *tli = 0)
 | 
						|
      : FunctionPass(&ID), TLI(tli) {}
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
  private:
 | 
						|
    bool EliminateMostlyEmptyBlocks(Function &F);
 | 
						|
    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
 | 
						|
    void EliminateMostlyEmptyBlock(BasicBlock *BB);
 | 
						|
    bool OptimizeBlock(BasicBlock &BB);
 | 
						|
    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
 | 
						|
                            DenseMap<Value*,Value*> &SunkAddrs);
 | 
						|
    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
 | 
						|
                               DenseMap<Value*,Value*> &SunkAddrs);
 | 
						|
    bool OptimizeExtUses(Instruction *I);
 | 
						|
    void findLoopBackEdges(Function &F);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char CodeGenPrepare::ID = 0;
 | 
						|
static RegisterPass<CodeGenPrepare> X("codegenprepare",
 | 
						|
                                      "Optimize for code generation");
 | 
						|
 | 
						|
FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
 | 
						|
  return new CodeGenPrepare(TLI);
 | 
						|
}
 | 
						|
 | 
						|
/// findLoopBackEdges - Do a DFS walk to find loop back edges.
 | 
						|
///
 | 
						|
void CodeGenPrepare::findLoopBackEdges(Function &F) {
 | 
						|
  SmallPtrSet<BasicBlock*, 8> Visited;
 | 
						|
  SmallVector<std::pair<BasicBlock*, succ_iterator>, 8> VisitStack;
 | 
						|
  SmallPtrSet<BasicBlock*, 8> InStack;
 | 
						|
 | 
						|
  BasicBlock *BB = &F.getEntryBlock();
 | 
						|
  if (succ_begin(BB) == succ_end(BB))
 | 
						|
    return;
 | 
						|
  Visited.insert(BB);
 | 
						|
  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
 | 
						|
  InStack.insert(BB);
 | 
						|
  do {
 | 
						|
    std::pair<BasicBlock*, succ_iterator> &Top = VisitStack.back();
 | 
						|
    BasicBlock *ParentBB = Top.first;
 | 
						|
    succ_iterator &I = Top.second;
 | 
						|
 | 
						|
    bool FoundNew = false;
 | 
						|
    while (I != succ_end(ParentBB)) {
 | 
						|
      BB = *I++;
 | 
						|
      if (Visited.insert(BB)) {
 | 
						|
        FoundNew = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Successor is in VisitStack, it's a back edge.
 | 
						|
      if (InStack.count(BB))
 | 
						|
        BackEdges.insert(std::make_pair(ParentBB, BB));
 | 
						|
    }
 | 
						|
 | 
						|
    if (FoundNew) {
 | 
						|
      // Go down one level if there is a unvisited successor.
 | 
						|
      InStack.insert(BB);
 | 
						|
      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
 | 
						|
    } else {
 | 
						|
      // Go up one level.
 | 
						|
      std::pair<BasicBlock*, succ_iterator> &Pop = VisitStack.back();
 | 
						|
      InStack.erase(Pop.first);
 | 
						|
      VisitStack.pop_back();
 | 
						|
    }
 | 
						|
  } while (!VisitStack.empty());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool CodeGenPrepare::runOnFunction(Function &F) {
 | 
						|
  bool EverMadeChange = false;
 | 
						|
 | 
						|
  findLoopBackEdges(F);
 | 
						|
 | 
						|
  // First pass, eliminate blocks that contain only PHI nodes and an
 | 
						|
  // unconditional branch.
 | 
						|
  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
 | 
						|
 | 
						|
  bool MadeChange = true;
 | 
						|
  while (MadeChange) {
 | 
						|
    MadeChange = false;
 | 
						|
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
      MadeChange |= OptimizeBlock(*BB);
 | 
						|
    EverMadeChange |= MadeChange;
 | 
						|
  }
 | 
						|
  return EverMadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
 | 
						|
/// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify)
 | 
						|
/// often split edges in ways that are non-optimal for isel.  Start by
 | 
						|
/// eliminating these blocks so we can split them the way we want them.
 | 
						|
bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  // Note that this intentionally skips the entry block.
 | 
						|
  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
 | 
						|
    BasicBlock *BB = I++;
 | 
						|
 | 
						|
    // If this block doesn't end with an uncond branch, ignore it.
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    if (!BI || !BI->isUnconditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the instruction before the branch isn't a phi node, then other stuff
 | 
						|
    // is happening here.
 | 
						|
    BasicBlock::iterator BBI = BI;
 | 
						|
    if (BBI != BB->begin()) {
 | 
						|
      --BBI;
 | 
						|
      if (!isa<PHINode>(BBI)) continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not break infinite loops.
 | 
						|
    BasicBlock *DestBB = BI->getSuccessor(0);
 | 
						|
    if (DestBB == BB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!CanMergeBlocks(BB, DestBB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    EliminateMostlyEmptyBlock(BB);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
 | 
						|
/// single uncond branch between them, and BB contains no other non-phi
 | 
						|
/// instructions.
 | 
						|
bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
 | 
						|
                                    const BasicBlock *DestBB) const {
 | 
						|
  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
 | 
						|
  // the successor.  If there are more complex condition (e.g. preheaders),
 | 
						|
  // don't mess around with them.
 | 
						|
  BasicBlock::const_iterator BBI = BB->begin();
 | 
						|
  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | 
						|
    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      const Instruction *User = cast<Instruction>(*UI);
 | 
						|
      if (User->getParent() != DestBB || !isa<PHINode>(User))
 | 
						|
        return false;
 | 
						|
      // If User is inside DestBB block and it is a PHINode then check
 | 
						|
      // incoming value. If incoming value is not from BB then this is
 | 
						|
      // a complex condition (e.g. preheaders) we want to avoid here.
 | 
						|
      if (User->getParent() == DestBB) {
 | 
						|
        if (const PHINode *UPN = dyn_cast<PHINode>(User))
 | 
						|
          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
 | 
						|
            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
 | 
						|
            if (Insn && Insn->getParent() == BB &&
 | 
						|
                Insn->getParent() != UPN->getIncomingBlock(I))
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
 | 
						|
  // and DestBB may have conflicting incoming values for the block.  If so, we
 | 
						|
  // can't merge the block.
 | 
						|
  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
 | 
						|
  if (!DestBBPN) return true;  // no conflict.
 | 
						|
 | 
						|
  // Collect the preds of BB.
 | 
						|
  SmallPtrSet<const BasicBlock*, 16> BBPreds;
 | 
						|
  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    // It is faster to get preds from a PHI than with pred_iterator.
 | 
						|
    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      BBPreds.insert(BBPN->getIncomingBlock(i));
 | 
						|
  } else {
 | 
						|
    BBPreds.insert(pred_begin(BB), pred_end(BB));
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk the preds of DestBB.
 | 
						|
  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
 | 
						|
    if (BBPreds.count(Pred)) {   // Common predecessor?
 | 
						|
      BBI = DestBB->begin();
 | 
						|
      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | 
						|
        const Value *V1 = PN->getIncomingValueForBlock(Pred);
 | 
						|
        const Value *V2 = PN->getIncomingValueForBlock(BB);
 | 
						|
 | 
						|
        // If V2 is a phi node in BB, look up what the mapped value will be.
 | 
						|
        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
 | 
						|
          if (V2PN->getParent() == BB)
 | 
						|
            V2 = V2PN->getIncomingValueForBlock(Pred);
 | 
						|
 | 
						|
        // If there is a conflict, bail out.
 | 
						|
        if (V1 != V2) return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
 | 
						|
/// an unconditional branch in it.
 | 
						|
void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
 | 
						|
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | 
						|
  BasicBlock *DestBB = BI->getSuccessor(0);
 | 
						|
 | 
						|
  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
 | 
						|
 | 
						|
  // If the destination block has a single pred, then this is a trivial edge,
 | 
						|
  // just collapse it.
 | 
						|
  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
 | 
						|
    if (SinglePred != DestBB) {
 | 
						|
      // Remember if SinglePred was the entry block of the function.  If so, we
 | 
						|
      // will need to move BB back to the entry position.
 | 
						|
      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | 
						|
      MergeBasicBlockIntoOnlyPred(DestBB);
 | 
						|
 | 
						|
      if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | 
						|
        BB->moveBefore(&BB->getParent()->getEntryBlock());
 | 
						|
      
 | 
						|
      DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
 | 
						|
  // to handle the new incoming edges it is about to have.
 | 
						|
  PHINode *PN;
 | 
						|
  for (BasicBlock::iterator BBI = DestBB->begin();
 | 
						|
       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | 
						|
    // Remove the incoming value for BB, and remember it.
 | 
						|
    Value *InVal = PN->removeIncomingValue(BB, false);
 | 
						|
 | 
						|
    // Two options: either the InVal is a phi node defined in BB or it is some
 | 
						|
    // value that dominates BB.
 | 
						|
    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
 | 
						|
    if (InValPhi && InValPhi->getParent() == BB) {
 | 
						|
      // Add all of the input values of the input PHI as inputs of this phi.
 | 
						|
      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
 | 
						|
        PN->addIncoming(InValPhi->getIncomingValue(i),
 | 
						|
                        InValPhi->getIncomingBlock(i));
 | 
						|
    } else {
 | 
						|
      // Otherwise, add one instance of the dominating value for each edge that
 | 
						|
      // we will be adding.
 | 
						|
      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | 
						|
          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
 | 
						|
      } else {
 | 
						|
        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
          PN->addIncoming(InVal, *PI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The PHIs are now updated, change everything that refers to BB to use
 | 
						|
  // DestBB and remove BB.
 | 
						|
  BB->replaceAllUsesWith(DestBB);
 | 
						|
  BB->eraseFromParent();
 | 
						|
 | 
						|
  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SplitEdgeNicely - Split the critical edge from TI to its specified
 | 
						|
/// successor if it will improve codegen.  We only do this if the successor has
 | 
						|
/// phi nodes (otherwise critical edges are ok).  If there is already another
 | 
						|
/// predecessor of the succ that is empty (and thus has no phi nodes), use it
 | 
						|
/// instead of introducing a new block.
 | 
						|
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
 | 
						|
                     SmallSet<std::pair<BasicBlock*,BasicBlock*>, 8> &BackEdges,
 | 
						|
                             Pass *P) {
 | 
						|
  BasicBlock *TIBB = TI->getParent();
 | 
						|
  BasicBlock *Dest = TI->getSuccessor(SuccNum);
 | 
						|
  assert(isa<PHINode>(Dest->begin()) &&
 | 
						|
         "This should only be called if Dest has a PHI!");
 | 
						|
 | 
						|
  // As a hack, never split backedges of loops.  Even though the copy for any
 | 
						|
  // PHIs inserted on the backedge would be dead for exits from the loop, we
 | 
						|
  // assume that the cost of *splitting* the backedge would be too high.
 | 
						|
  if (BackEdges.count(std::make_pair(TIBB, Dest)))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!FactorCommonPreds) {
 | 
						|
    /// TIPHIValues - This array is lazily computed to determine the values of
 | 
						|
    /// PHIs in Dest that TI would provide.
 | 
						|
    SmallVector<Value*, 32> TIPHIValues;
 | 
						|
 | 
						|
    // Check to see if Dest has any blocks that can be used as a split edge for
 | 
						|
    // this terminator.
 | 
						|
    for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
 | 
						|
      BasicBlock *Pred = *PI;
 | 
						|
      // To be usable, the pred has to end with an uncond branch to the dest.
 | 
						|
      BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
 | 
						|
      if (!PredBr || !PredBr->isUnconditional() ||
 | 
						|
          // Must be empty other than the branch.
 | 
						|
          &Pred->front() != PredBr ||
 | 
						|
          // Cannot be the entry block; its label does not get emitted.
 | 
						|
          Pred == &(Dest->getParent()->getEntryBlock()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Finally, since we know that Dest has phi nodes in it, we have to make
 | 
						|
      // sure that jumping to Pred will have the same affect as going to Dest in
 | 
						|
      // terms of PHI values.
 | 
						|
      PHINode *PN;
 | 
						|
      unsigned PHINo = 0;
 | 
						|
      bool FoundMatch = true;
 | 
						|
      for (BasicBlock::iterator I = Dest->begin();
 | 
						|
           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
 | 
						|
        if (PHINo == TIPHIValues.size())
 | 
						|
          TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
 | 
						|
 | 
						|
        // If the PHI entry doesn't work, we can't use this pred.
 | 
						|
        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
 | 
						|
          FoundMatch = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we found a workable predecessor, change TI to branch to Succ.
 | 
						|
      if (FoundMatch) {
 | 
						|
        Dest->removePredecessor(TIBB);
 | 
						|
        TI->setSuccessor(SuccNum, Pred);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SplitCriticalEdge(TI, SuccNum, P, true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  PHINode *PN;
 | 
						|
  SmallVector<Value*, 8> TIPHIValues;
 | 
						|
  for (BasicBlock::iterator I = Dest->begin();
 | 
						|
       (PN = dyn_cast<PHINode>(I)); ++I)
 | 
						|
    TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 8> IdenticalPreds;
 | 
						|
  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
 | 
						|
    BasicBlock *Pred = *PI;
 | 
						|
    if (BackEdges.count(std::make_pair(Pred, Dest)))
 | 
						|
      continue;
 | 
						|
    if (PI == TIBB)
 | 
						|
      IdenticalPreds.push_back(Pred);
 | 
						|
    else {
 | 
						|
      bool Identical = true;
 | 
						|
      unsigned PHINo = 0;
 | 
						|
      for (BasicBlock::iterator I = Dest->begin();
 | 
						|
           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo)
 | 
						|
        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
 | 
						|
          Identical = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      if (Identical)
 | 
						|
        IdenticalPreds.push_back(Pred);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!IdenticalPreds.empty());
 | 
						|
  SplitBlockPredecessors(Dest, &IdenticalPreds[0], IdenticalPreds.size(),
 | 
						|
                         ".critedge", P);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
 | 
						|
/// copy (e.g. it's casting from one pointer type to another, int->uint, or
 | 
						|
/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
 | 
						|
/// registers that must be created and coalesced.
 | 
						|
///
 | 
						|
/// Return true if any changes are made.
 | 
						|
///
 | 
						|
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
 | 
						|
  // If this is a noop copy,
 | 
						|
  MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
 | 
						|
  MVT DstVT = TLI.getValueType(CI->getType());
 | 
						|
 | 
						|
  // This is an fp<->int conversion?
 | 
						|
  if (SrcVT.isInteger() != DstVT.isInteger())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is an extension, it will be a zero or sign extension, which
 | 
						|
  // isn't a noop.
 | 
						|
  if (SrcVT.bitsLT(DstVT)) return false;
 | 
						|
 | 
						|
  // If these values will be promoted, find out what they will be promoted
 | 
						|
  // to.  This helps us consider truncates on PPC as noop copies when they
 | 
						|
  // are.
 | 
						|
  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
 | 
						|
    SrcVT = TLI.getTypeToTransformTo(SrcVT);
 | 
						|
  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
 | 
						|
    DstVT = TLI.getTypeToTransformTo(DstVT);
 | 
						|
 | 
						|
  // If, after promotion, these are the same types, this is a noop copy.
 | 
						|
  if (SrcVT != DstVT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *DefBB = CI->getParent();
 | 
						|
 | 
						|
  /// InsertedCasts - Only insert a cast in each block once.
 | 
						|
  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
 | 
						|
       UI != E; ) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Figure out which BB this cast is used in.  For PHI's this is the
 | 
						|
    // appropriate predecessor block.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | 
						|
      unsigned OpVal = UI.getOperandNo()/2;
 | 
						|
      UserBB = PN->getIncomingBlock(OpVal);
 | 
						|
    }
 | 
						|
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    // If this user is in the same block as the cast, don't change the cast.
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // If we have already inserted a cast into this block, use it.
 | 
						|
    CastInst *&InsertedCast = InsertedCasts[UserBB];
 | 
						|
 | 
						|
    if (!InsertedCast) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
 | 
						|
 | 
						|
      InsertedCast =
 | 
						|
        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
 | 
						|
                         InsertPt);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the cast with a use of the new cast.
 | 
						|
    TheUse = InsertedCast;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, nuke the cast.
 | 
						|
  if (CI->use_empty()) {
 | 
						|
    CI->eraseFromParent();
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
 | 
						|
/// the number of virtual registers that must be created and coalesced.  This is
 | 
						|
/// a clear win except on targets with multiple condition code registers
 | 
						|
///  (PowerPC), where it might lose; some adjustment may be wanted there.
 | 
						|
///
 | 
						|
/// Return true if any changes are made.
 | 
						|
static bool OptimizeCmpExpression(CmpInst *CI) {
 | 
						|
  BasicBlock *DefBB = CI->getParent();
 | 
						|
 | 
						|
  /// InsertedCmp - Only insert a cmp in each block once.
 | 
						|
  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
 | 
						|
       UI != E; ) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    // Don't bother for PHI nodes.
 | 
						|
    if (isa<PHINode>(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Figure out which BB this cmp is used in.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
 | 
						|
    // If this user is in the same block as the cmp, don't change the cmp.
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // If we have already inserted a cmp into this block, use it.
 | 
						|
    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
 | 
						|
 | 
						|
    if (!InsertedCmp) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
 | 
						|
 | 
						|
      InsertedCmp =
 | 
						|
        CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0),
 | 
						|
                        CI->getOperand(1), "", InsertPt);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the cmp with a use of the new cmp.
 | 
						|
    TheUse = InsertedCmp;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, nuke the cmp.
 | 
						|
  if (CI->use_empty())
 | 
						|
    CI->eraseFromParent();
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Addressing Mode Analysis and Optimization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
 | 
						|
  /// which holds actual Value*'s for register values.
 | 
						|
  struct ExtAddrMode : public TargetLowering::AddrMode {
 | 
						|
    Value *BaseReg;
 | 
						|
    Value *ScaledReg;
 | 
						|
    ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
 | 
						|
    void print(OStream &OS) const;
 | 
						|
    void dump() const {
 | 
						|
      print(cerr);
 | 
						|
      cerr << '\n';
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static inline OStream &operator<<(OStream &OS, const ExtAddrMode &AM) {
 | 
						|
  AM.print(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
void ExtAddrMode::print(OStream &OS) const {
 | 
						|
  bool NeedPlus = false;
 | 
						|
  OS << "[";
 | 
						|
  if (BaseGV)
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << "GV:%" << BaseGV->getName(), NeedPlus = true;
 | 
						|
 | 
						|
  if (BaseOffs)
 | 
						|
    OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
 | 
						|
 | 
						|
  if (BaseReg)
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << "Base:%" << BaseReg->getName(), NeedPlus = true;
 | 
						|
  if (Scale)
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << Scale << "*%" << ScaledReg->getName(), NeedPlus = true;
 | 
						|
 | 
						|
  OS << ']';
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// AddressingModeMatcher - This class exposes a single public method, which is
 | 
						|
/// used to construct a "maximal munch" of the addressing mode for the target
 | 
						|
/// specified by TLI for an access to "V" with an access type of AccessTy.  This
 | 
						|
/// returns the addressing mode that is actually matched by value, but also
 | 
						|
/// returns the list of instructions involved in that addressing computation in
 | 
						|
/// AddrModeInsts.
 | 
						|
class AddressingModeMatcher {
 | 
						|
  SmallVectorImpl<Instruction*> &AddrModeInsts;
 | 
						|
  const TargetLowering &TLI;
 | 
						|
 | 
						|
  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
 | 
						|
  /// the memory instruction that we're computing this address for.
 | 
						|
  const Type *AccessTy;
 | 
						|
  Instruction *MemoryInst;
 | 
						|
  
 | 
						|
  /// AddrMode - This is the addressing mode that we're building up.  This is
 | 
						|
  /// part of the return value of this addressing mode matching stuff.
 | 
						|
  ExtAddrMode &AddrMode;
 | 
						|
  
 | 
						|
  /// IgnoreProfitability - This is set to true when we should not do
 | 
						|
  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
 | 
						|
  /// always returns true.
 | 
						|
  bool IgnoreProfitability;
 | 
						|
  
 | 
						|
  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
 | 
						|
                        const TargetLowering &T, const Type *AT,
 | 
						|
                        Instruction *MI, ExtAddrMode &AM)
 | 
						|
    : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
 | 
						|
    IgnoreProfitability = false;
 | 
						|
  }
 | 
						|
public:
 | 
						|
  
 | 
						|
  /// Match - Find the maximal addressing mode that a load/store of V can fold,
 | 
						|
  /// give an access type of AccessTy.  This returns a list of involved
 | 
						|
  /// instructions in AddrModeInsts.
 | 
						|
  static ExtAddrMode Match(Value *V, const Type *AccessTy,
 | 
						|
                           Instruction *MemoryInst,
 | 
						|
                           SmallVectorImpl<Instruction*> &AddrModeInsts,
 | 
						|
                           const TargetLowering &TLI) {
 | 
						|
    ExtAddrMode Result;
 | 
						|
 | 
						|
    bool Success = 
 | 
						|
      AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
 | 
						|
                            MemoryInst, Result).MatchAddr(V, 0);
 | 
						|
    Success = Success; assert(Success && "Couldn't select *anything*?");
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
private:
 | 
						|
  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
 | 
						|
  bool MatchAddr(Value *V, unsigned Depth);
 | 
						|
  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
 | 
						|
  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
 | 
						|
                                            ExtAddrMode &AMBefore,
 | 
						|
                                            ExtAddrMode &AMAfter);
 | 
						|
  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
 | 
						|
/// Return true and update AddrMode if this addr mode is legal for the target,
 | 
						|
/// false if not.
 | 
						|
bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
 | 
						|
                                             unsigned Depth) {
 | 
						|
  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
 | 
						|
  // mode.  Just process that directly.
 | 
						|
  if (Scale == 1)
 | 
						|
    return MatchAddr(ScaleReg, Depth);
 | 
						|
  
 | 
						|
  // If the scale is 0, it takes nothing to add this.
 | 
						|
  if (Scale == 0)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // If we already have a scale of this value, we can add to it, otherwise, we
 | 
						|
  // need an available scale field.
 | 
						|
  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ExtAddrMode TestAddrMode = AddrMode;
 | 
						|
 | 
						|
  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
 | 
						|
  // [A+B + A*7] -> [B+A*8].
 | 
						|
  TestAddrMode.Scale += Scale;
 | 
						|
  TestAddrMode.ScaledReg = ScaleReg;
 | 
						|
 | 
						|
  // If the new address isn't legal, bail out.
 | 
						|
  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It was legal, so commit it.
 | 
						|
  AddrMode = TestAddrMode;
 | 
						|
  
 | 
						|
  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
 | 
						|
  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
 | 
						|
  // X*Scale + C*Scale to addr mode.
 | 
						|
  ConstantInt *CI; Value *AddLHS;
 | 
						|
  if (match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
 | 
						|
    TestAddrMode.ScaledReg = AddLHS;
 | 
						|
    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
 | 
						|
      
 | 
						|
    // If this addressing mode is legal, commit it and remember that we folded
 | 
						|
    // this instruction.
 | 
						|
    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
 | 
						|
      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
 | 
						|
      AddrMode = TestAddrMode;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, not (x+c)*scale, just return what we have.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// MightBeFoldableInst - This is a little filter, which returns true if an
 | 
						|
/// addressing computation involving I might be folded into a load/store
 | 
						|
/// accessing it.  This doesn't need to be perfect, but needs to accept at least
 | 
						|
/// the set of instructions that MatchOperationAddr can.
 | 
						|
static bool MightBeFoldableInst(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // Don't touch identity bitcasts.
 | 
						|
    if (I->getType() == I->getOperand(0)->getType())
 | 
						|
      return false;
 | 
						|
    return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType());
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | 
						|
    return true;
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // We know the input is intptr_t, so this is foldable.
 | 
						|
    return true;
 | 
						|
  case Instruction::Add:
 | 
						|
    return true;
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::Shl:
 | 
						|
    // Can only handle X*C and X << C.
 | 
						|
    return isa<ConstantInt>(I->getOperand(1));
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// MatchOperationAddr - Given an instruction or constant expr, see if we can
 | 
						|
/// fold the operation into the addressing mode.  If so, update the addressing
 | 
						|
/// mode and return true, otherwise return false without modifying AddrMode.
 | 
						|
bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
 | 
						|
                                               unsigned Depth) {
 | 
						|
  // Avoid exponential behavior on extremely deep expression trees.
 | 
						|
  if (Depth >= 5) return false;
 | 
						|
  
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | 
						|
    return MatchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // This inttoptr is a no-op if the integer type is pointer sized.
 | 
						|
    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
 | 
						|
        TLI.getPointerTy())
 | 
						|
      return MatchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
    return false;
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // BitCast is always a noop, and we can handle it as long as it is
 | 
						|
    // int->int or pointer->pointer (we don't want int<->fp or something).
 | 
						|
    if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) ||
 | 
						|
         isa<IntegerType>(AddrInst->getOperand(0)->getType())) &&
 | 
						|
        // Don't touch identity bitcasts.  These were probably put here by LSR,
 | 
						|
        // and we don't want to mess around with them.  Assume it knows what it
 | 
						|
        // is doing.
 | 
						|
        AddrInst->getOperand(0)->getType() != AddrInst->getType())
 | 
						|
      return MatchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
    return false;
 | 
						|
  case Instruction::Add: {
 | 
						|
    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
 | 
						|
        MatchAddr(AddrInst->getOperand(0), Depth+1))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // Restore the old addr mode info.
 | 
						|
    AddrMode = BackupAddrMode;
 | 
						|
    AddrModeInsts.resize(OldSize);
 | 
						|
    
 | 
						|
    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
 | 
						|
    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
 | 
						|
        MatchAddr(AddrInst->getOperand(1), Depth+1))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // Otherwise we definitely can't merge the ADD in.
 | 
						|
    AddrMode = BackupAddrMode;
 | 
						|
    AddrModeInsts.resize(OldSize);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  //case Instruction::Or:
 | 
						|
  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
 | 
						|
  //break;
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // Can only handle X*C and X << C.
 | 
						|
    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
 | 
						|
    if (!RHS) return false;
 | 
						|
    int64_t Scale = RHS->getSExtValue();
 | 
						|
    if (Opcode == Instruction::Shl)
 | 
						|
      Scale = 1 << Scale;
 | 
						|
    
 | 
						|
    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
 | 
						|
  }
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    // Scan the GEP.  We check it if it contains constant offsets and at most
 | 
						|
    // one variable offset.
 | 
						|
    int VariableOperand = -1;
 | 
						|
    unsigned VariableScale = 0;
 | 
						|
    
 | 
						|
    int64_t ConstantOffset = 0;
 | 
						|
    const TargetData *TD = TLI.getTargetData();
 | 
						|
    gep_type_iterator GTI = gep_type_begin(AddrInst);
 | 
						|
    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
        const StructLayout *SL = TD->getStructLayout(STy);
 | 
						|
        unsigned Idx =
 | 
						|
          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
 | 
						|
        ConstantOffset += SL->getElementOffset(Idx);
 | 
						|
      } else {
 | 
						|
        uint64_t TypeSize = TD->getABITypeSize(GTI.getIndexedType());
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
 | 
						|
          ConstantOffset += CI->getSExtValue()*TypeSize;
 | 
						|
        } else if (TypeSize) {  // Scales of zero don't do anything.
 | 
						|
          // We only allow one variable index at the moment.
 | 
						|
          if (VariableOperand != -1)
 | 
						|
            return false;
 | 
						|
          
 | 
						|
          // Remember the variable index.
 | 
						|
          VariableOperand = i;
 | 
						|
          VariableScale = TypeSize;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // A common case is for the GEP to only do a constant offset.  In this case,
 | 
						|
    // just add it to the disp field and check validity.
 | 
						|
    if (VariableOperand == -1) {
 | 
						|
      AddrMode.BaseOffs += ConstantOffset;
 | 
						|
      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
 | 
						|
        // Check to see if we can fold the base pointer in too.
 | 
						|
        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      AddrMode.BaseOffs -= ConstantOffset;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Save the valid addressing mode in case we can't match.
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    
 | 
						|
    // Check that this has no base reg yet.  If so, we won't have a place to
 | 
						|
    // put the base of the GEP (assuming it is not a null ptr).
 | 
						|
    bool SetBaseReg = true;
 | 
						|
    if (isa<ConstantPointerNull>(AddrInst->getOperand(0)))
 | 
						|
      SetBaseReg = false;   // null pointer base doesn't need representation.
 | 
						|
    else if (AddrMode.HasBaseReg)
 | 
						|
      return false;  // Base register already specified, can't match GEP.
 | 
						|
    else {
 | 
						|
      // Otherwise, we'll use the GEP base as the BaseReg.
 | 
						|
      AddrMode.HasBaseReg = true;
 | 
						|
      AddrMode.BaseReg = AddrInst->getOperand(0);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // See if the scale and offset amount is valid for this target.
 | 
						|
    AddrMode.BaseOffs += ConstantOffset;
 | 
						|
    
 | 
						|
    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
 | 
						|
                          Depth)) {
 | 
						|
      AddrMode = BackupAddrMode;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we have a null as the base of the GEP, folding in the constant offset
 | 
						|
    // plus variable scale is all we can do.
 | 
						|
    if (!SetBaseReg) return true;
 | 
						|
      
 | 
						|
    // If this match succeeded, we know that we can form an address with the
 | 
						|
    // GepBase as the basereg.  Match the base pointer of the GEP more
 | 
						|
    // aggressively by zeroing out BaseReg and rematching.  If the base is
 | 
						|
    // (for example) another GEP, this allows merging in that other GEP into
 | 
						|
    // the addressing mode we're forming.
 | 
						|
    AddrMode.HasBaseReg = false;
 | 
						|
    AddrMode.BaseReg = 0;
 | 
						|
    bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1);
 | 
						|
    assert(Success && "MatchAddr should be able to fill in BaseReg!");
 | 
						|
    Success=Success;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MatchAddr - If we can, try to add the value of 'Addr' into the current
 | 
						|
/// addressing mode.  If Addr can't be added to AddrMode this returns false and
 | 
						|
/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
 | 
						|
/// or intptr_t for the target.
 | 
						|
///
 | 
						|
bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
 | 
						|
    // Fold in immediates if legal for the target.
 | 
						|
    AddrMode.BaseOffs += CI->getSExtValue();
 | 
						|
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | 
						|
      return true;
 | 
						|
    AddrMode.BaseOffs -= CI->getSExtValue();
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
 | 
						|
    // If this is a global variable, try to fold it into the addressing mode.
 | 
						|
    if (AddrMode.BaseGV == 0) {
 | 
						|
      AddrMode.BaseGV = GV;
 | 
						|
      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | 
						|
        return true;
 | 
						|
      AddrMode.BaseGV = 0;
 | 
						|
    }
 | 
						|
  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
 | 
						|
    // Check to see if it is possible to fold this operation.
 | 
						|
    if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
 | 
						|
      // Okay, it's possible to fold this.  Check to see if it is actually
 | 
						|
      // *profitable* to do so.  We use a simple cost model to avoid increasing
 | 
						|
      // register pressure too much.
 | 
						|
      if (I->hasOneUse() ||
 | 
						|
          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
 | 
						|
        AddrModeInsts.push_back(I);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // It isn't profitable to do this, roll back.
 | 
						|
      //cerr << "NOT FOLDING: " << *I;
 | 
						|
      AddrMode = BackupAddrMode;
 | 
						|
      AddrModeInsts.resize(OldSize);
 | 
						|
    }
 | 
						|
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
 | 
						|
    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
 | 
						|
      return true;
 | 
						|
  } else if (isa<ConstantPointerNull>(Addr)) {
 | 
						|
    // Null pointer gets folded without affecting the addressing mode.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Worse case, the target should support [reg] addressing modes. :)
 | 
						|
  if (!AddrMode.HasBaseReg) {
 | 
						|
    AddrMode.HasBaseReg = true;
 | 
						|
    AddrMode.BaseReg = Addr;
 | 
						|
    // Still check for legality in case the target supports [imm] but not [i+r].
 | 
						|
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | 
						|
      return true;
 | 
						|
    AddrMode.HasBaseReg = false;
 | 
						|
    AddrMode.BaseReg = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the base register is already taken, see if we can do [r+r].
 | 
						|
  if (AddrMode.Scale == 0) {
 | 
						|
    AddrMode.Scale = 1;
 | 
						|
    AddrMode.ScaledReg = Addr;
 | 
						|
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | 
						|
      return true;
 | 
						|
    AddrMode.Scale = 0;
 | 
						|
    AddrMode.ScaledReg = 0;
 | 
						|
  }
 | 
						|
  // Couldn't match.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
 | 
						|
/// inline asm call are due to memory operands.  If so, return true, otherwise
 | 
						|
/// return false.
 | 
						|
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
 | 
						|
                                    const TargetLowering &TLI) {
 | 
						|
  std::vector<InlineAsm::ConstraintInfo>
 | 
						|
  Constraints = IA->ParseConstraints();
 | 
						|
  
 | 
						|
  unsigned ArgNo = 1;   // ArgNo - The operand of the CallInst.
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | 
						|
    TargetLowering::AsmOperandInfo OpInfo(Constraints[i]);
 | 
						|
    
 | 
						|
    // Compute the value type for each operand.
 | 
						|
    switch (OpInfo.Type) {
 | 
						|
      case InlineAsm::isOutput:
 | 
						|
        if (OpInfo.isIndirect)
 | 
						|
          OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
 | 
						|
        break;
 | 
						|
      case InlineAsm::isInput:
 | 
						|
        OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
 | 
						|
        break;
 | 
						|
      case InlineAsm::isClobber:
 | 
						|
        // Nothing to do.
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Compute the constraint code and ConstraintType to use.
 | 
						|
    TLI.ComputeConstraintToUse(OpInfo, SDValue(),
 | 
						|
                             OpInfo.ConstraintType == TargetLowering::C_Memory);
 | 
						|
    
 | 
						|
    // If this asm operand is our Value*, and if it isn't an indirect memory
 | 
						|
    // operand, we can't fold it!
 | 
						|
    if (OpInfo.CallOperandVal == OpVal &&
 | 
						|
        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
 | 
						|
         !OpInfo.isIndirect))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
 | 
						|
/// memory use.  If we find an obviously non-foldable instruction, return true.
 | 
						|
/// Add the ultimately found memory instructions to MemoryUses.
 | 
						|
static bool FindAllMemoryUses(Instruction *I,
 | 
						|
                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
 | 
						|
                              SmallPtrSet<Instruction*, 16> &ConsideredInsts,
 | 
						|
                              const TargetLowering &TLI) {
 | 
						|
  // If we already considered this instruction, we're done.
 | 
						|
  if (!ConsideredInsts.insert(I))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // If this is an obviously unfoldable instruction, bail out.
 | 
						|
  if (!MightBeFoldableInst(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Loop over all the uses, recursively processing them.
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | 
						|
      MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | 
						|
      if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr.
 | 
						|
      MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
 | 
						|
      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
 | 
						|
      if (IA == 0) return true;
 | 
						|
      
 | 
						|
      // If this is a memory operand, we're cool, otherwise bail out.
 | 
						|
      if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
 | 
						|
        return true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts,
 | 
						|
                          TLI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
 | 
						|
/// the use site that we're folding it into.  If so, there is no cost to
 | 
						|
/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
 | 
						|
/// that we know are live at the instruction already.
 | 
						|
bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
 | 
						|
                                                   Value *KnownLive2) {
 | 
						|
  // If Val is either of the known-live values, we know it is live!
 | 
						|
  if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // All values other than instructions and arguments (e.g. constants) are live.
 | 
						|
  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
 | 
						|
  
 | 
						|
  // If Val is a constant sized alloca in the entry block, it is live, this is
 | 
						|
  // true because it is just a reference to the stack/frame pointer, which is
 | 
						|
  // live for the whole function.
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
 | 
						|
    if (AI->isStaticAlloca())
 | 
						|
      return true;
 | 
						|
  
 | 
						|
  // Check to see if this value is already used in the memory instruction's
 | 
						|
  // block.  If so, it's already live into the block at the very least, so we
 | 
						|
  // can reasonably fold it.
 | 
						|
  BasicBlock *MemBB = MemoryInst->getParent();
 | 
						|
  for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
 | 
						|
       UI != E; ++UI)
 | 
						|
    // We know that uses of arguments and instructions have to be instructions.
 | 
						|
    if (cast<Instruction>(*UI)->getParent() == MemBB)
 | 
						|
      return true;
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
 | 
						|
/// mode of the machine to fold the specified instruction into a load or store
 | 
						|
/// that ultimately uses it.  However, the specified instruction has multiple
 | 
						|
/// uses.  Given this, it may actually increase register pressure to fold it
 | 
						|
/// into the load.  For example, consider this code:
 | 
						|
///
 | 
						|
///     X = ...
 | 
						|
///     Y = X+1
 | 
						|
///     use(Y)   -> nonload/store
 | 
						|
///     Z = Y+1
 | 
						|
///     load Z
 | 
						|
///
 | 
						|
/// In this case, Y has multiple uses, and can be folded into the load of Z
 | 
						|
/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
 | 
						|
/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
 | 
						|
/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
 | 
						|
/// number of computations either.
 | 
						|
///
 | 
						|
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
 | 
						|
/// X was live across 'load Z' for other reasons, we actually *would* want to
 | 
						|
/// fold the addressing mode in the Z case.  This would make Y die earlier.
 | 
						|
bool AddressingModeMatcher::
 | 
						|
IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
 | 
						|
                                     ExtAddrMode &AMAfter) {
 | 
						|
  if (IgnoreProfitability) return true;
 | 
						|
  
 | 
						|
  // AMBefore is the addressing mode before this instruction was folded into it,
 | 
						|
  // and AMAfter is the addressing mode after the instruction was folded.  Get
 | 
						|
  // the set of registers referenced by AMAfter and subtract out those
 | 
						|
  // referenced by AMBefore: this is the set of values which folding in this
 | 
						|
  // address extends the lifetime of.
 | 
						|
  //
 | 
						|
  // Note that there are only two potential values being referenced here,
 | 
						|
  // BaseReg and ScaleReg (global addresses are always available, as are any
 | 
						|
  // folded immediates).
 | 
						|
  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
 | 
						|
  
 | 
						|
  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
 | 
						|
  // lifetime wasn't extended by adding this instruction.
 | 
						|
  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | 
						|
    BaseReg = 0;
 | 
						|
  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | 
						|
    ScaledReg = 0;
 | 
						|
 | 
						|
  // If folding this instruction (and it's subexprs) didn't extend any live
 | 
						|
  // ranges, we're ok with it.
 | 
						|
  if (BaseReg == 0 && ScaledReg == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If all uses of this instruction are ultimately load/store/inlineasm's,
 | 
						|
  // check to see if their addressing modes will include this instruction.  If
 | 
						|
  // so, we can fold it into all uses, so it doesn't matter if it has multiple
 | 
						|
  // uses.
 | 
						|
  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
 | 
						|
  SmallPtrSet<Instruction*, 16> ConsideredInsts;
 | 
						|
  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
 | 
						|
    return false;  // Has a non-memory, non-foldable use!
 | 
						|
  
 | 
						|
  // Now that we know that all uses of this instruction are part of a chain of
 | 
						|
  // computation involving only operations that could theoretically be folded
 | 
						|
  // into a memory use, loop over each of these uses and see if they could
 | 
						|
  // *actually* fold the instruction.
 | 
						|
  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
 | 
						|
  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
 | 
						|
    Instruction *User = MemoryUses[i].first;
 | 
						|
    unsigned OpNo = MemoryUses[i].second;
 | 
						|
    
 | 
						|
    // Get the access type of this use.  If the use isn't a pointer, we don't
 | 
						|
    // know what it accesses.
 | 
						|
    Value *Address = User->getOperand(OpNo);
 | 
						|
    if (!isa<PointerType>(Address->getType()))
 | 
						|
      return false;
 | 
						|
    const Type *AddressAccessTy =
 | 
						|
      cast<PointerType>(Address->getType())->getElementType();
 | 
						|
    
 | 
						|
    // Do a match against the root of this address, ignoring profitability. This
 | 
						|
    // will tell us if the addressing mode for the memory operation will
 | 
						|
    // *actually* cover the shared instruction.
 | 
						|
    ExtAddrMode Result;
 | 
						|
    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
 | 
						|
                                  MemoryInst, Result);
 | 
						|
    Matcher.IgnoreProfitability = true;
 | 
						|
    bool Success = Matcher.MatchAddr(Address, 0);
 | 
						|
    Success = Success; assert(Success && "Couldn't select *anything*?");
 | 
						|
 | 
						|
    // If the match didn't cover I, then it won't be shared by it.
 | 
						|
    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
 | 
						|
                  I) == MatchedAddrModeInsts.end())
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    MatchedAddrModeInsts.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Memory Optimization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// IsNonLocalValue - Return true if the specified values are defined in a
 | 
						|
/// different basic block than BB.
 | 
						|
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return I->getParent() != BB;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeMemoryInst - Load and Store Instructions have often have
 | 
						|
/// addressing modes that can do significant amounts of computation.  As such,
 | 
						|
/// instruction selection will try to get the load or store to do as much
 | 
						|
/// computation as possible for the program.  The problem is that isel can only
 | 
						|
/// see within a single block.  As such, we sink as much legal addressing mode
 | 
						|
/// stuff into the block as possible.
 | 
						|
///
 | 
						|
/// This method is used to optimize both load/store and inline asms with memory
 | 
						|
/// operands.
 | 
						|
bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
 | 
						|
                                        const Type *AccessTy,
 | 
						|
                                        DenseMap<Value*,Value*> &SunkAddrs) {
 | 
						|
  // Figure out what addressing mode will be built up for this operation.
 | 
						|
  SmallVector<Instruction*, 16> AddrModeInsts;
 | 
						|
  ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
 | 
						|
                                                      AddrModeInsts, *TLI);
 | 
						|
 | 
						|
  // Check to see if any of the instructions supersumed by this addr mode are
 | 
						|
  // non-local to I's BB.
 | 
						|
  bool AnyNonLocal = false;
 | 
						|
  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
 | 
						|
    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
 | 
						|
      AnyNonLocal = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If all the instructions matched are already in this BB, don't do anything.
 | 
						|
  if (!AnyNonLocal) {
 | 
						|
    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert this computation right after this user.  Since our caller is
 | 
						|
  // scanning from the top of the BB to the bottom, reuse of the expr are
 | 
						|
  // guaranteed to happen later.
 | 
						|
  BasicBlock::iterator InsertPt = MemoryInst;
 | 
						|
 | 
						|
  // Now that we determined the addressing expression we want to use and know
 | 
						|
  // that we have to sink it into this block.  Check to see if we have already
 | 
						|
  // done this for some other load/store instr in this block.  If so, reuse the
 | 
						|
  // computation.
 | 
						|
  Value *&SunkAddr = SunkAddrs[Addr];
 | 
						|
  if (SunkAddr) {
 | 
						|
    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
 | 
						|
    if (SunkAddr->getType() != Addr->getType())
 | 
						|
      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
 | 
						|
  } else {
 | 
						|
    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
 | 
						|
    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
 | 
						|
 | 
						|
    Value *Result = 0;
 | 
						|
    // Start with the scale value.
 | 
						|
    if (AddrMode.Scale) {
 | 
						|
      Value *V = AddrMode.ScaledReg;
 | 
						|
      if (V->getType() == IntPtrTy) {
 | 
						|
        // done.
 | 
						|
      } else if (isa<PointerType>(V->getType())) {
 | 
						|
        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | 
						|
      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | 
						|
                 cast<IntegerType>(V->getType())->getBitWidth()) {
 | 
						|
        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | 
						|
      } else {
 | 
						|
        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | 
						|
      }
 | 
						|
      if (AddrMode.Scale != 1)
 | 
						|
        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
 | 
						|
                                                          AddrMode.Scale),
 | 
						|
                                      "sunkaddr", InsertPt);
 | 
						|
      Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add in the base register.
 | 
						|
    if (AddrMode.BaseReg) {
 | 
						|
      Value *V = AddrMode.BaseReg;
 | 
						|
      if (V->getType() != IntPtrTy)
 | 
						|
        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | 
						|
      if (Result)
 | 
						|
        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add in the BaseGV if present.
 | 
						|
    if (AddrMode.BaseGV) {
 | 
						|
      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
 | 
						|
                                  InsertPt);
 | 
						|
      if (Result)
 | 
						|
        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add in the Base Offset if present.
 | 
						|
    if (AddrMode.BaseOffs) {
 | 
						|
      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | 
						|
      if (Result)
 | 
						|
        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Result == 0)
 | 
						|
      SunkAddr = Constant::getNullValue(Addr->getType());
 | 
						|
    else
 | 
						|
      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
 | 
						|
 | 
						|
  if (Addr->use_empty())
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(Addr);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeInlineAsmInst - If there are any memory operands, use
 | 
						|
/// OptimizeMemoryInst to sink their address computing into the block when
 | 
						|
/// possible / profitable.
 | 
						|
bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
 | 
						|
                                           DenseMap<Value*,Value*> &SunkAddrs) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
 | 
						|
 | 
						|
  // Do a prepass over the constraints, canonicalizing them, and building up the
 | 
						|
  // ConstraintOperands list.
 | 
						|
  std::vector<InlineAsm::ConstraintInfo>
 | 
						|
    ConstraintInfos = IA->ParseConstraints();
 | 
						|
 | 
						|
  /// ConstraintOperands - Information about all of the constraints.
 | 
						|
  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
 | 
						|
  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
 | 
						|
  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
 | 
						|
    ConstraintOperands.
 | 
						|
      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
 | 
						|
    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
 | 
						|
 | 
						|
    // Compute the value type for each operand.
 | 
						|
    switch (OpInfo.Type) {
 | 
						|
    case InlineAsm::isOutput:
 | 
						|
      if (OpInfo.isIndirect)
 | 
						|
        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
 | 
						|
      break;
 | 
						|
    case InlineAsm::isInput:
 | 
						|
      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
 | 
						|
      break;
 | 
						|
    case InlineAsm::isClobber:
 | 
						|
      // Nothing to do.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the constraint code and ConstraintType to use.
 | 
						|
    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
 | 
						|
                             OpInfo.ConstraintType == TargetLowering::C_Memory);
 | 
						|
 | 
						|
    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | 
						|
        OpInfo.isIndirect) {
 | 
						|
      Value *OpVal = OpInfo.CallOperandVal;
 | 
						|
      MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
 | 
						|
  BasicBlock *DefBB = I->getParent();
 | 
						|
 | 
						|
  // If both result of the {s|z}xt and its source are live out, rewrite all
 | 
						|
  // other uses of the source with result of extension.
 | 
						|
  Value *Src = I->getOperand(0);
 | 
						|
  if (Src->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only do this xform if truncating is free.
 | 
						|
  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only safe to perform the optimization if the source is also defined in
 | 
						|
  // this block.
 | 
						|
  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool DefIsLiveOut = false;
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Figure out which BB this ext is used in.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
    DefIsLiveOut = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (!DefIsLiveOut)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure non of the uses are PHI nodes.
 | 
						|
  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
    // Be conservative. We don't want this xform to end up introducing
 | 
						|
    // reloads just before load / store instructions.
 | 
						|
    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // InsertedTruncs - Only insert one trunc in each block once.
 | 
						|
  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Figure out which BB this ext is used in.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // Both src and def are live in this block. Rewrite the use.
 | 
						|
    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
 | 
						|
 | 
						|
    if (!InsertedTrunc) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
 | 
						|
 | 
						|
      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the {s|z}ext source with a use of the result.
 | 
						|
    TheUse = InsertedTrunc;
 | 
						|
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// In this pass we look for GEP and cast instructions that are used
 | 
						|
// across basic blocks and rewrite them to improve basic-block-at-a-time
 | 
						|
// selection.
 | 
						|
bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Split all critical edges where the dest block has a PHI.
 | 
						|
  TerminatorInst *BBTI = BB.getTerminator();
 | 
						|
  if (BBTI->getNumSuccessors() > 1) {
 | 
						|
    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
 | 
						|
      BasicBlock *SuccBB = BBTI->getSuccessor(i);
 | 
						|
      if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
 | 
						|
        SplitEdgeNicely(BBTI, i, BackEdges, this);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Keep track of non-local addresses that have been sunk into this block.
 | 
						|
  // This allows us to avoid inserting duplicate code for blocks with multiple
 | 
						|
  // load/stores of the same address.
 | 
						|
  DenseMap<Value*, Value*> SunkAddrs;
 | 
						|
 | 
						|
  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
 | 
						|
    Instruction *I = BBI++;
 | 
						|
 | 
						|
    if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
      // If the source of the cast is a constant, then this should have
 | 
						|
      // already been constant folded.  The only reason NOT to constant fold
 | 
						|
      // it is if something (e.g. LSR) was careful to place the constant
 | 
						|
      // evaluation in a block other than then one that uses it (e.g. to hoist
 | 
						|
      // the address of globals out of a loop).  If this is the case, we don't
 | 
						|
      // want to forward-subst the cast.
 | 
						|
      if (isa<Constant>(CI->getOperand(0)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool Change = false;
 | 
						|
      if (TLI) {
 | 
						|
        Change = OptimizeNoopCopyExpression(CI, *TLI);
 | 
						|
        MadeChange |= Change;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
 | 
						|
        MadeChange |= OptimizeExtUses(I);
 | 
						|
    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
 | 
						|
      MadeChange |= OptimizeCmpExpression(CI);
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
      if (TLI)
 | 
						|
        MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
 | 
						|
                                         SunkAddrs);
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
      if (TLI)
 | 
						|
        MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
 | 
						|
                                         SI->getOperand(0)->getType(),
 | 
						|
                                         SunkAddrs);
 | 
						|
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
      if (GEPI->hasAllZeroIndices()) {
 | 
						|
        /// The GEP operand must be a pointer, so must its result -> BitCast
 | 
						|
        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
 | 
						|
                                          GEPI->getName(), GEPI);
 | 
						|
        GEPI->replaceAllUsesWith(NC);
 | 
						|
        GEPI->eraseFromParent();
 | 
						|
        MadeChange = true;
 | 
						|
        BBI = NC;
 | 
						|
      }
 | 
						|
    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
      // If we found an inline asm expession, and if the target knows how to
 | 
						|
      // lower it to normal LLVM code, do so now.
 | 
						|
      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
 | 
						|
        if (const TargetAsmInfo *TAI =
 | 
						|
            TLI->getTargetMachine().getTargetAsmInfo()) {
 | 
						|
          if (TAI->ExpandInlineAsm(CI))
 | 
						|
            BBI = BB.begin();
 | 
						|
          else
 | 
						|
            // Sink address computing for memory operands into the block.
 | 
						|
            MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 |