forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			785 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			785 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Reader.cpp - Code to read bytecode files ---------------------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This library implements the functionality defined in llvm/Bytecode/Reader.h
 | 
						|
//
 | 
						|
// Note that this library should be as fast as possible, reentrant, and 
 | 
						|
// threadsafe!!
 | 
						|
//
 | 
						|
// TODO: Allow passing in an option to ignore the symbol table
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ReaderInternals.h"
 | 
						|
#include "llvm/Bytecode/Reader.h"
 | 
						|
#include "llvm/Bytecode/Format.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "Support/StringExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
unsigned BytecodeParser::getTypeSlot(const Type *Ty) {
 | 
						|
  if (Ty->isPrimitiveType())
 | 
						|
    return Ty->getPrimitiveID();
 | 
						|
 | 
						|
  // Scan the compaction table for the type if needed.
 | 
						|
  if (CompactionTable.size() > Type::TypeTyID) {
 | 
						|
    std::vector<Value*> &Plane = CompactionTable[Type::TypeTyID];
 | 
						|
    if (!Plane.empty()) {
 | 
						|
      std::vector<Value*>::iterator I = find(Plane.begin(), Plane.end(),
 | 
						|
                                             const_cast<Type*>(Ty));
 | 
						|
      if (I == Plane.end())
 | 
						|
        throw std::string("Couldn't find type specified in compaction table!");
 | 
						|
      return Type::FirstDerivedTyID + (&*I - &Plane[0]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the function level types first...
 | 
						|
  TypeValuesListTy::iterator I = find(FunctionTypeValues.begin(),
 | 
						|
                                      FunctionTypeValues.end(), Ty);
 | 
						|
  if (I != FunctionTypeValues.end())
 | 
						|
    return Type::FirstDerivedTyID + ModuleTypeValues.size() +
 | 
						|
             (&*I - &FunctionTypeValues[0]);
 | 
						|
 | 
						|
  I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty);
 | 
						|
  if (I == ModuleTypeValues.end())
 | 
						|
    throw std::string("Didn't find type in ModuleTypeValues.");
 | 
						|
  return Type::FirstDerivedTyID + (&*I - &ModuleTypeValues[0]);
 | 
						|
}
 | 
						|
 | 
						|
const Type *BytecodeParser::getType(unsigned ID) {
 | 
						|
  //cerr << "Looking up Type ID: " << ID << "\n";
 | 
						|
 | 
						|
  if (ID < Type::FirstDerivedTyID)
 | 
						|
    if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
 | 
						|
      return T;   // Asked for a primitive type...
 | 
						|
 | 
						|
  // Otherwise, derived types need offset...
 | 
						|
  ID -= Type::FirstDerivedTyID;
 | 
						|
 | 
						|
  if (CompactionTable.size() > Type::TypeTyID &&
 | 
						|
      !CompactionTable[Type::TypeTyID].empty()) {
 | 
						|
    if (ID >= CompactionTable[Type::TypeTyID].size())
 | 
						|
      throw std::string("Type ID out of range for compaction table!");
 | 
						|
    return cast<Type>(CompactionTable[Type::TypeTyID][ID]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Is it a module-level type?
 | 
						|
  if (ID < ModuleTypeValues.size())
 | 
						|
    return ModuleTypeValues[ID].get();
 | 
						|
 | 
						|
  // Nope, is it a function-level type?
 | 
						|
  ID -= ModuleTypeValues.size();
 | 
						|
  if (ID < FunctionTypeValues.size())
 | 
						|
    return FunctionTypeValues[ID].get();
 | 
						|
 | 
						|
  throw std::string("Illegal type reference!");
 | 
						|
}
 | 
						|
 | 
						|
static inline bool hasImplicitNull(unsigned TyID, bool EncodesPrimitiveZeros) {
 | 
						|
  if (!EncodesPrimitiveZeros)
 | 
						|
    return TyID != Type::LabelTyID && TyID != Type::TypeTyID &&
 | 
						|
           TyID != Type::VoidTyID;
 | 
						|
  return TyID >= Type::FirstDerivedTyID;
 | 
						|
}
 | 
						|
 | 
						|
unsigned BytecodeParser::insertValue(Value *Val, unsigned type,
 | 
						|
                                     ValueTable &ValueTab) {
 | 
						|
  assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
 | 
						|
          !hasImplicitNull(type, hasExplicitPrimitiveZeros) &&
 | 
						|
         "Cannot read null values from bytecode!");
 | 
						|
  assert(type != Type::TypeTyID && "Types should never be insertValue'd!");
 | 
						|
 | 
						|
  if (ValueTab.size() <= type)
 | 
						|
    ValueTab.resize(type+1);
 | 
						|
 | 
						|
  if (!ValueTab[type]) ValueTab[type] = new ValueList();
 | 
						|
 | 
						|
  //cerr << "insertValue Values[" << type << "][" << ValueTab[type].size() 
 | 
						|
  //   << "] = " << Val << "\n";
 | 
						|
  ValueTab[type]->push_back(Val);
 | 
						|
 | 
						|
  bool HasOffset = hasImplicitNull(type, hasExplicitPrimitiveZeros);
 | 
						|
  return ValueTab[type]->size()-1 + HasOffset;
 | 
						|
}
 | 
						|
 | 
						|
Value *BytecodeParser::getValue(unsigned type, unsigned oNum, bool Create) {
 | 
						|
  assert(type != Type::TypeTyID && "getValue() cannot get types!");
 | 
						|
  assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
 | 
						|
  unsigned Num = oNum;
 | 
						|
 | 
						|
  // If there is a compaction table active, it defines the low-level numbers.
 | 
						|
  // If not, the module values define the low-level numbers.
 | 
						|
  if (CompactionTable.size() > type && !CompactionTable[type].empty()) {
 | 
						|
    if (Num < CompactionTable[type].size())
 | 
						|
      return CompactionTable[type][Num];
 | 
						|
    Num -= CompactionTable[type].size();
 | 
						|
  } else {
 | 
						|
    // If the type plane was compactified, figure out the global type ID.
 | 
						|
    unsigned GlobalTyID = type;
 | 
						|
    if (CompactionTable.size() > Type::TypeTyID &&
 | 
						|
        !CompactionTable[Type::TypeTyID].empty() &&
 | 
						|
        type >= Type::FirstDerivedTyID) {
 | 
						|
      std::vector<Value*> &TypePlane = CompactionTable[Type::TypeTyID];
 | 
						|
      const Type *Ty = cast<Type>(TypePlane[type-Type::FirstDerivedTyID]);
 | 
						|
      TypeValuesListTy::iterator I =
 | 
						|
        find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty);
 | 
						|
      assert(I != ModuleTypeValues.end());
 | 
						|
      GlobalTyID = Type::FirstDerivedTyID + (&*I - &ModuleTypeValues[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    if (hasImplicitNull(GlobalTyID, hasExplicitPrimitiveZeros)) {
 | 
						|
      if (Num == 0)
 | 
						|
        return Constant::getNullValue(getType(type));
 | 
						|
      --Num;
 | 
						|
    }
 | 
						|
 | 
						|
    if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
 | 
						|
      if (Num < ModuleValues[GlobalTyID]->size())
 | 
						|
        return ModuleValues[GlobalTyID]->getOperand(Num);
 | 
						|
      Num -= ModuleValues[GlobalTyID]->size();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Values.size() > type && Values[type] && Num < Values[type]->size())
 | 
						|
    return Values[type]->getOperand(Num);
 | 
						|
 | 
						|
  if (!Create) return 0;  // Do not create a placeholder?
 | 
						|
 | 
						|
  std::pair<unsigned,unsigned> KeyValue(type, oNum);
 | 
						|
  std::map<std::pair<unsigned,unsigned>, Value*>::iterator I = 
 | 
						|
    ForwardReferences.lower_bound(KeyValue);
 | 
						|
  if (I != ForwardReferences.end() && I->first == KeyValue)
 | 
						|
    return I->second;   // We have already created this placeholder
 | 
						|
 | 
						|
  Value *Val = new Argument(getType(type));
 | 
						|
  ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
/// getBasicBlock - Get a particular numbered basic block, which might be a
 | 
						|
/// forward reference.  This works together with ParseBasicBlock to handle these
 | 
						|
/// forward references in a clean manner.
 | 
						|
///
 | 
						|
BasicBlock *BytecodeParser::getBasicBlock(unsigned ID) {
 | 
						|
  // Make sure there is room in the table...
 | 
						|
  if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
 | 
						|
 | 
						|
  // First check to see if this is a backwards reference, i.e., ParseBasicBlock
 | 
						|
  // has already created this block, or if the forward reference has already
 | 
						|
  // been created.
 | 
						|
  if (ParsedBasicBlocks[ID])
 | 
						|
    return ParsedBasicBlocks[ID];
 | 
						|
 | 
						|
  // Otherwise, the basic block has not yet been created.  Do so and add it to
 | 
						|
  // the ParsedBasicBlocks list.
 | 
						|
  return ParsedBasicBlocks[ID] = new BasicBlock();
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantValue - Just like getValue, except that it returns a null pointer
 | 
						|
/// only on error.  It always returns a constant (meaning that if the value is
 | 
						|
/// defined, but is not a constant, that is an error).  If the specified
 | 
						|
/// constant hasn't been parsed yet, a placeholder is defined and used.  Later,
 | 
						|
/// after the real value is parsed, the placeholder is eliminated.
 | 
						|
///
 | 
						|
Constant *BytecodeParser::getConstantValue(unsigned TypeSlot, unsigned Slot) {
 | 
						|
  if (Value *V = getValue(TypeSlot, Slot, false))
 | 
						|
    if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
      return C;   // If we already have the value parsed, just return it
 | 
						|
    else if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | 
						|
      // ConstantPointerRef's are an abomination, but at least they don't have
 | 
						|
      // to infest bytecode files.
 | 
						|
      return ConstantPointerRef::get(GV);
 | 
						|
    else
 | 
						|
      throw std::string("Reference of a value is expected to be a constant!");
 | 
						|
 | 
						|
  const Type *Ty = getType(TypeSlot);
 | 
						|
  std::pair<const Type*, unsigned> Key(Ty, Slot);
 | 
						|
  ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
 | 
						|
 | 
						|
  if (I != ConstantFwdRefs.end() && I->first == Key) {
 | 
						|
    BCR_TRACE(5, "Previous forward ref found!\n");
 | 
						|
    return I->second;
 | 
						|
  } else {
 | 
						|
    // Create a placeholder for the constant reference and
 | 
						|
    // keep track of the fact that we have a forward ref to recycle it
 | 
						|
    BCR_TRACE(5, "Creating new forward ref to a constant!\n");
 | 
						|
    Constant *C = new ConstPHolder(Ty, Slot);
 | 
						|
    
 | 
						|
    // Keep track of the fact that we have a forward ref to recycle it
 | 
						|
    ConstantFwdRefs.insert(I, std::make_pair(Key, C));
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one
 | 
						|
/// basicblock at a time.  This method reads in one of the basicblock packets.
 | 
						|
BasicBlock *BytecodeParser::ParseBasicBlock(const unsigned char *&Buf,
 | 
						|
                                            const unsigned char *EndBuf,
 | 
						|
                                            unsigned BlockNo) {
 | 
						|
  BasicBlock *BB;
 | 
						|
  if (ParsedBasicBlocks.size() == BlockNo)
 | 
						|
    ParsedBasicBlocks.push_back(BB = new BasicBlock());
 | 
						|
  else if (ParsedBasicBlocks[BlockNo] == 0)
 | 
						|
    BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
 | 
						|
  else
 | 
						|
    BB = ParsedBasicBlocks[BlockNo];
 | 
						|
 | 
						|
  std::vector<unsigned> Args;
 | 
						|
  while (Buf < EndBuf)
 | 
						|
    ParseInstruction(Buf, EndBuf, Args, BB);
 | 
						|
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the
 | 
						|
/// body of a function.  In post 1.0 bytecode files, we no longer emit basic
 | 
						|
/// block individually, in order to avoid per-basic-block overhead.
 | 
						|
unsigned BytecodeParser::ParseInstructionList(Function *F,
 | 
						|
                                              const unsigned char *&Buf,
 | 
						|
                                              const unsigned char *EndBuf) {
 | 
						|
  unsigned BlockNo = 0;
 | 
						|
  std::vector<unsigned> Args;
 | 
						|
 | 
						|
  while (Buf < EndBuf) {
 | 
						|
    BasicBlock *BB;
 | 
						|
    if (ParsedBasicBlocks.size() == BlockNo)
 | 
						|
      ParsedBasicBlocks.push_back(BB = new BasicBlock());
 | 
						|
    else if (ParsedBasicBlocks[BlockNo] == 0)
 | 
						|
      BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
 | 
						|
    else
 | 
						|
      BB = ParsedBasicBlocks[BlockNo];
 | 
						|
    ++BlockNo;
 | 
						|
    F->getBasicBlockList().push_back(BB);
 | 
						|
 | 
						|
    // Read instructions into this basic block until we get to a terminator
 | 
						|
    while (Buf < EndBuf && !BB->getTerminator())
 | 
						|
      ParseInstruction(Buf, EndBuf, Args, BB);
 | 
						|
 | 
						|
    if (!BB->getTerminator())
 | 
						|
      throw std::string("Non-terminated basic block found!");
 | 
						|
  }
 | 
						|
 | 
						|
  return BlockNo;
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::ParseSymbolTable(const unsigned char *&Buf,
 | 
						|
                                      const unsigned char *EndBuf,
 | 
						|
                                      SymbolTable *ST,
 | 
						|
                                      Function *CurrentFunction) {
 | 
						|
  // Allow efficient basic block lookup by number.
 | 
						|
  std::vector<BasicBlock*> BBMap;
 | 
						|
  if (CurrentFunction)
 | 
						|
    for (Function::iterator I = CurrentFunction->begin(),
 | 
						|
           E = CurrentFunction->end(); I != E; ++I)
 | 
						|
      BBMap.push_back(I);
 | 
						|
 | 
						|
  while (Buf < EndBuf) {
 | 
						|
    // Symtab block header: [num entries][type id number]
 | 
						|
    unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
 | 
						|
    unsigned Typ = read_vbr_uint(Buf, EndBuf);
 | 
						|
    const Type *Ty = getType(Typ);
 | 
						|
    BCR_TRACE(3, "Plane Type: '" << *Ty << "' with " << NumEntries <<
 | 
						|
                 " entries\n");
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumEntries; ++i) {
 | 
						|
      // Symtab entry: [def slot #][name]
 | 
						|
      unsigned slot = read_vbr_uint(Buf, EndBuf);
 | 
						|
      std::string Name = read_str(Buf, EndBuf);
 | 
						|
 | 
						|
      Value *V = 0;
 | 
						|
      if (Typ == Type::TypeTyID)
 | 
						|
        V = (Value*)getType(slot);
 | 
						|
      else if (Typ == Type::LabelTyID) {
 | 
						|
        if (slot < BBMap.size())
 | 
						|
          V = BBMap[slot];
 | 
						|
      } else {
 | 
						|
        V = getValue(Typ, slot, false); // Find mapping...
 | 
						|
      }
 | 
						|
      if (V == 0)
 | 
						|
        throw "Failed value look-up for name '" + Name + "'";
 | 
						|
      BCR_TRACE(4, "Map: '" << Name << "' to #" << slot << ":" << *V;
 | 
						|
                if (!isa<Instruction>(V)) std::cerr << "\n");
 | 
						|
 | 
						|
      V->setName(Name, ST);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Buf > EndBuf) throw std::string("Tried to read past end of buffer.");
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::ResolveReferencesToConstant(Constant *NewV, unsigned Slot){
 | 
						|
  ConstantRefsType::iterator I =
 | 
						|
    ConstantFwdRefs.find(std::make_pair(NewV->getType(), Slot));
 | 
						|
  if (I == ConstantFwdRefs.end()) return;   // Never forward referenced?
 | 
						|
 | 
						|
  BCR_TRACE(3, "Mutating forward refs!\n");
 | 
						|
  Value *PH = I->second;   // Get the placeholder...
 | 
						|
  PH->replaceAllUsesWith(NewV);
 | 
						|
  delete PH;                               // Delete the old placeholder
 | 
						|
  ConstantFwdRefs.erase(I);                // Remove the map entry for it
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::ParseFunction(const unsigned char *&Buf,
 | 
						|
                                   const unsigned char *EndBuf) {
 | 
						|
  if (FunctionSignatureList.empty())
 | 
						|
    throw std::string("FunctionSignatureList empty!");
 | 
						|
 | 
						|
  Function *F = FunctionSignatureList.back();
 | 
						|
  FunctionSignatureList.pop_back();
 | 
						|
 | 
						|
  // Save the information for future reading of the function
 | 
						|
  LazyFunctionLoadMap[F] = LazyFunctionInfo(Buf, EndBuf);
 | 
						|
  // Pretend we've `parsed' this function
 | 
						|
  Buf = EndBuf;
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::materializeFunction(Function* F) {
 | 
						|
  // Find {start, end} pointers and slot in the map. If not there, we're done.
 | 
						|
  std::map<Function*, LazyFunctionInfo>::iterator Fi =
 | 
						|
    LazyFunctionLoadMap.find(F);
 | 
						|
  if (Fi == LazyFunctionLoadMap.end()) return;
 | 
						|
 | 
						|
  const unsigned char *Buf = Fi->second.Buf;
 | 
						|
  const unsigned char *EndBuf = Fi->second.EndBuf;
 | 
						|
  LazyFunctionLoadMap.erase(Fi);
 | 
						|
 | 
						|
  GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
 | 
						|
 | 
						|
  unsigned LinkageType = read_vbr_uint(Buf, EndBuf);
 | 
						|
  if (LinkageType > 4)
 | 
						|
    throw std::string("Invalid linkage type for Function.");
 | 
						|
  switch (LinkageType) {
 | 
						|
  case 0: Linkage = GlobalValue::ExternalLinkage; break;
 | 
						|
  case 1: Linkage = GlobalValue::WeakLinkage; break;
 | 
						|
  case 2: Linkage = GlobalValue::AppendingLinkage; break;
 | 
						|
  case 3: Linkage = GlobalValue::InternalLinkage; break;
 | 
						|
  case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
 | 
						|
  }
 | 
						|
 | 
						|
  F->setLinkage(Linkage);
 | 
						|
 | 
						|
  // Keep track of how many basic blocks we have read in...
 | 
						|
  unsigned BlockNum = 0;
 | 
						|
  bool InsertedArguments = false;
 | 
						|
 | 
						|
  while (Buf < EndBuf) {
 | 
						|
    unsigned Type, Size;
 | 
						|
    const unsigned char *OldBuf = Buf;
 | 
						|
    readBlock(Buf, EndBuf, Type, Size);
 | 
						|
 | 
						|
    switch (Type) {
 | 
						|
    case BytecodeFormat::ConstantPool:
 | 
						|
      if (!InsertedArguments) {
 | 
						|
        // Insert arguments into the value table before we parse the first basic
 | 
						|
        // block in the function, but after we potentially read in the
 | 
						|
        // compaction table.
 | 
						|
        const FunctionType *FT = F->getFunctionType();
 | 
						|
        Function::aiterator AI = F->abegin();
 | 
						|
        for (FunctionType::param_iterator It = FT->param_begin();
 | 
						|
             It != FT->param_end(); ++It, ++AI)
 | 
						|
          insertValue(AI, getTypeSlot(AI->getType()), Values);
 | 
						|
        InsertedArguments = true;
 | 
						|
      }
 | 
						|
 | 
						|
      BCR_TRACE(2, "BLOCK BytecodeFormat::ConstantPool: {\n");
 | 
						|
      ParseConstantPool(Buf, Buf+Size, Values, FunctionTypeValues);
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::CompactionTable:
 | 
						|
      BCR_TRACE(2, "BLOCK BytecodeFormat::CompactionTable: {\n");
 | 
						|
      ParseCompactionTable(Buf, Buf+Size);
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::BasicBlock: {
 | 
						|
      if (!InsertedArguments) {
 | 
						|
        // Insert arguments into the value table before we parse the first basic
 | 
						|
        // block in the function, but after we potentially read in the
 | 
						|
        // compaction table.
 | 
						|
        const FunctionType *FT = F->getFunctionType();
 | 
						|
        Function::aiterator AI = F->abegin();
 | 
						|
        for (FunctionType::param_iterator It = FT->param_begin();
 | 
						|
             It != FT->param_end(); ++It, ++AI)
 | 
						|
          insertValue(AI, getTypeSlot(AI->getType()), Values);
 | 
						|
        InsertedArguments = true;
 | 
						|
      }
 | 
						|
 | 
						|
      BCR_TRACE(2, "BLOCK BytecodeFormat::BasicBlock: {\n");
 | 
						|
      BasicBlock *BB = ParseBasicBlock(Buf, Buf+Size, BlockNum++);
 | 
						|
      F->getBasicBlockList().push_back(BB);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case BytecodeFormat::InstructionList: {
 | 
						|
      // Insert arguments into the value table before we parse the instruction
 | 
						|
      // list for the function, but after we potentially read in the compaction
 | 
						|
      // table.
 | 
						|
      if (!InsertedArguments) {
 | 
						|
        const FunctionType *FT = F->getFunctionType();
 | 
						|
        Function::aiterator AI = F->abegin();
 | 
						|
        for (FunctionType::param_iterator It = FT->param_begin();
 | 
						|
             It != FT->param_end(); ++It, ++AI)
 | 
						|
          insertValue(AI, getTypeSlot(AI->getType()), Values);
 | 
						|
        InsertedArguments = true;
 | 
						|
      }
 | 
						|
 | 
						|
      BCR_TRACE(2, "BLOCK BytecodeFormat::InstructionList: {\n");
 | 
						|
      if (BlockNum) throw std::string("Already parsed basic blocks!");
 | 
						|
      BlockNum = ParseInstructionList(F, Buf, Buf+Size);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case BytecodeFormat::SymbolTable:
 | 
						|
      BCR_TRACE(2, "BLOCK BytecodeFormat::SymbolTable: {\n");
 | 
						|
      ParseSymbolTable(Buf, Buf+Size, &F->getSymbolTable(), F);
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      BCR_TRACE(2, "BLOCK <unknown>:ignored! {\n");
 | 
						|
      Buf += Size;
 | 
						|
      if (OldBuf > Buf) 
 | 
						|
        throw std::string("Wrapped around reading bytecode.");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    BCR_TRACE(2, "} end block\n");
 | 
						|
 | 
						|
    // Malformed bc file if read past end of block.
 | 
						|
    align32(Buf, EndBuf);
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure there were no references to non-existant basic blocks.
 | 
						|
  if (BlockNum != ParsedBasicBlocks.size())
 | 
						|
    throw std::string("Illegal basic block operand reference");
 | 
						|
  ParsedBasicBlocks.clear();
 | 
						|
 | 
						|
  // Resolve forward references.  Replace any uses of a forward reference value
 | 
						|
  // with the real value.
 | 
						|
 | 
						|
  // replaceAllUsesWith is very inefficient for instructions which have a LARGE
 | 
						|
  // number of operands.  PHI nodes often have forward references, and can also
 | 
						|
  // often have a very large number of operands.
 | 
						|
  //
 | 
						|
  // FIXME: REEVALUATE.  replaceAllUsesWith is _much_ faster now, and this code
 | 
						|
  // should be simplified back to using it!
 | 
						|
  //
 | 
						|
  std::map<Value*, Value*> ForwardRefMapping;
 | 
						|
  for (std::map<std::pair<unsigned,unsigned>, Value*>::iterator 
 | 
						|
         I = ForwardReferences.begin(), E = ForwardReferences.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ForwardRefMapping[I->second] = getValue(I->first.first, I->first.second,
 | 
						|
                                            false);
 | 
						|
 | 
						|
  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
        if (Argument *A = dyn_cast<Argument>(I->getOperand(i))) {
 | 
						|
          std::map<Value*, Value*>::iterator It = ForwardRefMapping.find(A);
 | 
						|
          if (It != ForwardRefMapping.end()) I->setOperand(i, It->second);
 | 
						|
        }
 | 
						|
 | 
						|
  while (!ForwardReferences.empty()) {
 | 
						|
    std::map<std::pair<unsigned,unsigned>, Value*>::iterator I =
 | 
						|
      ForwardReferences.begin();
 | 
						|
    Value *PlaceHolder = I->second;
 | 
						|
    ForwardReferences.erase(I);
 | 
						|
 | 
						|
    // Now that all the uses are gone, delete the placeholder...
 | 
						|
    // If we couldn't find a def (error case), then leak a little
 | 
						|
    // memory, because otherwise we can't remove all uses!
 | 
						|
    delete PlaceHolder;
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear out function-level types...
 | 
						|
  FunctionTypeValues.clear();
 | 
						|
  CompactionTable.clear();
 | 
						|
  freeTable(Values);
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::ParseCompactionTable(const unsigned char *&Buf,
 | 
						|
                                          const unsigned char *End) {
 | 
						|
 | 
						|
  while (Buf != End) {
 | 
						|
    unsigned NumEntries = read_vbr_uint(Buf, End);
 | 
						|
    unsigned Ty;
 | 
						|
 | 
						|
    if ((NumEntries & 3) == 3) {
 | 
						|
      NumEntries >>= 2;
 | 
						|
      Ty = read_vbr_uint(Buf, End);
 | 
						|
    } else {
 | 
						|
      Ty = NumEntries >> 2;
 | 
						|
      NumEntries &= 3;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Ty >= CompactionTable.size())
 | 
						|
      CompactionTable.resize(Ty+1);
 | 
						|
 | 
						|
    if (!CompactionTable[Ty].empty())
 | 
						|
      throw std::string("Compaction table plane contains multiple entries!");
 | 
						|
    
 | 
						|
    if (Ty == Type::TypeTyID) {
 | 
						|
      for (unsigned i = 0; i != NumEntries; ++i) {
 | 
						|
        const Type *Typ = getGlobalTableType(read_vbr_uint(Buf, End));
 | 
						|
        CompactionTable[Type::TypeTyID].push_back(const_cast<Type*>(Typ));
 | 
						|
      }
 | 
						|
 | 
						|
      CompactionTable.resize(NumEntries+Type::FirstDerivedTyID);
 | 
						|
    } else {
 | 
						|
      const Type *Typ = getType(Ty);
 | 
						|
      // Push the implicit zero
 | 
						|
      CompactionTable[Ty].push_back(Constant::getNullValue(Typ));
 | 
						|
      for (unsigned i = 0; i != NumEntries; ++i) {
 | 
						|
        Value *V = getGlobalTableValue(Typ, read_vbr_uint(Buf, End));
 | 
						|
        CompactionTable[Ty].push_back(V);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void BytecodeParser::ParseModuleGlobalInfo(const unsigned char *&Buf,
 | 
						|
                                           const unsigned char *End) {
 | 
						|
  if (!FunctionSignatureList.empty())
 | 
						|
    throw std::string("Two ModuleGlobalInfo packets found!");
 | 
						|
 | 
						|
  // Read global variables...
 | 
						|
  unsigned VarType = read_vbr_uint(Buf, End);
 | 
						|
  while (VarType != Type::VoidTyID) { // List is terminated by Void
 | 
						|
    // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
 | 
						|
    // Linkage, bit4+ = slot#
 | 
						|
    unsigned SlotNo = VarType >> 5;
 | 
						|
    unsigned LinkageID = (VarType >> 2) & 7;
 | 
						|
    GlobalValue::LinkageTypes Linkage;
 | 
						|
 | 
						|
    switch (LinkageID) {
 | 
						|
    default: assert(0 && "Unknown linkage type!");
 | 
						|
    case 0: Linkage = GlobalValue::ExternalLinkage;  break;
 | 
						|
    case 1: Linkage = GlobalValue::WeakLinkage;      break;
 | 
						|
    case 2: Linkage = GlobalValue::AppendingLinkage; break;
 | 
						|
    case 3: Linkage = GlobalValue::InternalLinkage;  break;
 | 
						|
    case 4: Linkage = GlobalValue::LinkOnceLinkage;  break;
 | 
						|
    }
 | 
						|
 | 
						|
    const Type *Ty = getType(SlotNo);
 | 
						|
    if (!isa<PointerType>(Ty))
 | 
						|
      throw std::string("Global not pointer type!  Ty = " + 
 | 
						|
                        Ty->getDescription());
 | 
						|
 | 
						|
    const Type *ElTy = cast<PointerType>(Ty)->getElementType();
 | 
						|
 | 
						|
    // Create the global variable...
 | 
						|
    GlobalVariable *GV = new GlobalVariable(ElTy, VarType & 1, Linkage,
 | 
						|
                                            0, "", TheModule);
 | 
						|
    BCR_TRACE(2, "Global Variable of type: " << *Ty << "\n");
 | 
						|
    insertValue(GV, SlotNo, ModuleValues);
 | 
						|
 | 
						|
    if (VarType & 2)   // Does it have an initializer?
 | 
						|
      GlobalInits.push_back(std::make_pair(GV, read_vbr_uint(Buf, End)));
 | 
						|
    VarType = read_vbr_uint(Buf, End);
 | 
						|
  }
 | 
						|
 | 
						|
  // Read the function objects for all of the functions that are coming
 | 
						|
  unsigned FnSignature = read_vbr_uint(Buf, End);
 | 
						|
  while (FnSignature != Type::VoidTyID) { // List is terminated by Void
 | 
						|
    const Type *Ty = getType(FnSignature);
 | 
						|
    if (!isa<PointerType>(Ty) ||
 | 
						|
        !isa<FunctionType>(cast<PointerType>(Ty)->getElementType()))
 | 
						|
      throw std::string("Function not ptr to func type!  Ty = " +
 | 
						|
                        Ty->getDescription());
 | 
						|
 | 
						|
    // We create functions by passing the underlying FunctionType to create...
 | 
						|
    Ty = cast<PointerType>(Ty)->getElementType();
 | 
						|
 | 
						|
    // When the ModuleGlobalInfo section is read, we load the type of each
 | 
						|
    // function and the 'ModuleValues' slot that it lands in.  We then load a
 | 
						|
    // placeholder into its slot to reserve it.  When the function is loaded,
 | 
						|
    // this placeholder is replaced.
 | 
						|
 | 
						|
    // Insert the placeholder...
 | 
						|
    Function *Func = new Function(cast<FunctionType>(Ty),
 | 
						|
                                  GlobalValue::InternalLinkage, "", TheModule);
 | 
						|
    insertValue(Func, FnSignature, ModuleValues);
 | 
						|
 | 
						|
    // Keep track of this information in a list that is emptied as functions are
 | 
						|
    // loaded...
 | 
						|
    //
 | 
						|
    FunctionSignatureList.push_back(Func);
 | 
						|
 | 
						|
    FnSignature = read_vbr_uint(Buf, End);
 | 
						|
    BCR_TRACE(2, "Function of type: " << Ty << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasInconsistentModuleGlobalInfo)
 | 
						|
    align32(Buf, End);
 | 
						|
 | 
						|
  // Now that the function signature list is set up, reverse it so that we can 
 | 
						|
  // remove elements efficiently from the back of the vector.
 | 
						|
  std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
 | 
						|
 | 
						|
  // This is for future proofing... in the future extra fields may be added that
 | 
						|
  // we don't understand, so we transparently ignore them.
 | 
						|
  //
 | 
						|
  Buf = End;
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::ParseVersionInfo(const unsigned char *&Buf,
 | 
						|
                                      const unsigned char *EndBuf) {
 | 
						|
  unsigned Version = read_vbr_uint(Buf, EndBuf);
 | 
						|
 | 
						|
  // Unpack version number: low four bits are for flags, top bits = version
 | 
						|
  Module::Endianness  Endianness;
 | 
						|
  Module::PointerSize PointerSize;
 | 
						|
  Endianness  = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
 | 
						|
  PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
 | 
						|
 | 
						|
  bool hasNoEndianness = Version & 4;
 | 
						|
  bool hasNoPointerSize = Version & 8;
 | 
						|
  
 | 
						|
  RevisionNum = Version >> 4;
 | 
						|
 | 
						|
  // Default values for the current bytecode version
 | 
						|
  hasInconsistentModuleGlobalInfo = false;
 | 
						|
  hasExplicitPrimitiveZeros = false;
 | 
						|
  hasRestrictedGEPTypes = false;
 | 
						|
 | 
						|
  switch (RevisionNum) {
 | 
						|
  case 0:               //  LLVM 1.0, 1.1 release version
 | 
						|
    // Base LLVM 1.0 bytecode format.
 | 
						|
    hasInconsistentModuleGlobalInfo = true;
 | 
						|
    hasExplicitPrimitiveZeros = true;
 | 
						|
    // FALL THROUGH
 | 
						|
  case 1:               // LLVM 1.2 release version
 | 
						|
    // LLVM 1.2 added explicit support for emitting strings efficiently.
 | 
						|
 | 
						|
    // Also, it fixed the problem where the size of the ModuleGlobalInfo block
 | 
						|
    // included the size for the alignment at the end, where the rest of the
 | 
						|
    // blocks did not.
 | 
						|
 | 
						|
    // LLVM 1.2 and before required that GEP indices be ubyte constants for
 | 
						|
    // structures and longs for sequential types.
 | 
						|
    hasRestrictedGEPTypes = true;
 | 
						|
 | 
						|
    // FALL THROUGH
 | 
						|
  case 2:               // LLVM 1.3 release version
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    throw std::string("Unknown bytecode version number!");
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasNoEndianness) Endianness  = Module::AnyEndianness;
 | 
						|
  if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
 | 
						|
 | 
						|
  TheModule->setEndianness(Endianness);
 | 
						|
  TheModule->setPointerSize(PointerSize);
 | 
						|
  BCR_TRACE(1, "Bytecode Rev = " << (unsigned)RevisionNum << "\n");
 | 
						|
  BCR_TRACE(1, "Endianness/PointerSize = " << Endianness << ","
 | 
						|
               << PointerSize << "\n");
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::ParseModule(const unsigned char *Buf,
 | 
						|
                                 const unsigned char *EndBuf) {
 | 
						|
  unsigned Type, Size;
 | 
						|
  readBlock(Buf, EndBuf, Type, Size);
 | 
						|
  if (Type != BytecodeFormat::Module || Buf+Size != EndBuf)
 | 
						|
    throw std::string("Expected Module packet! B: "+
 | 
						|
        utostr((unsigned)(intptr_t)Buf) + ", S: "+utostr(Size)+
 | 
						|
        " E: "+utostr((unsigned)(intptr_t)EndBuf)); // Hrm, not a class?
 | 
						|
 | 
						|
  BCR_TRACE(0, "BLOCK BytecodeFormat::Module: {\n");
 | 
						|
  FunctionSignatureList.clear();                 // Just in case...
 | 
						|
 | 
						|
  // Read into instance variables...
 | 
						|
  ParseVersionInfo(Buf, EndBuf);
 | 
						|
  align32(Buf, EndBuf);
 | 
						|
 | 
						|
  while (Buf < EndBuf) {
 | 
						|
    const unsigned char *OldBuf = Buf;
 | 
						|
    readBlock(Buf, EndBuf, Type, Size);
 | 
						|
    switch (Type) {
 | 
						|
    case BytecodeFormat::GlobalTypePlane:
 | 
						|
      BCR_TRACE(1, "BLOCK BytecodeFormat::GlobalTypePlane: {\n");
 | 
						|
      ParseGlobalTypes(Buf, Buf+Size);
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::ModuleGlobalInfo:
 | 
						|
      BCR_TRACE(1, "BLOCK BytecodeFormat::ModuleGlobalInfo: {\n");
 | 
						|
      ParseModuleGlobalInfo(Buf, Buf+Size);
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::ConstantPool:
 | 
						|
      BCR_TRACE(1, "BLOCK BytecodeFormat::ConstantPool: {\n");
 | 
						|
      ParseConstantPool(Buf, Buf+Size, ModuleValues, ModuleTypeValues);
 | 
						|
      break;
 | 
						|
 | 
						|
    case BytecodeFormat::Function: {
 | 
						|
      BCR_TRACE(1, "BLOCK BytecodeFormat::Function: {\n");
 | 
						|
      ParseFunction(Buf, Buf+Size);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case BytecodeFormat::SymbolTable:
 | 
						|
      BCR_TRACE(1, "BLOCK BytecodeFormat::SymbolTable: {\n");
 | 
						|
      ParseSymbolTable(Buf, Buf+Size, &TheModule->getSymbolTable(), 0);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      Buf += Size;
 | 
						|
      if (OldBuf > Buf) throw std::string("Expected Module Block!");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    BCR_TRACE(1, "} end block\n");
 | 
						|
    align32(Buf, EndBuf);
 | 
						|
  }
 | 
						|
 | 
						|
  // After the module constant pool has been read, we can safely initialize
 | 
						|
  // global variables...
 | 
						|
  while (!GlobalInits.empty()) {
 | 
						|
    GlobalVariable *GV = GlobalInits.back().first;
 | 
						|
    unsigned Slot = GlobalInits.back().second;
 | 
						|
    GlobalInits.pop_back();
 | 
						|
 | 
						|
    // Look up the initializer value...
 | 
						|
    // FIXME: Preserve this type ID!
 | 
						|
    unsigned TypeSlot = getTypeSlot(GV->getType()->getElementType());
 | 
						|
    if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
 | 
						|
      if (GV->hasInitializer()) 
 | 
						|
        throw std::string("Global *already* has an initializer?!");
 | 
						|
      GV->setInitializer(CV);
 | 
						|
    } else
 | 
						|
      throw std::string("Cannot find initializer value.");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FunctionSignatureList.empty())
 | 
						|
    throw std::string("Function expected, but bytecode stream ended!");
 | 
						|
 | 
						|
  BCR_TRACE(0, "} end block\n\n");
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeParser::ParseBytecode(const unsigned char *Buf, unsigned Length,
 | 
						|
                                   const std::string &ModuleID) {
 | 
						|
 | 
						|
  unsigned char *EndBuf = (unsigned char*)(Buf + Length);
 | 
						|
 | 
						|
  // Read and check signature...
 | 
						|
  unsigned Sig = read(Buf, EndBuf);
 | 
						|
  if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24)))
 | 
						|
    throw std::string("Invalid bytecode signature!");
 | 
						|
 | 
						|
  TheModule = new Module(ModuleID);
 | 
						|
  try { 
 | 
						|
    ParseModule(Buf, EndBuf);
 | 
						|
  } catch (std::string &Error) {
 | 
						|
    freeState();       // Must destroy handles before deleting module!
 | 
						|
    delete TheModule;
 | 
						|
    TheModule = 0;
 | 
						|
    throw;
 | 
						|
  }
 | 
						|
}
 |