forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2404 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2404 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements extra semantic analysis beyond what is enforced
 | |
| //  by the C type system.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Sema.h"
 | |
| #include "clang/Analysis/Analyses/PrintfFormatString.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/StmtObjC.h"
 | |
| #include "clang/Lex/LiteralSupport.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "clang/Basic/TargetBuiltins.h"
 | |
| #include <limits>
 | |
| using namespace clang;
 | |
| 
 | |
| /// getLocationOfStringLiteralByte - Return a source location that points to the
 | |
| /// specified byte of the specified string literal.
 | |
| ///
 | |
| /// Strings are amazingly complex.  They can be formed from multiple tokens and
 | |
| /// can have escape sequences in them in addition to the usual trigraph and
 | |
| /// escaped newline business.  This routine handles this complexity.
 | |
| ///
 | |
| SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
 | |
|                                                     unsigned ByteNo) const {
 | |
|   assert(!SL->isWide() && "This doesn't work for wide strings yet");
 | |
| 
 | |
|   // Loop over all of the tokens in this string until we find the one that
 | |
|   // contains the byte we're looking for.
 | |
|   unsigned TokNo = 0;
 | |
|   while (1) {
 | |
|     assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
 | |
|     SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
 | |
| 
 | |
|     // Get the spelling of the string so that we can get the data that makes up
 | |
|     // the string literal, not the identifier for the macro it is potentially
 | |
|     // expanded through.
 | |
|     SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
 | |
| 
 | |
|     // Re-lex the token to get its length and original spelling.
 | |
|     std::pair<FileID, unsigned> LocInfo =
 | |
|       SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
 | |
|     bool Invalid = false;
 | |
|     llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
 | |
|     if (Invalid)
 | |
|       return StrTokSpellingLoc;
 | |
|       
 | |
|     const char *StrData = Buffer.data()+LocInfo.second;
 | |
| 
 | |
|     // Create a langops struct and enable trigraphs.  This is sufficient for
 | |
|     // relexing tokens.
 | |
|     LangOptions LangOpts;
 | |
|     LangOpts.Trigraphs = true;
 | |
| 
 | |
|     // Create a lexer starting at the beginning of this token.
 | |
|     Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
 | |
|                    Buffer.end());
 | |
|     Token TheTok;
 | |
|     TheLexer.LexFromRawLexer(TheTok);
 | |
| 
 | |
|     // Use the StringLiteralParser to compute the length of the string in bytes.
 | |
|     StringLiteralParser SLP(&TheTok, 1, PP);
 | |
|     unsigned TokNumBytes = SLP.GetStringLength();
 | |
| 
 | |
|     // If the byte is in this token, return the location of the byte.
 | |
|     if (ByteNo < TokNumBytes ||
 | |
|         (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
 | |
|       unsigned Offset =
 | |
|         StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
 | |
| 
 | |
|       // Now that we know the offset of the token in the spelling, use the
 | |
|       // preprocessor to get the offset in the original source.
 | |
|       return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
 | |
|     }
 | |
| 
 | |
|     // Move to the next string token.
 | |
|     ++TokNo;
 | |
|     ByteNo -= TokNumBytes;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckablePrintfAttr - does a function call have a "printf" attribute
 | |
| /// and arguments that merit checking?
 | |
| bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
 | |
|   if (Format->getType() == "printf") return true;
 | |
|   if (Format->getType() == "printf0") {
 | |
|     // printf0 allows null "format" string; if so don't check format/args
 | |
|     unsigned format_idx = Format->getFormatIdx() - 1;
 | |
|     // Does the index refer to the implicit object argument?
 | |
|     if (isa<CXXMemberCallExpr>(TheCall)) {
 | |
|       if (format_idx == 0)
 | |
|         return false;
 | |
|       --format_idx;
 | |
|     }
 | |
|     if (format_idx < TheCall->getNumArgs()) {
 | |
|       Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
 | |
|       if (!Format->isNullPointerConstant(Context,
 | |
|                                          Expr::NPC_ValueDependentIsNull))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Action::OwningExprResult
 | |
| Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   OwningExprResult TheCallResult(Owned(TheCall));
 | |
| 
 | |
|   switch (BuiltinID) {
 | |
|   case Builtin::BI__builtin___CFStringMakeConstantString:
 | |
|     assert(TheCall->getNumArgs() == 1 &&
 | |
|            "Wrong # arguments to builtin CFStringMakeConstantString");
 | |
|     if (CheckObjCString(TheCall->getArg(0)))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_stdarg_start:
 | |
|   case Builtin::BI__builtin_va_start:
 | |
|     if (SemaBuiltinVAStart(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_isgreater:
 | |
|   case Builtin::BI__builtin_isgreaterequal:
 | |
|   case Builtin::BI__builtin_isless:
 | |
|   case Builtin::BI__builtin_islessequal:
 | |
|   case Builtin::BI__builtin_islessgreater:
 | |
|   case Builtin::BI__builtin_isunordered:
 | |
|     if (SemaBuiltinUnorderedCompare(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_fpclassify:
 | |
|     if (SemaBuiltinFPClassification(TheCall, 6))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_isfinite:
 | |
|   case Builtin::BI__builtin_isinf:
 | |
|   case Builtin::BI__builtin_isinf_sign:
 | |
|   case Builtin::BI__builtin_isnan:
 | |
|   case Builtin::BI__builtin_isnormal:
 | |
|     if (SemaBuiltinFPClassification(TheCall, 1))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_return_address:
 | |
|   case Builtin::BI__builtin_frame_address: {
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, 0, Result))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   }
 | |
|   case Builtin::BI__builtin_eh_return_data_regno: {
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, 0, Result))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   }
 | |
|   case Builtin::BI__builtin_shufflevector:
 | |
|     return SemaBuiltinShuffleVector(TheCall);
 | |
|     // TheCall will be freed by the smart pointer here, but that's fine, since
 | |
|     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
 | |
|   case Builtin::BI__builtin_prefetch:
 | |
|     if (SemaBuiltinPrefetch(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_object_size:
 | |
|     if (SemaBuiltinObjectSize(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_longjmp:
 | |
|     if (SemaBuiltinLongjmp(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__sync_fetch_and_add:
 | |
|   case Builtin::BI__sync_fetch_and_sub:
 | |
|   case Builtin::BI__sync_fetch_and_or:
 | |
|   case Builtin::BI__sync_fetch_and_and:
 | |
|   case Builtin::BI__sync_fetch_and_xor:
 | |
|   case Builtin::BI__sync_add_and_fetch:
 | |
|   case Builtin::BI__sync_sub_and_fetch:
 | |
|   case Builtin::BI__sync_and_and_fetch:
 | |
|   case Builtin::BI__sync_or_and_fetch:
 | |
|   case Builtin::BI__sync_xor_and_fetch:
 | |
|   case Builtin::BI__sync_val_compare_and_swap:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap:
 | |
|   case Builtin::BI__sync_lock_test_and_set:
 | |
|   case Builtin::BI__sync_lock_release:
 | |
|     if (SemaBuiltinAtomicOverloaded(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|     
 | |
|   // Target specific builtins start here.
 | |
|   case X86::BI__builtin_ia32_palignr128:
 | |
|   case X86::BI__builtin_ia32_palignr: {
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, 2, Result))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return move(TheCallResult);
 | |
| }
 | |
| 
 | |
| /// CheckFunctionCall - Check a direct function call for various correctness
 | |
| /// and safety properties not strictly enforced by the C type system.
 | |
| bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
 | |
|   // Get the IdentifierInfo* for the called function.
 | |
|   IdentifierInfo *FnInfo = FDecl->getIdentifier();
 | |
| 
 | |
|   // None of the checks below are needed for functions that don't have
 | |
|   // simple names (e.g., C++ conversion functions).
 | |
|   if (!FnInfo)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: This mechanism should be abstracted to be less fragile and
 | |
|   // more efficient. For example, just map function ids to custom
 | |
|   // handlers.
 | |
| 
 | |
|   // Printf checking.
 | |
|   if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
 | |
|     if (CheckablePrintfAttr(Format, TheCall)) {
 | |
|       bool HasVAListArg = Format->getFirstArg() == 0;
 | |
|       CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
 | |
|                            HasVAListArg ? 0 : Format->getFirstArg() - 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
 | |
|        NonNull = NonNull->getNext<NonNullAttr>())
 | |
|     CheckNonNullArguments(NonNull, TheCall);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
 | |
|   // Printf checking.
 | |
|   const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
 | |
|   if (!Format)
 | |
|     return false;
 | |
| 
 | |
|   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
 | |
|   if (!V)
 | |
|     return false;
 | |
| 
 | |
|   QualType Ty = V->getType();
 | |
|   if (!Ty->isBlockPointerType())
 | |
|     return false;
 | |
| 
 | |
|   if (!CheckablePrintfAttr(Format, TheCall))
 | |
|     return false;
 | |
| 
 | |
|   bool HasVAListArg = Format->getFirstArg() == 0;
 | |
|   CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
 | |
|                        HasVAListArg ? 0 : Format->getFirstArg() - 1);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinAtomicOverloaded - We have a call to a function like
 | |
| /// __sync_fetch_and_add, which is an overloaded function based on the pointer
 | |
| /// type of its first argument.  The main ActOnCallExpr routines have already
 | |
| /// promoted the types of arguments because all of these calls are prototyped as
 | |
| /// void(...).
 | |
| ///
 | |
| /// This function goes through and does final semantic checking for these
 | |
| /// builtins,
 | |
| bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
| 
 | |
|   // Ensure that we have at least one argument to do type inference from.
 | |
|   if (TheCall->getNumArgs() < 1)
 | |
|     return Diag(TheCall->getLocEnd(),
 | |
|               diag::err_typecheck_call_too_few_args_at_least)
 | |
|               << 0 << 1 << TheCall->getNumArgs()
 | |
|               << TheCall->getCallee()->getSourceRange();
 | |
| 
 | |
|   // Inspect the first argument of the atomic builtin.  This should always be
 | |
|   // a pointer type, whose element is an integral scalar or pointer type.
 | |
|   // Because it is a pointer type, we don't have to worry about any implicit
 | |
|   // casts here.
 | |
|   Expr *FirstArg = TheCall->getArg(0);
 | |
|   if (!FirstArg->getType()->isPointerType())
 | |
|     return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
 | |
|              << FirstArg->getType() << FirstArg->getSourceRange();
 | |
| 
 | |
|   QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
 | |
|   if (!ValType->isIntegerType() && !ValType->isPointerType() &&
 | |
|       !ValType->isBlockPointerType())
 | |
|     return Diag(DRE->getLocStart(),
 | |
|                 diag::err_atomic_builtin_must_be_pointer_intptr)
 | |
|              << FirstArg->getType() << FirstArg->getSourceRange();
 | |
| 
 | |
|   // We need to figure out which concrete builtin this maps onto.  For example,
 | |
|   // __sync_fetch_and_add with a 2 byte object turns into
 | |
|   // __sync_fetch_and_add_2.
 | |
| #define BUILTIN_ROW(x) \
 | |
|   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
 | |
|     Builtin::BI##x##_8, Builtin::BI##x##_16 }
 | |
| 
 | |
|   static const unsigned BuiltinIndices[][5] = {
 | |
|     BUILTIN_ROW(__sync_fetch_and_add),
 | |
|     BUILTIN_ROW(__sync_fetch_and_sub),
 | |
|     BUILTIN_ROW(__sync_fetch_and_or),
 | |
|     BUILTIN_ROW(__sync_fetch_and_and),
 | |
|     BUILTIN_ROW(__sync_fetch_and_xor),
 | |
| 
 | |
|     BUILTIN_ROW(__sync_add_and_fetch),
 | |
|     BUILTIN_ROW(__sync_sub_and_fetch),
 | |
|     BUILTIN_ROW(__sync_and_and_fetch),
 | |
|     BUILTIN_ROW(__sync_or_and_fetch),
 | |
|     BUILTIN_ROW(__sync_xor_and_fetch),
 | |
| 
 | |
|     BUILTIN_ROW(__sync_val_compare_and_swap),
 | |
|     BUILTIN_ROW(__sync_bool_compare_and_swap),
 | |
|     BUILTIN_ROW(__sync_lock_test_and_set),
 | |
|     BUILTIN_ROW(__sync_lock_release)
 | |
|   };
 | |
| #undef BUILTIN_ROW
 | |
| 
 | |
|   // Determine the index of the size.
 | |
|   unsigned SizeIndex;
 | |
|   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
 | |
|   case 1: SizeIndex = 0; break;
 | |
|   case 2: SizeIndex = 1; break;
 | |
|   case 4: SizeIndex = 2; break;
 | |
|   case 8: SizeIndex = 3; break;
 | |
|   case 16: SizeIndex = 4; break;
 | |
|   default:
 | |
|     return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
 | |
|              << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // Each of these builtins has one pointer argument, followed by some number of
 | |
|   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
 | |
|   // that we ignore.  Find out which row of BuiltinIndices to read from as well
 | |
|   // as the number of fixed args.
 | |
|   unsigned BuiltinID = FDecl->getBuiltinID();
 | |
|   unsigned BuiltinIndex, NumFixed = 1;
 | |
|   switch (BuiltinID) {
 | |
|   default: assert(0 && "Unknown overloaded atomic builtin!");
 | |
|   case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
 | |
|   case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
 | |
|   case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
 | |
|   case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
 | |
|   case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
 | |
| 
 | |
|   case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
 | |
|   case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
 | |
|   case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
 | |
|   case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
 | |
|   case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
 | |
| 
 | |
|   case Builtin::BI__sync_val_compare_and_swap:
 | |
|     BuiltinIndex = 10;
 | |
|     NumFixed = 2;
 | |
|     break;
 | |
|   case Builtin::BI__sync_bool_compare_and_swap:
 | |
|     BuiltinIndex = 11;
 | |
|     NumFixed = 2;
 | |
|     break;
 | |
|   case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
 | |
|   case Builtin::BI__sync_lock_release:
 | |
|     BuiltinIndex = 13;
 | |
|     NumFixed = 0;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Now that we know how many fixed arguments we expect, first check that we
 | |
|   // have at least that many.
 | |
|   if (TheCall->getNumArgs() < 1+NumFixed)
 | |
|     return Diag(TheCall->getLocEnd(),
 | |
|             diag::err_typecheck_call_too_few_args_at_least)
 | |
|             << 0 << 1+NumFixed << TheCall->getNumArgs()
 | |
|             << TheCall->getCallee()->getSourceRange();
 | |
| 
 | |
| 
 | |
|   // Get the decl for the concrete builtin from this, we can tell what the
 | |
|   // concrete integer type we should convert to is.
 | |
|   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
 | |
|   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
 | |
|   IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
 | |
|   FunctionDecl *NewBuiltinDecl =
 | |
|     cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
 | |
|                                            TUScope, false, DRE->getLocStart()));
 | |
|   const FunctionProtoType *BuiltinFT =
 | |
|     NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
 | |
|   ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
 | |
| 
 | |
|   // If the first type needs to be converted (e.g. void** -> int*), do it now.
 | |
|   if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
 | |
|     ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
 | |
|     TheCall->setArg(0, FirstArg);
 | |
|   }
 | |
| 
 | |
|   // Next, walk the valid ones promoting to the right type.
 | |
|   for (unsigned i = 0; i != NumFixed; ++i) {
 | |
|     Expr *Arg = TheCall->getArg(i+1);
 | |
| 
 | |
|     // If the argument is an implicit cast, then there was a promotion due to
 | |
|     // "...", just remove it now.
 | |
|     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
 | |
|       Arg = ICE->getSubExpr();
 | |
|       ICE->setSubExpr(0);
 | |
|       ICE->Destroy(Context);
 | |
|       TheCall->setArg(i+1, Arg);
 | |
|     }
 | |
| 
 | |
|     // GCC does an implicit conversion to the pointer or integer ValType.  This
 | |
|     // can fail in some cases (1i -> int**), check for this error case now.
 | |
|     CastExpr::CastKind Kind = CastExpr::CK_Unknown;
 | |
|     CXXBaseSpecifierArray BasePath;
 | |
|     if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
 | |
|       return true;
 | |
| 
 | |
|     // Okay, we have something that *can* be converted to the right type.  Check
 | |
|     // to see if there is a potentially weird extension going on here.  This can
 | |
|     // happen when you do an atomic operation on something like an char* and
 | |
|     // pass in 42.  The 42 gets converted to char.  This is even more strange
 | |
|     // for things like 45.123 -> char, etc.
 | |
|     // FIXME: Do this check.
 | |
|     ImpCastExprToType(Arg, ValType, Kind);
 | |
|     TheCall->setArg(i+1, Arg);
 | |
|   }
 | |
| 
 | |
|   // Switch the DeclRefExpr to refer to the new decl.
 | |
|   DRE->setDecl(NewBuiltinDecl);
 | |
|   DRE->setType(NewBuiltinDecl->getType());
 | |
| 
 | |
|   // Set the callee in the CallExpr.
 | |
|   // FIXME: This leaks the original parens and implicit casts.
 | |
|   Expr *PromotedCall = DRE;
 | |
|   UsualUnaryConversions(PromotedCall);
 | |
|   TheCall->setCallee(PromotedCall);
 | |
| 
 | |
| 
 | |
|   // Change the result type of the call to match the result type of the decl.
 | |
|   TheCall->setType(NewBuiltinDecl->getResultType());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CheckObjCString - Checks that the argument to the builtin
 | |
| /// CFString constructor is correct
 | |
| /// FIXME: GCC currently emits the following warning:
 | |
| /// "warning: input conversion stopped due to an input byte that does not
 | |
| ///           belong to the input codeset UTF-8"
 | |
| /// Note: It might also make sense to do the UTF-16 conversion here (would
 | |
| /// simplify the backend).
 | |
| bool Sema::CheckObjCString(Expr *Arg) {
 | |
|   Arg = Arg->IgnoreParenCasts();
 | |
|   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
 | |
| 
 | |
|   if (!Literal || Literal->isWide()) {
 | |
|     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
 | |
|       << Arg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const char *Data = Literal->getStrData();
 | |
|   unsigned Length = Literal->getByteLength();
 | |
| 
 | |
|   for (unsigned i = 0; i < Length; ++i) {
 | |
|     if (!Data[i]) {
 | |
|       Diag(getLocationOfStringLiteralByte(Literal, i),
 | |
|            diag::warn_cfstring_literal_contains_nul_character)
 | |
|         << Arg->getSourceRange();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
 | |
| /// Emit an error and return true on failure, return false on success.
 | |
| bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
 | |
|   Expr *Fn = TheCall->getCallee();
 | |
|   if (TheCall->getNumArgs() > 2) {
 | |
|     Diag(TheCall->getArg(2)->getLocStart(),
 | |
|          diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|       << Fn->getSourceRange()
 | |
|       << SourceRange(TheCall->getArg(2)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (TheCall->getNumArgs() < 2) {
 | |
|     return Diag(TheCall->getLocEnd(),
 | |
|       diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
 | |
|   }
 | |
| 
 | |
|   // Determine whether the current function is variadic or not.
 | |
|   BlockScopeInfo *CurBlock = getCurBlock();
 | |
|   bool isVariadic;
 | |
|   if (CurBlock)
 | |
|     isVariadic = CurBlock->isVariadic;
 | |
|   else if (FunctionDecl *FD = getCurFunctionDecl())
 | |
|     isVariadic = FD->isVariadic();
 | |
|   else
 | |
|     isVariadic = getCurMethodDecl()->isVariadic();
 | |
| 
 | |
|   if (!isVariadic) {
 | |
|     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Verify that the second argument to the builtin is the last argument of the
 | |
|   // current function or method.
 | |
|   bool SecondArgIsLastNamedArgument = false;
 | |
|   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
 | |
| 
 | |
|   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
 | |
|     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
 | |
|       // FIXME: This isn't correct for methods (results in bogus warning).
 | |
|       // Get the last formal in the current function.
 | |
|       const ParmVarDecl *LastArg;
 | |
|       if (CurBlock)
 | |
|         LastArg = *(CurBlock->TheDecl->param_end()-1);
 | |
|       else if (FunctionDecl *FD = getCurFunctionDecl())
 | |
|         LastArg = *(FD->param_end()-1);
 | |
|       else
 | |
|         LastArg = *(getCurMethodDecl()->param_end()-1);
 | |
|       SecondArgIsLastNamedArgument = PV == LastArg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!SecondArgIsLastNamedArgument)
 | |
|     Diag(TheCall->getArg(1)->getLocStart(),
 | |
|          diag::warn_second_parameter_of_va_start_not_last_named_argument);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
 | |
| /// friends.  This is declared to take (...), so we have to check everything.
 | |
| bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
 | |
|   if (TheCall->getNumArgs() < 2)
 | |
|     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
 | |
|   if (TheCall->getNumArgs() > 2)
 | |
|     return Diag(TheCall->getArg(2)->getLocStart(),
 | |
|                 diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|       << SourceRange(TheCall->getArg(2)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
| 
 | |
|   Expr *OrigArg0 = TheCall->getArg(0);
 | |
|   Expr *OrigArg1 = TheCall->getArg(1);
 | |
| 
 | |
|   // Do standard promotions between the two arguments, returning their common
 | |
|   // type.
 | |
|   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
 | |
| 
 | |
|   // Make sure any conversions are pushed back into the call; this is
 | |
|   // type safe since unordered compare builtins are declared as "_Bool
 | |
|   // foo(...)".
 | |
|   TheCall->setArg(0, OrigArg0);
 | |
|   TheCall->setArg(1, OrigArg1);
 | |
| 
 | |
|   if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   // If the common type isn't a real floating type, then the arguments were
 | |
|   // invalid for this operation.
 | |
|   if (!Res->isRealFloatingType())
 | |
|     return Diag(OrigArg0->getLocStart(),
 | |
|                 diag::err_typecheck_call_invalid_ordered_compare)
 | |
|       << OrigArg0->getType() << OrigArg1->getType()
 | |
|       << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
 | |
| /// __builtin_isnan and friends.  This is declared to take (...), so we have
 | |
| /// to check everything. We expect the last argument to be a floating point
 | |
| /// value.
 | |
| bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
 | |
|   if (TheCall->getNumArgs() < NumArgs)
 | |
|     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
 | |
|   if (TheCall->getNumArgs() > NumArgs)
 | |
|     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
 | |
|                 diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
 | |
|       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
| 
 | |
|   Expr *OrigArg = TheCall->getArg(NumArgs-1);
 | |
| 
 | |
|   if (OrigArg->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   // This operation requires a non-_Complex floating-point number.
 | |
|   if (!OrigArg->getType()->isRealFloatingType())
 | |
|     return Diag(OrigArg->getLocStart(),
 | |
|                 diag::err_typecheck_call_invalid_unary_fp)
 | |
|       << OrigArg->getType() << OrigArg->getSourceRange();
 | |
| 
 | |
|   // If this is an implicit conversion from float -> double, remove it.
 | |
|   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
 | |
|     Expr *CastArg = Cast->getSubExpr();
 | |
|     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
 | |
|       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
 | |
|              "promotion from float to double is the only expected cast here");
 | |
|       Cast->setSubExpr(0);
 | |
|       Cast->Destroy(Context);
 | |
|       TheCall->setArg(NumArgs-1, CastArg);
 | |
|       OrigArg = CastArg;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
 | |
| // This is declared to take (...), so we have to check everything.
 | |
| Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
 | |
|   if (TheCall->getNumArgs() < 3)
 | |
|     return ExprError(Diag(TheCall->getLocEnd(),
 | |
|                           diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 /*function call*/ << 3 << TheCall->getNumArgs()
 | |
|       << TheCall->getSourceRange());
 | |
| 
 | |
|   unsigned numElements = std::numeric_limits<unsigned>::max();
 | |
|   if (!TheCall->getArg(0)->isTypeDependent() &&
 | |
|       !TheCall->getArg(1)->isTypeDependent()) {
 | |
|     QualType FAType = TheCall->getArg(0)->getType();
 | |
|     QualType SAType = TheCall->getArg(1)->getType();
 | |
| 
 | |
|     if (!FAType->isVectorType() || !SAType->isVectorType()) {
 | |
|       Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
 | |
|         << SourceRange(TheCall->getArg(0)->getLocStart(),
 | |
|                        TheCall->getArg(1)->getLocEnd());
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
 | |
|       Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
 | |
|         << SourceRange(TheCall->getArg(0)->getLocStart(),
 | |
|                        TheCall->getArg(1)->getLocEnd());
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     numElements = FAType->getAs<VectorType>()->getNumElements();
 | |
|     if (TheCall->getNumArgs() != numElements+2) {
 | |
|       if (TheCall->getNumArgs() < numElements+2)
 | |
|         return ExprError(Diag(TheCall->getLocEnd(),
 | |
|                               diag::err_typecheck_call_too_few_args)
 | |
|                  << 0 /*function call*/ 
 | |
|                  << numElements+2 << TheCall->getNumArgs()
 | |
|                  << TheCall->getSourceRange());
 | |
|       return ExprError(Diag(TheCall->getLocEnd(),
 | |
|                             diag::err_typecheck_call_too_many_args)
 | |
|                  << 0 /*function call*/ 
 | |
|                  << numElements+2 << TheCall->getNumArgs()
 | |
|                  << TheCall->getSourceRange());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
 | |
|     if (TheCall->getArg(i)->isTypeDependent() ||
 | |
|         TheCall->getArg(i)->isValueDependent())
 | |
|       continue;
 | |
| 
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, i, Result))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
 | |
|       return ExprError(Diag(TheCall->getLocStart(),
 | |
|                   diag::err_shufflevector_argument_too_large)
 | |
|                << TheCall->getArg(i)->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   llvm::SmallVector<Expr*, 32> exprs;
 | |
| 
 | |
|   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
 | |
|     exprs.push_back(TheCall->getArg(i));
 | |
|     TheCall->setArg(i, 0);
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
 | |
|                                             exprs.size(), exprs[0]->getType(),
 | |
|                                             TheCall->getCallee()->getLocStart(),
 | |
|                                             TheCall->getRParenLoc()));
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
 | |
| // This is declared to take (const void*, ...) and can take two
 | |
| // optional constant int args.
 | |
| bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
| 
 | |
|   if (NumArgs > 3)
 | |
|     return Diag(TheCall->getLocEnd(),
 | |
|              diag::err_typecheck_call_too_many_args_at_most)
 | |
|              << 0 /*function call*/ << 3 << NumArgs
 | |
|              << TheCall->getSourceRange();
 | |
| 
 | |
|   // Argument 0 is checked for us and the remaining arguments must be
 | |
|   // constant integers.
 | |
|   for (unsigned i = 1; i != NumArgs; ++i) {
 | |
|     Expr *Arg = TheCall->getArg(i);
 | |
|     
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, i, Result))
 | |
|       return true;
 | |
| 
 | |
|     // FIXME: gcc issues a warning and rewrites these to 0. These
 | |
|     // seems especially odd for the third argument since the default
 | |
|     // is 3.
 | |
|     if (i == 1) {
 | |
|       if (Result.getLimitedValue() > 1)
 | |
|         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|              << "0" << "1" << Arg->getSourceRange();
 | |
|     } else {
 | |
|       if (Result.getLimitedValue() > 3)
 | |
|         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|             << "0" << "3" << Arg->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
 | |
| /// TheCall is a constant expression.
 | |
| bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
 | |
|                                   llvm::APSInt &Result) {
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
|   
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
 | |
|   
 | |
|   if (!Arg->isIntegerConstantExpr(Result, Context))
 | |
|     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
 | |
|                 << FDecl->getDeclName() <<  Arg->getSourceRange();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
 | |
| /// int type). This simply type checks that type is one of the defined
 | |
| /// constants (0-3).
 | |
| // For compatability check 0-3, llvm only handles 0 and 2.
 | |
| bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
 | |
|   llvm::APSInt Result;
 | |
|   
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | |
|     return true;
 | |
| 
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
|   if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
 | |
|     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|              << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
 | |
| /// This checks that val is a constant 1.
 | |
| bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // TODO: This is less than ideal. Overload this to take a value.
 | |
|   if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | |
|     return true;
 | |
|   
 | |
|   if (Result != 1)
 | |
|     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
 | |
|              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Handle i > 1 ? "x" : "y", recursivelly
 | |
| bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
 | |
|                                   bool HasVAListArg,
 | |
|                                   unsigned format_idx, unsigned firstDataArg) {
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     const ConditionalOperator *C = cast<ConditionalOperator>(E);
 | |
|     return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
 | |
|                                   HasVAListArg, format_idx, firstDataArg)
 | |
|         && SemaCheckStringLiteral(C->getRHS(), TheCall,
 | |
|                                   HasVAListArg, format_idx, firstDataArg);
 | |
|   }
 | |
| 
 | |
|   case Stmt::ImplicitCastExprClass: {
 | |
|     const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
 | |
|     return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
 | |
|                                   format_idx, firstDataArg);
 | |
|   }
 | |
| 
 | |
|   case Stmt::ParenExprClass: {
 | |
|     const ParenExpr *Expr = cast<ParenExpr>(E);
 | |
|     return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
 | |
|                                   format_idx, firstDataArg);
 | |
|   }
 | |
| 
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     // As an exception, do not flag errors for variables binding to
 | |
|     // const string literals.
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
 | |
|       bool isConstant = false;
 | |
|       QualType T = DR->getType();
 | |
| 
 | |
|       if (const ArrayType *AT = Context.getAsArrayType(T)) {
 | |
|         isConstant = AT->getElementType().isConstant(Context);
 | |
|       } else if (const PointerType *PT = T->getAs<PointerType>()) {
 | |
|         isConstant = T.isConstant(Context) &&
 | |
|                      PT->getPointeeType().isConstant(Context);
 | |
|       }
 | |
| 
 | |
|       if (isConstant) {
 | |
|         if (const Expr *Init = VD->getAnyInitializer())
 | |
|           return SemaCheckStringLiteral(Init, TheCall,
 | |
|                                         HasVAListArg, format_idx, firstDataArg);
 | |
|       }
 | |
| 
 | |
|       // For vprintf* functions (i.e., HasVAListArg==true), we add a
 | |
|       // special check to see if the format string is a function parameter
 | |
|       // of the function calling the printf function.  If the function
 | |
|       // has an attribute indicating it is a printf-like function, then we
 | |
|       // should suppress warnings concerning non-literals being used in a call
 | |
|       // to a vprintf function.  For example:
 | |
|       //
 | |
|       // void
 | |
|       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
 | |
|       //      va_list ap;
 | |
|       //      va_start(ap, fmt);
 | |
|       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
 | |
|       //      ...
 | |
|       //
 | |
|       //
 | |
|       //  FIXME: We don't have full attribute support yet, so just check to see
 | |
|       //    if the argument is a DeclRefExpr that references a parameter.  We'll
 | |
|       //    add proper support for checking the attribute later.
 | |
|       if (HasVAListArg)
 | |
|         if (isa<ParmVarDecl>(VD))
 | |
|           return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case Stmt::CallExprClass: {
 | |
|     const CallExpr *CE = cast<CallExpr>(E);
 | |
|     if (const ImplicitCastExpr *ICE
 | |
|           = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
 | |
|       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
 | |
|         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
 | |
|           if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
 | |
|             unsigned ArgIndex = FA->getFormatIdx();
 | |
|             const Expr *Arg = CE->getArg(ArgIndex - 1);
 | |
| 
 | |
|             return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
 | |
|                                           format_idx, firstDataArg);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
|   case Stmt::ObjCStringLiteralClass:
 | |
|   case Stmt::StringLiteralClass: {
 | |
|     const StringLiteral *StrE = NULL;
 | |
| 
 | |
|     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
 | |
|       StrE = ObjCFExpr->getString();
 | |
|     else
 | |
|       StrE = cast<StringLiteral>(E);
 | |
| 
 | |
|     if (StrE) {
 | |
|       CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
 | |
|                         firstDataArg);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
 | |
|                             const CallExpr *TheCall) {
 | |
|   for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
 | |
|        i != e; ++i) {
 | |
|     const Expr *ArgExpr = TheCall->getArg(*i);
 | |
|     if (ArgExpr->isNullPointerConstant(Context,
 | |
|                                        Expr::NPC_ValueDependentIsNotNull))
 | |
|       Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
 | |
|         << ArgExpr->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckPrintfArguments - Check calls to printf (and similar functions) for
 | |
| /// correct use of format strings.
 | |
| ///
 | |
| ///  HasVAListArg - A predicate indicating whether the printf-like
 | |
| ///    function is passed an explicit va_arg argument (e.g., vprintf)
 | |
| ///
 | |
| ///  format_idx - The index into Args for the format string.
 | |
| ///
 | |
| /// Improper format strings to functions in the printf family can be
 | |
| /// the source of bizarre bugs and very serious security holes.  A
 | |
| /// good source of information is available in the following paper
 | |
| /// (which includes additional references):
 | |
| ///
 | |
| ///  FormatGuard: Automatic Protection From printf Format String
 | |
| ///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
 | |
| ///
 | |
| /// TODO:
 | |
| /// Functionality implemented:
 | |
| ///
 | |
| ///  We can statically check the following properties for string
 | |
| ///  literal format strings for non v.*printf functions (where the
 | |
| ///  arguments are passed directly):
 | |
| //
 | |
| ///  (1) Are the number of format conversions equal to the number of
 | |
| ///      data arguments?
 | |
| ///
 | |
| ///  (2) Does each format conversion correctly match the type of the
 | |
| ///      corresponding data argument?
 | |
| ///
 | |
| /// Moreover, for all printf functions we can:
 | |
| ///
 | |
| ///  (3) Check for a missing format string (when not caught by type checking).
 | |
| ///
 | |
| ///  (4) Check for no-operation flags; e.g. using "#" with format
 | |
| ///      conversion 'c'  (TODO)
 | |
| ///
 | |
| ///  (5) Check the use of '%n', a major source of security holes.
 | |
| ///
 | |
| ///  (6) Check for malformed format conversions that don't specify anything.
 | |
| ///
 | |
| ///  (7) Check for empty format strings.  e.g: printf("");
 | |
| ///
 | |
| ///  (8) Check that the format string is a wide literal.
 | |
| ///
 | |
| /// All of these checks can be done by parsing the format string.
 | |
| ///
 | |
| void
 | |
| Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
 | |
|                            unsigned format_idx, unsigned firstDataArg) {
 | |
|   const Expr *Fn = TheCall->getCallee();
 | |
| 
 | |
|   // The way the format attribute works in GCC, the implicit this argument
 | |
|   // of member functions is counted. However, it doesn't appear in our own
 | |
|   // lists, so decrement format_idx in that case.
 | |
|   if (isa<CXXMemberCallExpr>(TheCall)) {
 | |
|     // Catch a format attribute mistakenly referring to the object argument.
 | |
|     if (format_idx == 0)
 | |
|       return;
 | |
|     --format_idx;
 | |
|     if(firstDataArg != 0)
 | |
|       --firstDataArg;
 | |
|   }
 | |
| 
 | |
|   // CHECK: printf-like function is called with no format string.
 | |
|   if (format_idx >= TheCall->getNumArgs()) {
 | |
|     Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
 | |
|       << Fn->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
 | |
| 
 | |
|   // CHECK: format string is not a string literal.
 | |
|   //
 | |
|   // Dynamically generated format strings are difficult to
 | |
|   // automatically vet at compile time.  Requiring that format strings
 | |
|   // are string literals: (1) permits the checking of format strings by
 | |
|   // the compiler and thereby (2) can practically remove the source of
 | |
|   // many format string exploits.
 | |
| 
 | |
|   // Format string can be either ObjC string (e.g. @"%d") or
 | |
|   // C string (e.g. "%d")
 | |
|   // ObjC string uses the same format specifiers as C string, so we can use
 | |
|   // the same format string checking logic for both ObjC and C strings.
 | |
|   if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
 | |
|                              firstDataArg))
 | |
|     return;  // Literal format string found, check done!
 | |
| 
 | |
|   // If there are no arguments specified, warn with -Wformat-security, otherwise
 | |
|   // warn only with -Wformat-nonliteral.
 | |
|   if (TheCall->getNumArgs() == format_idx+1)
 | |
|     Diag(TheCall->getArg(format_idx)->getLocStart(),
 | |
|          diag::warn_printf_nonliteral_noargs)
 | |
|       << OrigFormatExpr->getSourceRange();
 | |
|   else
 | |
|     Diag(TheCall->getArg(format_idx)->getLocStart(),
 | |
|          diag::warn_printf_nonliteral)
 | |
|            << OrigFormatExpr->getSourceRange();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
 | |
|   Sema &S;
 | |
|   const StringLiteral *FExpr;
 | |
|   const Expr *OrigFormatExpr;
 | |
|   const unsigned FirstDataArg;
 | |
|   const unsigned NumDataArgs;
 | |
|   const bool IsObjCLiteral;
 | |
|   const char *Beg; // Start of format string.
 | |
|   const bool HasVAListArg;
 | |
|   const CallExpr *TheCall;
 | |
|   unsigned FormatIdx;
 | |
|   llvm::BitVector CoveredArgs;
 | |
|   bool usesPositionalArgs;
 | |
|   bool atFirstArg;
 | |
| public:
 | |
|   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
 | |
|                      const Expr *origFormatExpr, unsigned firstDataArg,
 | |
|                      unsigned numDataArgs, bool isObjCLiteral,
 | |
|                      const char *beg, bool hasVAListArg,
 | |
|                      const CallExpr *theCall, unsigned formatIdx)
 | |
|     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
 | |
|       FirstDataArg(firstDataArg),
 | |
|       NumDataArgs(numDataArgs),
 | |
|       IsObjCLiteral(isObjCLiteral), Beg(beg),
 | |
|       HasVAListArg(hasVAListArg),
 | |
|       TheCall(theCall), FormatIdx(formatIdx),
 | |
|       usesPositionalArgs(false), atFirstArg(true) {
 | |
|         CoveredArgs.resize(numDataArgs);
 | |
|         CoveredArgs.reset();
 | |
|       }
 | |
| 
 | |
|   void DoneProcessing();
 | |
| 
 | |
|   void HandleIncompleteFormatSpecifier(const char *startSpecifier,
 | |
|                                        unsigned specifierLen);
 | |
| 
 | |
|   bool
 | |
|   HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
 | |
|                                    const char *startSpecifier,
 | |
|                                    unsigned specifierLen);
 | |
| 
 | |
|   virtual void HandleInvalidPosition(const char *startSpecifier,
 | |
|                                      unsigned specifierLen,
 | |
|                                      analyze_printf::PositionContext p);
 | |
| 
 | |
|   virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
 | |
| 
 | |
|   void HandleNullChar(const char *nullCharacter);
 | |
| 
 | |
|   bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
 | |
|                              const char *startSpecifier,
 | |
|                              unsigned specifierLen);
 | |
| private:
 | |
|   SourceRange getFormatStringRange();
 | |
|   SourceRange getFormatSpecifierRange(const char *startSpecifier,
 | |
|                                       unsigned specifierLen);
 | |
|   SourceLocation getLocationOfByte(const char *x);
 | |
| 
 | |
|   bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
 | |
|                     const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleFlags(const analyze_printf::FormatSpecifier &FS,
 | |
|                    llvm::StringRef flag, llvm::StringRef cspec,
 | |
|                    const char *startSpecifier, unsigned specifierLen);
 | |
| 
 | |
|   const Expr *getDataArg(unsigned i) const;
 | |
| };
 | |
| }
 | |
| 
 | |
| SourceRange CheckPrintfHandler::getFormatStringRange() {
 | |
|   return OrigFormatExpr->getSourceRange();
 | |
| }
 | |
| 
 | |
| SourceRange CheckPrintfHandler::
 | |
| getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
 | |
|   return SourceRange(getLocationOfByte(startSpecifier),
 | |
|                      getLocationOfByte(startSpecifier+specifierLen-1));
 | |
| }
 | |
| 
 | |
| SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
 | |
|   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::
 | |
| HandleIncompleteFormatSpecifier(const char *startSpecifier,
 | |
|                                 unsigned specifierLen) {
 | |
|   SourceLocation Loc = getLocationOfByte(startSpecifier);
 | |
|   S.Diag(Loc, diag::warn_printf_incomplete_specifier)
 | |
|     << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
| }
 | |
| 
 | |
| void
 | |
| CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
 | |
|                                           analyze_printf::PositionContext p) {
 | |
|   SourceLocation Loc = getLocationOfByte(startPos);
 | |
|   S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
 | |
|     << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
 | |
|                                             unsigned posLen) {
 | |
|   SourceLocation Loc = getLocationOfByte(startPos);
 | |
|   S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
 | |
|     << getFormatSpecifierRange(startPos, posLen);
 | |
| }
 | |
| 
 | |
| bool CheckPrintfHandler::
 | |
| HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
 | |
|                                  const char *startSpecifier,
 | |
|                                  unsigned specifierLen) {
 | |
| 
 | |
|   unsigned argIndex = FS.getArgIndex();
 | |
|   bool keepGoing = true;
 | |
|   if (argIndex < NumDataArgs) {
 | |
|     // Consider the argument coverered, even though the specifier doesn't
 | |
|     // make sense.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
|   else {
 | |
|     // If argIndex exceeds the number of data arguments we
 | |
|     // don't issue a warning because that is just a cascade of warnings (and
 | |
|     // they may have intended '%%' anyway). We don't want to continue processing
 | |
|     // the format string after this point, however, as we will like just get
 | |
|     // gibberish when trying to match arguments.
 | |
|     keepGoing = false;
 | |
|   }
 | |
| 
 | |
|   const analyze_printf::ConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
|   SourceLocation Loc = getLocationOfByte(CS.getStart());
 | |
|   S.Diag(Loc, diag::warn_printf_invalid_conversion)
 | |
|       << llvm::StringRef(CS.getStart(), CS.getLength())
 | |
|       << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
| 
 | |
|   return keepGoing;
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
 | |
|   // The presence of a null character is likely an error.
 | |
|   S.Diag(getLocationOfByte(nullCharacter),
 | |
|          diag::warn_printf_format_string_contains_null_char)
 | |
|     << getFormatStringRange();
 | |
| }
 | |
| 
 | |
| const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
 | |
|   return TheCall->getArg(FirstDataArg + i);
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
 | |
|                                      llvm::StringRef flag,
 | |
|                                      llvm::StringRef cspec,
 | |
|                                      const char *startSpecifier,
 | |
|                                      unsigned specifierLen) {
 | |
|   const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
 | |
|   S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
 | |
|     << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
 | |
|                                  unsigned k, const char *startSpecifier,
 | |
|                                  unsigned specifierLen) {
 | |
| 
 | |
|   if (Amt.hasDataArgument()) {
 | |
|     if (!HasVAListArg) {
 | |
|       unsigned argIndex = Amt.getArgIndex();
 | |
|       if (argIndex >= NumDataArgs) {
 | |
|         S.Diag(getLocationOfByte(Amt.getStart()),
 | |
|                diag::warn_printf_asterisk_missing_arg)
 | |
|           << k << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
|         // Don't do any more checking.  We will just emit
 | |
|         // spurious errors.
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Type check the data argument.  It should be an 'int'.
 | |
|       // Although not in conformance with C99, we also allow the argument to be
 | |
|       // an 'unsigned int' as that is a reasonably safe case.  GCC also
 | |
|       // doesn't emit a warning for that case.
 | |
|       CoveredArgs.set(argIndex);
 | |
|       const Expr *Arg = getDataArg(argIndex);
 | |
|       QualType T = Arg->getType();
 | |
| 
 | |
|       const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
 | |
|       assert(ATR.isValid());
 | |
| 
 | |
|       if (!ATR.matchesType(S.Context, T)) {
 | |
|         S.Diag(getLocationOfByte(Amt.getStart()),
 | |
|                diag::warn_printf_asterisk_wrong_type)
 | |
|           << k
 | |
|           << ATR.getRepresentativeType(S.Context) << T
 | |
|           << getFormatSpecifierRange(startSpecifier, specifierLen)
 | |
|           << Arg->getSourceRange();
 | |
|         // Don't do any more checking.  We will just emit
 | |
|         // spurious errors.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
 | |
|                                             &FS,
 | |
|                                           const char *startSpecifier,
 | |
|                                           unsigned specifierLen) {
 | |
| 
 | |
|   using namespace analyze_printf;  
 | |
|   const ConversionSpecifier &CS = FS.getConversionSpecifier();
 | |
| 
 | |
|   if (atFirstArg) {
 | |
|     atFirstArg = false;
 | |
|     usesPositionalArgs = FS.usesPositionalArg();
 | |
|   }
 | |
|   else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | |
|     // Cannot mix-and-match positional and non-positional arguments.
 | |
|     S.Diag(getLocationOfByte(CS.getStart()),
 | |
|            diag::warn_printf_mix_positional_nonpositional_args)
 | |
|       << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // First check if the field width, precision, and conversion specifier
 | |
|   // have matching data arguments.
 | |
|   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
 | |
|                     startSpecifier, specifierLen)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
 | |
|                     startSpecifier, specifierLen)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!CS.consumesDataArgument()) {
 | |
|     // FIXME: Technically specifying a precision or field width here
 | |
|     // makes no sense.  Worth issuing a warning at some point.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Consume the argument.
 | |
|   unsigned argIndex = FS.getArgIndex();
 | |
|   if (argIndex < NumDataArgs) {
 | |
|     // The check to see if the argIndex is valid will come later.
 | |
|     // We set the bit here because we may exit early from this
 | |
|     // function if we encounter some other error.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
| 
 | |
|   // Check for using an Objective-C specific conversion specifier
 | |
|   // in a non-ObjC literal.
 | |
|   if (!IsObjCLiteral && CS.isObjCArg()) {
 | |
|     return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Are we using '%n'?  Issue a warning about this being
 | |
|   // a possible security issue.
 | |
|   if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
 | |
|     S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
 | |
|       << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
|     // Continue checking the other format specifiers.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
 | |
|     if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|              diag::warn_printf_nonsensical_precision)
 | |
|         << CS.getCharacters()
 | |
|         << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
|   }
 | |
|   if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
 | |
|       CS.getKind() == ConversionSpecifier::CStrArg) {
 | |
|     // FIXME: Instead of using "0", "+", etc., eventually get them from
 | |
|     // the FormatSpecifier.
 | |
|     if (FS.hasLeadingZeros())
 | |
|       HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
 | |
|     if (FS.hasPlusPrefix())
 | |
|       HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
 | |
|     if (FS.hasSpacePrefix())
 | |
|       HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
 | |
|   }
 | |
| 
 | |
|   // The remaining checks depend on the data arguments.
 | |
|   if (HasVAListArg)
 | |
|     return true;
 | |
| 
 | |
|   if (argIndex >= NumDataArgs) {
 | |
|     if (FS.usesPositionalArg())  {
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|              diag::warn_printf_positional_arg_exceeds_data_args)
 | |
|         << (argIndex+1) << NumDataArgs
 | |
|         << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
|     }
 | |
|     else {
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|              diag::warn_printf_insufficient_data_args)
 | |
|         << getFormatSpecifierRange(startSpecifier, specifierLen);
 | |
|     }
 | |
| 
 | |
|     // Don't do any more checking.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Now type check the data expression that matches the
 | |
|   // format specifier.
 | |
|   const Expr *Ex = getDataArg(argIndex);
 | |
|   const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
 | |
|   if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
 | |
|     // Check if we didn't match because of an implicit cast from a 'char'
 | |
|     // or 'short' to an 'int'.  This is done because printf is a varargs
 | |
|     // function.
 | |
|     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
 | |
|       if (ICE->getType() == S.Context.IntTy)
 | |
|         if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
 | |
|           return true;
 | |
| 
 | |
|     S.Diag(getLocationOfByte(CS.getStart()),
 | |
|            diag::warn_printf_conversion_argument_type_mismatch)
 | |
|       << ATR.getRepresentativeType(S.Context) << Ex->getType()
 | |
|       << getFormatSpecifierRange(startSpecifier, specifierLen)
 | |
|       << Ex->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::DoneProcessing() {
 | |
|   // Does the number of data arguments exceed the number of
 | |
|   // format conversions in the format string?
 | |
|   if (!HasVAListArg) {
 | |
|     // Find any arguments that weren't covered.
 | |
|     CoveredArgs.flip();
 | |
|     signed notCoveredArg = CoveredArgs.find_first();
 | |
|     if (notCoveredArg >= 0) {
 | |
|       assert((unsigned)notCoveredArg < NumDataArgs);
 | |
|       S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
 | |
|              diag::warn_printf_data_arg_not_used)
 | |
|         << getFormatStringRange();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckPrintfString(const StringLiteral *FExpr,
 | |
|                              const Expr *OrigFormatExpr,
 | |
|                              const CallExpr *TheCall, bool HasVAListArg,
 | |
|                              unsigned format_idx, unsigned firstDataArg) {
 | |
| 
 | |
|   // CHECK: is the format string a wide literal?
 | |
|   if (FExpr->isWide()) {
 | |
|     Diag(FExpr->getLocStart(),
 | |
|          diag::warn_printf_format_string_is_wide_literal)
 | |
|     << OrigFormatExpr->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Str - The format string.  NOTE: this is NOT null-terminated!
 | |
|   const char *Str = FExpr->getStrData();
 | |
| 
 | |
|   // CHECK: empty format string?
 | |
|   unsigned StrLen = FExpr->getByteLength();
 | |
| 
 | |
|   if (StrLen == 0) {
 | |
|     Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
 | |
|     << OrigFormatExpr->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
 | |
|                        TheCall->getNumArgs() - firstDataArg,
 | |
|                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
 | |
|                        HasVAListArg, TheCall, format_idx);
 | |
| 
 | |
|   if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
 | |
|     H.DoneProcessing();
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Return Address of Stack Variable --------------------------===//
 | |
| 
 | |
| static DeclRefExpr* EvalVal(Expr *E);
 | |
| static DeclRefExpr* EvalAddr(Expr* E);
 | |
| 
 | |
| /// CheckReturnStackAddr - Check if a return statement returns the address
 | |
| ///   of a stack variable.
 | |
| void
 | |
| Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
 | |
|                            SourceLocation ReturnLoc) {
 | |
| 
 | |
|   // Perform checking for returned stack addresses.
 | |
|   if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
 | |
|     if (DeclRefExpr *DR = EvalAddr(RetValExp))
 | |
|       Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
 | |
|        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
 | |
| 
 | |
|     // Skip over implicit cast expressions when checking for block expressions.
 | |
|     RetValExp = RetValExp->IgnoreParenCasts();
 | |
| 
 | |
|     if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
 | |
|       if (C->hasBlockDeclRefExprs())
 | |
|         Diag(C->getLocStart(), diag::err_ret_local_block)
 | |
|           << C->getSourceRange();
 | |
| 
 | |
|     if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
 | |
|       Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
 | |
|         << ALE->getSourceRange();
 | |
| 
 | |
|   } else if (lhsType->isReferenceType()) {
 | |
|     // Perform checking for stack values returned by reference.
 | |
|     // Check for a reference to the stack
 | |
|     if (DeclRefExpr *DR = EvalVal(RetValExp))
 | |
|       Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
 | |
|         << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
 | |
| ///  check if the expression in a return statement evaluates to an address
 | |
| ///  to a location on the stack.  The recursion is used to traverse the
 | |
| ///  AST of the return expression, with recursion backtracking when we
 | |
| ///  encounter a subexpression that (1) clearly does not lead to the address
 | |
| ///  of a stack variable or (2) is something we cannot determine leads to
 | |
| ///  the address of a stack variable based on such local checking.
 | |
| ///
 | |
| ///  EvalAddr processes expressions that are pointers that are used as
 | |
| ///  references (and not L-values).  EvalVal handles all other values.
 | |
| ///  At the base case of the recursion is a check for a DeclRefExpr* in
 | |
| ///  the refers to a stack variable.
 | |
| ///
 | |
| ///  This implementation handles:
 | |
| ///
 | |
| ///   * pointer-to-pointer casts
 | |
| ///   * implicit conversions from array references to pointers
 | |
| ///   * taking the address of fields
 | |
| ///   * arbitrary interplay between "&" and "*" operators
 | |
| ///   * pointer arithmetic from an address of a stack variable
 | |
| ///   * taking the address of an array element where the array is on the stack
 | |
| static DeclRefExpr* EvalAddr(Expr *E) {
 | |
|   // We should only be called for evaluating pointer expressions.
 | |
|   assert((E->getType()->isAnyPointerType() ||
 | |
|           E->getType()->isBlockPointerType() ||
 | |
|           E->getType()->isObjCQualifiedIdType()) &&
 | |
|          "EvalAddr only works on pointers");
 | |
| 
 | |
|   // Our "symbolic interpreter" is just a dispatch off the currently
 | |
|   // viewed AST node.  We then recursively traverse the AST by calling
 | |
|   // EvalAddr and EvalVal appropriately.
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::ParenExprClass:
 | |
|     // Ignore parentheses.
 | |
|     return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
 | |
| 
 | |
|   case Stmt::UnaryOperatorClass: {
 | |
|     // The only unary operator that make sense to handle here
 | |
|     // is AddrOf.  All others don't make sense as pointers.
 | |
|     UnaryOperator *U = cast<UnaryOperator>(E);
 | |
| 
 | |
|     if (U->getOpcode() == UnaryOperator::AddrOf)
 | |
|       return EvalVal(U->getSubExpr());
 | |
|     else
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::BinaryOperatorClass: {
 | |
|     // Handle pointer arithmetic.  All other binary operators are not valid
 | |
|     // in this context.
 | |
|     BinaryOperator *B = cast<BinaryOperator>(E);
 | |
|     BinaryOperator::Opcode op = B->getOpcode();
 | |
| 
 | |
|     if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
 | |
|       return NULL;
 | |
| 
 | |
|     Expr *Base = B->getLHS();
 | |
| 
 | |
|     // Determine which argument is the real pointer base.  It could be
 | |
|     // the RHS argument instead of the LHS.
 | |
|     if (!Base->getType()->isPointerType()) Base = B->getRHS();
 | |
| 
 | |
|     assert (Base->getType()->isPointerType());
 | |
|     return EvalAddr(Base);
 | |
|   }
 | |
| 
 | |
|   // For conditional operators we need to see if either the LHS or RHS are
 | |
|   // valid DeclRefExpr*s.  If one of them is valid, we return it.
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     ConditionalOperator *C = cast<ConditionalOperator>(E);
 | |
| 
 | |
|     // Handle the GNU extension for missing LHS.
 | |
|     if (Expr *lhsExpr = C->getLHS())
 | |
|       if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
 | |
|         return LHS;
 | |
| 
 | |
|      return EvalAddr(C->getRHS());
 | |
|   }
 | |
| 
 | |
|   // For casts, we need to handle conversions from arrays to
 | |
|   // pointer values, and pointer-to-pointer conversions.
 | |
|   case Stmt::ImplicitCastExprClass:
 | |
|   case Stmt::CStyleCastExprClass:
 | |
|   case Stmt::CXXFunctionalCastExprClass: {
 | |
|     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
 | |
|     QualType T = SubExpr->getType();
 | |
| 
 | |
|     if (SubExpr->getType()->isPointerType() ||
 | |
|         SubExpr->getType()->isBlockPointerType() ||
 | |
|         SubExpr->getType()->isObjCQualifiedIdType())
 | |
|       return EvalAddr(SubExpr);
 | |
|     else if (T->isArrayType())
 | |
|       return EvalVal(SubExpr);
 | |
|     else
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // C++ casts.  For dynamic casts, static casts, and const casts, we
 | |
|   // are always converting from a pointer-to-pointer, so we just blow
 | |
|   // through the cast.  In the case the dynamic cast doesn't fail (and
 | |
|   // return NULL), we take the conservative route and report cases
 | |
|   // where we return the address of a stack variable.  For Reinterpre
 | |
|   // FIXME: The comment about is wrong; we're not always converting
 | |
|   // from pointer to pointer. I'm guessing that this code should also
 | |
|   // handle references to objects.
 | |
|   case Stmt::CXXStaticCastExprClass:
 | |
|   case Stmt::CXXDynamicCastExprClass:
 | |
|   case Stmt::CXXConstCastExprClass:
 | |
|   case Stmt::CXXReinterpretCastExprClass: {
 | |
|       Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
 | |
|       if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
 | |
|         return EvalAddr(S);
 | |
|       else
 | |
|         return NULL;
 | |
|   }
 | |
| 
 | |
|   // Everything else: we simply don't reason about them.
 | |
|   default:
 | |
|     return NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
 | |
| ///   See the comments for EvalAddr for more details.
 | |
| static DeclRefExpr* EvalVal(Expr *E) {
 | |
| 
 | |
|   // We should only be called for evaluating non-pointer expressions, or
 | |
|   // expressions with a pointer type that are not used as references but instead
 | |
|   // are l-values (e.g., DeclRefExpr with a pointer type).
 | |
| 
 | |
|   // Our "symbolic interpreter" is just a dispatch off the currently
 | |
|   // viewed AST node.  We then recursively traverse the AST by calling
 | |
|   // EvalAddr and EvalVal appropriately.
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
 | |
|     //  at code that refers to a variable's name.  We check if it has local
 | |
|     //  storage within the function, and if so, return the expression.
 | |
|     DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
 | |
|       if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ParenExprClass:
 | |
|     // Ignore parentheses.
 | |
|     return EvalVal(cast<ParenExpr>(E)->getSubExpr());
 | |
| 
 | |
|   case Stmt::UnaryOperatorClass: {
 | |
|     // The only unary operator that make sense to handle here
 | |
|     // is Deref.  All others don't resolve to a "name."  This includes
 | |
|     // handling all sorts of rvalues passed to a unary operator.
 | |
|     UnaryOperator *U = cast<UnaryOperator>(E);
 | |
| 
 | |
|     if (U->getOpcode() == UnaryOperator::Deref)
 | |
|       return EvalAddr(U->getSubExpr());
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ArraySubscriptExprClass: {
 | |
|     // Array subscripts are potential references to data on the stack.  We
 | |
|     // retrieve the DeclRefExpr* for the array variable if it indeed
 | |
|     // has local storage.
 | |
|     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
 | |
|   }
 | |
| 
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     // For conditional operators we need to see if either the LHS or RHS are
 | |
|     // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
 | |
|     ConditionalOperator *C = cast<ConditionalOperator>(E);
 | |
| 
 | |
|     // Handle the GNU extension for missing LHS.
 | |
|     if (Expr *lhsExpr = C->getLHS())
 | |
|       if (DeclRefExpr *LHS = EvalVal(lhsExpr))
 | |
|         return LHS;
 | |
| 
 | |
|     return EvalVal(C->getRHS());
 | |
|   }
 | |
| 
 | |
|   // Accesses to members are potential references to data on the stack.
 | |
|   case Stmt::MemberExprClass: {
 | |
|     MemberExpr *M = cast<MemberExpr>(E);
 | |
| 
 | |
|     // Check for indirect access.  We only want direct field accesses.
 | |
|     if (!M->isArrow())
 | |
|       return EvalVal(M->getBase());
 | |
|     else
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   // Everything else: we simply don't reason about them.
 | |
|   default:
 | |
|     return NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
 | |
| 
 | |
| /// Check for comparisons of floating point operands using != and ==.
 | |
| /// Issue a warning if these are no self-comparisons, as they are not likely
 | |
| /// to do what the programmer intended.
 | |
| void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
 | |
|   bool EmitWarning = true;
 | |
| 
 | |
|   Expr* LeftExprSansParen = lex->IgnoreParens();
 | |
|   Expr* RightExprSansParen = rex->IgnoreParens();
 | |
| 
 | |
|   // Special case: check for x == x (which is OK).
 | |
|   // Do not emit warnings for such cases.
 | |
|   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
 | |
|     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
 | |
|       if (DRL->getDecl() == DRR->getDecl())
 | |
|         EmitWarning = false;
 | |
| 
 | |
| 
 | |
|   // Special case: check for comparisons against literals that can be exactly
 | |
|   //  represented by APFloat.  In such cases, do not emit a warning.  This
 | |
|   //  is a heuristic: often comparison against such literals are used to
 | |
|   //  detect if a value in a variable has not changed.  This clearly can
 | |
|   //  lead to false negatives.
 | |
|   if (EmitWarning) {
 | |
|     if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
 | |
|       if (FLL->isExact())
 | |
|         EmitWarning = false;
 | |
|     } else
 | |
|       if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
 | |
|         if (FLR->isExact())
 | |
|           EmitWarning = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for comparisons with builtin types.
 | |
|   if (EmitWarning)
 | |
|     if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
 | |
|       if (CL->isBuiltinCall(Context))
 | |
|         EmitWarning = false;
 | |
| 
 | |
|   if (EmitWarning)
 | |
|     if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
 | |
|       if (CR->isBuiltinCall(Context))
 | |
|         EmitWarning = false;
 | |
| 
 | |
|   // Emit the diagnostic.
 | |
|   if (EmitWarning)
 | |
|     Diag(loc, diag::warn_floatingpoint_eq)
 | |
|       << lex->getSourceRange() << rex->getSourceRange();
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
 | |
| //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Structure recording the 'active' range of an integer-valued
 | |
| /// expression.
 | |
| struct IntRange {
 | |
|   /// The number of bits active in the int.
 | |
|   unsigned Width;
 | |
| 
 | |
|   /// True if the int is known not to have negative values.
 | |
|   bool NonNegative;
 | |
| 
 | |
|   IntRange() {}
 | |
|   IntRange(unsigned Width, bool NonNegative)
 | |
|     : Width(Width), NonNegative(NonNegative)
 | |
|   {}
 | |
| 
 | |
|   // Returns the range of the bool type.
 | |
|   static IntRange forBoolType() {
 | |
|     return IntRange(1, true);
 | |
|   }
 | |
| 
 | |
|   // Returns the range of an integral type.
 | |
|   static IntRange forType(ASTContext &C, QualType T) {
 | |
|     return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
 | |
|   }
 | |
| 
 | |
|   // Returns the range of an integeral type based on its canonical
 | |
|   // representation.
 | |
|   static IntRange forCanonicalType(ASTContext &C, const Type *T) {
 | |
|     assert(T->isCanonicalUnqualified());
 | |
| 
 | |
|     if (const VectorType *VT = dyn_cast<VectorType>(T))
 | |
|       T = VT->getElementType().getTypePtr();
 | |
|     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | |
|       T = CT->getElementType().getTypePtr();
 | |
| 
 | |
|     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
 | |
|       EnumDecl *Enum = ET->getDecl();
 | |
|       unsigned NumPositive = Enum->getNumPositiveBits();
 | |
|       unsigned NumNegative = Enum->getNumNegativeBits();
 | |
| 
 | |
|       return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
 | |
|     }
 | |
| 
 | |
|     const BuiltinType *BT = cast<BuiltinType>(T);
 | |
|     assert(BT->isInteger());
 | |
| 
 | |
|     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | |
|   }
 | |
| 
 | |
|   // Returns the supremum of two ranges: i.e. their conservative merge.
 | |
|   static IntRange join(IntRange L, IntRange R) {
 | |
|     return IntRange(std::max(L.Width, R.Width),
 | |
|                     L.NonNegative && R.NonNegative);
 | |
|   }
 | |
| 
 | |
|   // Returns the infinum of two ranges: i.e. their aggressive merge.
 | |
|   static IntRange meet(IntRange L, IntRange R) {
 | |
|     return IntRange(std::min(L.Width, R.Width),
 | |
|                     L.NonNegative || R.NonNegative);
 | |
|   }
 | |
| };
 | |
| 
 | |
| IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
 | |
|   if (value.isSigned() && value.isNegative())
 | |
|     return IntRange(value.getMinSignedBits(), false);
 | |
| 
 | |
|   if (value.getBitWidth() > MaxWidth)
 | |
|     value.trunc(MaxWidth);
 | |
| 
 | |
|   // isNonNegative() just checks the sign bit without considering
 | |
|   // signedness.
 | |
|   return IntRange(value.getActiveBits(), true);
 | |
| }
 | |
| 
 | |
| IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
 | |
|                        unsigned MaxWidth) {
 | |
|   if (result.isInt())
 | |
|     return GetValueRange(C, result.getInt(), MaxWidth);
 | |
| 
 | |
|   if (result.isVector()) {
 | |
|     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
 | |
|     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
 | |
|       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
 | |
|       R = IntRange::join(R, El);
 | |
|     }
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   if (result.isComplexInt()) {
 | |
|     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
 | |
|     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
 | |
|     return IntRange::join(R, I);
 | |
|   }
 | |
| 
 | |
|   // This can happen with lossless casts to intptr_t of "based" lvalues.
 | |
|   // Assume it might use arbitrary bits.
 | |
|   // FIXME: The only reason we need to pass the type in here is to get
 | |
|   // the sign right on this one case.  It would be nice if APValue
 | |
|   // preserved this.
 | |
|   assert(result.isLValue());
 | |
|   return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
 | |
| }
 | |
| 
 | |
| /// Pseudo-evaluate the given integer expression, estimating the
 | |
| /// range of values it might take.
 | |
| ///
 | |
| /// \param MaxWidth - the width to which the value will be truncated
 | |
| IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Try a full evaluation first.
 | |
|   Expr::EvalResult result;
 | |
|   if (E->Evaluate(result, C))
 | |
|     return GetValueRange(C, result.Val, E->getType(), MaxWidth);
 | |
| 
 | |
|   // I think we only want to look through implicit casts here; if the
 | |
|   // user has an explicit widening cast, we should treat the value as
 | |
|   // being of the new, wider type.
 | |
|   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (CE->getCastKind() == CastExpr::CK_NoOp)
 | |
|       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
 | |
| 
 | |
|     IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
 | |
| 
 | |
|     bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
 | |
|     if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
 | |
|       isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
 | |
| 
 | |
|     // Assume that non-integer casts can span the full range of the type.
 | |
|     if (!isIntegerCast)
 | |
|       return OutputTypeRange;
 | |
| 
 | |
|     IntRange SubRange
 | |
|       = GetExprRange(C, CE->getSubExpr(),
 | |
|                      std::min(MaxWidth, OutputTypeRange.Width));
 | |
| 
 | |
|     // Bail out if the subexpr's range is as wide as the cast type.
 | |
|     if (SubRange.Width >= OutputTypeRange.Width)
 | |
|       return OutputTypeRange;
 | |
| 
 | |
|     // Otherwise, we take the smaller width, and we're non-negative if
 | |
|     // either the output type or the subexpr is.
 | |
|     return IntRange(SubRange.Width,
 | |
|                     SubRange.NonNegative || OutputTypeRange.NonNegative);
 | |
|   }
 | |
| 
 | |
|   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|     // If we can fold the condition, just take that operand.
 | |
|     bool CondResult;
 | |
|     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
 | |
|       return GetExprRange(C, CondResult ? CO->getTrueExpr()
 | |
|                                         : CO->getFalseExpr(),
 | |
|                           MaxWidth);
 | |
| 
 | |
|     // Otherwise, conservatively merge.
 | |
|     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
 | |
|     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
 | |
|     return IntRange::join(L, R);
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     switch (BO->getOpcode()) {
 | |
| 
 | |
|     // Boolean-valued operations are single-bit and positive.
 | |
|     case BinaryOperator::LAnd:
 | |
|     case BinaryOperator::LOr:
 | |
|     case BinaryOperator::LT:
 | |
|     case BinaryOperator::GT:
 | |
|     case BinaryOperator::LE:
 | |
|     case BinaryOperator::GE:
 | |
|     case BinaryOperator::EQ:
 | |
|     case BinaryOperator::NE:
 | |
|       return IntRange::forBoolType();
 | |
| 
 | |
|     // The type of these compound assignments is the type of the LHS,
 | |
|     // so the RHS is not necessarily an integer.
 | |
|     case BinaryOperator::MulAssign:
 | |
|     case BinaryOperator::DivAssign:
 | |
|     case BinaryOperator::RemAssign:
 | |
|     case BinaryOperator::AddAssign:
 | |
|     case BinaryOperator::SubAssign:
 | |
|       return IntRange::forType(C, E->getType());
 | |
| 
 | |
|     // Operations with opaque sources are black-listed.
 | |
|     case BinaryOperator::PtrMemD:
 | |
|     case BinaryOperator::PtrMemI:
 | |
|       return IntRange::forType(C, E->getType());
 | |
| 
 | |
|     // Bitwise-and uses the *infinum* of the two source ranges.
 | |
|     case BinaryOperator::And:
 | |
|     case BinaryOperator::AndAssign:
 | |
|       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
 | |
|                             GetExprRange(C, BO->getRHS(), MaxWidth));
 | |
| 
 | |
|     // Left shift gets black-listed based on a judgement call.
 | |
|     case BinaryOperator::Shl:
 | |
|       // ...except that we want to treat '1 << (blah)' as logically
 | |
|       // positive.  It's an important idiom.
 | |
|       if (IntegerLiteral *I
 | |
|             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
 | |
|         if (I->getValue() == 1) {
 | |
|           IntRange R = IntRange::forType(C, E->getType());
 | |
|           return IntRange(R.Width, /*NonNegative*/ true);
 | |
|         }
 | |
|       }
 | |
|       // fallthrough
 | |
| 
 | |
|     case BinaryOperator::ShlAssign:
 | |
|       return IntRange::forType(C, E->getType());
 | |
| 
 | |
|     // Right shift by a constant can narrow its left argument.
 | |
|     case BinaryOperator::Shr:
 | |
|     case BinaryOperator::ShrAssign: {
 | |
|       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
 | |
| 
 | |
|       // If the shift amount is a positive constant, drop the width by
 | |
|       // that much.
 | |
|       llvm::APSInt shift;
 | |
|       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
 | |
|           shift.isNonNegative()) {
 | |
|         unsigned zext = shift.getZExtValue();
 | |
|         if (zext >= L.Width)
 | |
|           L.Width = (L.NonNegative ? 0 : 1);
 | |
|         else
 | |
|           L.Width -= zext;
 | |
|       }
 | |
| 
 | |
|       return L;
 | |
|     }
 | |
| 
 | |
|     // Comma acts as its right operand.
 | |
|     case BinaryOperator::Comma:
 | |
|       return GetExprRange(C, BO->getRHS(), MaxWidth);
 | |
| 
 | |
|     // Black-list pointer subtractions.
 | |
|     case BinaryOperator::Sub:
 | |
|       if (BO->getLHS()->getType()->isPointerType())
 | |
|         return IntRange::forType(C, E->getType());
 | |
|       // fallthrough
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Treat every other operator as if it were closed on the
 | |
|     // narrowest type that encompasses both operands.
 | |
|     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
 | |
|     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
 | |
|     return IntRange::join(L, R);
 | |
|   }
 | |
| 
 | |
|   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|     switch (UO->getOpcode()) {
 | |
|     // Boolean-valued operations are white-listed.
 | |
|     case UnaryOperator::LNot:
 | |
|       return IntRange::forBoolType();
 | |
| 
 | |
|     // Operations with opaque sources are black-listed.
 | |
|     case UnaryOperator::Deref:
 | |
|     case UnaryOperator::AddrOf: // should be impossible
 | |
|     case UnaryOperator::OffsetOf:
 | |
|       return IntRange::forType(C, E->getType());
 | |
| 
 | |
|     default:
 | |
|       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (dyn_cast<OffsetOfExpr>(E)) {
 | |
|     IntRange::forType(C, E->getType());
 | |
|   }
 | |
| 
 | |
|   FieldDecl *BitField = E->getBitField();
 | |
|   if (BitField) {
 | |
|     llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
 | |
|     unsigned BitWidth = BitWidthAP.getZExtValue();
 | |
| 
 | |
|     return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
 | |
|   }
 | |
| 
 | |
|   return IntRange::forType(C, E->getType());
 | |
| }
 | |
| 
 | |
| IntRange GetExprRange(ASTContext &C, Expr *E) {
 | |
|   return GetExprRange(C, E, C.getIntWidth(E->getType()));
 | |
| }
 | |
| 
 | |
| /// Checks whether the given value, which currently has the given
 | |
| /// source semantics, has the same value when coerced through the
 | |
| /// target semantics.
 | |
| bool IsSameFloatAfterCast(const llvm::APFloat &value,
 | |
|                           const llvm::fltSemantics &Src,
 | |
|                           const llvm::fltSemantics &Tgt) {
 | |
|   llvm::APFloat truncated = value;
 | |
| 
 | |
|   bool ignored;
 | |
|   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
|   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
| 
 | |
|   return truncated.bitwiseIsEqual(value);
 | |
| }
 | |
| 
 | |
| /// Checks whether the given value, which currently has the given
 | |
| /// source semantics, has the same value when coerced through the
 | |
| /// target semantics.
 | |
| ///
 | |
| /// The value might be a vector of floats (or a complex number).
 | |
| bool IsSameFloatAfterCast(const APValue &value,
 | |
|                           const llvm::fltSemantics &Src,
 | |
|                           const llvm::fltSemantics &Tgt) {
 | |
|   if (value.isFloat())
 | |
|     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
 | |
| 
 | |
|   if (value.isVector()) {
 | |
|     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
 | |
|       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(value.isComplexFloat());
 | |
|   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
 | |
|           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
 | |
| }
 | |
| 
 | |
| void AnalyzeImplicitConversions(Sema &S, Expr *E);
 | |
| 
 | |
| bool IsZero(Sema &S, Expr *E) {
 | |
|   llvm::APSInt Value;
 | |
|   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
 | |
| }
 | |
| 
 | |
| void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
 | |
|   BinaryOperator::Opcode op = E->getOpcode();
 | |
|   if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
 | |
|       << "< 0" << "false"
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
 | |
|       << ">= 0" << "true"
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
 | |
|       << "0 >" << "false" 
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
 | |
|       << "0 <=" << "true" 
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Analyze the operands of the given comparison.  Implements the
 | |
| /// fallback case from AnalyzeComparison.
 | |
| void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
 | |
|   AnalyzeImplicitConversions(S, E->getLHS());
 | |
|   AnalyzeImplicitConversions(S, E->getRHS());
 | |
| }
 | |
| 
 | |
| /// \brief Implements -Wsign-compare.
 | |
| ///
 | |
| /// \param lex the left-hand expression
 | |
| /// \param rex the right-hand expression
 | |
| /// \param OpLoc the location of the joining operator
 | |
| /// \param BinOpc binary opcode or 0
 | |
| void AnalyzeComparison(Sema &S, BinaryOperator *E) {
 | |
|   // The type the comparison is being performed in.
 | |
|   QualType T = E->getLHS()->getType();
 | |
|   assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
 | |
|          && "comparison with mismatched types");
 | |
| 
 | |
|   // We don't do anything special if this isn't an unsigned integral
 | |
|   // comparison:  we're only interested in integral comparisons, and
 | |
|   // signed comparisons only happen in cases we don't care to warn about.
 | |
|   if (!T->isUnsignedIntegerType())
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
| 
 | |
|   Expr *lex = E->getLHS()->IgnoreParenImpCasts();
 | |
|   Expr *rex = E->getRHS()->IgnoreParenImpCasts();
 | |
| 
 | |
|   // Check to see if one of the (unmodified) operands is of different
 | |
|   // signedness.
 | |
|   Expr *signedOperand, *unsignedOperand;
 | |
|   if (lex->getType()->isSignedIntegerType()) {
 | |
|     assert(!rex->getType()->isSignedIntegerType() &&
 | |
|            "unsigned comparison between two signed integer expressions?");
 | |
|     signedOperand = lex;
 | |
|     unsignedOperand = rex;
 | |
|   } else if (rex->getType()->isSignedIntegerType()) {
 | |
|     signedOperand = rex;
 | |
|     unsignedOperand = lex;
 | |
|   } else {
 | |
|     CheckTrivialUnsignedComparison(S, E);
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, calculate the effective range of the signed operand.
 | |
|   IntRange signedRange = GetExprRange(S.Context, signedOperand);
 | |
| 
 | |
|   // Go ahead and analyze implicit conversions in the operands.  Note
 | |
|   // that we skip the implicit conversions on both sides.
 | |
|   AnalyzeImplicitConversions(S, lex);
 | |
|   AnalyzeImplicitConversions(S, rex);
 | |
| 
 | |
|   // If the signed range is non-negative, -Wsign-compare won't fire,
 | |
|   // but we should still check for comparisons which are always true
 | |
|   // or false.
 | |
|   if (signedRange.NonNegative)
 | |
|     return CheckTrivialUnsignedComparison(S, E);
 | |
| 
 | |
|   // For (in)equality comparisons, if the unsigned operand is a
 | |
|   // constant which cannot collide with a overflowed signed operand,
 | |
|   // then reinterpreting the signed operand as unsigned will not
 | |
|   // change the result of the comparison.
 | |
|   if (E->isEqualityOp()) {
 | |
|     unsigned comparisonWidth = S.Context.getIntWidth(T);
 | |
|     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
 | |
| 
 | |
|     // We should never be unable to prove that the unsigned operand is
 | |
|     // non-negative.
 | |
|     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
 | |
| 
 | |
|     if (unsignedRange.Width < comparisonWidth)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
 | |
|     << lex->getType() << rex->getType()
 | |
|     << lex->getSourceRange() << rex->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | |
| void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
 | |
|   S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
 | |
| }
 | |
| 
 | |
| void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
 | |
|                              bool *ICContext = 0) {
 | |
|   if (E->isTypeDependent() || E->isValueDependent()) return;
 | |
| 
 | |
|   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
 | |
|   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
 | |
|   if (Source == Target) return;
 | |
|   if (Target->isDependentType()) return;
 | |
| 
 | |
|   // Never diagnose implicit casts to bool.
 | |
|   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
 | |
|     return;
 | |
| 
 | |
|   // Strip vector types.
 | |
|   if (isa<VectorType>(Source)) {
 | |
|     if (!isa<VectorType>(Target))
 | |
|       return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
 | |
| 
 | |
|     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
 | |
|     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
 | |
|   }
 | |
| 
 | |
|   // Strip complex types.
 | |
|   if (isa<ComplexType>(Source)) {
 | |
|     if (!isa<ComplexType>(Target))
 | |
|       return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
 | |
| 
 | |
|     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
 | |
|     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
 | |
|   }
 | |
| 
 | |
|   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
 | |
|   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
 | |
| 
 | |
|   // If the source is floating point...
 | |
|   if (SourceBT && SourceBT->isFloatingPoint()) {
 | |
|     // ...and the target is floating point...
 | |
|     if (TargetBT && TargetBT->isFloatingPoint()) {
 | |
|       // ...then warn if we're dropping FP rank.
 | |
| 
 | |
|       // Builtin FP kinds are ordered by increasing FP rank.
 | |
|       if (SourceBT->getKind() > TargetBT->getKind()) {
 | |
|         // Don't warn about float constants that are precisely
 | |
|         // representable in the target type.
 | |
|         Expr::EvalResult result;
 | |
|         if (E->Evaluate(result, S.Context)) {
 | |
|           // Value might be a float, a float vector, or a float complex.
 | |
|           if (IsSameFloatAfterCast(result.Val,
 | |
|                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
 | |
|                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If the target is integral, always warn.
 | |
|     if ((TargetBT && TargetBT->isInteger()))
 | |
|       // TODO: don't warn for integer values?
 | |
|       DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!Source->isIntegerType() || !Target->isIntegerType())
 | |
|     return;
 | |
| 
 | |
|   IntRange SourceRange = GetExprRange(S.Context, E);
 | |
|   IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
 | |
| 
 | |
|   if (SourceRange.Width > TargetRange.Width) {
 | |
|     // People want to build with -Wshorten-64-to-32 and not -Wconversion
 | |
|     // and by god we'll let them.
 | |
|     if (SourceRange.Width == 64 && TargetRange.Width == 32)
 | |
|       return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
 | |
|     return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
 | |
|   }
 | |
| 
 | |
|   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
 | |
|       (!TargetRange.NonNegative && SourceRange.NonNegative &&
 | |
|        SourceRange.Width == TargetRange.Width)) {
 | |
|     unsigned DiagID = diag::warn_impcast_integer_sign;
 | |
| 
 | |
|     // Traditionally, gcc has warned about this under -Wsign-compare.
 | |
|     // We also want to warn about it in -Wconversion.
 | |
|     // So if -Wconversion is off, use a completely identical diagnostic
 | |
|     // in the sign-compare group.
 | |
|     // The conditional-checking code will 
 | |
|     if (ICContext) {
 | |
|       DiagID = diag::warn_impcast_integer_sign_conditional;
 | |
|       *ICContext = true;
 | |
|     }
 | |
| 
 | |
|     return DiagnoseImpCast(S, E, T, DiagID);
 | |
|   }
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
 | |
| 
 | |
| void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
 | |
|                              bool &ICContext) {
 | |
|   E = E->IgnoreParenImpCasts();
 | |
| 
 | |
|   if (isa<ConditionalOperator>(E))
 | |
|     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
 | |
| 
 | |
|   AnalyzeImplicitConversions(S, E);
 | |
|   if (E->getType() != T)
 | |
|     return CheckImplicitConversion(S, E, T, &ICContext);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
 | |
|   AnalyzeImplicitConversions(S, E->getCond());
 | |
| 
 | |
|   bool Suspicious = false;
 | |
|   CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
 | |
|   CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
 | |
| 
 | |
|   // If -Wconversion would have warned about either of the candidates
 | |
|   // for a signedness conversion to the context type...
 | |
|   if (!Suspicious) return;
 | |
| 
 | |
|   // ...but it's currently ignored...
 | |
|   if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
 | |
|     return;
 | |
| 
 | |
|   // ...and -Wsign-compare isn't...
 | |
|   if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
 | |
|     return;
 | |
| 
 | |
|   // ...then check whether it would have warned about either of the
 | |
|   // candidates for a signedness conversion to the condition type.
 | |
|   if (E->getType() != T) {
 | |
|     Suspicious = false;
 | |
|     CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
 | |
|                             E->getType(), &Suspicious);
 | |
|     if (!Suspicious)
 | |
|       CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
 | |
|                               E->getType(), &Suspicious);
 | |
|     if (!Suspicious)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // If so, emit a diagnostic under -Wsign-compare.
 | |
|   Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
 | |
|   Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
 | |
|   S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
 | |
|     << lex->getType() << rex->getType()
 | |
|     << lex->getSourceRange() << rex->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// AnalyzeImplicitConversions - Find and report any interesting
 | |
| /// implicit conversions in the given expression.  There are a couple
 | |
| /// of competing diagnostics here, -Wconversion and -Wsign-compare.
 | |
| void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
 | |
|   QualType T = OrigE->getType();
 | |
|   Expr *E = OrigE->IgnoreParenImpCasts();
 | |
| 
 | |
|   // For conditional operators, we analyze the arguments as if they
 | |
|   // were being fed directly into the output.
 | |
|   if (isa<ConditionalOperator>(E)) {
 | |
|     ConditionalOperator *CO = cast<ConditionalOperator>(E);
 | |
|     CheckConditionalOperator(S, CO, T);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Go ahead and check any implicit conversions we might have skipped.
 | |
|   // The non-canonical typecheck is just an optimization;
 | |
|   // CheckImplicitConversion will filter out dead implicit conversions.
 | |
|   if (E->getType() != T)
 | |
|     CheckImplicitConversion(S, E, T);
 | |
| 
 | |
|   // Now continue drilling into this expression.
 | |
| 
 | |
|   // Skip past explicit casts.
 | |
|   if (isa<ExplicitCastExpr>(E)) {
 | |
|     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
 | |
|     return AnalyzeImplicitConversions(S, E);
 | |
|   }
 | |
| 
 | |
|   // Do a somewhat different check with comparison operators.
 | |
|   if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
 | |
|     return AnalyzeComparison(S, cast<BinaryOperator>(E));
 | |
| 
 | |
|   // These break the otherwise-useful invariant below.  Fortunately,
 | |
|   // we don't really need to recurse into them, because any internal
 | |
|   // expressions should have been analyzed already when they were
 | |
|   // built into statements.
 | |
|   if (isa<StmtExpr>(E)) return;
 | |
| 
 | |
|   // Don't descend into unevaluated contexts.
 | |
|   if (isa<SizeOfAlignOfExpr>(E)) return;
 | |
| 
 | |
|   // Now just recurse over the expression's children.
 | |
|   for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
 | |
|          I != IE; ++I)
 | |
|     AnalyzeImplicitConversions(S, cast<Expr>(*I));
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Diagnoses "dangerous" implicit conversions within the given
 | |
| /// expression (which is a full expression).  Implements -Wconversion
 | |
| /// and -Wsign-compare.
 | |
| void Sema::CheckImplicitConversions(Expr *E) {
 | |
|   // Don't diagnose in unevaluated contexts.
 | |
|   if (ExprEvalContexts.back().Context == Sema::Unevaluated)
 | |
|     return;
 | |
| 
 | |
|   // Don't diagnose for value- or type-dependent expressions.
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   AnalyzeImplicitConversions(*this, E);
 | |
| }
 | |
| 
 | |
| /// CheckParmsForFunctionDef - Check that the parameters of the given
 | |
| /// function are appropriate for the definition of a function. This
 | |
| /// takes care of any checks that cannot be performed on the
 | |
| /// declaration itself, e.g., that the types of each of the function
 | |
| /// parameters are complete.
 | |
| bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
 | |
|   bool HasInvalidParm = false;
 | |
|   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
 | |
|     ParmVarDecl *Param = FD->getParamDecl(p);
 | |
| 
 | |
|     // C99 6.7.5.3p4: the parameters in a parameter type list in a
 | |
|     // function declarator that is part of a function definition of
 | |
|     // that function shall not have incomplete type.
 | |
|     //
 | |
|     // This is also C++ [dcl.fct]p6.
 | |
|     if (!Param->isInvalidDecl() &&
 | |
|         RequireCompleteType(Param->getLocation(), Param->getType(),
 | |
|                                diag::err_typecheck_decl_incomplete_type)) {
 | |
|       Param->setInvalidDecl();
 | |
|       HasInvalidParm = true;
 | |
|     }
 | |
| 
 | |
|     // C99 6.9.1p5: If the declarator includes a parameter type list, the
 | |
|     // declaration of each parameter shall include an identifier.
 | |
|     if (Param->getIdentifier() == 0 &&
 | |
|         !Param->isImplicit() &&
 | |
|         !getLangOptions().CPlusPlus)
 | |
|       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
 | |
| 
 | |
|     // C99 6.7.5.3p12:
 | |
|     //   If the function declarator is not part of a definition of that
 | |
|     //   function, parameters may have incomplete type and may use the [*]
 | |
|     //   notation in their sequences of declarator specifiers to specify
 | |
|     //   variable length array types.
 | |
|     QualType PType = Param->getOriginalType();
 | |
|     if (const ArrayType *AT = Context.getAsArrayType(PType)) {
 | |
|       if (AT->getSizeModifier() == ArrayType::Star) {
 | |
|         // FIXME: This diagnosic should point the the '[*]' if source-location
 | |
|         // information is added for it.
 | |
|         Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return HasInvalidParm;
 | |
| }
 |