forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2296 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2296 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a simple register coalescing pass that attempts to
 | 
						|
// aggressively coalesce every register copy that it can.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regcoalescing"
 | 
						|
#include "SimpleRegisterCoalescing.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegisterCoalescer.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(numJoins    , "Number of interval joins performed");
 | 
						|
STATISTIC(numSubJoins , "Number of subclass joins performed");
 | 
						|
STATISTIC(numCommutes , "Number of instruction commuting performed");
 | 
						|
STATISTIC(numExtends  , "Number of copies extended");
 | 
						|
STATISTIC(NumReMats   , "Number of instructions re-materialized");
 | 
						|
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
 | 
						|
STATISTIC(numAborts   , "Number of times interval joining aborted");
 | 
						|
 | 
						|
char SimpleRegisterCoalescing::ID = 0;
 | 
						|
static cl::opt<bool>
 | 
						|
EnableJoining("join-liveintervals",
 | 
						|
              cl::desc("Coalesce copies (default=true)"),
 | 
						|
              cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
NewHeuristic("new-coalescer-heuristic",
 | 
						|
             cl::desc("Use new coalescer heuristic"),
 | 
						|
             cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
CrossClassJoin("join-subclass-copies",
 | 
						|
               cl::desc("Coalesce copies to sub- register class"),
 | 
						|
               cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static RegisterPass<SimpleRegisterCoalescing> 
 | 
						|
X("simple-register-coalescing", "Simple Register Coalescing");
 | 
						|
 | 
						|
// Declare that we implement the RegisterCoalescer interface
 | 
						|
static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
 | 
						|
 | 
						|
const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
 | 
						|
 | 
						|
void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addPreserved<LiveIntervals>();
 | 
						|
  AU.addPreserved<MachineLoopInfo>();
 | 
						|
  AU.addPreservedID(MachineDominatorsID);
 | 
						|
  AU.addPreservedID(PHIEliminationID);
 | 
						|
  AU.addPreservedID(TwoAddressInstructionPassID);
 | 
						|
  AU.addRequired<LiveIntervals>();
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
 | 
						|
/// being the source and IntB being the dest, thus this defines a value number
 | 
						|
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
 | 
						|
/// see if we can merge these two pieces of B into a single value number,
 | 
						|
/// eliminating a copy.  For example:
 | 
						|
///
 | 
						|
///  A3 = B0
 | 
						|
///    ...
 | 
						|
///  B1 = A3      <- this copy
 | 
						|
///
 | 
						|
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
 | 
						|
/// value number to be replaced with B0 (which simplifies the B liveinterval).
 | 
						|
///
 | 
						|
/// This returns true if an interval was modified.
 | 
						|
///
 | 
						|
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
 | 
						|
                                                    LiveInterval &IntB,
 | 
						|
                                                    MachineInstr *CopyMI) {
 | 
						|
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
 | 
						|
 | 
						|
  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
 | 
						|
  // the example above.
 | 
						|
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
 | 
						|
  if (BLR == IntB.end()) // Should never happen!
 | 
						|
    return false;
 | 
						|
  VNInfo *BValNo = BLR->valno;
 | 
						|
  
 | 
						|
  // Get the location that B is defined at.  Two options: either this value has
 | 
						|
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we 
 | 
						|
  // can't process it.
 | 
						|
  if (!BValNo->copy) return false;
 | 
						|
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
 | 
						|
  
 | 
						|
  // AValNo is the value number in A that defines the copy, A3 in the example.
 | 
						|
  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
 | 
						|
  if (ALR == IntA.end()) // Should never happen!
 | 
						|
    return false;
 | 
						|
  VNInfo *AValNo = ALR->valno;
 | 
						|
  
 | 
						|
  // If AValNo is defined as a copy from IntB, we can potentially process this.  
 | 
						|
  // Get the instruction that defines this value number.
 | 
						|
  unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
 | 
						|
  if (!SrcReg) return false;  // Not defined by a copy.
 | 
						|
    
 | 
						|
  // If the value number is not defined by a copy instruction, ignore it.
 | 
						|
 | 
						|
  // If the source register comes from an interval other than IntB, we can't
 | 
						|
  // handle this.
 | 
						|
  if (SrcReg != IntB.reg) return false;
 | 
						|
  
 | 
						|
  // Get the LiveRange in IntB that this value number starts with.
 | 
						|
  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
 | 
						|
  if (ValLR == IntB.end()) // Should never happen!
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Make sure that the end of the live range is inside the same block as
 | 
						|
  // CopyMI.
 | 
						|
  MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
 | 
						|
  if (!ValLREndInst || 
 | 
						|
      ValLREndInst->getParent() != CopyMI->getParent()) return false;
 | 
						|
 | 
						|
  // Okay, we now know that ValLR ends in the same block that the CopyMI
 | 
						|
  // live-range starts.  If there are no intervening live ranges between them in
 | 
						|
  // IntB, we can merge them.
 | 
						|
  if (ValLR+1 != BLR) return false;
 | 
						|
 | 
						|
  // If a live interval is a physical register, conservatively check if any
 | 
						|
  // of its sub-registers is overlapping the live interval of the virtual
 | 
						|
  // register. If so, do not coalesce.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
 | 
						|
      *tri_->getSubRegisters(IntB.reg)) {
 | 
						|
    for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
 | 
						|
      if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
 | 
						|
        DOUT << "Interfere with sub-register ";
 | 
						|
        DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
 | 
						|
  
 | 
						|
  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
 | 
						|
  // We are about to delete CopyMI, so need to remove it as the 'instruction
 | 
						|
  // that defines this value #'. Update the the valnum with the new defining
 | 
						|
  // instruction #.
 | 
						|
  BValNo->def  = FillerStart;
 | 
						|
  BValNo->copy = NULL;
 | 
						|
  
 | 
						|
  // Okay, we can merge them.  We need to insert a new liverange:
 | 
						|
  // [ValLR.end, BLR.begin) of either value number, then we merge the
 | 
						|
  // two value numbers.
 | 
						|
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
 | 
						|
 | 
						|
  // If the IntB live range is assigned to a physical register, and if that
 | 
						|
  // physreg has aliases, 
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
 | 
						|
    // Update the liveintervals of sub-registers.
 | 
						|
    for (const unsigned *AS = tri_->getSubRegisters(IntB.reg); *AS; ++AS) {
 | 
						|
      LiveInterval &AliasLI = li_->getInterval(*AS);
 | 
						|
      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
 | 
						|
              AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator())));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, merge "B1" into the same value number as "B0".
 | 
						|
  if (BValNo != ValLR->valno)
 | 
						|
    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
 | 
						|
  DOUT << "   result = "; IntB.print(DOUT, tri_);
 | 
						|
  DOUT << "\n";
 | 
						|
 | 
						|
  // If the source instruction was killing the source register before the
 | 
						|
  // merge, unset the isKill marker given the live range has been extended.
 | 
						|
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
 | 
						|
  if (UIdx != -1)
 | 
						|
    ValLREndInst->getOperand(UIdx).setIsKill(false);
 | 
						|
 | 
						|
  ++numExtends;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// HasOtherReachingDefs - Return true if there are definitions of IntB
 | 
						|
/// other than BValNo val# that can reach uses of AValno val# of IntA.
 | 
						|
bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
 | 
						|
                                                    LiveInterval &IntB,
 | 
						|
                                                    VNInfo *AValNo,
 | 
						|
                                                    VNInfo *BValNo) {
 | 
						|
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
 | 
						|
       AI != AE; ++AI) {
 | 
						|
    if (AI->valno != AValNo) continue;
 | 
						|
    LiveInterval::Ranges::iterator BI =
 | 
						|
      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
 | 
						|
    if (BI != IntB.ranges.begin())
 | 
						|
      --BI;
 | 
						|
    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
 | 
						|
      if (BI->valno == BValNo)
 | 
						|
        continue;
 | 
						|
      if (BI->start <= AI->start && BI->end > AI->start)
 | 
						|
        return true;
 | 
						|
      if (BI->start > AI->start && BI->start < AI->end)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
 | 
						|
/// being the source and IntB being the dest, thus this defines a value number
 | 
						|
/// in IntB.  If the source value number (in IntA) is defined by a commutable
 | 
						|
/// instruction and its other operand is coalesced to the copy dest register,
 | 
						|
/// see if we can transform the copy into a noop by commuting the definition. For
 | 
						|
/// example,
 | 
						|
///
 | 
						|
///  A3 = op A2 B0<kill>
 | 
						|
///    ...
 | 
						|
///  B1 = A3      <- this copy
 | 
						|
///    ...
 | 
						|
///     = op A3   <- more uses
 | 
						|
///
 | 
						|
/// ==>
 | 
						|
///
 | 
						|
///  B2 = op B0 A2<kill>
 | 
						|
///    ...
 | 
						|
///  B1 = B2      <- now an identify copy
 | 
						|
///    ...
 | 
						|
///     = op B2   <- more uses
 | 
						|
///
 | 
						|
/// This returns true if an interval was modified.
 | 
						|
///
 | 
						|
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
 | 
						|
                                                        LiveInterval &IntB,
 | 
						|
                                                        MachineInstr *CopyMI) {
 | 
						|
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
 | 
						|
 | 
						|
  // FIXME: For now, only eliminate the copy by commuting its def when the
 | 
						|
  // source register is a virtual register. We want to guard against cases
 | 
						|
  // where the copy is a back edge copy and commuting the def lengthen the
 | 
						|
  // live interval of the source register to the entire loop.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
 | 
						|
  // the example above.
 | 
						|
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
 | 
						|
  if (BLR == IntB.end()) // Should never happen!
 | 
						|
    return false;
 | 
						|
  VNInfo *BValNo = BLR->valno;
 | 
						|
  
 | 
						|
  // Get the location that B is defined at.  Two options: either this value has
 | 
						|
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we 
 | 
						|
  // can't process it.
 | 
						|
  if (!BValNo->copy) return false;
 | 
						|
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
 | 
						|
  
 | 
						|
  // AValNo is the value number in A that defines the copy, A3 in the example.
 | 
						|
  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
 | 
						|
  if (ALR == IntA.end()) // Should never happen!
 | 
						|
    return false;
 | 
						|
  VNInfo *AValNo = ALR->valno;
 | 
						|
  // If other defs can reach uses of this def, then it's not safe to perform
 | 
						|
  // the optimization.
 | 
						|
  if (AValNo->def == ~0U || AValNo->def == ~1U || AValNo->hasPHIKill)
 | 
						|
    return false;
 | 
						|
  MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
 | 
						|
  const TargetInstrDesc &TID = DefMI->getDesc();
 | 
						|
  unsigned NewDstIdx;
 | 
						|
  if (!TID.isCommutable() ||
 | 
						|
      !tii_->CommuteChangesDestination(DefMI, NewDstIdx))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
 | 
						|
  unsigned NewReg = NewDstMO.getReg();
 | 
						|
  if (NewReg != IntB.reg || !NewDstMO.isKill())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure there are no other definitions of IntB that would reach the
 | 
						|
  // uses which the new definition can reach.
 | 
						|
  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If some of the uses of IntA.reg is already coalesced away, return false.
 | 
						|
  // It's not possible to determine whether it's safe to perform the coalescing.
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
 | 
						|
         UE = mri_->use_end(); UI != UE; ++UI) {
 | 
						|
    MachineInstr *UseMI = &*UI;
 | 
						|
    unsigned UseIdx = li_->getInstructionIndex(UseMI);
 | 
						|
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
 | 
						|
    if (ULR == IntA.end())
 | 
						|
      continue;
 | 
						|
    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // At this point we have decided that it is legal to do this
 | 
						|
  // transformation.  Start by commuting the instruction.
 | 
						|
  MachineBasicBlock *MBB = DefMI->getParent();
 | 
						|
  MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
 | 
						|
  if (!NewMI)
 | 
						|
    return false;
 | 
						|
  if (NewMI != DefMI) {
 | 
						|
    li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
 | 
						|
    MBB->insert(DefMI, NewMI);
 | 
						|
    MBB->erase(DefMI);
 | 
						|
  }
 | 
						|
  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
 | 
						|
  NewMI->getOperand(OpIdx).setIsKill();
 | 
						|
 | 
						|
  bool BHasPHIKill = BValNo->hasPHIKill;
 | 
						|
  SmallVector<VNInfo*, 4> BDeadValNos;
 | 
						|
  SmallVector<unsigned, 4> BKills;
 | 
						|
  std::map<unsigned, unsigned> BExtend;
 | 
						|
 | 
						|
  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
 | 
						|
  // A = or A, B
 | 
						|
  // ...
 | 
						|
  // B = A
 | 
						|
  // ...
 | 
						|
  // C = A<kill>
 | 
						|
  // ...
 | 
						|
  //   = B
 | 
						|
  //
 | 
						|
  // then do not add kills of A to the newly created B interval.
 | 
						|
  bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
 | 
						|
  if (Extended)
 | 
						|
    BExtend[ALR->end] = BLR->end;
 | 
						|
 | 
						|
  // Update uses of IntA of the specific Val# with IntB.
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
 | 
						|
         UE = mri_->use_end(); UI != UE;) {
 | 
						|
    MachineOperand &UseMO = UI.getOperand();
 | 
						|
    MachineInstr *UseMI = &*UI;
 | 
						|
    ++UI;
 | 
						|
    if (JoinedCopies.count(UseMI))
 | 
						|
      continue;
 | 
						|
    unsigned UseIdx = li_->getInstructionIndex(UseMI);
 | 
						|
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
 | 
						|
    if (ULR == IntA.end() || ULR->valno != AValNo)
 | 
						|
      continue;
 | 
						|
    UseMO.setReg(NewReg);
 | 
						|
    if (UseMI == CopyMI)
 | 
						|
      continue;
 | 
						|
    if (UseMO.isKill()) {
 | 
						|
      if (Extended)
 | 
						|
        UseMO.setIsKill(false);
 | 
						|
      else
 | 
						|
        BKills.push_back(li_->getUseIndex(UseIdx)+1);
 | 
						|
    }
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg))
 | 
						|
      continue;
 | 
						|
    if (DstReg == IntB.reg) {
 | 
						|
      // This copy will become a noop. If it's defining a new val#,
 | 
						|
      // remove that val# as well. However this live range is being
 | 
						|
      // extended to the end of the existing live range defined by the copy.
 | 
						|
      unsigned DefIdx = li_->getDefIndex(UseIdx);
 | 
						|
      const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
 | 
						|
      BHasPHIKill |= DLR->valno->hasPHIKill;
 | 
						|
      assert(DLR->valno->def == DefIdx);
 | 
						|
      BDeadValNos.push_back(DLR->valno);
 | 
						|
      BExtend[DLR->start] = DLR->end;
 | 
						|
      JoinedCopies.insert(UseMI);
 | 
						|
      // If this is a kill but it's going to be removed, the last use
 | 
						|
      // of the same val# is the new kill.
 | 
						|
      if (UseMO.isKill())
 | 
						|
        BKills.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
 | 
						|
  // simply extend BLR if CopyMI doesn't end the range.
 | 
						|
  DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
 | 
						|
 | 
						|
  // Remove val#'s defined by copies that will be coalesced away.
 | 
						|
  for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i)
 | 
						|
    IntB.removeValNo(BDeadValNos[i]);
 | 
						|
 | 
						|
  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
 | 
						|
  // is updated. Kills are also updated.
 | 
						|
  VNInfo *ValNo = BValNo;
 | 
						|
  ValNo->def = AValNo->def;
 | 
						|
  ValNo->copy = NULL;
 | 
						|
  for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
 | 
						|
    unsigned Kill = ValNo->kills[j];
 | 
						|
    if (Kill != BLR->end)
 | 
						|
      BKills.push_back(Kill);
 | 
						|
  }
 | 
						|
  ValNo->kills.clear();
 | 
						|
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
 | 
						|
       AI != AE; ++AI) {
 | 
						|
    if (AI->valno != AValNo) continue;
 | 
						|
    unsigned End = AI->end;
 | 
						|
    std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
 | 
						|
    if (EI != BExtend.end())
 | 
						|
      End = EI->second;
 | 
						|
    IntB.addRange(LiveRange(AI->start, End, ValNo));
 | 
						|
  }
 | 
						|
  IntB.addKills(ValNo, BKills);
 | 
						|
  ValNo->hasPHIKill = BHasPHIKill;
 | 
						|
 | 
						|
  DOUT << "   result = "; IntB.print(DOUT, tri_);
 | 
						|
  DOUT << "\n";
 | 
						|
 | 
						|
  DOUT << "\nShortening: "; IntA.print(DOUT, tri_);
 | 
						|
  IntA.removeValNo(AValNo);
 | 
						|
  DOUT << "   result = "; IntA.print(DOUT, tri_);
 | 
						|
  DOUT << "\n";
 | 
						|
 | 
						|
  ++numCommutes;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
 | 
						|
/// computation, replace the copy by rematerialize the definition.
 | 
						|
bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
 | 
						|
                                                       unsigned DstReg,
 | 
						|
                                                       MachineInstr *CopyMI) {
 | 
						|
  unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
 | 
						|
  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
 | 
						|
  if (SrcLR == SrcInt.end()) // Should never happen!
 | 
						|
    return false;
 | 
						|
  VNInfo *ValNo = SrcLR->valno;
 | 
						|
  // If other defs can reach uses of this def, then it's not safe to perform
 | 
						|
  // the optimization.
 | 
						|
  if (ValNo->def == ~0U || ValNo->def == ~1U || ValNo->hasPHIKill)
 | 
						|
    return false;
 | 
						|
  MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
 | 
						|
  const TargetInstrDesc &TID = DefMI->getDesc();
 | 
						|
  if (!TID.isAsCheapAsAMove())
 | 
						|
    return false;
 | 
						|
  bool SawStore = false;
 | 
						|
  if (!DefMI->isSafeToMove(tii_, SawStore))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned DefIdx = li_->getDefIndex(CopyIdx);
 | 
						|
  const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
 | 
						|
  DLR->valno->copy = NULL;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator MII = CopyMI;
 | 
						|
  MachineBasicBlock *MBB = CopyMI->getParent();
 | 
						|
  tii_->reMaterialize(*MBB, MII, DstReg, DefMI);
 | 
						|
  MachineInstr *NewMI = prior(MII);
 | 
						|
  // CopyMI may have implicit instructions, transfer them over to the newly
 | 
						|
  // rematerialized instruction. And update implicit def interval valnos.
 | 
						|
  for (unsigned i = CopyMI->getDesc().getNumOperands(),
 | 
						|
         e = CopyMI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = CopyMI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isImplicit())
 | 
						|
      NewMI->addOperand(MO);
 | 
						|
    if (MO.isDef() && li_->hasInterval(MO.getReg())) {
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
 | 
						|
      if (DLR && DLR->valno->copy == CopyMI)
 | 
						|
        DLR->valno->copy = NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
 | 
						|
  CopyMI->eraseFromParent();
 | 
						|
  ReMatCopies.insert(CopyMI);
 | 
						|
  ++NumReMats;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
 | 
						|
///
 | 
						|
bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
 | 
						|
                                              unsigned DstReg) const {
 | 
						|
  MachineBasicBlock *MBB = CopyMI->getParent();
 | 
						|
  const MachineLoop *L = loopInfo->getLoopFor(MBB);
 | 
						|
  if (!L)
 | 
						|
    return false;
 | 
						|
  if (MBB != L->getLoopLatch())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LiveInterval &LI = li_->getInterval(DstReg);
 | 
						|
  unsigned DefIdx = li_->getInstructionIndex(CopyMI);
 | 
						|
  LiveInterval::const_iterator DstLR =
 | 
						|
    LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
 | 
						|
  if (DstLR == LI.end())
 | 
						|
    return false;
 | 
						|
  unsigned KillIdx = li_->getMBBEndIdx(MBB) + 1;
 | 
						|
  if (DstLR->valno->kills.size() == 1 &&
 | 
						|
      DstLR->valno->kills[0] == KillIdx && DstLR->valno->hasPHIKill)
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
 | 
						|
/// update the subregister number if it is not zero. If DstReg is a
 | 
						|
/// physical register and the existing subregister number of the def / use
 | 
						|
/// being updated is not zero, make sure to set it to the correct physical
 | 
						|
/// subregister.
 | 
						|
void
 | 
						|
SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
 | 
						|
                                            unsigned SubIdx) {
 | 
						|
  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | 
						|
  if (DstIsPhys && SubIdx) {
 | 
						|
    // Figure out the real physical register we are updating with.
 | 
						|
    DstReg = tri_->getSubReg(DstReg, SubIdx);
 | 
						|
    SubIdx = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
 | 
						|
         E = mri_->reg_end(); I != E; ) {
 | 
						|
    MachineOperand &O = I.getOperand();
 | 
						|
    MachineInstr *UseMI = &*I;
 | 
						|
    ++I;
 | 
						|
    unsigned OldSubIdx = O.getSubReg();
 | 
						|
    if (DstIsPhys) {
 | 
						|
      unsigned UseDstReg = DstReg;
 | 
						|
      if (OldSubIdx)
 | 
						|
          UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
 | 
						|
 | 
						|
      unsigned CopySrcReg, CopyDstReg;
 | 
						|
      if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg) &&
 | 
						|
          CopySrcReg != CopyDstReg &&
 | 
						|
          CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
 | 
						|
        // If the use is a copy and it won't be coalesced away, and its source
 | 
						|
        // is defined by a trivial computation, try to rematerialize it instead.
 | 
						|
        if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,UseMI))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      O.setReg(UseDstReg);
 | 
						|
      O.setSubReg(0);
 | 
						|
    } else {
 | 
						|
      // Sub-register indexes goes from small to large. e.g.
 | 
						|
      // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
 | 
						|
      // EAX: 1 -> AL, 2 -> AX
 | 
						|
      // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
 | 
						|
      // sub-register 2 is also AX.
 | 
						|
      if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
 | 
						|
        assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
 | 
						|
      else if (SubIdx)
 | 
						|
        O.setSubReg(SubIdx);
 | 
						|
      // Remove would-be duplicated kill marker.
 | 
						|
      if (O.isKill() && UseMI->killsRegister(DstReg))
 | 
						|
        O.setIsKill(false);
 | 
						|
      O.setReg(DstReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining"
 | 
						|
/// registers due to insert_subreg coalescing. e.g.
 | 
						|
/// r1024 = op
 | 
						|
/// r1025 = implicit_def
 | 
						|
/// r1025 = insert_subreg r1025, r1024
 | 
						|
///       = op r1025
 | 
						|
/// =>
 | 
						|
/// r1025 = op
 | 
						|
/// r1025 = implicit_def
 | 
						|
/// r1025 = insert_subreg r1025, r1025
 | 
						|
///       = op r1025
 | 
						|
void
 | 
						|
SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg, LiveInterval &LI) {
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
 | 
						|
         E = mri_->reg_end(); I != E; ) {
 | 
						|
    MachineOperand &O = I.getOperand();
 | 
						|
    MachineInstr *DefMI = &*I;
 | 
						|
    ++I;
 | 
						|
    if (!O.isDef())
 | 
						|
      continue;
 | 
						|
    if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
 | 
						|
      continue;
 | 
						|
    if (!LI.liveBeforeAndAt(li_->getInstructionIndex(DefMI)))
 | 
						|
      continue;
 | 
						|
    li_->RemoveMachineInstrFromMaps(DefMI);
 | 
						|
    DefMI->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
 | 
						|
/// due to live range lengthening as the result of coalescing.
 | 
						|
void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
 | 
						|
                                                      LiveInterval &LI) {
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
 | 
						|
         UE = mri_->use_end(); UI != UE; ++UI) {
 | 
						|
    MachineOperand &UseMO = UI.getOperand();
 | 
						|
    if (UseMO.isKill()) {
 | 
						|
      MachineInstr *UseMI = UseMO.getParent();
 | 
						|
      unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
 | 
						|
      if (JoinedCopies.count(UseMI))
 | 
						|
        continue;
 | 
						|
      const LiveRange *UI = LI.getLiveRangeContaining(UseIdx);
 | 
						|
      if (!UI || !LI.isKill(UI->valno, UseIdx+1))
 | 
						|
        UseMO.setIsKill(false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
 | 
						|
/// from a physical register live interval as well as from the live intervals
 | 
						|
/// of its sub-registers.
 | 
						|
static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
 | 
						|
                        LiveIntervals *li_, const TargetRegisterInfo *tri_) {
 | 
						|
  li.removeRange(Start, End, true);
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
 | 
						|
    for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
 | 
						|
      if (!li_->hasInterval(*SR))
 | 
						|
        continue;
 | 
						|
      LiveInterval &sli = li_->getInterval(*SR);
 | 
						|
      unsigned RemoveEnd = Start;
 | 
						|
      while (RemoveEnd != End) {
 | 
						|
        LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
 | 
						|
        if (LR == sli.end())
 | 
						|
          break;
 | 
						|
        RemoveEnd = (LR->end < End) ? LR->end : End;
 | 
						|
        sli.removeRange(Start, RemoveEnd, true);
 | 
						|
        Start = RemoveEnd;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// removeIntervalIfEmpty - Check if the live interval of a physical register
 | 
						|
/// is empty, if so remove it and also remove the empty intervals of its
 | 
						|
/// sub-registers. Return true if live interval is removed.
 | 
						|
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
 | 
						|
                                  const TargetRegisterInfo *tri_) {
 | 
						|
  if (li.empty()) {
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
 | 
						|
      for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
 | 
						|
        if (!li_->hasInterval(*SR))
 | 
						|
          continue;
 | 
						|
        LiveInterval &sli = li_->getInterval(*SR);
 | 
						|
        if (sli.empty())
 | 
						|
          li_->removeInterval(*SR);
 | 
						|
      }
 | 
						|
    li_->removeInterval(li.reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
 | 
						|
/// Return true if live interval is removed.
 | 
						|
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
 | 
						|
                                                        MachineInstr *CopyMI) {
 | 
						|
  unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
 | 
						|
  LiveInterval::iterator MLR =
 | 
						|
    li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
 | 
						|
  if (MLR == li.end())
 | 
						|
    return false;  // Already removed by ShortenDeadCopySrcLiveRange.
 | 
						|
  unsigned RemoveStart = MLR->start;
 | 
						|
  unsigned RemoveEnd = MLR->end;
 | 
						|
  // Remove the liverange that's defined by this.
 | 
						|
  if (RemoveEnd == li_->getDefIndex(CopyIdx)+1) {
 | 
						|
    removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
 | 
						|
    return removeIntervalIfEmpty(li, li_, tri_);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PropagateDeadness - Propagate the dead marker to the instruction which
 | 
						|
/// defines the val#.
 | 
						|
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
 | 
						|
                              unsigned &LRStart, LiveIntervals *li_,
 | 
						|
                              const TargetRegisterInfo* tri_) {
 | 
						|
  MachineInstr *DefMI =
 | 
						|
    li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
 | 
						|
  if (DefMI && DefMI != CopyMI) {
 | 
						|
    int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_);
 | 
						|
    if (DeadIdx != -1) {
 | 
						|
      DefMI->getOperand(DeadIdx).setIsDead();
 | 
						|
      // A dead def should have a single cycle interval.
 | 
						|
      ++LRStart;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
 | 
						|
/// fallthoughs to SuccMBB.
 | 
						|
static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
 | 
						|
                                  MachineBasicBlock *SuccMBB,
 | 
						|
                                  const TargetInstrInfo *tii_) {
 | 
						|
  if (MBB == SuccMBB)
 | 
						|
    return true;
 | 
						|
  MachineBasicBlock *TBB = 0, *FBB = 0;
 | 
						|
  SmallVector<MachineOperand, 4> Cond;
 | 
						|
  return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
 | 
						|
    MBB->isSuccessor(SuccMBB);
 | 
						|
}
 | 
						|
 | 
						|
/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
 | 
						|
/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
 | 
						|
/// ends the live range there. If there isn't another use, then this live range
 | 
						|
/// is dead. Return true if live interval is removed.
 | 
						|
bool
 | 
						|
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
 | 
						|
                                                      MachineInstr *CopyMI) {
 | 
						|
  unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
 | 
						|
  if (CopyIdx == 0) {
 | 
						|
    // FIXME: special case: function live in. It can be a general case if the
 | 
						|
    // first instruction index starts at > 0 value.
 | 
						|
    assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
 | 
						|
    // Live-in to the function but dead. Remove it from entry live-in set.
 | 
						|
    if (mf_->begin()->isLiveIn(li.reg))
 | 
						|
      mf_->begin()->removeLiveIn(li.reg);
 | 
						|
    const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
 | 
						|
    removeRange(li, LR->start, LR->end, li_, tri_);
 | 
						|
    return removeIntervalIfEmpty(li, li_, tri_);
 | 
						|
  }
 | 
						|
 | 
						|
  LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
 | 
						|
  if (LR == li.end())
 | 
						|
    // Livein but defined by a phi.
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned RemoveStart = LR->start;
 | 
						|
  unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
 | 
						|
  if (LR->end > RemoveEnd)
 | 
						|
    // More uses past this copy? Nothing to do.
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock *CopyMBB = CopyMI->getParent();
 | 
						|
  unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
 | 
						|
  unsigned LastUseIdx;
 | 
						|
  MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
 | 
						|
                                            LastUseIdx);
 | 
						|
  if (LastUse) {
 | 
						|
    MachineInstr *LastUseMI = LastUse->getParent();
 | 
						|
    if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
 | 
						|
      // r1024 = op
 | 
						|
      // ...
 | 
						|
      // BB1:
 | 
						|
      //       = r1024
 | 
						|
      //
 | 
						|
      // BB2:
 | 
						|
      // r1025<dead> = r1024<kill>
 | 
						|
      if (MBBStart < LR->end)
 | 
						|
        removeRange(li, MBBStart, LR->end, li_, tri_);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // There are uses before the copy, just shorten the live range to the end
 | 
						|
    // of last use.
 | 
						|
    LastUse->setIsKill();
 | 
						|
    removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg) &&
 | 
						|
        DstReg == li.reg) {
 | 
						|
      // Last use is itself an identity code.
 | 
						|
      int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
 | 
						|
      LastUseMI->getOperand(DeadIdx).setIsDead();
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Is it livein?
 | 
						|
  if (LR->start <= MBBStart && LR->end > MBBStart) {
 | 
						|
    if (LR->start == 0) {
 | 
						|
      assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
 | 
						|
      // Live-in to the function but dead. Remove it from entry live-in set.
 | 
						|
      mf_->begin()->removeLiveIn(li.reg);
 | 
						|
    }
 | 
						|
    // FIXME: Shorten intervals in BBs that reaches this BB.
 | 
						|
  }
 | 
						|
 | 
						|
  if (LR->valno->def == RemoveStart)
 | 
						|
    // If the def MI defines the val#, propagate the dead marker.
 | 
						|
    PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
 | 
						|
 | 
						|
  removeRange(li, RemoveStart, LR->end, li_, tri_);
 | 
						|
  return removeIntervalIfEmpty(li, li_, tri_);
 | 
						|
}
 | 
						|
 | 
						|
/// CanCoalesceWithImpDef - Returns true if the specified copy instruction
 | 
						|
/// from an implicit def to another register can be coalesced away.
 | 
						|
bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
 | 
						|
                                                     LiveInterval &li,
 | 
						|
                                                     LiveInterval &ImpLi) const{
 | 
						|
  if (!CopyMI->killsRegister(ImpLi.reg))
 | 
						|
    return false;
 | 
						|
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
 | 
						|
  LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx);
 | 
						|
  if (LR == li.end())
 | 
						|
    return false;
 | 
						|
  if (LR->valno->hasPHIKill)
 | 
						|
    return false;
 | 
						|
  if (LR->valno->def != CopyIdx)
 | 
						|
    return false;
 | 
						|
  // Make sure all of val# uses are copies.
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(li.reg),
 | 
						|
         UE = mri_->use_end(); UI != UE;) {
 | 
						|
    MachineInstr *UseMI = &*UI;
 | 
						|
    ++UI;
 | 
						|
    if (JoinedCopies.count(UseMI))
 | 
						|
      continue;
 | 
						|
    unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
 | 
						|
    LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
 | 
						|
    if (ULR == li.end() || ULR->valno != LR->valno)
 | 
						|
      continue;
 | 
						|
    // If the use is not a use, then it's not safe to coalesce the move.
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg)) {
 | 
						|
      if (UseMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG &&
 | 
						|
          UseMI->getOperand(1).getReg() == li.reg)
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// RemoveCopiesFromValNo - The specified value# is defined by an implicit
 | 
						|
/// def and it is being removed. Turn all copies from this value# into
 | 
						|
/// identity copies so they will be removed.
 | 
						|
void SimpleRegisterCoalescing::RemoveCopiesFromValNo(LiveInterval &li,
 | 
						|
                                                     VNInfo *VNI) {
 | 
						|
  SmallVector<MachineInstr*, 4> ImpDefs;
 | 
						|
  MachineOperand *LastUse = NULL;
 | 
						|
  unsigned LastUseIdx = li_->getUseIndex(VNI->def);
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg),
 | 
						|
         RE = mri_->reg_end(); RI != RE;) {
 | 
						|
    MachineOperand *MO = &RI.getOperand();
 | 
						|
    MachineInstr *MI = &*RI;
 | 
						|
    ++RI;
 | 
						|
    if (MO->isDef()) {
 | 
						|
      if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
 | 
						|
        ImpDefs.push_back(MI);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (JoinedCopies.count(MI))
 | 
						|
      continue;
 | 
						|
    unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(MI));
 | 
						|
    LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
 | 
						|
    if (ULR == li.end() || ULR->valno != VNI)
 | 
						|
      continue;
 | 
						|
    // If the use is a copy, turn it into an identity copy.
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (tii_->isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == li.reg) {
 | 
						|
      // Each use MI may have multiple uses of this register. Change them all.
 | 
						|
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
        MachineOperand &MO = MI->getOperand(i);
 | 
						|
        if (MO.isReg() && MO.getReg() == li.reg)
 | 
						|
          MO.setReg(DstReg);
 | 
						|
      }
 | 
						|
      JoinedCopies.insert(MI);
 | 
						|
    } else if (UseIdx > LastUseIdx) {
 | 
						|
      LastUseIdx = UseIdx;
 | 
						|
      LastUse = MO;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (LastUse)
 | 
						|
    LastUse->setIsKill();
 | 
						|
  else {
 | 
						|
    // Remove dead implicit_def's.
 | 
						|
    while (!ImpDefs.empty()) {
 | 
						|
      MachineInstr *ImpDef = ImpDefs.back();
 | 
						|
      ImpDefs.pop_back();
 | 
						|
      li_->RemoveMachineInstrFromMaps(ImpDef);
 | 
						|
      ImpDef->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 
 | 
						|
                                    const TargetRegisterClass *RC,
 | 
						|
                                    const TargetRegisterInfo* TRI) {
 | 
						|
  for (const unsigned *SRs = TRI->getSuperRegisters(Reg);
 | 
						|
       unsigned SR = *SRs; ++SRs)
 | 
						|
    if (Reg == TRI->getSubReg(SR, SubIdx) && RC->contains(SR))
 | 
						|
      return SR;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isProfitableToCoalesceToSubRC - Given that register class of DstReg is
 | 
						|
/// a subset of the register class of SrcReg, return true if it's profitable
 | 
						|
/// to coalesce the two registers.
 | 
						|
bool
 | 
						|
SimpleRegisterCoalescing::isProfitableToCoalesceToSubRC(unsigned SrcReg,
 | 
						|
                                                        unsigned DstReg,
 | 
						|
                                                        MachineBasicBlock *MBB){
 | 
						|
  if (!CrossClassJoin)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // First let's make sure all uses are in the same MBB.
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(SrcReg),
 | 
						|
         RE = mri_->reg_end(); RI != RE; ++RI) {
 | 
						|
    MachineInstr &MI = *RI;
 | 
						|
    if (MI.getParent() != MBB)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(DstReg),
 | 
						|
         RE = mri_->reg_end(); RI != RE; ++RI) {
 | 
						|
    MachineInstr &MI = *RI;
 | 
						|
    if (MI.getParent() != MBB)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Then make sure the intervals are *short*.
 | 
						|
  LiveInterval &SrcInt = li_->getInterval(SrcReg);
 | 
						|
  LiveInterval &DstInt = li_->getInterval(DstReg);
 | 
						|
  unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
 | 
						|
  unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
 | 
						|
  const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
 | 
						|
  unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
 | 
						|
  return (SrcSize + DstSize) <= Threshold;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
 | 
						|
/// which are the src/dst of the copy instruction CopyMI.  This returns true
 | 
						|
/// if the copy was successfully coalesced away. If it is not currently
 | 
						|
/// possible to coalesce this interval, but it may be possible if other
 | 
						|
/// things get coalesced, then it returns true by reference in 'Again'.
 | 
						|
bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
 | 
						|
  MachineInstr *CopyMI = TheCopy.MI;
 | 
						|
 | 
						|
  Again = false;
 | 
						|
  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
 | 
						|
    return false; // Already done.
 | 
						|
 | 
						|
  DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;
 | 
						|
 | 
						|
  unsigned SrcReg;
 | 
						|
  unsigned DstReg;
 | 
						|
  bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
 | 
						|
  bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
 | 
						|
  unsigned SubIdx = 0;
 | 
						|
  if (isExtSubReg) {
 | 
						|
    DstReg = CopyMI->getOperand(0).getReg();
 | 
						|
    SrcReg = CopyMI->getOperand(1).getReg();
 | 
						|
  } else if (isInsSubReg) {
 | 
						|
    if (CopyMI->getOperand(2).getSubReg()) {
 | 
						|
      DOUT << "\tSource of insert_subreg is already coalesced "
 | 
						|
           << "to another register.\n";
 | 
						|
      return false;  // Not coalescable.
 | 
						|
    }
 | 
						|
    DstReg = CopyMI->getOperand(0).getReg();
 | 
						|
    SrcReg = CopyMI->getOperand(2).getReg();
 | 
						|
  } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg)) {
 | 
						|
    assert(0 && "Unrecognized copy instruction!");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If they are already joined we continue.
 | 
						|
  if (SrcReg == DstReg) {
 | 
						|
    DOUT << "\tCopy already coalesced.\n";
 | 
						|
    return false;  // Not coalescable.
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
 | 
						|
  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | 
						|
 | 
						|
  // If they are both physical registers, we cannot join them.
 | 
						|
  if (SrcIsPhys && DstIsPhys) {
 | 
						|
    DOUT << "\tCan not coalesce physregs.\n";
 | 
						|
    return false;  // Not coalescable.
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We only join virtual registers with allocatable physical registers.
 | 
						|
  if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
 | 
						|
    DOUT << "\tSrc reg is unallocatable physreg.\n";
 | 
						|
    return false;  // Not coalescable.
 | 
						|
  }
 | 
						|
  if (DstIsPhys && !allocatableRegs_[DstReg]) {
 | 
						|
    DOUT << "\tDst reg is unallocatable physreg.\n";
 | 
						|
    return false;  // Not coalescable.
 | 
						|
  }
 | 
						|
 | 
						|
  // Should be non-null only when coalescing to a sub-register class.
 | 
						|
  const TargetRegisterClass *SubRC = NULL;
 | 
						|
  MachineBasicBlock *CopyMBB = CopyMI->getParent();
 | 
						|
  unsigned RealDstReg = 0;
 | 
						|
  unsigned RealSrcReg = 0;
 | 
						|
  if (isExtSubReg || isInsSubReg) {
 | 
						|
    SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
 | 
						|
    if (SrcIsPhys && isExtSubReg) {
 | 
						|
      // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
 | 
						|
      // coalesced with AX.
 | 
						|
      unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
 | 
						|
      if (DstSubIdx) {
 | 
						|
        // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
 | 
						|
        // coalesced to a larger register so the subreg indices cancel out.
 | 
						|
        if (DstSubIdx != SubIdx) {
 | 
						|
          DOUT << "\t Sub-register indices mismatch.\n";
 | 
						|
          return false; // Not coalescable.
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        SrcReg = tri_->getSubReg(SrcReg, SubIdx);
 | 
						|
      SubIdx = 0;
 | 
						|
    } else if (DstIsPhys && isInsSubReg) {
 | 
						|
      // EAX = INSERT_SUBREG EAX, r1024, 0
 | 
						|
      unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
 | 
						|
      if (SrcSubIdx) {
 | 
						|
        // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
 | 
						|
        // coalesced to a larger register so the subreg indices cancel out.
 | 
						|
        if (SrcSubIdx != SubIdx) {
 | 
						|
          DOUT << "\t Sub-register indices mismatch.\n";
 | 
						|
          return false; // Not coalescable.
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        DstReg = tri_->getSubReg(DstReg, SubIdx);
 | 
						|
      SubIdx = 0;
 | 
						|
    } else if ((DstIsPhys && isExtSubReg) || (SrcIsPhys && isInsSubReg)) {
 | 
						|
      // If this is a extract_subreg where dst is a physical register, e.g.
 | 
						|
      // cl = EXTRACT_SUBREG reg1024, 1
 | 
						|
      // then create and update the actual physical register allocated to RHS.
 | 
						|
      // Ditto for
 | 
						|
      // reg1024 = INSERT_SUBREG r1024, cl, 1
 | 
						|
      if (CopyMI->getOperand(1).getSubReg()) {
 | 
						|
        DOUT << "\tSrc of extract_ / insert_subreg already coalesced with reg"
 | 
						|
             << " of a super-class.\n";
 | 
						|
        return false; // Not coalescable.
 | 
						|
      }
 | 
						|
      const TargetRegisterClass *RC =
 | 
						|
        mri_->getRegClass(isExtSubReg ? SrcReg : DstReg);
 | 
						|
      if (isExtSubReg) {
 | 
						|
        RealDstReg = getMatchingSuperReg(DstReg, SubIdx, RC, tri_);
 | 
						|
        assert(RealDstReg && "Invalid extract_subreg instruction!");
 | 
						|
      } else {
 | 
						|
        RealSrcReg = getMatchingSuperReg(SrcReg, SubIdx, RC, tri_);
 | 
						|
        assert(RealSrcReg && "Invalid extract_subreg instruction!");
 | 
						|
      }
 | 
						|
 | 
						|
      // For this type of EXTRACT_SUBREG, conservatively
 | 
						|
      // check if the live interval of the source register interfere with the
 | 
						|
      // actual super physical register we are trying to coalesce with.
 | 
						|
      unsigned PhysReg = isExtSubReg ? RealDstReg : RealSrcReg;
 | 
						|
      LiveInterval &RHS = li_->getInterval(isExtSubReg ? SrcReg : DstReg);
 | 
						|
      if (li_->hasInterval(PhysReg) &&
 | 
						|
          RHS.overlaps(li_->getInterval(PhysReg))) {
 | 
						|
        DOUT << "Interfere with register ";
 | 
						|
        DEBUG(li_->getInterval(PhysReg).print(DOUT, tri_));
 | 
						|
        return false; // Not coalescable
 | 
						|
      }
 | 
						|
      for (const unsigned* SR = tri_->getSubRegisters(PhysReg); *SR; ++SR)
 | 
						|
        if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
 | 
						|
          DOUT << "Interfere with sub-register ";
 | 
						|
          DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
 | 
						|
          return false; // Not coalescable
 | 
						|
        }
 | 
						|
      SubIdx = 0;
 | 
						|
    } else {
 | 
						|
      unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
 | 
						|
        : CopyMI->getOperand(2).getSubReg();
 | 
						|
      if (OldSubIdx) {
 | 
						|
        if (OldSubIdx == SubIdx &&
 | 
						|
            !differingRegisterClasses(SrcReg, DstReg, SubRC))
 | 
						|
          // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
 | 
						|
          // coalesced to a larger register so the subreg indices cancel out.
 | 
						|
          // Also check if the other larger register is of the same register
 | 
						|
          // class as the would be resulting register.
 | 
						|
          SubIdx = 0;
 | 
						|
        else {
 | 
						|
          DOUT << "\t Sub-register indices mismatch.\n";
 | 
						|
          return false; // Not coalescable.
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (SubIdx) {
 | 
						|
        unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
 | 
						|
        unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
 | 
						|
        unsigned LargeRegSize = 
 | 
						|
          li_->getApproximateInstructionCount(li_->getInterval(LargeReg));
 | 
						|
        unsigned SmallRegSize = 
 | 
						|
          li_->getApproximateInstructionCount(li_->getInterval(SmallReg));
 | 
						|
        const TargetRegisterClass *RC = mri_->getRegClass(SmallReg);
 | 
						|
        unsigned Threshold = allocatableRCRegs_[RC].count();
 | 
						|
        // Be conservative. If both sides are virtual registers, do not coalesce
 | 
						|
        // if this will cause a high use density interval to target a smaller
 | 
						|
        // set of registers.
 | 
						|
        if (SmallRegSize > Threshold || LargeRegSize > Threshold) {
 | 
						|
          if ((float)std::distance(mri_->use_begin(SmallReg),
 | 
						|
                                   mri_->use_end()) / SmallRegSize <
 | 
						|
              (float)std::distance(mri_->use_begin(LargeReg),
 | 
						|
                                   mri_->use_end()) / LargeRegSize) {
 | 
						|
            Again = true;  // May be possible to coalesce later.
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (differingRegisterClasses(SrcReg, DstReg, SubRC)) {
 | 
						|
    // FIXME: What if the resul of a EXTRACT_SUBREG is then coalesced
 | 
						|
    // with another? If it's the resulting destination register, then
 | 
						|
    // the subidx must be propagated to uses (but only those defined
 | 
						|
    // by the EXTRACT_SUBREG). If it's being coalesced into another
 | 
						|
    // register, it should be safe because register is assumed to have
 | 
						|
    // the register class of the super-register.
 | 
						|
 | 
						|
    if (!SubRC || !isProfitableToCoalesceToSubRC(SrcReg, DstReg, CopyMBB)) {
 | 
						|
      // If they are not of the same register class, we cannot join them.
 | 
						|
      DOUT << "\tSrc/Dest are different register classes.\n";
 | 
						|
      // Allow the coalescer to try again in case either side gets coalesced to
 | 
						|
      // a physical register that's compatible with the other side. e.g.
 | 
						|
      // r1024 = MOV32to32_ r1025
 | 
						|
      // but later r1024 is assigned EAX then r1025 may be coalesced with EAX.
 | 
						|
      Again = true;  // May be possible to coalesce later.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  LiveInterval &SrcInt = li_->getInterval(SrcReg);
 | 
						|
  LiveInterval &DstInt = li_->getInterval(DstReg);
 | 
						|
  assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
 | 
						|
         "Register mapping is horribly broken!");
 | 
						|
 | 
						|
  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_);
 | 
						|
  DOUT << " and "; DstInt.print(DOUT, tri_);
 | 
						|
  DOUT << ": ";
 | 
						|
 | 
						|
  // Check if it is necessary to propagate "isDead" property.
 | 
						|
  if (!isExtSubReg && !isInsSubReg) {
 | 
						|
    MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
 | 
						|
    bool isDead = mopd->isDead();
 | 
						|
 | 
						|
    // We need to be careful about coalescing a source physical register with a
 | 
						|
    // virtual register. Once the coalescing is done, it cannot be broken and
 | 
						|
    // these are not spillable! If the destination interval uses are far away,
 | 
						|
    // think twice about coalescing them!
 | 
						|
    if (!isDead && (SrcIsPhys || DstIsPhys)) {
 | 
						|
      LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
 | 
						|
      unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
 | 
						|
      unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
 | 
						|
      const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
 | 
						|
      unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
 | 
						|
      if (TheCopy.isBackEdge)
 | 
						|
        Threshold *= 2; // Favors back edge copies.
 | 
						|
 | 
						|
      // If the virtual register live interval is long but it has low use desity,
 | 
						|
      // do not join them, instead mark the physical register as its allocation
 | 
						|
      // preference.
 | 
						|
      unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
 | 
						|
      if (Length > Threshold &&
 | 
						|
          (((float)std::distance(mri_->use_begin(JoinVReg),
 | 
						|
                              mri_->use_end()) / Length) < (1.0 / Threshold))) {
 | 
						|
        JoinVInt.preference = JoinPReg;
 | 
						|
        ++numAborts;
 | 
						|
        DOUT << "\tMay tie down a physical register, abort!\n";
 | 
						|
        Again = true;  // May be possible to coalesce later.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, attempt to join these two intervals.  On failure, this returns false.
 | 
						|
  // Otherwise, if one of the intervals being joined is a physreg, this method
 | 
						|
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
 | 
						|
  // been modified, so we can use this information below to update aliases.
 | 
						|
  bool Swapped = false;
 | 
						|
  // If SrcInt is implicitly defined, it's safe to coalesce.
 | 
						|
  bool isEmpty = SrcInt.empty();
 | 
						|
  if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
 | 
						|
    // Only coalesce an empty interval (defined by implicit_def) with
 | 
						|
    // another interval which has a valno defined by the CopyMI and the CopyMI
 | 
						|
    // is a kill of the implicit def.
 | 
						|
    DOUT << "Not profitable!\n";
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
 | 
						|
    // Coalescing failed.
 | 
						|
 | 
						|
    // If definition of source is defined by trivial computation, try
 | 
						|
    // rematerializing it.
 | 
						|
    if (!isExtSubReg && !isInsSubReg &&
 | 
						|
        ReMaterializeTrivialDef(SrcInt, DstInt.reg, CopyMI))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // If we can eliminate the copy without merging the live ranges, do so now.
 | 
						|
    if (!isExtSubReg && !isInsSubReg &&
 | 
						|
        (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
 | 
						|
         RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
 | 
						|
      JoinedCopies.insert(CopyMI);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, we are unable to join the intervals.
 | 
						|
    DOUT << "Interference!\n";
 | 
						|
    Again = true;  // May be possible to coalesce later.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LiveInterval *ResSrcInt = &SrcInt;
 | 
						|
  LiveInterval *ResDstInt = &DstInt;
 | 
						|
  if (Swapped) {
 | 
						|
    std::swap(SrcReg, DstReg);
 | 
						|
    std::swap(ResSrcInt, ResDstInt);
 | 
						|
  }
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | 
						|
         "LiveInterval::join didn't work right!");
 | 
						|
                               
 | 
						|
  // If we're about to merge live ranges into a physical register live range,
 | 
						|
  // we have to update any aliased register's live ranges to indicate that they
 | 
						|
  // have clobbered values for this range.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
 | 
						|
    // If this is a extract_subreg where dst is a physical register, e.g.
 | 
						|
    // cl = EXTRACT_SUBREG reg1024, 1
 | 
						|
    // then create and update the actual physical register allocated to RHS.
 | 
						|
    if (RealDstReg || RealSrcReg) {
 | 
						|
      LiveInterval &RealInt =
 | 
						|
        li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
 | 
						|
      SmallSet<const VNInfo*, 4> CopiedValNos;
 | 
						|
      for (LiveInterval::Ranges::const_iterator I = ResSrcInt->ranges.begin(),
 | 
						|
             E = ResSrcInt->ranges.end(); I != E; ++I) {
 | 
						|
        const LiveRange *DstLR = ResDstInt->getLiveRangeContaining(I->start);
 | 
						|
        assert(DstLR  && "Invalid joined interval!");
 | 
						|
        const VNInfo *DstValNo = DstLR->valno;
 | 
						|
        if (CopiedValNos.insert(DstValNo)) {
 | 
						|
          VNInfo *ValNo = RealInt.getNextValue(DstValNo->def, DstValNo->copy,
 | 
						|
                                               li_->getVNInfoAllocator());
 | 
						|
          ValNo->hasPHIKill = DstValNo->hasPHIKill;
 | 
						|
          RealInt.addKills(ValNo, DstValNo->kills);
 | 
						|
          RealInt.MergeValueInAsValue(*ResDstInt, DstValNo, ValNo);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      DstReg = RealDstReg ? RealDstReg : RealSrcReg;
 | 
						|
    }
 | 
						|
 | 
						|
    // Update the liveintervals of sub-registers.
 | 
						|
    for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
 | 
						|
      li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
 | 
						|
                                                 li_->getVNInfoAllocator());
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
 | 
						|
  // larger super-register.
 | 
						|
  if ((isExtSubReg || isInsSubReg) && !SrcIsPhys && !DstIsPhys) {
 | 
						|
    if ((isExtSubReg && !Swapped) || (isInsSubReg && Swapped)) {
 | 
						|
      ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator());
 | 
						|
      std::swap(SrcReg, DstReg);
 | 
						|
      std::swap(ResSrcInt, ResDstInt);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Coalescing to a virtual register that is of a sub-register class of the
 | 
						|
  // other. Make sure the resulting register is set to the right register class.
 | 
						|
  if (SubRC) {
 | 
						|
    mri_->setRegClass(DstReg, SubRC);
 | 
						|
    ++numSubJoins;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewHeuristic) {
 | 
						|
    // Add all copies that define val# in the source interval into the queue.
 | 
						|
    for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
 | 
						|
           e = ResSrcInt->vni_end(); i != e; ++i) {
 | 
						|
      const VNInfo *vni = *i;
 | 
						|
      if (!vni->def || vni->def == ~1U || vni->def == ~0U)
 | 
						|
        continue;
 | 
						|
      MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
 | 
						|
      unsigned NewSrcReg, NewDstReg;
 | 
						|
      if (CopyMI &&
 | 
						|
          JoinedCopies.count(CopyMI) == 0 &&
 | 
						|
          tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg)) {
 | 
						|
        unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
 | 
						|
        JoinQueue->push(CopyRec(CopyMI, LoopDepth,
 | 
						|
                                isBackEdgeCopy(CopyMI, DstReg)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Remember to delete the copy instruction.
 | 
						|
  JoinedCopies.insert(CopyMI);
 | 
						|
 | 
						|
  // Some live range has been lengthened due to colaescing, eliminate the
 | 
						|
  // unnecessary kills.
 | 
						|
  RemoveUnnecessaryKills(SrcReg, *ResDstInt);
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(DstReg))
 | 
						|
    RemoveUnnecessaryKills(DstReg, *ResDstInt);
 | 
						|
 | 
						|
  if (isInsSubReg)
 | 
						|
    // Avoid:
 | 
						|
    // r1024 = op
 | 
						|
    // r1024 = implicit_def
 | 
						|
    // ...
 | 
						|
    //       = r1024
 | 
						|
    RemoveDeadImpDef(DstReg, *ResDstInt);
 | 
						|
  UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
 | 
						|
 | 
						|
  // SrcReg is guarateed to be the register whose live interval that is
 | 
						|
  // being merged.
 | 
						|
  li_->removeInterval(SrcReg);
 | 
						|
 | 
						|
  if (isEmpty) {
 | 
						|
    // Now the copy is being coalesced away, the val# previously defined
 | 
						|
    // by the copy is being defined by an IMPLICIT_DEF which defines a zero
 | 
						|
    // length interval. Remove the val#.
 | 
						|
    unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
 | 
						|
    const LiveRange *LR = ResDstInt->getLiveRangeContaining(CopyIdx);
 | 
						|
    VNInfo *ImpVal = LR->valno;
 | 
						|
    assert(ImpVal->def == CopyIdx);
 | 
						|
    unsigned NextDef = LR->end;
 | 
						|
    RemoveCopiesFromValNo(*ResDstInt, ImpVal);
 | 
						|
    ResDstInt->removeValNo(ImpVal);
 | 
						|
    LR = ResDstInt->FindLiveRangeContaining(NextDef);
 | 
						|
    if (LR != ResDstInt->end() && LR->valno->def == NextDef) {
 | 
						|
      // Special case: vr1024 = implicit_def
 | 
						|
      //               vr1024 = insert_subreg vr1024, vr1025, c
 | 
						|
      // The insert_subreg becomes a "copy" that defines a val# which can itself
 | 
						|
      // be coalesced away.
 | 
						|
      MachineInstr *DefMI = li_->getInstructionFromIndex(NextDef);
 | 
						|
      if (DefMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG)
 | 
						|
        LR->valno->copy = DefMI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If resulting interval has a preference that no longer fits because of subreg
 | 
						|
  // coalescing, just clear the preference.
 | 
						|
  if (ResDstInt->preference && (isExtSubReg || isInsSubReg) &&
 | 
						|
      TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
 | 
						|
    const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
 | 
						|
    if (!RC->contains(ResDstInt->preference))
 | 
						|
      ResDstInt->preference = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  DOUT << "\n\t\tJoined.  Result = "; ResDstInt->print(DOUT, tri_);
 | 
						|
  DOUT << "\n";
 | 
						|
 | 
						|
  ++numJoins;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
 | 
						|
/// compute what the resultant value numbers for each value in the input two
 | 
						|
/// ranges will be.  This is complicated by copies between the two which can
 | 
						|
/// and will commonly cause multiple value numbers to be merged into one.
 | 
						|
///
 | 
						|
/// VN is the value number that we're trying to resolve.  InstDefiningValue
 | 
						|
/// keeps track of the new InstDefiningValue assignment for the result
 | 
						|
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
 | 
						|
/// whether a value in this or other is a copy from the opposite set.
 | 
						|
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
 | 
						|
/// already been assigned.
 | 
						|
///
 | 
						|
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
 | 
						|
/// contains the value number the copy is from.
 | 
						|
///
 | 
						|
static unsigned ComputeUltimateVN(VNInfo *VNI,
 | 
						|
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
 | 
						|
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
 | 
						|
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
 | 
						|
                                  SmallVector<int, 16> &ThisValNoAssignments,
 | 
						|
                                  SmallVector<int, 16> &OtherValNoAssignments) {
 | 
						|
  unsigned VN = VNI->id;
 | 
						|
 | 
						|
  // If the VN has already been computed, just return it.
 | 
						|
  if (ThisValNoAssignments[VN] >= 0)
 | 
						|
    return ThisValNoAssignments[VN];
 | 
						|
//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
 | 
						|
 | 
						|
  // If this val is not a copy from the other val, then it must be a new value
 | 
						|
  // number in the destination.
 | 
						|
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
 | 
						|
  if (I == ThisFromOther.end()) {
 | 
						|
    NewVNInfo.push_back(VNI);
 | 
						|
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
 | 
						|
  }
 | 
						|
  VNInfo *OtherValNo = I->second;
 | 
						|
 | 
						|
  // Otherwise, this *is* a copy from the RHS.  If the other side has already
 | 
						|
  // been computed, return it.
 | 
						|
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
 | 
						|
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
 | 
						|
  
 | 
						|
  // Mark this value number as currently being computed, then ask what the
 | 
						|
  // ultimate value # of the other value is.
 | 
						|
  ThisValNoAssignments[VN] = -2;
 | 
						|
  unsigned UltimateVN =
 | 
						|
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
 | 
						|
                      OtherValNoAssignments, ThisValNoAssignments);
 | 
						|
  return ThisValNoAssignments[VN] = UltimateVN;
 | 
						|
}
 | 
						|
 | 
						|
static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
 | 
						|
  return std::find(V.begin(), V.end(), Val) != V.end();
 | 
						|
}
 | 
						|
 | 
						|
/// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
 | 
						|
/// the specified live interval is defined by a copy from the specified
 | 
						|
/// register.
 | 
						|
bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
 | 
						|
                                                           LiveRange *LR,
 | 
						|
                                                           unsigned Reg) {
 | 
						|
  unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
 | 
						|
  if (SrcReg == Reg)
 | 
						|
    return true;
 | 
						|
  if (LR->valno->def == ~0U &&
 | 
						|
      TargetRegisterInfo::isPhysicalRegister(li.reg) &&
 | 
						|
      *tri_->getSuperRegisters(li.reg)) {
 | 
						|
    // It's a sub-register live interval, we may not have precise information.
 | 
						|
    // Re-compute it.
 | 
						|
    MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (DefMI && tii_->isMoveInstr(*DefMI, SrcReg, DstReg) &&
 | 
						|
        DstReg == li.reg && SrcReg == Reg) {
 | 
						|
      // Cache computed info.
 | 
						|
      LR->valno->def  = LR->start;
 | 
						|
      LR->valno->copy = DefMI;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SimpleJoin - Attempt to joint the specified interval into this one. The
 | 
						|
/// caller of this method must guarantee that the RHS only contains a single
 | 
						|
/// value number and that the RHS is not defined by a copy from this
 | 
						|
/// interval.  This returns false if the intervals are not joinable, or it
 | 
						|
/// joins them and returns true.
 | 
						|
bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
 | 
						|
  assert(RHS.containsOneValue());
 | 
						|
  
 | 
						|
  // Some number (potentially more than one) value numbers in the current
 | 
						|
  // interval may be defined as copies from the RHS.  Scan the overlapping
 | 
						|
  // portions of the LHS and RHS, keeping track of this and looking for
 | 
						|
  // overlapping live ranges that are NOT defined as copies.  If these exist, we
 | 
						|
  // cannot coalesce.
 | 
						|
  
 | 
						|
  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
 | 
						|
  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
 | 
						|
  
 | 
						|
  if (LHSIt->start < RHSIt->start) {
 | 
						|
    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
 | 
						|
    if (LHSIt != LHS.begin()) --LHSIt;
 | 
						|
  } else if (RHSIt->start < LHSIt->start) {
 | 
						|
    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
 | 
						|
    if (RHSIt != RHS.begin()) --RHSIt;
 | 
						|
  }
 | 
						|
  
 | 
						|
  SmallVector<VNInfo*, 8> EliminatedLHSVals;
 | 
						|
  
 | 
						|
  while (1) {
 | 
						|
    // Determine if these live intervals overlap.
 | 
						|
    bool Overlaps = false;
 | 
						|
    if (LHSIt->start <= RHSIt->start)
 | 
						|
      Overlaps = LHSIt->end > RHSIt->start;
 | 
						|
    else
 | 
						|
      Overlaps = RHSIt->end > LHSIt->start;
 | 
						|
    
 | 
						|
    // If the live intervals overlap, there are two interesting cases: if the
 | 
						|
    // LHS interval is defined by a copy from the RHS, it's ok and we record
 | 
						|
    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
 | 
						|
    // coalesce these live ranges and we bail out.
 | 
						|
    if (Overlaps) {
 | 
						|
      // If we haven't already recorded that this value # is safe, check it.
 | 
						|
      if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
 | 
						|
        // Copy from the RHS?
 | 
						|
        if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
 | 
						|
          return false;    // Nope, bail out.
 | 
						|
 | 
						|
        if (LHSIt->contains(RHSIt->valno->def))
 | 
						|
          // Here is an interesting situation:
 | 
						|
          // BB1:
 | 
						|
          //   vr1025 = copy vr1024
 | 
						|
          //   ..
 | 
						|
          // BB2:
 | 
						|
          //   vr1024 = op 
 | 
						|
          //          = vr1025
 | 
						|
          // Even though vr1025 is copied from vr1024, it's not safe to
 | 
						|
          // coalesced them since live range of vr1025 intersects the
 | 
						|
          // def of vr1024. This happens because vr1025 is assigned the
 | 
						|
          // value of the previous iteration of vr1024.
 | 
						|
          return false;
 | 
						|
        EliminatedLHSVals.push_back(LHSIt->valno);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // We know this entire LHS live range is okay, so skip it now.
 | 
						|
      if (++LHSIt == LHSEnd) break;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (LHSIt->end < RHSIt->end) {
 | 
						|
      if (++LHSIt == LHSEnd) break;
 | 
						|
    } else {
 | 
						|
      // One interesting case to check here.  It's possible that we have
 | 
						|
      // something like "X3 = Y" which defines a new value number in the LHS,
 | 
						|
      // and is the last use of this liverange of the RHS.  In this case, we
 | 
						|
      // want to notice this copy (so that it gets coalesced away) even though
 | 
						|
      // the live ranges don't actually overlap.
 | 
						|
      if (LHSIt->start == RHSIt->end) {
 | 
						|
        if (InVector(LHSIt->valno, EliminatedLHSVals)) {
 | 
						|
          // We already know that this value number is going to be merged in
 | 
						|
          // if coalescing succeeds.  Just skip the liverange.
 | 
						|
          if (++LHSIt == LHSEnd) break;
 | 
						|
        } else {
 | 
						|
          // Otherwise, if this is a copy from the RHS, mark it as being merged
 | 
						|
          // in.
 | 
						|
          if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
 | 
						|
            if (LHSIt->contains(RHSIt->valno->def))
 | 
						|
              // Here is an interesting situation:
 | 
						|
              // BB1:
 | 
						|
              //   vr1025 = copy vr1024
 | 
						|
              //   ..
 | 
						|
              // BB2:
 | 
						|
              //   vr1024 = op 
 | 
						|
              //          = vr1025
 | 
						|
              // Even though vr1025 is copied from vr1024, it's not safe to
 | 
						|
              // coalesced them since live range of vr1025 intersects the
 | 
						|
              // def of vr1024. This happens because vr1025 is assigned the
 | 
						|
              // value of the previous iteration of vr1024.
 | 
						|
              return false;
 | 
						|
            EliminatedLHSVals.push_back(LHSIt->valno);
 | 
						|
 | 
						|
            // We know this entire LHS live range is okay, so skip it now.
 | 
						|
            if (++LHSIt == LHSEnd) break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (++RHSIt == RHSEnd) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we got here, we know that the coalescing will be successful and that
 | 
						|
  // the value numbers in EliminatedLHSVals will all be merged together.  Since
 | 
						|
  // the most common case is that EliminatedLHSVals has a single number, we
 | 
						|
  // optimize for it: if there is more than one value, we merge them all into
 | 
						|
  // the lowest numbered one, then handle the interval as if we were merging
 | 
						|
  // with one value number.
 | 
						|
  VNInfo *LHSValNo;
 | 
						|
  if (EliminatedLHSVals.size() > 1) {
 | 
						|
    // Loop through all the equal value numbers merging them into the smallest
 | 
						|
    // one.
 | 
						|
    VNInfo *Smallest = EliminatedLHSVals[0];
 | 
						|
    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
 | 
						|
      if (EliminatedLHSVals[i]->id < Smallest->id) {
 | 
						|
        // Merge the current notion of the smallest into the smaller one.
 | 
						|
        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
 | 
						|
        Smallest = EliminatedLHSVals[i];
 | 
						|
      } else {
 | 
						|
        // Merge into the smallest.
 | 
						|
        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    LHSValNo = Smallest;
 | 
						|
  } else if (EliminatedLHSVals.empty()) {
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
 | 
						|
        *tri_->getSuperRegisters(LHS.reg))
 | 
						|
      // Imprecise sub-register information. Can't handle it.
 | 
						|
      return false;
 | 
						|
    assert(0 && "No copies from the RHS?");
 | 
						|
  } else {
 | 
						|
    LHSValNo = EliminatedLHSVals[0];
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, now that there is a single LHS value number that we're merging the
 | 
						|
  // RHS into, update the value number info for the LHS to indicate that the
 | 
						|
  // value number is defined where the RHS value number was.
 | 
						|
  const VNInfo *VNI = RHS.getValNumInfo(0);
 | 
						|
  LHSValNo->def  = VNI->def;
 | 
						|
  LHSValNo->copy = VNI->copy;
 | 
						|
  
 | 
						|
  // Okay, the final step is to loop over the RHS live intervals, adding them to
 | 
						|
  // the LHS.
 | 
						|
  LHSValNo->hasPHIKill |= VNI->hasPHIKill;
 | 
						|
  LHS.addKills(LHSValNo, VNI->kills);
 | 
						|
  LHS.MergeRangesInAsValue(RHS, LHSValNo);
 | 
						|
  LHS.weight += RHS.weight;
 | 
						|
  if (RHS.preference && !LHS.preference)
 | 
						|
    LHS.preference = RHS.preference;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// JoinIntervals - Attempt to join these two intervals.  On failure, this
 | 
						|
/// returns false.  Otherwise, if one of the intervals being joined is a
 | 
						|
/// physreg, this method always canonicalizes LHS to be it.  The output
 | 
						|
/// "RHS" will not have been modified, so we can use this information
 | 
						|
/// below to update aliases.
 | 
						|
bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS,
 | 
						|
                                             LiveInterval &RHS, bool &Swapped) {
 | 
						|
  // Compute the final value assignment, assuming that the live ranges can be
 | 
						|
  // coalesced.
 | 
						|
  SmallVector<int, 16> LHSValNoAssignments;
 | 
						|
  SmallVector<int, 16> RHSValNoAssignments;
 | 
						|
  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
 | 
						|
  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
 | 
						|
  SmallVector<VNInfo*, 16> NewVNInfo;
 | 
						|
                          
 | 
						|
  // If a live interval is a physical register, conservatively check if any
 | 
						|
  // of its sub-registers is overlapping the live interval of the virtual
 | 
						|
  // register. If so, do not coalesce.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
 | 
						|
      *tri_->getSubRegisters(LHS.reg)) {
 | 
						|
    for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
 | 
						|
      if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
 | 
						|
        DOUT << "Interfere with sub-register ";
 | 
						|
        DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
  } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
 | 
						|
             *tri_->getSubRegisters(RHS.reg)) {
 | 
						|
    for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
 | 
						|
      if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
 | 
						|
        DOUT << "Interfere with sub-register ";
 | 
						|
        DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
                          
 | 
						|
  // Compute ultimate value numbers for the LHS and RHS values.
 | 
						|
  if (RHS.containsOneValue()) {
 | 
						|
    // Copies from a liveinterval with a single value are simple to handle and
 | 
						|
    // very common, handle the special case here.  This is important, because
 | 
						|
    // often RHS is small and LHS is large (e.g. a physreg).
 | 
						|
    
 | 
						|
    // Find out if the RHS is defined as a copy from some value in the LHS.
 | 
						|
    int RHSVal0DefinedFromLHS = -1;
 | 
						|
    int RHSValID = -1;
 | 
						|
    VNInfo *RHSValNoInfo = NULL;
 | 
						|
    VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
 | 
						|
    unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
 | 
						|
    if ((RHSSrcReg == 0 || RHSSrcReg != LHS.reg)) {
 | 
						|
      // If RHS is not defined as a copy from the LHS, we can use simpler and
 | 
						|
      // faster checks to see if the live ranges are coalescable.  This joiner
 | 
						|
      // can't swap the LHS/RHS intervals though.
 | 
						|
      if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
 | 
						|
        return SimpleJoin(LHS, RHS);
 | 
						|
      } else {
 | 
						|
        RHSValNoInfo = RHSValNoInfo0;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // It was defined as a copy from the LHS, find out what value # it is.
 | 
						|
      RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
 | 
						|
      RHSValID = RHSValNoInfo->id;
 | 
						|
      RHSVal0DefinedFromLHS = RHSValID;
 | 
						|
    }
 | 
						|
    
 | 
						|
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
 | 
						|
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
 | 
						|
    NewVNInfo.resize(LHS.getNumValNums(), NULL);
 | 
						|
    
 | 
						|
    // Okay, *all* of the values in LHS that are defined as a copy from RHS
 | 
						|
    // should now get updated.
 | 
						|
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      VNInfo *VNI = *i;
 | 
						|
      unsigned VN = VNI->id;
 | 
						|
      if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
 | 
						|
        if (LHSSrcReg != RHS.reg) {
 | 
						|
          // If this is not a copy from the RHS, its value number will be
 | 
						|
          // unmodified by the coalescing.
 | 
						|
          NewVNInfo[VN] = VNI;
 | 
						|
          LHSValNoAssignments[VN] = VN;
 | 
						|
        } else if (RHSValID == -1) {
 | 
						|
          // Otherwise, it is a copy from the RHS, and we don't already have a
 | 
						|
          // value# for it.  Keep the current value number, but remember it.
 | 
						|
          LHSValNoAssignments[VN] = RHSValID = VN;
 | 
						|
          NewVNInfo[VN] = RHSValNoInfo;
 | 
						|
          LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
 | 
						|
        } else {
 | 
						|
          // Otherwise, use the specified value #.
 | 
						|
          LHSValNoAssignments[VN] = RHSValID;
 | 
						|
          if (VN == (unsigned)RHSValID) {  // Else this val# is dead.
 | 
						|
            NewVNInfo[VN] = RHSValNoInfo;
 | 
						|
            LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        NewVNInfo[VN] = VNI;
 | 
						|
        LHSValNoAssignments[VN] = VN;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert(RHSValID != -1 && "Didn't find value #?");
 | 
						|
    RHSValNoAssignments[0] = RHSValID;
 | 
						|
    if (RHSVal0DefinedFromLHS != -1) {
 | 
						|
      // This path doesn't go through ComputeUltimateVN so just set
 | 
						|
      // it to anything.
 | 
						|
      RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Loop over the value numbers of the LHS, seeing if any are defined from
 | 
						|
    // the RHS.
 | 
						|
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      VNInfo *VNI = *i;
 | 
						|
      if (VNI->def == ~1U || VNI->copy == 0)  // Src not defined by a copy?
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // DstReg is known to be a register in the LHS interval.  If the src is
 | 
						|
      // from the RHS interval, we can use its value #.
 | 
						|
      if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Figure out the value # from the RHS.
 | 
						|
      LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Loop over the value numbers of the RHS, seeing if any are defined from
 | 
						|
    // the LHS.
 | 
						|
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      VNInfo *VNI = *i;
 | 
						|
      if (VNI->def == ~1U || VNI->copy == 0)  // Src not defined by a copy?
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // DstReg is known to be a register in the RHS interval.  If the src is
 | 
						|
      // from the LHS interval, we can use its value #.
 | 
						|
      if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Figure out the value # from the LHS.
 | 
						|
      RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
 | 
						|
    }
 | 
						|
    
 | 
						|
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
 | 
						|
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
 | 
						|
    NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
 | 
						|
    
 | 
						|
    for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      VNInfo *VNI = *i;
 | 
						|
      unsigned VN = VNI->id;
 | 
						|
      if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) 
 | 
						|
        continue;
 | 
						|
      ComputeUltimateVN(VNI, NewVNInfo,
 | 
						|
                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
 | 
						|
                        LHSValNoAssignments, RHSValNoAssignments);
 | 
						|
    }
 | 
						|
    for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      VNInfo *VNI = *i;
 | 
						|
      unsigned VN = VNI->id;
 | 
						|
      if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
 | 
						|
        continue;
 | 
						|
      // If this value number isn't a copy from the LHS, it's a new number.
 | 
						|
      if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
 | 
						|
        NewVNInfo.push_back(VNI);
 | 
						|
        RHSValNoAssignments[VN] = NewVNInfo.size()-1;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      ComputeUltimateVN(VNI, NewVNInfo,
 | 
						|
                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
 | 
						|
                        RHSValNoAssignments, LHSValNoAssignments);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
 | 
						|
  // interval lists to see if these intervals are coalescable.
 | 
						|
  LiveInterval::const_iterator I = LHS.begin();
 | 
						|
  LiveInterval::const_iterator IE = LHS.end();
 | 
						|
  LiveInterval::const_iterator J = RHS.begin();
 | 
						|
  LiveInterval::const_iterator JE = RHS.end();
 | 
						|
  
 | 
						|
  // Skip ahead until the first place of potential sharing.
 | 
						|
  if (I->start < J->start) {
 | 
						|
    I = std::upper_bound(I, IE, J->start);
 | 
						|
    if (I != LHS.begin()) --I;
 | 
						|
  } else if (J->start < I->start) {
 | 
						|
    J = std::upper_bound(J, JE, I->start);
 | 
						|
    if (J != RHS.begin()) --J;
 | 
						|
  }
 | 
						|
  
 | 
						|
  while (1) {
 | 
						|
    // Determine if these two live ranges overlap.
 | 
						|
    bool Overlaps;
 | 
						|
    if (I->start < J->start) {
 | 
						|
      Overlaps = I->end > J->start;
 | 
						|
    } else {
 | 
						|
      Overlaps = J->end > I->start;
 | 
						|
    }
 | 
						|
 | 
						|
    // If so, check value # info to determine if they are really different.
 | 
						|
    if (Overlaps) {
 | 
						|
      // If the live range overlap will map to the same value number in the
 | 
						|
      // result liverange, we can still coalesce them.  If not, we can't.
 | 
						|
      if (LHSValNoAssignments[I->valno->id] !=
 | 
						|
          RHSValNoAssignments[J->valno->id])
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (I->end < J->end) {
 | 
						|
      ++I;
 | 
						|
      if (I == IE) break;
 | 
						|
    } else {
 | 
						|
      ++J;
 | 
						|
      if (J == JE) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update kill info. Some live ranges are extended due to copy coalescing.
 | 
						|
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
 | 
						|
         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
 | 
						|
    VNInfo *VNI = I->first;
 | 
						|
    unsigned LHSValID = LHSValNoAssignments[VNI->id];
 | 
						|
    LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
 | 
						|
    NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill;
 | 
						|
    RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update kill info. Some live ranges are extended due to copy coalescing.
 | 
						|
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
 | 
						|
         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
 | 
						|
    VNInfo *VNI = I->first;
 | 
						|
    unsigned RHSValID = RHSValNoAssignments[VNI->id];
 | 
						|
    LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
 | 
						|
    NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill;
 | 
						|
    LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, we know that we can coalesce the live ranges.  Ask the
 | 
						|
  // intervals to coalesce themselves now.
 | 
						|
  if ((RHS.ranges.size() > LHS.ranges.size() &&
 | 
						|
      TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
 | 
						|
      TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
 | 
						|
    RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo);
 | 
						|
    Swapped = true;
 | 
						|
  } else {
 | 
						|
    LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
 | 
						|
    Swapped = false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
 | 
						|
  // depth of the basic block (the unsigned), and then on the MBB number.
 | 
						|
  struct DepthMBBCompare {
 | 
						|
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
 | 
						|
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
 | 
						|
      if (LHS.first > RHS.first) return true;   // Deeper loops first
 | 
						|
      return LHS.first == RHS.first &&
 | 
						|
        LHS.second->getNumber() < RHS.second->getNumber();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// getRepIntervalSize - Returns the size of the interval that represents the
 | 
						|
/// specified register.
 | 
						|
template<class SF>
 | 
						|
unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
 | 
						|
  return Rc->getRepIntervalSize(Reg);
 | 
						|
}
 | 
						|
 | 
						|
/// CopyRecSort::operator - Join priority queue sorting function.
 | 
						|
///
 | 
						|
bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
 | 
						|
  // Inner loops first.
 | 
						|
  if (left.LoopDepth > right.LoopDepth)
 | 
						|
    return false;
 | 
						|
  else if (left.LoopDepth == right.LoopDepth)
 | 
						|
    if (left.isBackEdge && !right.isBackEdge)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
 | 
						|
                                               std::vector<CopyRec> &TryAgain) {
 | 
						|
  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
 | 
						|
 | 
						|
  std::vector<CopyRec> VirtCopies;
 | 
						|
  std::vector<CopyRec> PhysCopies;
 | 
						|
  std::vector<CopyRec> ImpDefCopies;
 | 
						|
  unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
 | 
						|
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
 | 
						|
       MII != E;) {
 | 
						|
    MachineInstr *Inst = MII++;
 | 
						|
    
 | 
						|
    // If this isn't a copy nor a extract_subreg, we can't join intervals.
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
 | 
						|
      DstReg = Inst->getOperand(0).getReg();
 | 
						|
      SrcReg = Inst->getOperand(1).getReg();
 | 
						|
    } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
 | 
						|
      DstReg = Inst->getOperand(0).getReg();
 | 
						|
      SrcReg = Inst->getOperand(2).getReg();
 | 
						|
    } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
 | 
						|
    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | 
						|
    if (NewHeuristic) {
 | 
						|
      JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
 | 
						|
    } else {
 | 
						|
      if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
 | 
						|
        ImpDefCopies.push_back(CopyRec(Inst, 0, false));
 | 
						|
      else if (SrcIsPhys || DstIsPhys)
 | 
						|
        PhysCopies.push_back(CopyRec(Inst, 0, false));
 | 
						|
      else
 | 
						|
        VirtCopies.push_back(CopyRec(Inst, 0, false));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewHeuristic)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Try coalescing implicit copies first, followed by copies to / from
 | 
						|
  // physical registers, then finally copies from virtual registers to
 | 
						|
  // virtual registers.
 | 
						|
  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
 | 
						|
    CopyRec &TheCopy = ImpDefCopies[i];
 | 
						|
    bool Again = false;
 | 
						|
    if (!JoinCopy(TheCopy, Again))
 | 
						|
      if (Again)
 | 
						|
        TryAgain.push_back(TheCopy);
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
 | 
						|
    CopyRec &TheCopy = PhysCopies[i];
 | 
						|
    bool Again = false;
 | 
						|
    if (!JoinCopy(TheCopy, Again))
 | 
						|
      if (Again)
 | 
						|
        TryAgain.push_back(TheCopy);
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
 | 
						|
    CopyRec &TheCopy = VirtCopies[i];
 | 
						|
    bool Again = false;
 | 
						|
    if (!JoinCopy(TheCopy, Again))
 | 
						|
      if (Again)
 | 
						|
        TryAgain.push_back(TheCopy);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SimpleRegisterCoalescing::joinIntervals() {
 | 
						|
  DOUT << "********** JOINING INTERVALS ***********\n";
 | 
						|
 | 
						|
  if (NewHeuristic)
 | 
						|
    JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
 | 
						|
 | 
						|
  std::vector<CopyRec> TryAgainList;
 | 
						|
  if (loopInfo->empty()) {
 | 
						|
    // If there are no loops in the function, join intervals in function order.
 | 
						|
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | 
						|
         I != E; ++I)
 | 
						|
      CopyCoalesceInMBB(I, TryAgainList);
 | 
						|
  } else {
 | 
						|
    // Otherwise, join intervals in inner loops before other intervals.
 | 
						|
    // Unfortunately we can't just iterate over loop hierarchy here because
 | 
						|
    // there may be more MBB's than BB's.  Collect MBB's for sorting.
 | 
						|
 | 
						|
    // Join intervals in the function prolog first. We want to join physical
 | 
						|
    // registers with virtual registers before the intervals got too long.
 | 
						|
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
 | 
						|
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
 | 
						|
      MachineBasicBlock *MBB = I;
 | 
						|
      MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort by loop depth.
 | 
						|
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
 | 
						|
 | 
						|
    // Finally, join intervals in loop nest order.
 | 
						|
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
 | 
						|
      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Joining intervals can allow other intervals to be joined.  Iteratively join
 | 
						|
  // until we make no progress.
 | 
						|
  if (NewHeuristic) {
 | 
						|
    SmallVector<CopyRec, 16> TryAgain;
 | 
						|
    bool ProgressMade = true;
 | 
						|
    while (ProgressMade) {
 | 
						|
      ProgressMade = false;
 | 
						|
      while (!JoinQueue->empty()) {
 | 
						|
        CopyRec R = JoinQueue->pop();
 | 
						|
        bool Again = false;
 | 
						|
        bool Success = JoinCopy(R, Again);
 | 
						|
        if (Success)
 | 
						|
          ProgressMade = true;
 | 
						|
        else if (Again)
 | 
						|
          TryAgain.push_back(R);
 | 
						|
      }
 | 
						|
 | 
						|
      if (ProgressMade) {
 | 
						|
        while (!TryAgain.empty()) {
 | 
						|
          JoinQueue->push(TryAgain.back());
 | 
						|
          TryAgain.pop_back();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    bool ProgressMade = true;
 | 
						|
    while (ProgressMade) {
 | 
						|
      ProgressMade = false;
 | 
						|
 | 
						|
      for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
 | 
						|
        CopyRec &TheCopy = TryAgainList[i];
 | 
						|
        if (TheCopy.MI) {
 | 
						|
          bool Again = false;
 | 
						|
          bool Success = JoinCopy(TheCopy, Again);
 | 
						|
          if (Success || !Again) {
 | 
						|
            TheCopy.MI = 0;   // Mark this one as done.
 | 
						|
            ProgressMade = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewHeuristic)
 | 
						|
    delete JoinQueue;  
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the two specified registers belong to different register
 | 
						|
/// classes.  The registers may be either phys or virt regs. In the
 | 
						|
/// case where both registers are virtual registers, it would also returns
 | 
						|
/// true by reference the RegB register class in SubRC if it is a subset of
 | 
						|
/// RegA's register class.
 | 
						|
bool
 | 
						|
SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA, unsigned RegB,
 | 
						|
                                      const TargetRegisterClass *&SubRC) const {
 | 
						|
 | 
						|
  // Get the register classes for the first reg.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
 | 
						|
           "Shouldn't consider two physregs!");
 | 
						|
    return !mri_->getRegClass(RegB)->contains(RegA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare against the regclass for the second reg.
 | 
						|
  const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(RegB)) {
 | 
						|
    const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
 | 
						|
    if (RegClassA == RegClassB)
 | 
						|
      return false;
 | 
						|
    SubRC = (RegClassA->hasSubClass(RegClassB)) ? RegClassB : NULL;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return !RegClassA->contains(RegB);
 | 
						|
}
 | 
						|
 | 
						|
/// lastRegisterUse - Returns the last use of the specific register between
 | 
						|
/// cycles Start and End or NULL if there are no uses.
 | 
						|
MachineOperand *
 | 
						|
SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
 | 
						|
                                          unsigned Reg, unsigned &UseIdx) const{
 | 
						|
  UseIdx = 0;
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
    MachineOperand *LastUse = NULL;
 | 
						|
    for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
 | 
						|
           E = mri_->use_end(); I != E; ++I) {
 | 
						|
      MachineOperand &Use = I.getOperand();
 | 
						|
      MachineInstr *UseMI = Use.getParent();
 | 
						|
      unsigned SrcReg, DstReg;
 | 
						|
      if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg) && SrcReg == DstReg)
 | 
						|
        // Ignore identity copies.
 | 
						|
        continue;
 | 
						|
      unsigned Idx = li_->getInstructionIndex(UseMI);
 | 
						|
      if (Idx >= Start && Idx < End && Idx >= UseIdx) {
 | 
						|
        LastUse = &Use;
 | 
						|
        UseIdx = Idx;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return LastUse;
 | 
						|
  }
 | 
						|
 | 
						|
  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
 | 
						|
  int s = Start;
 | 
						|
  while (e >= s) {
 | 
						|
    // Skip deleted instructions
 | 
						|
    MachineInstr *MI = li_->getInstructionFromIndex(e);
 | 
						|
    while ((e - InstrSlots::NUM) >= s && !MI) {
 | 
						|
      e -= InstrSlots::NUM;
 | 
						|
      MI = li_->getInstructionFromIndex(e);
 | 
						|
    }
 | 
						|
    if (e < s || MI == NULL)
 | 
						|
      return NULL;
 | 
						|
 | 
						|
    // Ignore identity copies.
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg))
 | 
						|
      for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
 | 
						|
        MachineOperand &Use = MI->getOperand(i);
 | 
						|
        if (Use.isRegister() && Use.isUse() && Use.getReg() &&
 | 
						|
            tri_->regsOverlap(Use.getReg(), Reg)) {
 | 
						|
          UseIdx = e;
 | 
						|
          return &Use;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    e -= InstrSlots::NUM;
 | 
						|
  }
 | 
						|
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(reg))
 | 
						|
    cerr << tri_->getName(reg);
 | 
						|
  else
 | 
						|
    cerr << "%reg" << reg;
 | 
						|
}
 | 
						|
 | 
						|
void SimpleRegisterCoalescing::releaseMemory() {
 | 
						|
  JoinedCopies.clear();
 | 
						|
  ReMatCopies.clear();
 | 
						|
}
 | 
						|
 | 
						|
static bool isZeroLengthInterval(LiveInterval *li) {
 | 
						|
  for (LiveInterval::Ranges::const_iterator
 | 
						|
         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
 | 
						|
    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
 | 
						|
/// turn the copy into an implicit def.
 | 
						|
bool
 | 
						|
SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator &I,
 | 
						|
                                             MachineBasicBlock *MBB,
 | 
						|
                                             unsigned DstReg, unsigned SrcReg) {
 | 
						|
  MachineInstr *CopyMI = &*I;
 | 
						|
  unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
 | 
						|
  if (!li_->hasInterval(SrcReg))
 | 
						|
    return false;
 | 
						|
  LiveInterval &SrcInt = li_->getInterval(SrcReg);
 | 
						|
  if (!SrcInt.empty())
 | 
						|
    return false;
 | 
						|
  if (!li_->hasInterval(DstReg))
 | 
						|
    return false;
 | 
						|
  LiveInterval &DstInt = li_->getInterval(DstReg);
 | 
						|
  const LiveRange *DstLR = DstInt.getLiveRangeContaining(CopyIdx);
 | 
						|
  DstInt.removeValNo(DstLR->valno);
 | 
						|
  CopyMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
 | 
						|
  for (int i = CopyMI->getNumOperands() - 1, e = 0; i > e; --i)
 | 
						|
    CopyMI->RemoveOperand(i);
 | 
						|
  bool NoUse = mri_->use_empty(SrcReg);
 | 
						|
  if (NoUse) {
 | 
						|
    for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
 | 
						|
           E = mri_->reg_end(); I != E; ) {
 | 
						|
      assert(I.getOperand().isDef());
 | 
						|
      MachineInstr *DefMI = &*I;
 | 
						|
      ++I;
 | 
						|
      // The implicit_def source has no other uses, delete it.
 | 
						|
      assert(DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF);
 | 
						|
      li_->RemoveMachineInstrFromMaps(DefMI);
 | 
						|
      DefMI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ++I;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
 | 
						|
  mf_ = &fn;
 | 
						|
  mri_ = &fn.getRegInfo();
 | 
						|
  tm_ = &fn.getTarget();
 | 
						|
  tri_ = tm_->getRegisterInfo();
 | 
						|
  tii_ = tm_->getInstrInfo();
 | 
						|
  li_ = &getAnalysis<LiveIntervals>();
 | 
						|
  loopInfo = &getAnalysis<MachineLoopInfo>();
 | 
						|
 | 
						|
  DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
 | 
						|
       << "********** Function: "
 | 
						|
       << ((Value*)mf_->getFunction())->getName() << '\n';
 | 
						|
 | 
						|
  allocatableRegs_ = tri_->getAllocatableSet(fn);
 | 
						|
  for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
 | 
						|
         E = tri_->regclass_end(); I != E; ++I)
 | 
						|
    allocatableRCRegs_.insert(std::make_pair(*I,
 | 
						|
                                             tri_->getAllocatableSet(fn, *I)));
 | 
						|
 | 
						|
  // Join (coalesce) intervals if requested.
 | 
						|
  if (EnableJoining) {
 | 
						|
    joinIntervals();
 | 
						|
    DOUT << "********** INTERVALS POST JOINING **********\n";
 | 
						|
    for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
 | 
						|
      I->second->print(DOUT, tri_);
 | 
						|
      DOUT << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform a final pass over the instructions and compute spill weights
 | 
						|
  // and remove identity moves.
 | 
						|
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | 
						|
       mbbi != mbbe; ++mbbi) {
 | 
						|
    MachineBasicBlock* mbb = mbbi;
 | 
						|
    unsigned loopDepth = loopInfo->getLoopDepth(mbb);
 | 
						|
 | 
						|
    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
 | 
						|
         mii != mie; ) {
 | 
						|
      MachineInstr *MI = mii;
 | 
						|
      unsigned SrcReg, DstReg;
 | 
						|
      if (JoinedCopies.count(MI)) {
 | 
						|
        // Delete all coalesced copies.
 | 
						|
        if (!tii_->isMoveInstr(*MI, SrcReg, DstReg)) {
 | 
						|
          assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
 | 
						|
                  MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG) &&
 | 
						|
                 "Unrecognized copy instruction");
 | 
						|
          DstReg = MI->getOperand(0).getReg();
 | 
						|
        }
 | 
						|
        if (MI->registerDefIsDead(DstReg)) {
 | 
						|
          LiveInterval &li = li_->getInterval(DstReg);
 | 
						|
          if (!ShortenDeadCopySrcLiveRange(li, MI))
 | 
						|
            ShortenDeadCopyLiveRange(li, MI);
 | 
						|
        }
 | 
						|
        li_->RemoveMachineInstrFromMaps(MI);
 | 
						|
        mii = mbbi->erase(mii);
 | 
						|
        ++numPeep;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the move will be an identity move delete it
 | 
						|
      bool isMove = tii_->isMoveInstr(*mii, SrcReg, DstReg);
 | 
						|
      if (isMove && SrcReg == DstReg) {
 | 
						|
        if (li_->hasInterval(SrcReg)) {
 | 
						|
          LiveInterval &RegInt = li_->getInterval(SrcReg);
 | 
						|
          // If def of this move instruction is dead, remove its live range
 | 
						|
          // from the dstination register's live interval.
 | 
						|
          if (mii->registerDefIsDead(DstReg)) {
 | 
						|
            if (!ShortenDeadCopySrcLiveRange(RegInt, mii))
 | 
						|
              ShortenDeadCopyLiveRange(RegInt, mii);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        li_->RemoveMachineInstrFromMaps(mii);
 | 
						|
        mii = mbbi->erase(mii);
 | 
						|
        ++numPeep;
 | 
						|
      } else if (!isMove || !TurnCopyIntoImpDef(mii, mbb, DstReg, SrcReg)) {
 | 
						|
        SmallSet<unsigned, 4> UniqueUses;
 | 
						|
        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
 | 
						|
          const MachineOperand &mop = mii->getOperand(i);
 | 
						|
          if (mop.isRegister() && mop.getReg() &&
 | 
						|
              TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
 | 
						|
            unsigned reg = mop.getReg();
 | 
						|
            // Multiple uses of reg by the same instruction. It should not
 | 
						|
            // contribute to spill weight again.
 | 
						|
            if (UniqueUses.count(reg) != 0)
 | 
						|
              continue;
 | 
						|
            LiveInterval &RegInt = li_->getInterval(reg);
 | 
						|
            RegInt.weight +=
 | 
						|
              li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
 | 
						|
            UniqueUses.insert(reg);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ++mii;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
 | 
						|
    LiveInterval &LI = *I->second;
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
 | 
						|
      // If the live interval length is essentially zero, i.e. in every live
 | 
						|
      // range the use follows def immediately, it doesn't make sense to spill
 | 
						|
      // it and hope it will be easier to allocate for this li.
 | 
						|
      if (isZeroLengthInterval(&LI))
 | 
						|
        LI.weight = HUGE_VALF;
 | 
						|
      else {
 | 
						|
        bool isLoad = false;
 | 
						|
        if (li_->isReMaterializable(LI, isLoad)) {
 | 
						|
          // If all of the definitions of the interval are re-materializable,
 | 
						|
          // it is a preferred candidate for spilling. If non of the defs are
 | 
						|
          // loads, then it's potentially very cheap to re-materialize.
 | 
						|
          // FIXME: this gets much more complicated once we support non-trivial
 | 
						|
          // re-materialization.
 | 
						|
          if (isLoad)
 | 
						|
            LI.weight *= 0.9F;
 | 
						|
          else
 | 
						|
            LI.weight *= 0.5F;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Slightly prefer live interval that has been assigned a preferred reg.
 | 
						|
      if (LI.preference)
 | 
						|
        LI.weight *= 1.01F;
 | 
						|
 | 
						|
      // Divide the weight of the interval by its size.  This encourages 
 | 
						|
      // spilling of intervals that are large and have few uses, and
 | 
						|
      // discourages spilling of small intervals with many uses.
 | 
						|
      LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dump());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// print - Implement the dump method.
 | 
						|
void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
 | 
						|
   li_->print(O, m);
 | 
						|
}
 | 
						|
 | 
						|
RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
 | 
						|
  return new SimpleRegisterCoalescing();
 | 
						|
}
 | 
						|
 | 
						|
// Make sure that anything that uses RegisterCoalescer pulls in this file...
 | 
						|
DEFINING_FILE_FOR(SimpleRegisterCoalescing)
 |