forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			756 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			756 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/ExecutionDepsFix.h"
 | 
						|
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/CodeGen/LivePhysRegs.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "execution-deps-fix"
 | 
						|
 | 
						|
/// Translate TRI register number to a list of indices into our smaller tables
 | 
						|
/// of interesting registers.
 | 
						|
iterator_range<SmallVectorImpl<int>::const_iterator>
 | 
						|
ExecutionDepsFix::regIndices(unsigned Reg) const {
 | 
						|
  assert(Reg < AliasMap.size() && "Invalid register");
 | 
						|
  const auto &Entry = AliasMap[Reg];
 | 
						|
  return make_range(Entry.begin(), Entry.end());
 | 
						|
}
 | 
						|
 | 
						|
DomainValue *ExecutionDepsFix::alloc(int domain) {
 | 
						|
  DomainValue *dv = Avail.empty() ?
 | 
						|
                      new(Allocator.Allocate()) DomainValue :
 | 
						|
                      Avail.pop_back_val();
 | 
						|
  if (domain >= 0)
 | 
						|
    dv->addDomain(domain);
 | 
						|
  assert(dv->Refs == 0 && "Reference count wasn't cleared");
 | 
						|
  assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
 | 
						|
  return dv;
 | 
						|
}
 | 
						|
 | 
						|
/// Release a reference to DV.  When the last reference is released,
 | 
						|
/// collapse if needed.
 | 
						|
void ExecutionDepsFix::release(DomainValue *DV) {
 | 
						|
  while (DV) {
 | 
						|
    assert(DV->Refs && "Bad DomainValue");
 | 
						|
    if (--DV->Refs)
 | 
						|
      return;
 | 
						|
 | 
						|
    // There are no more DV references. Collapse any contained instructions.
 | 
						|
    if (DV->AvailableDomains && !DV->isCollapsed())
 | 
						|
      collapse(DV, DV->getFirstDomain());
 | 
						|
 | 
						|
    DomainValue *Next = DV->Next;
 | 
						|
    DV->clear();
 | 
						|
    Avail.push_back(DV);
 | 
						|
    // Also release the next DomainValue in the chain.
 | 
						|
    DV = Next;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Follow the chain of dead DomainValues until a live DomainValue is reached.
 | 
						|
/// Update the referenced pointer when necessary.
 | 
						|
DomainValue *ExecutionDepsFix::resolve(DomainValue *&DVRef) {
 | 
						|
  DomainValue *DV = DVRef;
 | 
						|
  if (!DV || !DV->Next)
 | 
						|
    return DV;
 | 
						|
 | 
						|
  // DV has a chain. Find the end.
 | 
						|
  do DV = DV->Next;
 | 
						|
  while (DV->Next);
 | 
						|
 | 
						|
  // Update DVRef to point to DV.
 | 
						|
  retain(DV);
 | 
						|
  release(DVRef);
 | 
						|
  DVRef = DV;
 | 
						|
  return DV;
 | 
						|
}
 | 
						|
 | 
						|
/// Set LiveRegs[rx] = dv, updating reference counts.
 | 
						|
void ExecutionDepsFix::setLiveReg(int rx, DomainValue *dv) {
 | 
						|
  assert(unsigned(rx) < NumRegs && "Invalid index");
 | 
						|
  assert(LiveRegs && "Must enter basic block first.");
 | 
						|
 | 
						|
  if (LiveRegs[rx].Value == dv)
 | 
						|
    return;
 | 
						|
  if (LiveRegs[rx].Value)
 | 
						|
    release(LiveRegs[rx].Value);
 | 
						|
  LiveRegs[rx].Value = retain(dv);
 | 
						|
}
 | 
						|
 | 
						|
// Kill register rx, recycle or collapse any DomainValue.
 | 
						|
void ExecutionDepsFix::kill(int rx) {
 | 
						|
  assert(unsigned(rx) < NumRegs && "Invalid index");
 | 
						|
  assert(LiveRegs && "Must enter basic block first.");
 | 
						|
  if (!LiveRegs[rx].Value)
 | 
						|
    return;
 | 
						|
 | 
						|
  release(LiveRegs[rx].Value);
 | 
						|
  LiveRegs[rx].Value = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Force register rx into domain.
 | 
						|
void ExecutionDepsFix::force(int rx, unsigned domain) {
 | 
						|
  assert(unsigned(rx) < NumRegs && "Invalid index");
 | 
						|
  assert(LiveRegs && "Must enter basic block first.");
 | 
						|
  if (DomainValue *dv = LiveRegs[rx].Value) {
 | 
						|
    if (dv->isCollapsed())
 | 
						|
      dv->addDomain(domain);
 | 
						|
    else if (dv->hasDomain(domain))
 | 
						|
      collapse(dv, domain);
 | 
						|
    else {
 | 
						|
      // This is an incompatible open DomainValue. Collapse it to whatever and
 | 
						|
      // force the new value into domain. This costs a domain crossing.
 | 
						|
      collapse(dv, dv->getFirstDomain());
 | 
						|
      assert(LiveRegs[rx].Value && "Not live after collapse?");
 | 
						|
      LiveRegs[rx].Value->addDomain(domain);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Set up basic collapsed DomainValue.
 | 
						|
    setLiveReg(rx, alloc(domain));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Collapse open DomainValue into given domain. If there are multiple
 | 
						|
/// registers using dv, they each get a unique collapsed DomainValue.
 | 
						|
void ExecutionDepsFix::collapse(DomainValue *dv, unsigned domain) {
 | 
						|
  assert(dv->hasDomain(domain) && "Cannot collapse");
 | 
						|
 | 
						|
  // Collapse all the instructions.
 | 
						|
  while (!dv->Instrs.empty())
 | 
						|
    TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
 | 
						|
  dv->setSingleDomain(domain);
 | 
						|
 | 
						|
  // If there are multiple users, give them new, unique DomainValues.
 | 
						|
  if (LiveRegs && dv->Refs > 1)
 | 
						|
    for (unsigned rx = 0; rx != NumRegs; ++rx)
 | 
						|
      if (LiveRegs[rx].Value == dv)
 | 
						|
        setLiveReg(rx, alloc(domain));
 | 
						|
}
 | 
						|
 | 
						|
/// All instructions and registers in B are moved to A, and B is released.
 | 
						|
bool ExecutionDepsFix::merge(DomainValue *A, DomainValue *B) {
 | 
						|
  assert(!A->isCollapsed() && "Cannot merge into collapsed");
 | 
						|
  assert(!B->isCollapsed() && "Cannot merge from collapsed");
 | 
						|
  if (A == B)
 | 
						|
    return true;
 | 
						|
  // Restrict to the domains that A and B have in common.
 | 
						|
  unsigned common = A->getCommonDomains(B->AvailableDomains);
 | 
						|
  if (!common)
 | 
						|
    return false;
 | 
						|
  A->AvailableDomains = common;
 | 
						|
  A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
 | 
						|
 | 
						|
  // Clear the old DomainValue so we won't try to swizzle instructions twice.
 | 
						|
  B->clear();
 | 
						|
  // All uses of B are referred to A.
 | 
						|
  B->Next = retain(A);
 | 
						|
 | 
						|
  for (unsigned rx = 0; rx != NumRegs; ++rx) {
 | 
						|
    assert(LiveRegs && "no space allocated for live registers");
 | 
						|
    if (LiveRegs[rx].Value == B)
 | 
						|
      setLiveReg(rx, A);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Set up LiveRegs by merging predecessor live-out values.
 | 
						|
void ExecutionDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
 | 
						|
  // Reset instruction counter in each basic block.
 | 
						|
  CurInstr = 0;
 | 
						|
 | 
						|
  // Set up UndefReads to track undefined register reads.
 | 
						|
  UndefReads.clear();
 | 
						|
  LiveRegSet.clear();
 | 
						|
 | 
						|
  // Set up LiveRegs to represent registers entering MBB.
 | 
						|
  if (!LiveRegs)
 | 
						|
    LiveRegs = new LiveReg[NumRegs];
 | 
						|
 | 
						|
  // Default values are 'nothing happened a long time ago'.
 | 
						|
  for (unsigned rx = 0; rx != NumRegs; ++rx) {
 | 
						|
    LiveRegs[rx].Value = nullptr;
 | 
						|
    LiveRegs[rx].Def = -(1 << 20);
 | 
						|
  }
 | 
						|
 | 
						|
  // This is the entry block.
 | 
						|
  if (MBB->pred_empty()) {
 | 
						|
    for (const auto &LI : MBB->liveins()) {
 | 
						|
      for (int rx : regIndices(LI.PhysReg)) {
 | 
						|
        // Treat function live-ins as if they were defined just before the first
 | 
						|
        // instruction.  Usually, function arguments are set up immediately
 | 
						|
        // before the call.
 | 
						|
        LiveRegs[rx].Def = -1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to coalesce live-out registers from predecessors.
 | 
						|
  for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
 | 
						|
       pe = MBB->pred_end(); pi != pe; ++pi) {
 | 
						|
    auto fi = MBBInfos.find(*pi);
 | 
						|
    assert(fi != MBBInfos.end() &&
 | 
						|
           "Should have pre-allocated MBBInfos for all MBBs");
 | 
						|
    LiveReg *Incoming = fi->second.OutRegs;
 | 
						|
    // Incoming is null if this is a backedge from a BB
 | 
						|
    // we haven't processed yet
 | 
						|
    if (Incoming == nullptr) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned rx = 0; rx != NumRegs; ++rx) {
 | 
						|
      // Use the most recent predecessor def for each register.
 | 
						|
      LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, Incoming[rx].Def);
 | 
						|
 | 
						|
      DomainValue *pdv = resolve(Incoming[rx].Value);
 | 
						|
      if (!pdv)
 | 
						|
        continue;
 | 
						|
      if (!LiveRegs[rx].Value) {
 | 
						|
        setLiveReg(rx, pdv);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // We have a live DomainValue from more than one predecessor.
 | 
						|
      if (LiveRegs[rx].Value->isCollapsed()) {
 | 
						|
        // We are already collapsed, but predecessor is not. Force it.
 | 
						|
        unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
 | 
						|
        if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
 | 
						|
          collapse(pdv, Domain);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Currently open, merge in predecessor.
 | 
						|
      if (!pdv->isCollapsed())
 | 
						|
        merge(LiveRegs[rx].Value, pdv);
 | 
						|
      else
 | 
						|
        force(rx, pdv->getFirstDomain());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(
 | 
						|
      dbgs() << "BB#" << MBB->getNumber()
 | 
						|
             << (!isBlockDone(MBB) ? ": incomplete\n" : ": all preds known\n"));
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
 | 
						|
  assert(LiveRegs && "Must enter basic block first.");
 | 
						|
  LiveReg *OldOutRegs = MBBInfos[MBB].OutRegs;
 | 
						|
  // Save register clearances at end of MBB - used by enterBasicBlock().
 | 
						|
  MBBInfos[MBB].OutRegs = LiveRegs;
 | 
						|
 | 
						|
  // While processing the basic block, we kept `Def` relative to the start
 | 
						|
  // of the basic block for convenience. However, future use of this information
 | 
						|
  // only cares about the clearance from the end of the block, so adjust
 | 
						|
  // everything to be relative to the end of the basic block.
 | 
						|
  for (unsigned i = 0, e = NumRegs; i != e; ++i)
 | 
						|
    LiveRegs[i].Def -= CurInstr;
 | 
						|
  if (OldOutRegs) {
 | 
						|
    // This must be the second pass.
 | 
						|
    // Release all the DomainValues instead of keeping them.
 | 
						|
    for (unsigned i = 0, e = NumRegs; i != e; ++i)
 | 
						|
      release(OldOutRegs[i].Value);
 | 
						|
    delete[] OldOutRegs;
 | 
						|
  }
 | 
						|
  LiveRegs = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool ExecutionDepsFix::visitInstr(MachineInstr *MI) {
 | 
						|
  // Update instructions with explicit execution domains.
 | 
						|
  std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
 | 
						|
  if (DomP.first) {
 | 
						|
    if (DomP.second)
 | 
						|
      visitSoftInstr(MI, DomP.second);
 | 
						|
    else
 | 
						|
      visitHardInstr(MI, DomP.first);
 | 
						|
  }
 | 
						|
 | 
						|
  return !DomP.first;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helps avoid false dependencies on undef registers by updating the
 | 
						|
/// machine instructions' undef operand to use a register that the instruction
 | 
						|
/// is truly dependent on, or use a register with clearance higher than Pref.
 | 
						|
/// Returns true if it was able to find a true dependency, thus not requiring
 | 
						|
/// a dependency breaking instruction regardless of clearance.
 | 
						|
bool ExecutionDepsFix::pickBestRegisterForUndef(MachineInstr *MI,
 | 
						|
                                                unsigned OpIdx, unsigned Pref) {
 | 
						|
  MachineOperand &MO = MI->getOperand(OpIdx);
 | 
						|
  assert(MO.isUndef() && "Expected undef machine operand");
 | 
						|
 | 
						|
  unsigned OriginalReg = MO.getReg();
 | 
						|
 | 
						|
  // Update only undef operands that are mapped to one register.
 | 
						|
  if (AliasMap[OriginalReg].size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the undef operand's register class
 | 
						|
  const TargetRegisterClass *OpRC =
 | 
						|
      TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF);
 | 
						|
 | 
						|
  // If the instruction has a true dependency, we can hide the false depdency
 | 
						|
  // behind it.
 | 
						|
  for (MachineOperand &CurrMO : MI->operands()) {
 | 
						|
    if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() ||
 | 
						|
        !OpRC->contains(CurrMO.getReg()))
 | 
						|
      continue;
 | 
						|
    // We found a true dependency - replace the undef register with the true
 | 
						|
    // dependency.
 | 
						|
    MO.setReg(CurrMO.getReg());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Go over all registers in the register class and find the register with
 | 
						|
  // max clearance or clearance higher than Pref.
 | 
						|
  unsigned MaxClearance = 0;
 | 
						|
  unsigned MaxClearanceReg = OriginalReg;
 | 
						|
  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(OpRC);
 | 
						|
  for (auto Reg : Order) {
 | 
						|
    assert(AliasMap[Reg].size() == 1 &&
 | 
						|
           "Reg is expected to be mapped to a single index");
 | 
						|
    int RCrx = *regIndices(Reg).begin();
 | 
						|
    unsigned Clearance = CurInstr - LiveRegs[RCrx].Def;
 | 
						|
    if (Clearance <= MaxClearance)
 | 
						|
      continue;
 | 
						|
    MaxClearance = Clearance;
 | 
						|
    MaxClearanceReg = Reg;
 | 
						|
 | 
						|
    if (MaxClearance > Pref)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the operand if we found a register with better clearance.
 | 
						|
  if (MaxClearanceReg != OriginalReg)
 | 
						|
    MO.setReg(MaxClearanceReg);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return true to if it makes sense to break dependence on a partial def
 | 
						|
/// or undef use.
 | 
						|
bool ExecutionDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
 | 
						|
                                             unsigned Pref) {
 | 
						|
  unsigned reg = MI->getOperand(OpIdx).getReg();
 | 
						|
  for (int rx : regIndices(reg)) {
 | 
						|
    unsigned Clearance = CurInstr - LiveRegs[rx].Def;
 | 
						|
    DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
 | 
						|
 | 
						|
    if (Pref > Clearance) {
 | 
						|
      DEBUG(dbgs() << ": Break dependency.\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << ": OK .\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Update def-ages for registers defined by MI.
 | 
						|
// If Kill is set, also kill off DomainValues clobbered by the defs.
 | 
						|
//
 | 
						|
// Also break dependencies on partial defs and undef uses.
 | 
						|
void ExecutionDepsFix::processDefs(MachineInstr *MI, bool breakDependency,
 | 
						|
                                   bool Kill) {
 | 
						|
  assert(!MI->isDebugValue() && "Won't process debug values");
 | 
						|
 | 
						|
  // Break dependence on undef uses. Do this before updating LiveRegs below.
 | 
						|
  unsigned OpNum;
 | 
						|
  if (breakDependency) {
 | 
						|
    unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI);
 | 
						|
    if (Pref) {
 | 
						|
      bool HadTrueDependency = pickBestRegisterForUndef(MI, OpNum, Pref);
 | 
						|
      // We don't need to bother trying to break a dependency if this
 | 
						|
      // instruction has a true dependency on that register through another
 | 
						|
      // operand - we'll have to wait for it to be available regardless.
 | 
						|
      if (!HadTrueDependency && shouldBreakDependence(MI, OpNum, Pref))
 | 
						|
        UndefReads.push_back(std::make_pair(MI, OpNum));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  for (unsigned i = 0,
 | 
						|
         e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
 | 
						|
         i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
    if (MO.isUse())
 | 
						|
      continue;
 | 
						|
    for (int rx : regIndices(MO.getReg())) {
 | 
						|
      // This instruction explicitly defines rx.
 | 
						|
      DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
 | 
						|
                   << '\t' << *MI);
 | 
						|
 | 
						|
      if (breakDependency) {
 | 
						|
        // Check clearance before partial register updates.
 | 
						|
        // Call breakDependence before setting LiveRegs[rx].Def.
 | 
						|
        unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI);
 | 
						|
        if (Pref && shouldBreakDependence(MI, i, Pref))
 | 
						|
          TII->breakPartialRegDependency(*MI, i, TRI);
 | 
						|
      }
 | 
						|
 | 
						|
      // How many instructions since rx was last written?
 | 
						|
      LiveRegs[rx].Def = CurInstr;
 | 
						|
 | 
						|
      // Kill off domains redefined by generic instructions.
 | 
						|
      if (Kill)
 | 
						|
        kill(rx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ++CurInstr;
 | 
						|
}
 | 
						|
 | 
						|
/// \break Break false dependencies on undefined register reads.
 | 
						|
///
 | 
						|
/// Walk the block backward computing precise liveness. This is expensive, so we
 | 
						|
/// only do it on demand. Note that the occurrence of undefined register reads
 | 
						|
/// that should be broken is very rare, but when they occur we may have many in
 | 
						|
/// a single block.
 | 
						|
void ExecutionDepsFix::processUndefReads(MachineBasicBlock *MBB) {
 | 
						|
  if (UndefReads.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Collect this block's live out register units.
 | 
						|
  LiveRegSet.init(*TRI);
 | 
						|
  // We do not need to care about pristine registers as they are just preserved
 | 
						|
  // but not actually used in the function.
 | 
						|
  LiveRegSet.addLiveOutsNoPristines(*MBB);
 | 
						|
 | 
						|
  MachineInstr *UndefMI = UndefReads.back().first;
 | 
						|
  unsigned OpIdx = UndefReads.back().second;
 | 
						|
 | 
						|
  for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
 | 
						|
    // Update liveness, including the current instruction's defs.
 | 
						|
    LiveRegSet.stepBackward(I);
 | 
						|
 | 
						|
    if (UndefMI == &I) {
 | 
						|
      if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
 | 
						|
        TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI);
 | 
						|
 | 
						|
      UndefReads.pop_back();
 | 
						|
      if (UndefReads.empty())
 | 
						|
        return;
 | 
						|
 | 
						|
      UndefMI = UndefReads.back().first;
 | 
						|
      OpIdx = UndefReads.back().second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A hard instruction only works in one domain. All input registers will be
 | 
						|
// forced into that domain.
 | 
						|
void ExecutionDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
 | 
						|
  // Collapse all uses.
 | 
						|
  for (unsigned i = mi->getDesc().getNumDefs(),
 | 
						|
                e = mi->getDesc().getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &mo = mi->getOperand(i);
 | 
						|
    if (!mo.isReg()) continue;
 | 
						|
    for (int rx : regIndices(mo.getReg())) {
 | 
						|
      force(rx, domain);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Kill all defs and force them.
 | 
						|
  for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
 | 
						|
    MachineOperand &mo = mi->getOperand(i);
 | 
						|
    if (!mo.isReg()) continue;
 | 
						|
    for (int rx : regIndices(mo.getReg())) {
 | 
						|
      kill(rx);
 | 
						|
      force(rx, domain);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A soft instruction can be changed to work in other domains given by mask.
 | 
						|
void ExecutionDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
 | 
						|
  // Bitmask of available domains for this instruction after taking collapsed
 | 
						|
  // operands into account.
 | 
						|
  unsigned available = mask;
 | 
						|
 | 
						|
  // Scan the explicit use operands for incoming domains.
 | 
						|
  SmallVector<int, 4> used;
 | 
						|
  if (LiveRegs)
 | 
						|
    for (unsigned i = mi->getDesc().getNumDefs(),
 | 
						|
                  e = mi->getDesc().getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &mo = mi->getOperand(i);
 | 
						|
      if (!mo.isReg()) continue;
 | 
						|
      for (int rx : regIndices(mo.getReg())) {
 | 
						|
        DomainValue *dv = LiveRegs[rx].Value;
 | 
						|
        if (dv == nullptr)
 | 
						|
          continue;
 | 
						|
        // Bitmask of domains that dv and available have in common.
 | 
						|
        unsigned common = dv->getCommonDomains(available);
 | 
						|
        // Is it possible to use this collapsed register for free?
 | 
						|
        if (dv->isCollapsed()) {
 | 
						|
          // Restrict available domains to the ones in common with the operand.
 | 
						|
          // If there are no common domains, we must pay the cross-domain
 | 
						|
          // penalty for this operand.
 | 
						|
          if (common) available = common;
 | 
						|
        } else if (common)
 | 
						|
          // Open DomainValue is compatible, save it for merging.
 | 
						|
          used.push_back(rx);
 | 
						|
        else
 | 
						|
          // Open DomainValue is not compatible with instruction. It is useless
 | 
						|
          // now.
 | 
						|
          kill(rx);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // If the collapsed operands force a single domain, propagate the collapse.
 | 
						|
  if (isPowerOf2_32(available)) {
 | 
						|
    unsigned domain = countTrailingZeros(available);
 | 
						|
    TII->setExecutionDomain(*mi, domain);
 | 
						|
    visitHardInstr(mi, domain);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Kill off any remaining uses that don't match available, and build a list of
 | 
						|
  // incoming DomainValues that we want to merge.
 | 
						|
  SmallVector<const LiveReg *, 4> Regs;
 | 
						|
  for (int rx : used) {
 | 
						|
    assert(LiveRegs && "no space allocated for live registers");
 | 
						|
    const LiveReg &LR = LiveRegs[rx];
 | 
						|
    // This useless DomainValue could have been missed above.
 | 
						|
    if (!LR.Value->getCommonDomains(available)) {
 | 
						|
      kill(rx);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Sorted insertion.
 | 
						|
    auto I = std::upper_bound(Regs.begin(), Regs.end(), &LR,
 | 
						|
                              [](const LiveReg *LHS, const LiveReg *RHS) {
 | 
						|
                                return LHS->Def < RHS->Def;
 | 
						|
                              });
 | 
						|
    Regs.insert(I, &LR);
 | 
						|
  }
 | 
						|
 | 
						|
  // doms are now sorted in order of appearance. Try to merge them all, giving
 | 
						|
  // priority to the latest ones.
 | 
						|
  DomainValue *dv = nullptr;
 | 
						|
  while (!Regs.empty()) {
 | 
						|
    if (!dv) {
 | 
						|
      dv = Regs.pop_back_val()->Value;
 | 
						|
      // Force the first dv to match the current instruction.
 | 
						|
      dv->AvailableDomains = dv->getCommonDomains(available);
 | 
						|
      assert(dv->AvailableDomains && "Domain should have been filtered");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    DomainValue *Latest = Regs.pop_back_val()->Value;
 | 
						|
    // Skip already merged values.
 | 
						|
    if (Latest == dv || Latest->Next)
 | 
						|
      continue;
 | 
						|
    if (merge(dv, Latest))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If latest didn't merge, it is useless now. Kill all registers using it.
 | 
						|
    for (int i : used) {
 | 
						|
      assert(LiveRegs && "no space allocated for live registers");
 | 
						|
      if (LiveRegs[i].Value == Latest)
 | 
						|
        kill(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // dv is the DomainValue we are going to use for this instruction.
 | 
						|
  if (!dv) {
 | 
						|
    dv = alloc();
 | 
						|
    dv->AvailableDomains = available;
 | 
						|
  }
 | 
						|
  dv->Instrs.push_back(mi);
 | 
						|
 | 
						|
  // Finally set all defs and non-collapsed uses to dv. We must iterate through
 | 
						|
  // all the operators, including imp-def ones.
 | 
						|
  for (MachineInstr::mop_iterator ii = mi->operands_begin(),
 | 
						|
                                  ee = mi->operands_end();
 | 
						|
                                  ii != ee; ++ii) {
 | 
						|
    MachineOperand &mo = *ii;
 | 
						|
    if (!mo.isReg()) continue;
 | 
						|
    for (int rx : regIndices(mo.getReg())) {
 | 
						|
      if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
 | 
						|
        kill(rx);
 | 
						|
        setLiveReg(rx, dv);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionDepsFix::processBasicBlock(MachineBasicBlock *MBB,
 | 
						|
                                         bool PrimaryPass) {
 | 
						|
  enterBasicBlock(MBB);
 | 
						|
  // If this block is not done, it makes little sense to make any decisions
 | 
						|
  // based on clearance information. We need to make a second pass anyway,
 | 
						|
  // and by then we'll have better information, so we can avoid doing the work
 | 
						|
  // to try and break dependencies now.
 | 
						|
  bool breakDependency = isBlockDone(MBB);
 | 
						|
  for (MachineInstr &MI : *MBB) {
 | 
						|
    if (!MI.isDebugValue()) {
 | 
						|
      bool Kill = false;
 | 
						|
      if (PrimaryPass)
 | 
						|
        Kill = visitInstr(&MI);
 | 
						|
      processDefs(&MI, breakDependency, Kill);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (breakDependency)
 | 
						|
    processUndefReads(MBB);
 | 
						|
  leaveBasicBlock(MBB);
 | 
						|
}
 | 
						|
 | 
						|
bool ExecutionDepsFix::isBlockDone(MachineBasicBlock *MBB) {
 | 
						|
  return MBBInfos[MBB].PrimaryCompleted &&
 | 
						|
         MBBInfos[MBB].IncomingCompleted == MBBInfos[MBB].PrimaryIncoming &&
 | 
						|
         MBBInfos[MBB].IncomingProcessed == MBB->pred_size();
 | 
						|
}
 | 
						|
 | 
						|
bool ExecutionDepsFix::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  if (skipFunction(*mf.getFunction()))
 | 
						|
    return false;
 | 
						|
  MF = &mf;
 | 
						|
  TII = MF->getSubtarget().getInstrInfo();
 | 
						|
  TRI = MF->getSubtarget().getRegisterInfo();
 | 
						|
  RegClassInfo.runOnMachineFunction(mf);
 | 
						|
  LiveRegs = nullptr;
 | 
						|
  assert(NumRegs == RC->getNumRegs() && "Bad regclass");
 | 
						|
 | 
						|
  DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
 | 
						|
               << TRI->getRegClassName(RC) << " **********\n");
 | 
						|
 | 
						|
  // If no relevant registers are used in the function, we can skip it
 | 
						|
  // completely.
 | 
						|
  bool anyregs = false;
 | 
						|
  const MachineRegisterInfo &MRI = mf.getRegInfo();
 | 
						|
  for (unsigned Reg : *RC) {
 | 
						|
    if (MRI.isPhysRegUsed(Reg)) {
 | 
						|
      anyregs = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!anyregs) return false;
 | 
						|
 | 
						|
  // Initialize the AliasMap on the first use.
 | 
						|
  if (AliasMap.empty()) {
 | 
						|
    // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
 | 
						|
    // therefore the LiveRegs array.
 | 
						|
    AliasMap.resize(TRI->getNumRegs());
 | 
						|
    for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
 | 
						|
      for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
 | 
						|
           AI.isValid(); ++AI)
 | 
						|
        AliasMap[*AI].push_back(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize the MMBInfos
 | 
						|
  for (auto &MBB : mf) {
 | 
						|
    MBBInfo InitialInfo;
 | 
						|
    MBBInfos.insert(std::make_pair(&MBB, InitialInfo));
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
   *  We want to visit every instruction in every basic block in order to update
 | 
						|
   *  it's execution domain or break any false dependencies. However, for the
 | 
						|
   *  dependency breaking, we need to know clearances from all predecessors
 | 
						|
   *  (including any backedges). One way to do so would be to do two complete
 | 
						|
   *  passes over all basic blocks/instructions, the first for recording
 | 
						|
   *  clearances, the second to break the dependencies. However, for functions
 | 
						|
   *  without backedges, or functions with a lot of straight-line code, and
 | 
						|
   *  a small loop, that would be a lot of unnecessary work (since only the
 | 
						|
   *  BBs that are part of the loop require two passes). As an example,
 | 
						|
   *  consider the following loop.
 | 
						|
   *
 | 
						|
   *
 | 
						|
   *     PH -> A -> B (xmm<Undef> -> xmm<Def>) -> C -> D -> EXIT
 | 
						|
   *           ^                                  |
 | 
						|
   *           +----------------------------------+
 | 
						|
   *
 | 
						|
   *  The iteration order is as follows:
 | 
						|
   *  Naive: PH A B C D A' B' C' D'
 | 
						|
   *  Optimized: PH A B C A' B' C' D
 | 
						|
   *
 | 
						|
   *  Note that we avoid processing D twice, because we can entirely process
 | 
						|
   *  the predecessors before getting to D. We call a block that is ready
 | 
						|
   *  for its second round of processing `done` (isBlockDone). Once we finish
 | 
						|
   *  processing some block, we update the counters in MBBInfos and re-process
 | 
						|
   *  any successors that are now done.
 | 
						|
   */
 | 
						|
 | 
						|
  MachineBasicBlock *Entry = &*MF->begin();
 | 
						|
  ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
 | 
						|
  SmallVector<MachineBasicBlock *, 4> Workqueue;
 | 
						|
  for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
 | 
						|
         MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
 | 
						|
    MachineBasicBlock *MBB = *MBBI;
 | 
						|
    // N.B: IncomingProcessed and IncomingCompleted were already updated while
 | 
						|
    // processing this block's predecessors.
 | 
						|
    MBBInfos[MBB].PrimaryCompleted = true;
 | 
						|
    MBBInfos[MBB].PrimaryIncoming = MBBInfos[MBB].IncomingProcessed;
 | 
						|
    bool Primary = true;
 | 
						|
    Workqueue.push_back(MBB);
 | 
						|
    while (!Workqueue.empty()) {
 | 
						|
      MachineBasicBlock *ActiveMBB = &*Workqueue.back();
 | 
						|
      Workqueue.pop_back();
 | 
						|
      processBasicBlock(ActiveMBB, Primary);
 | 
						|
      bool Done = isBlockDone(ActiveMBB);
 | 
						|
      for (auto *Succ : ActiveMBB->successors()) {
 | 
						|
        if (!isBlockDone(Succ)) {
 | 
						|
          if (Primary) {
 | 
						|
            MBBInfos[Succ].IncomingProcessed++;
 | 
						|
          }
 | 
						|
          if (Done) {
 | 
						|
            MBBInfos[Succ].IncomingCompleted++;
 | 
						|
          }
 | 
						|
          if (isBlockDone(Succ)) {
 | 
						|
            Workqueue.push_back(Succ);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Primary = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We need to go through again and finalize any blocks that are not done yet.
 | 
						|
  // This is possible if blocks have dead predecessors, so we didn't visit them
 | 
						|
  // above.
 | 
						|
  for (ReversePostOrderTraversal<MachineBasicBlock *>::rpo_iterator
 | 
						|
           MBBI = RPOT.begin(),
 | 
						|
           MBBE = RPOT.end();
 | 
						|
       MBBI != MBBE; ++MBBI) {
 | 
						|
    MachineBasicBlock *MBB = *MBBI;
 | 
						|
    if (!isBlockDone(MBB)) {
 | 
						|
      processBasicBlock(MBB, false);
 | 
						|
      // Don't update successors here. We'll get to them anyway through this
 | 
						|
      // loop.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear the LiveOuts vectors and collapse any remaining DomainValues.
 | 
						|
  for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
 | 
						|
         MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
 | 
						|
    auto FI = MBBInfos.find(*MBBI);
 | 
						|
    if (FI == MBBInfos.end() || !FI->second.OutRegs)
 | 
						|
      continue;
 | 
						|
    for (unsigned i = 0, e = NumRegs; i != e; ++i)
 | 
						|
      if (FI->second.OutRegs[i].Value)
 | 
						|
        release(FI->second.OutRegs[i].Value);
 | 
						|
    delete[] FI->second.OutRegs;
 | 
						|
  }
 | 
						|
  MBBInfos.clear();
 | 
						|
  UndefReads.clear();
 | 
						|
  Avail.clear();
 | 
						|
  Allocator.DestroyAll();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 |