forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			164 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			164 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
//====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements Block Frequency class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/BlockFrequency.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Multiply FREQ by N and store result in W array.
 | 
						|
static void mult96bit(uint64_t freq, uint32_t N, uint32_t W[3]) {
 | 
						|
  uint64_t u0 = freq & UINT32_MAX;
 | 
						|
  uint64_t u1 = freq >> 32;
 | 
						|
 | 
						|
  // Represent 96-bit value as W[2]:W[1]:W[0];
 | 
						|
  uint64_t t = u0 * N;
 | 
						|
  uint64_t k = t >> 32;
 | 
						|
  W[0] = t;
 | 
						|
  t = u1 * N + k;
 | 
						|
  W[1] = t;
 | 
						|
  W[2] = t >> 32;
 | 
						|
}
 | 
						|
 | 
						|
/// Divide 96-bit value stored in W[2]:W[1]:W[0] by D. Since our word size is a
 | 
						|
/// 32 bit unsigned integer, we can use a short division algorithm.
 | 
						|
static uint64_t divrem96bit(uint32_t W[3], uint32_t D, uint32_t *Rout) {
 | 
						|
  // We assume that W[2] is non-zero since if W[2] is not then the user should
 | 
						|
  // just use hardware division.
 | 
						|
  assert(W[2] && "This routine assumes that W[2] is non-zero since if W[2] is "
 | 
						|
         "zero, the caller should just use 64/32 hardware.");
 | 
						|
  uint32_t Q[3] = { 0, 0, 0 };
 | 
						|
 | 
						|
  // The generalized short division algorithm sets i to m + n - 1, where n is
 | 
						|
  // the number of words in the divisior and m is the number of words by which
 | 
						|
  // the divident exceeds the divisor (i.e. m + n == the length of the dividend
 | 
						|
  // in words). Due to our assumption that W[2] is non-zero, we know that the
 | 
						|
  // dividend is of length 3 implying since n is 1 that m = 2. Thus we set i to
 | 
						|
  // m + n - 1 = 2 + 1 - 1 = 2.
 | 
						|
  uint32_t R = 0;
 | 
						|
  for (int i = 2; i >= 0; --i) {
 | 
						|
    uint64_t PartialD = uint64_t(R) << 32 | W[i];
 | 
						|
    if (PartialD == 0) {
 | 
						|
      Q[i] = 0;
 | 
						|
      R = 0;
 | 
						|
    } else if (PartialD < D) {
 | 
						|
      Q[i] = 0;
 | 
						|
      R = uint32_t(PartialD);
 | 
						|
    } else if (PartialD == D) {
 | 
						|
      Q[i] = 1;
 | 
						|
      R = 0;
 | 
						|
    } else {
 | 
						|
      Q[i] = uint32_t(PartialD / D);
 | 
						|
      R = uint32_t(PartialD - (Q[i] * D));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If Q[2] is non-zero, then we overflowed.
 | 
						|
  uint64_t Result;
 | 
						|
  if (Q[2]) {
 | 
						|
    Result = UINT64_MAX;
 | 
						|
    R = D;
 | 
						|
  } else {
 | 
						|
    // Form the final uint64_t result, avoiding endianness issues.
 | 
						|
    Result = uint64_t(Q[0]) | (uint64_t(Q[1]) << 32);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Rout)
 | 
						|
    *Rout = R;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t BlockFrequency::scale(uint32_t N, uint32_t D) {
 | 
						|
  assert(D != 0 && "Division by zero");
 | 
						|
 | 
						|
  // Calculate Frequency * N.
 | 
						|
  uint64_t MulLo = (Frequency & UINT32_MAX) * N;
 | 
						|
  uint64_t MulHi = (Frequency >> 32) * N;
 | 
						|
  uint64_t MulRes = (MulHi << 32) + MulLo;
 | 
						|
 | 
						|
  // If the product fits in 64 bits, just use built-in division.
 | 
						|
  if (MulHi <= UINT32_MAX && MulRes >= MulLo) {
 | 
						|
    Frequency = MulRes / D;
 | 
						|
    return MulRes % D;
 | 
						|
  }
 | 
						|
 | 
						|
  // Product overflowed, use 96-bit operations.
 | 
						|
  // 96-bit value represented as W[2]:W[1]:W[0].
 | 
						|
  uint32_t W[3];
 | 
						|
  uint32_t R;
 | 
						|
  mult96bit(Frequency, N, W);
 | 
						|
  Frequency = divrem96bit(W, D, &R);
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) {
 | 
						|
  scale(Prob.getNumerator(), Prob.getDenominator());
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
const BlockFrequency
 | 
						|
BlockFrequency::operator*(const BranchProbability &Prob) const {
 | 
						|
  BlockFrequency Freq(Frequency);
 | 
						|
  Freq *= Prob;
 | 
						|
  return Freq;
 | 
						|
}
 | 
						|
 | 
						|
BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) {
 | 
						|
  scale(Prob.getDenominator(), Prob.getNumerator());
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const {
 | 
						|
  BlockFrequency Freq(Frequency);
 | 
						|
  Freq /= Prob;
 | 
						|
  return Freq;
 | 
						|
}
 | 
						|
 | 
						|
BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) {
 | 
						|
  uint64_t Before = Freq.Frequency;
 | 
						|
  Frequency += Freq.Frequency;
 | 
						|
 | 
						|
  // If overflow, set frequency to the maximum value.
 | 
						|
  if (Frequency < Before)
 | 
						|
    Frequency = UINT64_MAX;
 | 
						|
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
const BlockFrequency
 | 
						|
BlockFrequency::operator+(const BlockFrequency &Prob) const {
 | 
						|
  BlockFrequency Freq(Frequency);
 | 
						|
  Freq += Prob;
 | 
						|
  return Freq;
 | 
						|
}
 | 
						|
 | 
						|
BlockFrequency &BlockFrequency::operator>>=(const unsigned count) {
 | 
						|
  // Frequency can never be 0 by design.
 | 
						|
  assert(Frequency != 0);
 | 
						|
 | 
						|
  // Shift right by count.
 | 
						|
  Frequency >>= count;
 | 
						|
 | 
						|
  // Saturate to 1 if we are 0.
 | 
						|
  Frequency |= Frequency == 0;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t BlockFrequency::scale(const BranchProbability &Prob) {
 | 
						|
  return scale(Prob.getNumerator(), Prob.getDenominator());
 | 
						|
}
 | 
						|
 |