forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1206 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1206 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright 2007, Google Inc.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| // contributors may be used to endorse or promote products derived from
 | |
| // this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // Author: wan@google.com (Zhanyong Wan)
 | |
| 
 | |
| // Google Mock - a framework for writing C++ mock classes.
 | |
| //
 | |
| // This file implements some commonly used actions.
 | |
| 
 | |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 | |
| 
 | |
| #ifndef _WIN32_WCE
 | |
| # include <errno.h>
 | |
| #endif
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <string>
 | |
| 
 | |
| #include "gmock/internal/gmock-internal-utils.h"
 | |
| #include "gmock/internal/gmock-port.h"
 | |
| 
 | |
| #if GTEST_HAS_STD_TYPE_TRAITS_  // Defined by gtest-port.h via gmock-port.h.
 | |
| #include <type_traits>
 | |
| #endif
 | |
| 
 | |
| namespace testing {
 | |
| 
 | |
| // To implement an action Foo, define:
 | |
| //   1. a class FooAction that implements the ActionInterface interface, and
 | |
| //   2. a factory function that creates an Action object from a
 | |
| //      const FooAction*.
 | |
| //
 | |
| // The two-level delegation design follows that of Matcher, providing
 | |
| // consistency for extension developers.  It also eases ownership
 | |
| // management as Action objects can now be copied like plain values.
 | |
| 
 | |
| namespace internal {
 | |
| 
 | |
| template <typename F1, typename F2>
 | |
| class ActionAdaptor;
 | |
| 
 | |
| // BuiltInDefaultValueGetter<T, true>::Get() returns a
 | |
| // default-constructed T value.  BuiltInDefaultValueGetter<T,
 | |
| // false>::Get() crashes with an error.
 | |
| //
 | |
| // This primary template is used when kDefaultConstructible is true.
 | |
| template <typename T, bool kDefaultConstructible>
 | |
| struct BuiltInDefaultValueGetter {
 | |
|   static T Get() { return T(); }
 | |
| };
 | |
| template <typename T>
 | |
| struct BuiltInDefaultValueGetter<T, false> {
 | |
|   static T Get() {
 | |
|     Assert(false, __FILE__, __LINE__,
 | |
|            "Default action undefined for the function return type.");
 | |
|     return internal::Invalid<T>();
 | |
|     // The above statement will never be reached, but is required in
 | |
|     // order for this function to compile.
 | |
|   }
 | |
| };
 | |
| 
 | |
| // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
 | |
| // for type T, which is NULL when T is a raw pointer type, 0 when T is
 | |
| // a numeric type, false when T is bool, or "" when T is string or
 | |
| // std::string.  In addition, in C++11 and above, it turns a
 | |
| // default-constructed T value if T is default constructible.  For any
 | |
| // other type T, the built-in default T value is undefined, and the
 | |
| // function will abort the process.
 | |
| template <typename T>
 | |
| class BuiltInDefaultValue {
 | |
|  public:
 | |
| #if GTEST_HAS_STD_TYPE_TRAITS_
 | |
|   // This function returns true iff type T has a built-in default value.
 | |
|   static bool Exists() {
 | |
|     return ::std::is_default_constructible<T>::value;
 | |
|   }
 | |
| 
 | |
|   static T Get() {
 | |
|     return BuiltInDefaultValueGetter<
 | |
|         T, ::std::is_default_constructible<T>::value>::Get();
 | |
|   }
 | |
| 
 | |
| #else  // GTEST_HAS_STD_TYPE_TRAITS_
 | |
|   // This function returns true iff type T has a built-in default value.
 | |
|   static bool Exists() {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   static T Get() {
 | |
|     return BuiltInDefaultValueGetter<T, false>::Get();
 | |
|   }
 | |
| 
 | |
| #endif  // GTEST_HAS_STD_TYPE_TRAITS_
 | |
| };
 | |
| 
 | |
| // This partial specialization says that we use the same built-in
 | |
| // default value for T and const T.
 | |
| template <typename T>
 | |
| class BuiltInDefaultValue<const T> {
 | |
|  public:
 | |
|   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
 | |
|   static T Get() { return BuiltInDefaultValue<T>::Get(); }
 | |
| };
 | |
| 
 | |
| // This partial specialization defines the default values for pointer
 | |
| // types.
 | |
| template <typename T>
 | |
| class BuiltInDefaultValue<T*> {
 | |
|  public:
 | |
|   static bool Exists() { return true; }
 | |
|   static T* Get() { return NULL; }
 | |
| };
 | |
| 
 | |
| // The following specializations define the default values for
 | |
| // specific types we care about.
 | |
| #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
 | |
|   template <> \
 | |
|   class BuiltInDefaultValue<type> { \
 | |
|    public: \
 | |
|     static bool Exists() { return true; } \
 | |
|     static type Get() { return value; } \
 | |
|   }
 | |
| 
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
 | |
| #if GTEST_HAS_GLOBAL_STRING
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
 | |
| #endif  // GTEST_HAS_GLOBAL_STRING
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
 | |
| 
 | |
| // There's no need for a default action for signed wchar_t, as that
 | |
| // type is the same as wchar_t for gcc, and invalid for MSVC.
 | |
| //
 | |
| // There's also no need for a default action for unsigned wchar_t, as
 | |
| // that type is the same as unsigned int for gcc, and invalid for
 | |
| // MSVC.
 | |
| #if GMOCK_WCHAR_T_IS_NATIVE_
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
 | |
| #endif
 | |
| 
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
 | |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
 | |
| 
 | |
| #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| // When an unexpected function call is encountered, Google Mock will
 | |
| // let it return a default value if the user has specified one for its
 | |
| // return type, or if the return type has a built-in default value;
 | |
| // otherwise Google Mock won't know what value to return and will have
 | |
| // to abort the process.
 | |
| //
 | |
| // The DefaultValue<T> class allows a user to specify the
 | |
| // default value for a type T that is both copyable and publicly
 | |
| // destructible (i.e. anything that can be used as a function return
 | |
| // type).  The usage is:
 | |
| //
 | |
| //   // Sets the default value for type T to be foo.
 | |
| //   DefaultValue<T>::Set(foo);
 | |
| template <typename T>
 | |
| class DefaultValue {
 | |
|  public:
 | |
|   // Sets the default value for type T; requires T to be
 | |
|   // copy-constructable and have a public destructor.
 | |
|   static void Set(T x) {
 | |
|     delete producer_;
 | |
|     producer_ = new FixedValueProducer(x);
 | |
|   }
 | |
| 
 | |
|   // Provides a factory function to be called to generate the default value.
 | |
|   // This method can be used even if T is only move-constructible, but it is not
 | |
|   // limited to that case.
 | |
|   typedef T (*FactoryFunction)();
 | |
|   static void SetFactory(FactoryFunction factory) {
 | |
|     delete producer_;
 | |
|     producer_ = new FactoryValueProducer(factory);
 | |
|   }
 | |
| 
 | |
|   // Unsets the default value for type T.
 | |
|   static void Clear() {
 | |
|     delete producer_;
 | |
|     producer_ = NULL;
 | |
|   }
 | |
| 
 | |
|   // Returns true iff the user has set the default value for type T.
 | |
|   static bool IsSet() { return producer_ != NULL; }
 | |
| 
 | |
|   // Returns true if T has a default return value set by the user or there
 | |
|   // exists a built-in default value.
 | |
|   static bool Exists() {
 | |
|     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
 | |
|   }
 | |
| 
 | |
|   // Returns the default value for type T if the user has set one;
 | |
|   // otherwise returns the built-in default value. Requires that Exists()
 | |
|   // is true, which ensures that the return value is well-defined.
 | |
|   static T Get() {
 | |
|     return producer_ == NULL ?
 | |
|         internal::BuiltInDefaultValue<T>::Get() : producer_->Produce();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   class ValueProducer {
 | |
|    public:
 | |
|     virtual ~ValueProducer() {}
 | |
|     virtual T Produce() = 0;
 | |
|   };
 | |
| 
 | |
|   class FixedValueProducer : public ValueProducer {
 | |
|    public:
 | |
|     explicit FixedValueProducer(T value) : value_(value) {}
 | |
|     virtual T Produce() { return value_; }
 | |
| 
 | |
|    private:
 | |
|     const T value_;
 | |
|     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
 | |
|   };
 | |
| 
 | |
|   class FactoryValueProducer : public ValueProducer {
 | |
|    public:
 | |
|     explicit FactoryValueProducer(FactoryFunction factory)
 | |
|         : factory_(factory) {}
 | |
|     virtual T Produce() { return factory_(); }
 | |
| 
 | |
|    private:
 | |
|     const FactoryFunction factory_;
 | |
|     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
 | |
|   };
 | |
| 
 | |
|   static ValueProducer* producer_;
 | |
| };
 | |
| 
 | |
| // This partial specialization allows a user to set default values for
 | |
| // reference types.
 | |
| template <typename T>
 | |
| class DefaultValue<T&> {
 | |
|  public:
 | |
|   // Sets the default value for type T&.
 | |
|   static void Set(T& x) {  // NOLINT
 | |
|     address_ = &x;
 | |
|   }
 | |
| 
 | |
|   // Unsets the default value for type T&.
 | |
|   static void Clear() {
 | |
|     address_ = NULL;
 | |
|   }
 | |
| 
 | |
|   // Returns true iff the user has set the default value for type T&.
 | |
|   static bool IsSet() { return address_ != NULL; }
 | |
| 
 | |
|   // Returns true if T has a default return value set by the user or there
 | |
|   // exists a built-in default value.
 | |
|   static bool Exists() {
 | |
|     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
 | |
|   }
 | |
| 
 | |
|   // Returns the default value for type T& if the user has set one;
 | |
|   // otherwise returns the built-in default value if there is one;
 | |
|   // otherwise aborts the process.
 | |
|   static T& Get() {
 | |
|     return address_ == NULL ?
 | |
|         internal::BuiltInDefaultValue<T&>::Get() : *address_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static T* address_;
 | |
| };
 | |
| 
 | |
| // This specialization allows DefaultValue<void>::Get() to
 | |
| // compile.
 | |
| template <>
 | |
| class DefaultValue<void> {
 | |
|  public:
 | |
|   static bool Exists() { return true; }
 | |
|   static void Get() {}
 | |
| };
 | |
| 
 | |
| // Points to the user-set default value for type T.
 | |
| template <typename T>
 | |
| typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;
 | |
| 
 | |
| // Points to the user-set default value for type T&.
 | |
| template <typename T>
 | |
| T* DefaultValue<T&>::address_ = NULL;
 | |
| 
 | |
| // Implement this interface to define an action for function type F.
 | |
| template <typename F>
 | |
| class ActionInterface {
 | |
|  public:
 | |
|   typedef typename internal::Function<F>::Result Result;
 | |
|   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|   ActionInterface() {}
 | |
|   virtual ~ActionInterface() {}
 | |
| 
 | |
|   // Performs the action.  This method is not const, as in general an
 | |
|   // action can have side effects and be stateful.  For example, a
 | |
|   // get-the-next-element-from-the-collection action will need to
 | |
|   // remember the current element.
 | |
|   virtual Result Perform(const ArgumentTuple& args) = 0;
 | |
| 
 | |
|  private:
 | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
 | |
| };
 | |
| 
 | |
| // An Action<F> is a copyable and IMMUTABLE (except by assignment)
 | |
| // object that represents an action to be taken when a mock function
 | |
| // of type F is called.  The implementation of Action<T> is just a
 | |
| // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
 | |
| // Don't inherit from Action!
 | |
| //
 | |
| // You can view an object implementing ActionInterface<F> as a
 | |
| // concrete action (including its current state), and an Action<F>
 | |
| // object as a handle to it.
 | |
| template <typename F>
 | |
| class Action {
 | |
|  public:
 | |
|   typedef typename internal::Function<F>::Result Result;
 | |
|   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|   // Constructs a null Action.  Needed for storing Action objects in
 | |
|   // STL containers.
 | |
|   Action() : impl_(NULL) {}
 | |
| 
 | |
|   // Constructs an Action from its implementation.  A NULL impl is
 | |
|   // used to represent the "do-default" action.
 | |
|   explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
 | |
| 
 | |
|   // Copy constructor.
 | |
|   Action(const Action& action) : impl_(action.impl_) {}
 | |
| 
 | |
|   // This constructor allows us to turn an Action<Func> object into an
 | |
|   // Action<F>, as long as F's arguments can be implicitly converted
 | |
|   // to Func's and Func's return type can be implicitly converted to
 | |
|   // F's.
 | |
|   template <typename Func>
 | |
|   explicit Action(const Action<Func>& action);
 | |
| 
 | |
|   // Returns true iff this is the DoDefault() action.
 | |
|   bool IsDoDefault() const { return impl_.get() == NULL; }
 | |
| 
 | |
|   // Performs the action.  Note that this method is const even though
 | |
|   // the corresponding method in ActionInterface is not.  The reason
 | |
|   // is that a const Action<F> means that it cannot be re-bound to
 | |
|   // another concrete action, not that the concrete action it binds to
 | |
|   // cannot change state.  (Think of the difference between a const
 | |
|   // pointer and a pointer to const.)
 | |
|   Result Perform(const ArgumentTuple& args) const {
 | |
|     internal::Assert(
 | |
|         !IsDoDefault(), __FILE__, __LINE__,
 | |
|         "You are using DoDefault() inside a composite action like "
 | |
|         "DoAll() or WithArgs().  This is not supported for technical "
 | |
|         "reasons.  Please instead spell out the default action, or "
 | |
|         "assign the default action to an Action variable and use "
 | |
|         "the variable in various places.");
 | |
|     return impl_->Perform(args);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename F1, typename F2>
 | |
|   friend class internal::ActionAdaptor;
 | |
| 
 | |
|   internal::linked_ptr<ActionInterface<F> > impl_;
 | |
| };
 | |
| 
 | |
| // The PolymorphicAction class template makes it easy to implement a
 | |
| // polymorphic action (i.e. an action that can be used in mock
 | |
| // functions of than one type, e.g. Return()).
 | |
| //
 | |
| // To define a polymorphic action, a user first provides a COPYABLE
 | |
| // implementation class that has a Perform() method template:
 | |
| //
 | |
| //   class FooAction {
 | |
| //    public:
 | |
| //     template <typename Result, typename ArgumentTuple>
 | |
| //     Result Perform(const ArgumentTuple& args) const {
 | |
| //       // Processes the arguments and returns a result, using
 | |
| //       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
 | |
| //     }
 | |
| //     ...
 | |
| //   };
 | |
| //
 | |
| // Then the user creates the polymorphic action using
 | |
| // MakePolymorphicAction(object) where object has type FooAction.  See
 | |
| // the definition of Return(void) and SetArgumentPointee<N>(value) for
 | |
| // complete examples.
 | |
| template <typename Impl>
 | |
| class PolymorphicAction {
 | |
|  public:
 | |
|   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
 | |
| 
 | |
|   template <typename F>
 | |
|   operator Action<F>() const {
 | |
|     return Action<F>(new MonomorphicImpl<F>(impl_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename F>
 | |
|   class MonomorphicImpl : public ActionInterface<F> {
 | |
|    public:
 | |
|     typedef typename internal::Function<F>::Result Result;
 | |
|     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
 | |
| 
 | |
|     virtual Result Perform(const ArgumentTuple& args) {
 | |
|       return impl_.template Perform<Result>(args);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     Impl impl_;
 | |
| 
 | |
|     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
 | |
|   };
 | |
| 
 | |
|   Impl impl_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
 | |
| };
 | |
| 
 | |
| // Creates an Action from its implementation and returns it.  The
 | |
| // created Action object owns the implementation.
 | |
| template <typename F>
 | |
| Action<F> MakeAction(ActionInterface<F>* impl) {
 | |
|   return Action<F>(impl);
 | |
| }
 | |
| 
 | |
| // Creates a polymorphic action from its implementation.  This is
 | |
| // easier to use than the PolymorphicAction<Impl> constructor as it
 | |
| // doesn't require you to explicitly write the template argument, e.g.
 | |
| //
 | |
| //   MakePolymorphicAction(foo);
 | |
| // vs
 | |
| //   PolymorphicAction<TypeOfFoo>(foo);
 | |
| template <typename Impl>
 | |
| inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
 | |
|   return PolymorphicAction<Impl>(impl);
 | |
| }
 | |
| 
 | |
| namespace internal {
 | |
| 
 | |
| // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
 | |
| // and F1 are compatible.
 | |
| template <typename F1, typename F2>
 | |
| class ActionAdaptor : public ActionInterface<F1> {
 | |
|  public:
 | |
|   typedef typename internal::Function<F1>::Result Result;
 | |
|   typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|   explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
 | |
| 
 | |
|   virtual Result Perform(const ArgumentTuple& args) {
 | |
|     return impl_->Perform(args);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const internal::linked_ptr<ActionInterface<F2> > impl_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
 | |
| };
 | |
| 
 | |
| // Helper struct to specialize ReturnAction to execute a move instead of a copy
 | |
| // on return. Useful for move-only types, but could be used on any type.
 | |
| template <typename T>
 | |
| struct ByMoveWrapper {
 | |
|   explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
 | |
|   T payload;
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic Return(x) action, which can be used in
 | |
| // any function that returns the type of x, regardless of the argument
 | |
| // types.
 | |
| //
 | |
| // Note: The value passed into Return must be converted into
 | |
| // Function<F>::Result when this action is cast to Action<F> rather than
 | |
| // when that action is performed. This is important in scenarios like
 | |
| //
 | |
| // MOCK_METHOD1(Method, T(U));
 | |
| // ...
 | |
| // {
 | |
| //   Foo foo;
 | |
| //   X x(&foo);
 | |
| //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
 | |
| // }
 | |
| //
 | |
| // In the example above the variable x holds reference to foo which leaves
 | |
| // scope and gets destroyed.  If copying X just copies a reference to foo,
 | |
| // that copy will be left with a hanging reference.  If conversion to T
 | |
| // makes a copy of foo, the above code is safe. To support that scenario, we
 | |
| // need to make sure that the type conversion happens inside the EXPECT_CALL
 | |
| // statement, and conversion of the result of Return to Action<T(U)> is a
 | |
| // good place for that.
 | |
| //
 | |
| template <typename R>
 | |
| class ReturnAction {
 | |
|  public:
 | |
|   // Constructs a ReturnAction object from the value to be returned.
 | |
|   // 'value' is passed by value instead of by const reference in order
 | |
|   // to allow Return("string literal") to compile.
 | |
|   explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}
 | |
| 
 | |
|   // This template type conversion operator allows Return(x) to be
 | |
|   // used in ANY function that returns x's type.
 | |
|   template <typename F>
 | |
|   operator Action<F>() const {
 | |
|     // Assert statement belongs here because this is the best place to verify
 | |
|     // conditions on F. It produces the clearest error messages
 | |
|     // in most compilers.
 | |
|     // Impl really belongs in this scope as a local class but can't
 | |
|     // because MSVC produces duplicate symbols in different translation units
 | |
|     // in this case. Until MS fixes that bug we put Impl into the class scope
 | |
|     // and put the typedef both here (for use in assert statement) and
 | |
|     // in the Impl class. But both definitions must be the same.
 | |
|     typedef typename Function<F>::Result Result;
 | |
|     GTEST_COMPILE_ASSERT_(
 | |
|         !is_reference<Result>::value,
 | |
|         use_ReturnRef_instead_of_Return_to_return_a_reference);
 | |
|     return Action<F>(new Impl<R, F>(value_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Implements the Return(x) action for a particular function type F.
 | |
|   template <typename R_, typename F>
 | |
|   class Impl : public ActionInterface<F> {
 | |
|    public:
 | |
|     typedef typename Function<F>::Result Result;
 | |
|     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|     // The implicit cast is necessary when Result has more than one
 | |
|     // single-argument constructor (e.g. Result is std::vector<int>) and R
 | |
|     // has a type conversion operator template.  In that case, value_(value)
 | |
|     // won't compile as the compiler doesn't known which constructor of
 | |
|     // Result to call.  ImplicitCast_ forces the compiler to convert R to
 | |
|     // Result without considering explicit constructors, thus resolving the
 | |
|     // ambiguity. value_ is then initialized using its copy constructor.
 | |
|     explicit Impl(const linked_ptr<R>& value)
 | |
|         : value_before_cast_(*value),
 | |
|           value_(ImplicitCast_<Result>(value_before_cast_)) {}
 | |
| 
 | |
|     virtual Result Perform(const ArgumentTuple&) { return value_; }
 | |
| 
 | |
|    private:
 | |
|     GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
 | |
|                           Result_cannot_be_a_reference_type);
 | |
|     // We save the value before casting just in case it is being cast to a
 | |
|     // wrapper type.
 | |
|     R value_before_cast_;
 | |
|     Result value_;
 | |
| 
 | |
|     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
 | |
|   };
 | |
| 
 | |
|   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
 | |
|   // move its contents instead.
 | |
|   template <typename R_, typename F>
 | |
|   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
 | |
|    public:
 | |
|     typedef typename Function<F>::Result Result;
 | |
|     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|     explicit Impl(const linked_ptr<R>& wrapper)
 | |
|         : performed_(false), wrapper_(wrapper) {}
 | |
| 
 | |
|     virtual Result Perform(const ArgumentTuple&) {
 | |
|       GTEST_CHECK_(!performed_)
 | |
|           << "A ByMove() action should only be performed once.";
 | |
|       performed_ = true;
 | |
|       return internal::move(wrapper_->payload);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     bool performed_;
 | |
|     const linked_ptr<R> wrapper_;
 | |
| 
 | |
|     GTEST_DISALLOW_ASSIGN_(Impl);
 | |
|   };
 | |
| 
 | |
|   const linked_ptr<R> value_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(ReturnAction);
 | |
| };
 | |
| 
 | |
| // Implements the ReturnNull() action.
 | |
| class ReturnNullAction {
 | |
|  public:
 | |
|   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
 | |
|   // this is enforced by returning nullptr, and in non-C++11 by asserting a
 | |
|   // pointer type on compile time.
 | |
|   template <typename Result, typename ArgumentTuple>
 | |
|   static Result Perform(const ArgumentTuple&) {
 | |
| #if GTEST_LANG_CXX11
 | |
|     return nullptr;
 | |
| #else
 | |
|     GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
 | |
|                           ReturnNull_can_be_used_to_return_a_pointer_only);
 | |
|     return NULL;
 | |
| #endif  // GTEST_LANG_CXX11
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements the Return() action.
 | |
| class ReturnVoidAction {
 | |
|  public:
 | |
|   // Allows Return() to be used in any void-returning function.
 | |
|   template <typename Result, typename ArgumentTuple>
 | |
|   static void Perform(const ArgumentTuple&) {
 | |
|     CompileAssertTypesEqual<void, Result>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic ReturnRef(x) action, which can be used
 | |
| // in any function that returns a reference to the type of x,
 | |
| // regardless of the argument types.
 | |
| template <typename T>
 | |
| class ReturnRefAction {
 | |
|  public:
 | |
|   // Constructs a ReturnRefAction object from the reference to be returned.
 | |
|   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
 | |
| 
 | |
|   // This template type conversion operator allows ReturnRef(x) to be
 | |
|   // used in ANY function that returns a reference to x's type.
 | |
|   template <typename F>
 | |
|   operator Action<F>() const {
 | |
|     typedef typename Function<F>::Result Result;
 | |
|     // Asserts that the function return type is a reference.  This
 | |
|     // catches the user error of using ReturnRef(x) when Return(x)
 | |
|     // should be used, and generates some helpful error message.
 | |
|     GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
 | |
|                           use_Return_instead_of_ReturnRef_to_return_a_value);
 | |
|     return Action<F>(new Impl<F>(ref_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Implements the ReturnRef(x) action for a particular function type F.
 | |
|   template <typename F>
 | |
|   class Impl : public ActionInterface<F> {
 | |
|    public:
 | |
|     typedef typename Function<F>::Result Result;
 | |
|     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
 | |
| 
 | |
|     virtual Result Perform(const ArgumentTuple&) {
 | |
|       return ref_;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     T& ref_;
 | |
| 
 | |
|     GTEST_DISALLOW_ASSIGN_(Impl);
 | |
|   };
 | |
| 
 | |
|   T& ref_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
 | |
| // used in any function that returns a reference to the type of x,
 | |
| // regardless of the argument types.
 | |
| template <typename T>
 | |
| class ReturnRefOfCopyAction {
 | |
|  public:
 | |
|   // Constructs a ReturnRefOfCopyAction object from the reference to
 | |
|   // be returned.
 | |
|   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
 | |
| 
 | |
|   // This template type conversion operator allows ReturnRefOfCopy(x) to be
 | |
|   // used in ANY function that returns a reference to x's type.
 | |
|   template <typename F>
 | |
|   operator Action<F>() const {
 | |
|     typedef typename Function<F>::Result Result;
 | |
|     // Asserts that the function return type is a reference.  This
 | |
|     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
 | |
|     // should be used, and generates some helpful error message.
 | |
|     GTEST_COMPILE_ASSERT_(
 | |
|         internal::is_reference<Result>::value,
 | |
|         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
 | |
|     return Action<F>(new Impl<F>(value_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
 | |
|   template <typename F>
 | |
|   class Impl : public ActionInterface<F> {
 | |
|    public:
 | |
|     typedef typename Function<F>::Result Result;
 | |
|     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|     explicit Impl(const T& value) : value_(value) {}  // NOLINT
 | |
| 
 | |
|     virtual Result Perform(const ArgumentTuple&) {
 | |
|       return value_;
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     T value_;
 | |
| 
 | |
|     GTEST_DISALLOW_ASSIGN_(Impl);
 | |
|   };
 | |
| 
 | |
|   const T value_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
 | |
| };
 | |
| 
 | |
| // Implements the polymorphic DoDefault() action.
 | |
| class DoDefaultAction {
 | |
|  public:
 | |
|   // This template type conversion operator allows DoDefault() to be
 | |
|   // used in any function.
 | |
|   template <typename F>
 | |
|   operator Action<F>() const { return Action<F>(NULL); }
 | |
| };
 | |
| 
 | |
| // Implements the Assign action to set a given pointer referent to a
 | |
| // particular value.
 | |
| template <typename T1, typename T2>
 | |
| class AssignAction {
 | |
|  public:
 | |
|   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
 | |
| 
 | |
|   template <typename Result, typename ArgumentTuple>
 | |
|   void Perform(const ArgumentTuple& /* args */) const {
 | |
|     *ptr_ = value_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   T1* const ptr_;
 | |
|   const T2 value_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(AssignAction);
 | |
| };
 | |
| 
 | |
| #if !GTEST_OS_WINDOWS_MOBILE
 | |
| 
 | |
| // Implements the SetErrnoAndReturn action to simulate return from
 | |
| // various system calls and libc functions.
 | |
| template <typename T>
 | |
| class SetErrnoAndReturnAction {
 | |
|  public:
 | |
|   SetErrnoAndReturnAction(int errno_value, T result)
 | |
|       : errno_(errno_value),
 | |
|         result_(result) {}
 | |
|   template <typename Result, typename ArgumentTuple>
 | |
|   Result Perform(const ArgumentTuple& /* args */) const {
 | |
|     errno = errno_;
 | |
|     return result_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const int errno_;
 | |
|   const T result_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
 | |
| };
 | |
| 
 | |
| #endif  // !GTEST_OS_WINDOWS_MOBILE
 | |
| 
 | |
| // Implements the SetArgumentPointee<N>(x) action for any function
 | |
| // whose N-th argument (0-based) is a pointer to x's type.  The
 | |
| // template parameter kIsProto is true iff type A is ProtocolMessage,
 | |
| // proto2::Message, or a sub-class of those.
 | |
| template <size_t N, typename A, bool kIsProto>
 | |
| class SetArgumentPointeeAction {
 | |
|  public:
 | |
|   // Constructs an action that sets the variable pointed to by the
 | |
|   // N-th function argument to 'value'.
 | |
|   explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
 | |
| 
 | |
|   template <typename Result, typename ArgumentTuple>
 | |
|   void Perform(const ArgumentTuple& args) const {
 | |
|     CompileAssertTypesEqual<void, Result>();
 | |
|     *::testing::get<N>(args) = value_;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const A value_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
 | |
| };
 | |
| 
 | |
| template <size_t N, typename Proto>
 | |
| class SetArgumentPointeeAction<N, Proto, true> {
 | |
|  public:
 | |
|   // Constructs an action that sets the variable pointed to by the
 | |
|   // N-th function argument to 'proto'.  Both ProtocolMessage and
 | |
|   // proto2::Message have the CopyFrom() method, so the same
 | |
|   // implementation works for both.
 | |
|   explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
 | |
|     proto_->CopyFrom(proto);
 | |
|   }
 | |
| 
 | |
|   template <typename Result, typename ArgumentTuple>
 | |
|   void Perform(const ArgumentTuple& args) const {
 | |
|     CompileAssertTypesEqual<void, Result>();
 | |
|     ::testing::get<N>(args)->CopyFrom(*proto_);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const internal::linked_ptr<Proto> proto_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
 | |
| };
 | |
| 
 | |
| // Implements the InvokeWithoutArgs(f) action.  The template argument
 | |
| // FunctionImpl is the implementation type of f, which can be either a
 | |
| // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
 | |
| // Action<F> as long as f's type is compatible with F (i.e. f can be
 | |
| // assigned to a tr1::function<F>).
 | |
| template <typename FunctionImpl>
 | |
| class InvokeWithoutArgsAction {
 | |
|  public:
 | |
|   // The c'tor makes a copy of function_impl (either a function
 | |
|   // pointer or a functor).
 | |
|   explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
 | |
|       : function_impl_(function_impl) {}
 | |
| 
 | |
|   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
 | |
|   // compatible with f.
 | |
|   template <typename Result, typename ArgumentTuple>
 | |
|   Result Perform(const ArgumentTuple&) { return function_impl_(); }
 | |
| 
 | |
|  private:
 | |
|   FunctionImpl function_impl_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
 | |
| };
 | |
| 
 | |
| // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
 | |
| template <class Class, typename MethodPtr>
 | |
| class InvokeMethodWithoutArgsAction {
 | |
|  public:
 | |
|   InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
 | |
|       : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
 | |
| 
 | |
|   template <typename Result, typename ArgumentTuple>
 | |
|   Result Perform(const ArgumentTuple&) const {
 | |
|     return (obj_ptr_->*method_ptr_)();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   Class* const obj_ptr_;
 | |
|   const MethodPtr method_ptr_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
 | |
| };
 | |
| 
 | |
| // Implements the IgnoreResult(action) action.
 | |
| template <typename A>
 | |
| class IgnoreResultAction {
 | |
|  public:
 | |
|   explicit IgnoreResultAction(const A& action) : action_(action) {}
 | |
| 
 | |
|   template <typename F>
 | |
|   operator Action<F>() const {
 | |
|     // Assert statement belongs here because this is the best place to verify
 | |
|     // conditions on F. It produces the clearest error messages
 | |
|     // in most compilers.
 | |
|     // Impl really belongs in this scope as a local class but can't
 | |
|     // because MSVC produces duplicate symbols in different translation units
 | |
|     // in this case. Until MS fixes that bug we put Impl into the class scope
 | |
|     // and put the typedef both here (for use in assert statement) and
 | |
|     // in the Impl class. But both definitions must be the same.
 | |
|     typedef typename internal::Function<F>::Result Result;
 | |
| 
 | |
|     // Asserts at compile time that F returns void.
 | |
|     CompileAssertTypesEqual<void, Result>();
 | |
| 
 | |
|     return Action<F>(new Impl<F>(action_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   template <typename F>
 | |
|   class Impl : public ActionInterface<F> {
 | |
|    public:
 | |
|     typedef typename internal::Function<F>::Result Result;
 | |
|     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
 | |
| 
 | |
|     explicit Impl(const A& action) : action_(action) {}
 | |
| 
 | |
|     virtual void Perform(const ArgumentTuple& args) {
 | |
|       // Performs the action and ignores its result.
 | |
|       action_.Perform(args);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     // Type OriginalFunction is the same as F except that its return
 | |
|     // type is IgnoredValue.
 | |
|     typedef typename internal::Function<F>::MakeResultIgnoredValue
 | |
|         OriginalFunction;
 | |
| 
 | |
|     const Action<OriginalFunction> action_;
 | |
| 
 | |
|     GTEST_DISALLOW_ASSIGN_(Impl);
 | |
|   };
 | |
| 
 | |
|   const A action_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
 | |
| };
 | |
| 
 | |
| // A ReferenceWrapper<T> object represents a reference to type T,
 | |
| // which can be either const or not.  It can be explicitly converted
 | |
| // from, and implicitly converted to, a T&.  Unlike a reference,
 | |
| // ReferenceWrapper<T> can be copied and can survive template type
 | |
| // inference.  This is used to support by-reference arguments in the
 | |
| // InvokeArgument<N>(...) action.  The idea was from "reference
 | |
| // wrappers" in tr1, which we don't have in our source tree yet.
 | |
| template <typename T>
 | |
| class ReferenceWrapper {
 | |
|  public:
 | |
|   // Constructs a ReferenceWrapper<T> object from a T&.
 | |
|   explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
 | |
| 
 | |
|   // Allows a ReferenceWrapper<T> object to be implicitly converted to
 | |
|   // a T&.
 | |
|   operator T&() const { return *pointer_; }
 | |
|  private:
 | |
|   T* pointer_;
 | |
| };
 | |
| 
 | |
| // Allows the expression ByRef(x) to be printed as a reference to x.
 | |
| template <typename T>
 | |
| void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
 | |
|   T& value = ref;
 | |
|   UniversalPrinter<T&>::Print(value, os);
 | |
| }
 | |
| 
 | |
| // Does two actions sequentially.  Used for implementing the DoAll(a1,
 | |
| // a2, ...) action.
 | |
| template <typename Action1, typename Action2>
 | |
| class DoBothAction {
 | |
|  public:
 | |
|   DoBothAction(Action1 action1, Action2 action2)
 | |
|       : action1_(action1), action2_(action2) {}
 | |
| 
 | |
|   // This template type conversion operator allows DoAll(a1, ..., a_n)
 | |
|   // to be used in ANY function of compatible type.
 | |
|   template <typename F>
 | |
|   operator Action<F>() const {
 | |
|     return Action<F>(new Impl<F>(action1_, action2_));
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Implements the DoAll(...) action for a particular function type F.
 | |
|   template <typename F>
 | |
|   class Impl : public ActionInterface<F> {
 | |
|    public:
 | |
|     typedef typename Function<F>::Result Result;
 | |
|     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
 | |
|     typedef typename Function<F>::MakeResultVoid VoidResult;
 | |
| 
 | |
|     Impl(const Action<VoidResult>& action1, const Action<F>& action2)
 | |
|         : action1_(action1), action2_(action2) {}
 | |
| 
 | |
|     virtual Result Perform(const ArgumentTuple& args) {
 | |
|       action1_.Perform(args);
 | |
|       return action2_.Perform(args);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const Action<VoidResult> action1_;
 | |
|     const Action<F> action2_;
 | |
| 
 | |
|     GTEST_DISALLOW_ASSIGN_(Impl);
 | |
|   };
 | |
| 
 | |
|   Action1 action1_;
 | |
|   Action2 action2_;
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(DoBothAction);
 | |
| };
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| // An Unused object can be implicitly constructed from ANY value.
 | |
| // This is handy when defining actions that ignore some or all of the
 | |
| // mock function arguments.  For example, given
 | |
| //
 | |
| //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
 | |
| //   MOCK_METHOD3(Bar, double(int index, double x, double y));
 | |
| //
 | |
| // instead of
 | |
| //
 | |
| //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
 | |
| //     return sqrt(x*x + y*y);
 | |
| //   }
 | |
| //   double DistanceToOriginWithIndex(int index, double x, double y) {
 | |
| //     return sqrt(x*x + y*y);
 | |
| //   }
 | |
| //   ...
 | |
| //   EXEPCT_CALL(mock, Foo("abc", _, _))
 | |
| //       .WillOnce(Invoke(DistanceToOriginWithLabel));
 | |
| //   EXEPCT_CALL(mock, Bar(5, _, _))
 | |
| //       .WillOnce(Invoke(DistanceToOriginWithIndex));
 | |
| //
 | |
| // you could write
 | |
| //
 | |
| //   // We can declare any uninteresting argument as Unused.
 | |
| //   double DistanceToOrigin(Unused, double x, double y) {
 | |
| //     return sqrt(x*x + y*y);
 | |
| //   }
 | |
| //   ...
 | |
| //   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
 | |
| //   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
 | |
| typedef internal::IgnoredValue Unused;
 | |
| 
 | |
| // This constructor allows us to turn an Action<From> object into an
 | |
| // Action<To>, as long as To's arguments can be implicitly converted
 | |
| // to From's and From's return type cann be implicitly converted to
 | |
| // To's.
 | |
| template <typename To>
 | |
| template <typename From>
 | |
| Action<To>::Action(const Action<From>& from)
 | |
|     : impl_(new internal::ActionAdaptor<To, From>(from)) {}
 | |
| 
 | |
| // Creates an action that returns 'value'.  'value' is passed by value
 | |
| // instead of const reference - otherwise Return("string literal")
 | |
| // will trigger a compiler error about using array as initializer.
 | |
| template <typename R>
 | |
| internal::ReturnAction<R> Return(R value) {
 | |
|   return internal::ReturnAction<R>(internal::move(value));
 | |
| }
 | |
| 
 | |
| // Creates an action that returns NULL.
 | |
| inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
 | |
|   return MakePolymorphicAction(internal::ReturnNullAction());
 | |
| }
 | |
| 
 | |
| // Creates an action that returns from a void function.
 | |
| inline PolymorphicAction<internal::ReturnVoidAction> Return() {
 | |
|   return MakePolymorphicAction(internal::ReturnVoidAction());
 | |
| }
 | |
| 
 | |
| // Creates an action that returns the reference to a variable.
 | |
| template <typename R>
 | |
| inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
 | |
|   return internal::ReturnRefAction<R>(x);
 | |
| }
 | |
| 
 | |
| // Creates an action that returns the reference to a copy of the
 | |
| // argument.  The copy is created when the action is constructed and
 | |
| // lives as long as the action.
 | |
| template <typename R>
 | |
| inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
 | |
|   return internal::ReturnRefOfCopyAction<R>(x);
 | |
| }
 | |
| 
 | |
| // Modifies the parent action (a Return() action) to perform a move of the
 | |
| // argument instead of a copy.
 | |
| // Return(ByMove()) actions can only be executed once and will assert this
 | |
| // invariant.
 | |
| template <typename R>
 | |
| internal::ByMoveWrapper<R> ByMove(R x) {
 | |
|   return internal::ByMoveWrapper<R>(internal::move(x));
 | |
| }
 | |
| 
 | |
| // Creates an action that does the default action for the give mock function.
 | |
| inline internal::DoDefaultAction DoDefault() {
 | |
|   return internal::DoDefaultAction();
 | |
| }
 | |
| 
 | |
| // Creates an action that sets the variable pointed by the N-th
 | |
| // (0-based) function argument to 'value'.
 | |
| template <size_t N, typename T>
 | |
| PolymorphicAction<
 | |
|   internal::SetArgumentPointeeAction<
 | |
|     N, T, internal::IsAProtocolMessage<T>::value> >
 | |
| SetArgPointee(const T& x) {
 | |
|   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
 | |
|       N, T, internal::IsAProtocolMessage<T>::value>(x));
 | |
| }
 | |
| 
 | |
| #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
 | |
| // This overload allows SetArgPointee() to accept a string literal.
 | |
| // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
 | |
| // this overload from the templated version and emit a compile error.
 | |
| template <size_t N>
 | |
| PolymorphicAction<
 | |
|   internal::SetArgumentPointeeAction<N, const char*, false> >
 | |
| SetArgPointee(const char* p) {
 | |
|   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
 | |
|       N, const char*, false>(p));
 | |
| }
 | |
| 
 | |
| template <size_t N>
 | |
| PolymorphicAction<
 | |
|   internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
 | |
| SetArgPointee(const wchar_t* p) {
 | |
|   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
 | |
|       N, const wchar_t*, false>(p));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // The following version is DEPRECATED.
 | |
| template <size_t N, typename T>
 | |
| PolymorphicAction<
 | |
|   internal::SetArgumentPointeeAction<
 | |
|     N, T, internal::IsAProtocolMessage<T>::value> >
 | |
| SetArgumentPointee(const T& x) {
 | |
|   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
 | |
|       N, T, internal::IsAProtocolMessage<T>::value>(x));
 | |
| }
 | |
| 
 | |
| // Creates an action that sets a pointer referent to a given value.
 | |
| template <typename T1, typename T2>
 | |
| PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
 | |
|   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
 | |
| }
 | |
| 
 | |
| #if !GTEST_OS_WINDOWS_MOBILE
 | |
| 
 | |
| // Creates an action that sets errno and returns the appropriate error.
 | |
| template <typename T>
 | |
| PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
 | |
| SetErrnoAndReturn(int errval, T result) {
 | |
|   return MakePolymorphicAction(
 | |
|       internal::SetErrnoAndReturnAction<T>(errval, result));
 | |
| }
 | |
| 
 | |
| #endif  // !GTEST_OS_WINDOWS_MOBILE
 | |
| 
 | |
| // Various overloads for InvokeWithoutArgs().
 | |
| 
 | |
| // Creates an action that invokes 'function_impl' with no argument.
 | |
| template <typename FunctionImpl>
 | |
| PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
 | |
| InvokeWithoutArgs(FunctionImpl function_impl) {
 | |
|   return MakePolymorphicAction(
 | |
|       internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
 | |
| }
 | |
| 
 | |
| // Creates an action that invokes the given method on the given object
 | |
| // with no argument.
 | |
| template <class Class, typename MethodPtr>
 | |
| PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
 | |
| InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
 | |
|   return MakePolymorphicAction(
 | |
|       internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
 | |
|           obj_ptr, method_ptr));
 | |
| }
 | |
| 
 | |
| // Creates an action that performs an_action and throws away its
 | |
| // result.  In other words, it changes the return type of an_action to
 | |
| // void.  an_action MUST NOT return void, or the code won't compile.
 | |
| template <typename A>
 | |
| inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
 | |
|   return internal::IgnoreResultAction<A>(an_action);
 | |
| }
 | |
| 
 | |
| // Creates a reference wrapper for the given L-value.  If necessary,
 | |
| // you can explicitly specify the type of the reference.  For example,
 | |
| // suppose 'derived' is an object of type Derived, ByRef(derived)
 | |
| // would wrap a Derived&.  If you want to wrap a const Base& instead,
 | |
| // where Base is a base class of Derived, just write:
 | |
| //
 | |
| //   ByRef<const Base>(derived)
 | |
| template <typename T>
 | |
| inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
 | |
|   return internal::ReferenceWrapper<T>(l_value);
 | |
| }
 | |
| 
 | |
| }  // namespace testing
 | |
| 
 | |
| #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
 |