llvm-project/lld/ELF/SymbolTable.cpp

628 lines
20 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Symbol table is a bag of all known symbols. We put all symbols of
// all input files to the symbol table. The symbol table is basically
// a hash table with the logic to resolve symbol name conflicts using
// the symbol types.
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "LinkerScript.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
SymbolTable *elf::Symtab;
// This function is where all the optimizations of link-time
// optimization happens. When LTO is in use, some input files are
// not in native object file format but in the LLVM bitcode format.
// This function compiles bitcode files into a few big native files
// using LLVM functions and replaces bitcode symbols with the results.
// Because all bitcode files that the program consists of are passed
// to the compiler at once, it can do whole-program optimization.
template <class ELFT> void SymbolTable::addCombinedLTOObject() {
// Compile bitcode files and replace bitcode symbols.
LTO.reset(new BitcodeCompiler);
for (BitcodeFile *F : BitcodeFiles)
LTO->add(*F);
for (InputFile *File : LTO->compile()) {
DenseSet<CachedHashStringRef> DummyGroups;
auto *Obj = cast<ObjFile<ELFT>>(File);
Obj->parse(DummyGroups);
for (Symbol *Sym : Obj->getGlobalSymbols())
Sym->parseSymbolVersion();
ObjectFiles.push_back(File);
}
}
// Set a flag for --trace-symbol so that we can print out a log message
// if a new symbol with the same name is inserted into the symbol table.
void SymbolTable::trace(StringRef Name) {
SymMap.insert({CachedHashStringRef(Name), -1});
}
void SymbolTable::wrap(Symbol *Sym, Symbol *Real, Symbol *Wrap) {
// Swap symbols as instructed by -wrap.
int &Idx1 = SymMap[CachedHashStringRef(Sym->getName())];
int &Idx2 = SymMap[CachedHashStringRef(Real->getName())];
int &Idx3 = SymMap[CachedHashStringRef(Wrap->getName())];
Idx2 = Idx1;
Idx1 = Idx3;
// Now renaming is complete. No one refers Real symbol. We could leave
// Real as-is, but if Real is written to the symbol table, that may
// contain irrelevant values. So, we copy all values from Sym to Real.
StringRef S = Real->getName();
memcpy(Real, Sym, sizeof(SymbolUnion));
Real->setName(S);
}
static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
if (VA == STV_DEFAULT)
return VB;
if (VB == STV_DEFAULT)
return VA;
return std::min(VA, VB);
}
// Find an existing symbol or create and insert a new one.
Symbol *SymbolTable::insert(const Symbol &New) {
// <name>@@<version> means the symbol is the default version. In that
// case <name>@@<version> will be used to resolve references to <name>.
//
// Since this is a hot path, the following string search code is
// optimized for speed. StringRef::find(char) is much faster than
// StringRef::find(StringRef).
StringRef Name = New.getName();
size_t Pos = Name.find('@');
if (Pos != StringRef::npos && Pos + 1 < Name.size() && Name[Pos + 1] == '@')
Name = Name.take_front(Pos);
auto P = SymMap.insert({CachedHashStringRef(Name), (int)SymVector.size()});
int &SymIndex = P.first->second;
bool IsNew = P.second;
bool Traced = false;
if (SymIndex == -1) {
SymIndex = SymVector.size();
IsNew = true;
Traced = true;
}
Symbol *Old;
if (IsNew) {
Old = reinterpret_cast<Symbol *>(make<SymbolUnion>());
SymVector.push_back(Old);
Old->SymbolKind = Symbol::PlaceholderKind;
Old->VersionId = Config->DefaultSymbolVersion;
Old->Visibility = STV_DEFAULT;
Old->IsUsedInRegularObj = false;
Old->ExportDynamic = false;
Old->CanInline = true;
Old->Traced = Traced;
Old->ScriptDefined = false;
} else {
Old = SymVector[SymIndex];
}
return Old;
}
// Merge symbol properties.
//
// When we have many symbols of the same name, we choose one of them,
// and that's the result of symbol resolution. However, symbols that
// were not chosen still affect some symbol properteis.
void SymbolTable::mergeProperties(Symbol *Old, const Symbol &New) {
// Merge symbol properties.
Old->ExportDynamic = Old->ExportDynamic || New.ExportDynamic;
Old->IsUsedInRegularObj = Old->IsUsedInRegularObj || New.IsUsedInRegularObj;
// DSO symbols do not affect visibility in the output.
if (!isa<SharedSymbol>(New))
Old->Visibility = getMinVisibility(Old->Visibility, New.Visibility);
}
Symbol *SymbolTable::addUndefined(const Undefined &New) {
Symbol *Old = insert(New);
mergeProperties(Old, New);
if (Old->isPlaceholder()) {
replaceSymbol(Old, &New);
return Old;
}
// An undefined symbol with non default visibility must be satisfied
// in the same DSO.
if (Old->isShared() && New.Visibility != STV_DEFAULT) {
replaceSymbol(Old, &New);
return Old;
}
if (Old->isShared() || Old->isLazy() ||
(Old->isUndefined() && New.Binding != STB_WEAK))
Old->Binding = New.Binding;
if (Old->isLazy()) {
// An undefined weak will not fetch archive members. See comment on Lazy in
// Symbols.h for the details.
if (New.Binding == STB_WEAK) {
Old->Type = New.Type;
return Old;
}
// Do extra check for --warn-backrefs.
//
// --warn-backrefs is an option to prevent an undefined reference from
// fetching an archive member written earlier in the command line. It can be
// used to keep compatibility with GNU linkers to some degree.
// I'll explain the feature and why you may find it useful in this comment.
//
// lld's symbol resolution semantics is more relaxed than traditional Unix
// linkers. For example,
//
// ld.lld foo.a bar.o
//
// succeeds even if bar.o contains an undefined symbol that has to be
// resolved by some object file in foo.a. Traditional Unix linkers don't
// allow this kind of backward reference, as they visit each file only once
// from left to right in the command line while resolving all undefined
// symbols at the moment of visiting.
//
// In the above case, since there's no undefined symbol when a linker visits
// foo.a, no files are pulled out from foo.a, and because the linker forgets
// about foo.a after visiting, it can't resolve undefined symbols in bar.o
// that could have been resolved otherwise.
//
// That lld accepts more relaxed form means that (besides it'd make more
// sense) you can accidentally write a command line or a build file that
// works only with lld, even if you have a plan to distribute it to wider
// users who may be using GNU linkers. With --warn-backrefs, you can detect
// a library order that doesn't work with other Unix linkers.
//
// The option is also useful to detect cyclic dependencies between static
// archives. Again, lld accepts
//
// ld.lld foo.a bar.a
//
// even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
// handled as an error.
//
// Here is how the option works. We assign a group ID to each file. A file
// with a smaller group ID can pull out object files from an archive file
// with an equal or greater group ID. Otherwise, it is a reverse dependency
// and an error.
//
// A file outside --{start,end}-group gets a fresh ID when instantiated. All
// files within the same --{start,end}-group get the same group ID. E.g.
//
// ld.lld A B --start-group C D --end-group E
//
// A forms group 0. B form group 1. C and D (including their member object
// files) form group 2. E forms group 3. I think that you can see how this
// group assignment rule simulates the traditional linker's semantics.
bool Backref = Config->WarnBackrefs && New.File &&
Old->File->GroupId < New.File->GroupId;
fetchLazy(Old);
// We don't report backward references to weak symbols as they can be
// overridden later.
if (Backref && !Old->isWeak())
warn("backward reference detected: " + New.getName() + " in " +
toString(New.File) + " refers to " + toString(Old->File));
}
return Old;
}
// Using .symver foo,foo@@VER unfortunately creates two symbols: foo and
// foo@@VER. We want to effectively ignore foo, so give precedence to
// foo@@VER.
// FIXME: If users can transition to using
// .symver foo,foo@@@VER
// we can delete this hack.
static int compareVersion(StringRef OldName, StringRef NewName) {
bool A = OldName.contains("@@");
bool B = NewName.contains("@@");
if (!A && B)
return 1;
if (A && !B)
return -1;
return 0;
}
// Compare two symbols. Return 1 if the new symbol should win, -1 if
// the new symbol should lose, or 0 if there is a conflict.
static int compare(const Symbol *Old, const Symbol *New) {
assert(New->isDefined() || New->isCommon());
if (!Old->isDefined() && !Old->isCommon())
return 1;
if (int Cmp = compareVersion(Old->getName(), New->getName()))
return Cmp;
if (New->isWeak())
return -1;
if (Old->isWeak())
return 1;
if (Old->isCommon() && New->isCommon()) {
if (Config->WarnCommon)
warn("multiple common of " + Old->getName());
return 0;
}
if (Old->isCommon()) {
if (Config->WarnCommon)
warn("common " + Old->getName() + " is overridden");
return 1;
}
if (New->isCommon()) {
if (Config->WarnCommon)
warn("common " + Old->getName() + " is overridden");
return -1;
}
auto *OldSym = cast<Defined>(Old);
auto *NewSym = cast<Defined>(New);
if (New->File && isa<BitcodeFile>(New->File))
return 0;
if (!OldSym->Section && !NewSym->Section && OldSym->Value == NewSym->Value &&
NewSym->Binding == STB_GLOBAL)
return -1;
return 0;
}
Symbol *SymbolTable::addCommon(const CommonSymbol &New) {
Symbol *Old = insert(New);
mergeProperties(Old, New);
if (Old->isPlaceholder()) {
replaceSymbol(Old, &New);
return Old;
}
int Cmp = compare(Old, &New);
if (Cmp < 0)
return Old;
if (Cmp > 0) {
replaceSymbol(Old, &New);
return Old;
}
CommonSymbol *OldSym = cast<CommonSymbol>(Old);
OldSym->Alignment = std::max(OldSym->Alignment, New.Alignment);
if (OldSym->Size < New.Size) {
OldSym->File = New.File;
OldSym->Size = New.Size;
}
return OldSym;
}
static void reportDuplicate(Symbol *Sym, InputFile *NewFile,
InputSectionBase *ErrSec, uint64_t ErrOffset) {
if (Config->AllowMultipleDefinition)
return;
Defined *D = cast<Defined>(Sym);
if (!D->Section || !ErrSec) {
error("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " +
toString(Sym->File) + "\n>>> defined in " + toString(NewFile));
return;
}
// Construct and print an error message in the form of:
//
// ld.lld: error: duplicate symbol: foo
// >>> defined at bar.c:30
// >>> bar.o (/home/alice/src/bar.o)
// >>> defined at baz.c:563
// >>> baz.o in archive libbaz.a
auto *Sec1 = cast<InputSectionBase>(D->Section);
std::string Src1 = Sec1->getSrcMsg(*Sym, D->Value);
std::string Obj1 = Sec1->getObjMsg(D->Value);
std::string Src2 = ErrSec->getSrcMsg(*Sym, ErrOffset);
std::string Obj2 = ErrSec->getObjMsg(ErrOffset);
std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at ";
if (!Src1.empty())
Msg += Src1 + "\n>>> ";
Msg += Obj1 + "\n>>> defined at ";
if (!Src2.empty())
Msg += Src2 + "\n>>> ";
Msg += Obj2;
error(Msg);
}
Symbol *SymbolTable::addDefined(const Defined &New) {
Symbol *Old = insert(New);
mergeProperties(Old, New);
if (Old->isPlaceholder()) {
replaceSymbol(Old, &New);
return Old;
}
int Cmp = compare(Old, &New);
if (Cmp > 0)
replaceSymbol(Old, &New);
else if (Cmp == 0)
reportDuplicate(Old, New.File,
dyn_cast_or_null<InputSectionBase>(New.Section), New.Value);
return Old;
}
Symbol *SymbolTable::addShared(const SharedSymbol &New) {
Symbol *Old = insert(New);
mergeProperties(Old, New);
// Make sure we preempt DSO symbols with default visibility.
if (New.Visibility == STV_DEFAULT)
Old->ExportDynamic = true;
if (Old->isPlaceholder()) {
replaceSymbol(Old, &New);
return Old;
}
if (Old->Visibility == STV_DEFAULT && (Old->isUndefined() || Old->isLazy())) {
// An undefined symbol with non default visibility must be satisfied
// in the same DSO.
uint8_t Binding = Old->Binding;
replaceSymbol(Old, &New);
Old->Binding = Binding;
}
return Old;
}
Symbol *SymbolTable::find(StringRef Name) {
auto It = SymMap.find(CachedHashStringRef(Name));
if (It == SymMap.end())
return nullptr;
if (It->second == -1)
return nullptr;
return SymVector[It->second];
}
template <class LazyT> Symbol *SymbolTable::addLazy(const LazyT &New) {
Symbol *Old = insert(New);
mergeProperties(Old, New);
if (Old->isPlaceholder()) {
replaceSymbol(Old, &New);
return Old;
}
if (!Old->isUndefined())
return Old;
// An undefined weak will not fetch archive members. See comment on Lazy in
// Symbols.h for the details.
if (Old->isWeak()) {
uint8_t Type = Old->Type;
replaceSymbol(Old, &New);
Old->Type = Type;
Old->Binding = STB_WEAK;
return Old;
}
if (InputFile *F = New.fetch())
parseFile(F);
return Old;
}
Symbol *SymbolTable::addLazyArchive(const LazyArchive &New) {
return addLazy(New);
}
Symbol *SymbolTable::addLazyObject(const LazyObject &New) {
return addLazy(New);
}
void SymbolTable::fetchLazy(Symbol *Sym) {
if (auto *S = dyn_cast<LazyArchive>(Sym)) {
if (InputFile *File = S->fetch())
parseFile(File);
return;
}
auto *S = cast<LazyObject>(Sym);
if (InputFile *File = cast<LazyObjFile>(S->File)->fetch())
parseFile(File);
}
// Initialize DemangledSyms with a map from demangled symbols to symbol
// objects. Used to handle "extern C++" directive in version scripts.
//
// The map will contain all demangled symbols. That can be very large,
// and in LLD we generally want to avoid do anything for each symbol.
// Then, why are we doing this? Here's why.
//
// Users can use "extern C++ {}" directive to match against demangled
// C++ symbols. For example, you can write a pattern such as
// "llvm::*::foo(int, ?)". Obviously, there's no way to handle this
// other than trying to match a pattern against all demangled symbols.
// So, if "extern C++" feature is used, we need to demangle all known
// symbols.
StringMap<std::vector<Symbol *>> &SymbolTable::getDemangledSyms() {
if (!DemangledSyms) {
DemangledSyms.emplace();
for (Symbol *Sym : SymVector) {
if (!Sym->isDefined() && !Sym->isCommon())
continue;
if (Optional<std::string> S = demangleItanium(Sym->getName()))
(*DemangledSyms)[*S].push_back(Sym);
else
(*DemangledSyms)[Sym->getName()].push_back(Sym);
}
}
return *DemangledSyms;
}
std::vector<Symbol *> SymbolTable::findByVersion(SymbolVersion Ver) {
if (Ver.IsExternCpp)
return getDemangledSyms().lookup(Ver.Name);
if (Symbol *B = find(Ver.Name))
if (B->isDefined() || B->isCommon())
return {B};
return {};
}
std::vector<Symbol *> SymbolTable::findAllByVersion(SymbolVersion Ver) {
std::vector<Symbol *> Res;
StringMatcher M(Ver.Name);
if (Ver.IsExternCpp) {
for (auto &P : getDemangledSyms())
if (M.match(P.first()))
Res.insert(Res.end(), P.second.begin(), P.second.end());
return Res;
}
for (Symbol *Sym : SymVector)
if ((Sym->isDefined() || Sym->isCommon()) && M.match(Sym->getName()))
Res.push_back(Sym);
return Res;
}
// If there's only one anonymous version definition in a version
// script file, the script does not actually define any symbol version,
// but just specifies symbols visibilities.
void SymbolTable::handleAnonymousVersion() {
for (SymbolVersion &Ver : Config->VersionScriptGlobals)
assignExactVersion(Ver, VER_NDX_GLOBAL, "global");
for (SymbolVersion &Ver : Config->VersionScriptGlobals)
assignWildcardVersion(Ver, VER_NDX_GLOBAL);
for (SymbolVersion &Ver : Config->VersionScriptLocals)
assignExactVersion(Ver, VER_NDX_LOCAL, "local");
for (SymbolVersion &Ver : Config->VersionScriptLocals)
assignWildcardVersion(Ver, VER_NDX_LOCAL);
}
// Handles -dynamic-list.
void SymbolTable::handleDynamicList() {
for (SymbolVersion &Ver : Config->DynamicList) {
std::vector<Symbol *> Syms;
if (Ver.HasWildcard)
Syms = findAllByVersion(Ver);
else
Syms = findByVersion(Ver);
for (Symbol *B : Syms) {
if (!Config->Shared)
B->ExportDynamic = true;
else if (B->includeInDynsym())
B->IsPreemptible = true;
}
}
}
// Set symbol versions to symbols. This function handles patterns
// containing no wildcard characters.
void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId,
StringRef VersionName) {
if (Ver.HasWildcard)
return;
// Get a list of symbols which we need to assign the version to.
std::vector<Symbol *> Syms = findByVersion(Ver);
if (Syms.empty()) {
if (!Config->UndefinedVersion)
error("version script assignment of '" + VersionName + "' to symbol '" +
Ver.Name + "' failed: symbol not defined");
return;
}
// Assign the version.
for (Symbol *Sym : Syms) {
// Skip symbols containing version info because symbol versions
// specified by symbol names take precedence over version scripts.
// See parseSymbolVersion().
if (Sym->getName().contains('@'))
continue;
if (Sym->VersionId != Config->DefaultSymbolVersion &&
Sym->VersionId != VersionId)
error("duplicate symbol '" + Ver.Name + "' in version script");
Sym->VersionId = VersionId;
}
}
void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) {
if (!Ver.HasWildcard)
return;
// Exact matching takes precendence over fuzzy matching,
// so we set a version to a symbol only if no version has been assigned
// to the symbol. This behavior is compatible with GNU.
for (Symbol *B : findAllByVersion(Ver))
if (B->VersionId == Config->DefaultSymbolVersion)
B->VersionId = VersionId;
}
// This function processes version scripts by updating VersionId
// member of symbols.
void SymbolTable::scanVersionScript() {
// Handle edge cases first.
handleAnonymousVersion();
handleDynamicList();
// Now we have version definitions, so we need to set version ids to symbols.
// Each version definition has a glob pattern, and all symbols that match
// with the pattern get that version.
// First, we assign versions to exact matching symbols,
// i.e. version definitions not containing any glob meta-characters.
for (VersionDefinition &V : Config->VersionDefinitions)
for (SymbolVersion &Ver : V.Globals)
assignExactVersion(Ver, V.Id, V.Name);
// Next, we assign versions to fuzzy matching symbols,
// i.e. version definitions containing glob meta-characters.
// Note that because the last match takes precedence over previous matches,
// we iterate over the definitions in the reverse order.
for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions))
for (SymbolVersion &Ver : V.Globals)
assignWildcardVersion(Ver, V.Id);
// Symbol themselves might know their versions because symbols
// can contain versions in the form of <name>@<version>.
// Let them parse and update their names to exclude version suffix.
for (Symbol *Sym : SymVector)
Sym->parseSymbolVersion();
}
template void SymbolTable::addCombinedLTOObject<ELF32LE>();
template void SymbolTable::addCombinedLTOObject<ELF32BE>();
template void SymbolTable::addCombinedLTOObject<ELF64LE>();
template void SymbolTable::addCombinedLTOObject<ELF64BE>();