forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2328 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2328 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This contains code to emit Constant Expr nodes as LLVM code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CGObjCRuntime.h"
 | 
						|
#include "CGRecordLayout.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "ConstantEmitter.h"
 | 
						|
#include "TargetInfo.h"
 | 
						|
#include "clang/AST/APValue.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "llvm/ADT/Sequence.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            ConstantAggregateBuilder
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class ConstExprEmitter;
 | 
						|
 | 
						|
struct ConstantAggregateBuilderUtils {
 | 
						|
  CodeGenModule &CGM;
 | 
						|
 | 
						|
  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
 | 
						|
 | 
						|
  CharUnits getAlignment(const llvm::Constant *C) const {
 | 
						|
    return CharUnits::fromQuantity(
 | 
						|
        CGM.getDataLayout().getABITypeAlignment(C->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  CharUnits getSize(llvm::Type *Ty) const {
 | 
						|
    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
 | 
						|
  }
 | 
						|
 | 
						|
  CharUnits getSize(const llvm::Constant *C) const {
 | 
						|
    return getSize(C->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *getPadding(CharUnits PadSize) const {
 | 
						|
    llvm::Type *Ty = CGM.Int8Ty;
 | 
						|
    if (PadSize > CharUnits::One())
 | 
						|
      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
 | 
						|
    return llvm::UndefValue::get(Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *getZeroes(CharUnits ZeroSize) const {
 | 
						|
    llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
 | 
						|
    return llvm::ConstantAggregateZero::get(Ty);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Incremental builder for an llvm::Constant* holding a struct or array
 | 
						|
/// constant.
 | 
						|
class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
 | 
						|
  /// The elements of the constant. These two arrays must have the same size;
 | 
						|
  /// Offsets[i] describes the offset of Elems[i] within the constant. The
 | 
						|
  /// elements are kept in increasing offset order, and we ensure that there
 | 
						|
  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
 | 
						|
  ///
 | 
						|
  /// This may contain explicit padding elements (in order to create a
 | 
						|
  /// natural layout), but need not. Gaps between elements are implicitly
 | 
						|
  /// considered to be filled with undef.
 | 
						|
  llvm::SmallVector<llvm::Constant*, 32> Elems;
 | 
						|
  llvm::SmallVector<CharUnits, 32> Offsets;
 | 
						|
 | 
						|
  /// The size of the constant (the maximum end offset of any added element).
 | 
						|
  /// May be larger than the end of Elems.back() if we split the last element
 | 
						|
  /// and removed some trailing undefs.
 | 
						|
  CharUnits Size = CharUnits::Zero();
 | 
						|
 | 
						|
  /// This is true only if laying out Elems in order as the elements of a
 | 
						|
  /// non-packed LLVM struct will give the correct layout.
 | 
						|
  bool NaturalLayout = true;
 | 
						|
 | 
						|
  bool split(size_t Index, CharUnits Hint);
 | 
						|
  Optional<size_t> splitAt(CharUnits Pos);
 | 
						|
 | 
						|
  static llvm::Constant *buildFrom(CodeGenModule &CGM,
 | 
						|
                                   ArrayRef<llvm::Constant *> Elems,
 | 
						|
                                   ArrayRef<CharUnits> Offsets,
 | 
						|
                                   CharUnits StartOffset, CharUnits Size,
 | 
						|
                                   bool NaturalLayout, llvm::Type *DesiredTy,
 | 
						|
                                   bool AllowOversized);
 | 
						|
 | 
						|
public:
 | 
						|
  ConstantAggregateBuilder(CodeGenModule &CGM)
 | 
						|
      : ConstantAggregateBuilderUtils(CGM) {}
 | 
						|
 | 
						|
  /// Update or overwrite the value starting at \p Offset with \c C.
 | 
						|
  ///
 | 
						|
  /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
 | 
						|
  ///        a constant that has already been added. This flag is only used to
 | 
						|
  ///        detect bugs.
 | 
						|
  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
 | 
						|
 | 
						|
  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
 | 
						|
  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
 | 
						|
 | 
						|
  /// Attempt to condense the value starting at \p Offset to a constant of type
 | 
						|
  /// \p DesiredTy.
 | 
						|
  void condense(CharUnits Offset, llvm::Type *DesiredTy);
 | 
						|
 | 
						|
  /// Produce a constant representing the entire accumulated value, ideally of
 | 
						|
  /// the specified type. If \p AllowOversized, the constant might be larger
 | 
						|
  /// than implied by \p DesiredTy (eg, if there is a flexible array member).
 | 
						|
  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
 | 
						|
  /// even if we can't represent it as that type.
 | 
						|
  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
 | 
						|
    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
 | 
						|
                     NaturalLayout, DesiredTy, AllowOversized);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<typename Container, typename Range = std::initializer_list<
 | 
						|
                                 typename Container::value_type>>
 | 
						|
static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
 | 
						|
  assert(BeginOff <= EndOff && "invalid replacement range");
 | 
						|
  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
 | 
						|
                          bool AllowOverwrite) {
 | 
						|
  // Common case: appending to a layout.
 | 
						|
  if (Offset >= Size) {
 | 
						|
    CharUnits Align = getAlignment(C);
 | 
						|
    CharUnits AlignedSize = Size.alignTo(Align);
 | 
						|
    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
 | 
						|
      NaturalLayout = false;
 | 
						|
    else if (AlignedSize < Offset) {
 | 
						|
      Elems.push_back(getPadding(Offset - Size));
 | 
						|
      Offsets.push_back(Size);
 | 
						|
    }
 | 
						|
    Elems.push_back(C);
 | 
						|
    Offsets.push_back(Offset);
 | 
						|
    Size = Offset + getSize(C);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Uncommon case: constant overlaps what we've already created.
 | 
						|
  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
 | 
						|
  if (!FirstElemToReplace)
 | 
						|
    return false;
 | 
						|
 | 
						|
  CharUnits CSize = getSize(C);
 | 
						|
  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
 | 
						|
  if (!LastElemToReplace)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
 | 
						|
         "unexpectedly overwriting field");
 | 
						|
 | 
						|
  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
 | 
						|
  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
 | 
						|
  Size = std::max(Size, Offset + CSize);
 | 
						|
  NaturalLayout = false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
 | 
						|
                              bool AllowOverwrite) {
 | 
						|
  const ASTContext &Context = CGM.getContext();
 | 
						|
  const uint64_t CharWidth = CGM.getContext().getCharWidth();
 | 
						|
 | 
						|
  // Offset of where we want the first bit to go within the bits of the
 | 
						|
  // current char.
 | 
						|
  unsigned OffsetWithinChar = OffsetInBits % CharWidth;
 | 
						|
 | 
						|
  // We split bit-fields up into individual bytes. Walk over the bytes and
 | 
						|
  // update them.
 | 
						|
  for (CharUnits OffsetInChars =
 | 
						|
           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
 | 
						|
       /**/; ++OffsetInChars) {
 | 
						|
    // Number of bits we want to fill in this char.
 | 
						|
    unsigned WantedBits =
 | 
						|
        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
 | 
						|
 | 
						|
    // Get a char containing the bits we want in the right places. The other
 | 
						|
    // bits have unspecified values.
 | 
						|
    llvm::APInt BitsThisChar = Bits;
 | 
						|
    if (BitsThisChar.getBitWidth() < CharWidth)
 | 
						|
      BitsThisChar = BitsThisChar.zext(CharWidth);
 | 
						|
    if (CGM.getDataLayout().isBigEndian()) {
 | 
						|
      // Figure out how much to shift by. We may need to left-shift if we have
 | 
						|
      // less than one byte of Bits left.
 | 
						|
      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
 | 
						|
      if (Shift > 0)
 | 
						|
        BitsThisChar.lshrInPlace(Shift);
 | 
						|
      else if (Shift < 0)
 | 
						|
        BitsThisChar = BitsThisChar.shl(-Shift);
 | 
						|
    } else {
 | 
						|
      BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
 | 
						|
    }
 | 
						|
    if (BitsThisChar.getBitWidth() > CharWidth)
 | 
						|
      BitsThisChar = BitsThisChar.trunc(CharWidth);
 | 
						|
 | 
						|
    if (WantedBits == CharWidth) {
 | 
						|
      // Got a full byte: just add it directly.
 | 
						|
      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
 | 
						|
          OffsetInChars, AllowOverwrite);
 | 
						|
    } else {
 | 
						|
      // Partial byte: update the existing integer if there is one. If we
 | 
						|
      // can't split out a 1-CharUnit range to update, then we can't add
 | 
						|
      // these bits and fail the entire constant emission.
 | 
						|
      llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
 | 
						|
      if (!FirstElemToUpdate)
 | 
						|
        return false;
 | 
						|
      llvm::Optional<size_t> LastElemToUpdate =
 | 
						|
          splitAt(OffsetInChars + CharUnits::One());
 | 
						|
      if (!LastElemToUpdate)
 | 
						|
        return false;
 | 
						|
      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
 | 
						|
             "should have at most one element covering one byte");
 | 
						|
 | 
						|
      // Figure out which bits we want and discard the rest.
 | 
						|
      llvm::APInt UpdateMask(CharWidth, 0);
 | 
						|
      if (CGM.getDataLayout().isBigEndian())
 | 
						|
        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
 | 
						|
                           CharWidth - OffsetWithinChar);
 | 
						|
      else
 | 
						|
        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
 | 
						|
      BitsThisChar &= UpdateMask;
 | 
						|
 | 
						|
      if (*FirstElemToUpdate == *LastElemToUpdate ||
 | 
						|
          Elems[*FirstElemToUpdate]->isNullValue() ||
 | 
						|
          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
 | 
						|
        // All existing bits are either zero or undef.
 | 
						|
        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
 | 
						|
            OffsetInChars, /*AllowOverwrite*/ true);
 | 
						|
      } else {
 | 
						|
        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
 | 
						|
        // In order to perform a partial update, we need the existing bitwise
 | 
						|
        // value, which we can only extract for a constant int.
 | 
						|
        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
 | 
						|
        if (!CI)
 | 
						|
          return false;
 | 
						|
        // Because this is a 1-CharUnit range, the constant occupying it must
 | 
						|
        // be exactly one CharUnit wide.
 | 
						|
        assert(CI->getBitWidth() == CharWidth && "splitAt failed");
 | 
						|
        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
 | 
						|
               "unexpectedly overwriting bitfield");
 | 
						|
        BitsThisChar |= (CI->getValue() & ~UpdateMask);
 | 
						|
        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Stop if we've added all the bits.
 | 
						|
    if (WantedBits == Bits.getBitWidth())
 | 
						|
      break;
 | 
						|
 | 
						|
    // Remove the consumed bits from Bits.
 | 
						|
    if (!CGM.getDataLayout().isBigEndian())
 | 
						|
      Bits.lshrInPlace(WantedBits);
 | 
						|
    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
 | 
						|
 | 
						|
    // The remanining bits go at the start of the following bytes.
 | 
						|
    OffsetWithinChar = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a position within Elems and Offsets such that all elements
 | 
						|
/// before the returned index end before Pos and all elements at or after
 | 
						|
/// the returned index begin at or after Pos. Splits elements as necessary
 | 
						|
/// to ensure this. Returns None if we find something we can't split.
 | 
						|
Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
 | 
						|
  if (Pos >= Size)
 | 
						|
    return Offsets.size();
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
 | 
						|
    if (FirstAfterPos == Offsets.begin())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // If we already have an element starting at Pos, we're done.
 | 
						|
    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
 | 
						|
    if (Offsets[LastAtOrBeforePosIndex] == Pos)
 | 
						|
      return LastAtOrBeforePosIndex;
 | 
						|
 | 
						|
    // We found an element starting before Pos. Check for overlap.
 | 
						|
    if (Offsets[LastAtOrBeforePosIndex] +
 | 
						|
        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
 | 
						|
      return LastAtOrBeforePosIndex + 1;
 | 
						|
 | 
						|
    // Try to decompose it into smaller constants.
 | 
						|
    if (!split(LastAtOrBeforePosIndex, Pos))
 | 
						|
      return None;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Split the constant at index Index, if possible. Return true if we did.
 | 
						|
/// Hint indicates the location at which we'd like to split, but may be
 | 
						|
/// ignored.
 | 
						|
bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
 | 
						|
  NaturalLayout = false;
 | 
						|
  llvm::Constant *C = Elems[Index];
 | 
						|
  CharUnits Offset = Offsets[Index];
 | 
						|
 | 
						|
  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
 | 
						|
    replace(Elems, Index, Index + 1,
 | 
						|
            llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
 | 
						|
                            [&](unsigned Op) { return CA->getOperand(Op); }));
 | 
						|
    if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
 | 
						|
      // Array or vector.
 | 
						|
      CharUnits ElemSize = getSize(Seq->getElementType());
 | 
						|
      replace(
 | 
						|
          Offsets, Index, Index + 1,
 | 
						|
          llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
 | 
						|
                          [&](unsigned Op) { return Offset + Op * ElemSize; }));
 | 
						|
    } else {
 | 
						|
      // Must be a struct.
 | 
						|
      auto *ST = cast<llvm::StructType>(CA->getType());
 | 
						|
      const llvm::StructLayout *Layout =
 | 
						|
          CGM.getDataLayout().getStructLayout(ST);
 | 
						|
      replace(Offsets, Index, Index + 1,
 | 
						|
              llvm::map_range(
 | 
						|
                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
 | 
						|
                    return Offset + CharUnits::fromQuantity(
 | 
						|
                                        Layout->getElementOffset(Op));
 | 
						|
                  }));
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
 | 
						|
    // FIXME: If possible, split into two ConstantDataSequentials at Hint.
 | 
						|
    CharUnits ElemSize = getSize(CDS->getElementType());
 | 
						|
    replace(Elems, Index, Index + 1,
 | 
						|
            llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
 | 
						|
                            [&](unsigned Elem) {
 | 
						|
                              return CDS->getElementAsConstant(Elem);
 | 
						|
                            }));
 | 
						|
    replace(Offsets, Index, Index + 1,
 | 
						|
            llvm::map_range(
 | 
						|
                llvm::seq(0u, CDS->getNumElements()),
 | 
						|
                [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<llvm::ConstantAggregateZero>(C)) {
 | 
						|
    CharUnits ElemSize = getSize(C);
 | 
						|
    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
 | 
						|
    replace(Elems, Index, Index + 1,
 | 
						|
            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
 | 
						|
    replace(Offsets, Index, Index + 1, {Offset, Hint});
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<llvm::UndefValue>(C)) {
 | 
						|
    replace(Elems, Index, Index + 1, {});
 | 
						|
    replace(Offsets, Index, Index + 1, {});
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We could split a ConstantInt if the need ever arose.
 | 
						|
  // We don't need to do this to handle bit-fields because we always eagerly
 | 
						|
  // split them into 1-byte chunks.
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *
 | 
						|
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
 | 
						|
                  llvm::Type *CommonElementType, unsigned ArrayBound,
 | 
						|
                  SmallVectorImpl<llvm::Constant *> &Elements,
 | 
						|
                  llvm::Constant *Filler);
 | 
						|
 | 
						|
llvm::Constant *ConstantAggregateBuilder::buildFrom(
 | 
						|
    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
 | 
						|
    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
 | 
						|
    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
 | 
						|
  ConstantAggregateBuilderUtils Utils(CGM);
 | 
						|
 | 
						|
  if (Elems.empty())
 | 
						|
    return llvm::UndefValue::get(DesiredTy);
 | 
						|
 | 
						|
  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
 | 
						|
 | 
						|
  // If we want an array type, see if all the elements are the same type and
 | 
						|
  // appropriately spaced.
 | 
						|
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
 | 
						|
    assert(!AllowOversized && "oversized array emission not supported");
 | 
						|
 | 
						|
    bool CanEmitArray = true;
 | 
						|
    llvm::Type *CommonType = Elems[0]->getType();
 | 
						|
    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
 | 
						|
    CharUnits ElemSize = Utils.getSize(ATy->getElementType());
 | 
						|
    SmallVector<llvm::Constant*, 32> ArrayElements;
 | 
						|
    for (size_t I = 0; I != Elems.size(); ++I) {
 | 
						|
      // Skip zeroes; we'll use a zero value as our array filler.
 | 
						|
      if (Elems[I]->isNullValue())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // All remaining elements must be the same type.
 | 
						|
      if (Elems[I]->getType() != CommonType ||
 | 
						|
          Offset(I) % ElemSize != 0) {
 | 
						|
        CanEmitArray = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
 | 
						|
      ArrayElements.back() = Elems[I];
 | 
						|
    }
 | 
						|
 | 
						|
    if (CanEmitArray) {
 | 
						|
      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
 | 
						|
                               ArrayElements, Filler);
 | 
						|
    }
 | 
						|
 | 
						|
    // Can't emit as an array, carry on to emit as a struct.
 | 
						|
  }
 | 
						|
 | 
						|
  CharUnits DesiredSize = Utils.getSize(DesiredTy);
 | 
						|
  CharUnits Align = CharUnits::One();
 | 
						|
  for (llvm::Constant *C : Elems)
 | 
						|
    Align = std::max(Align, Utils.getAlignment(C));
 | 
						|
  CharUnits AlignedSize = Size.alignTo(Align);
 | 
						|
 | 
						|
  bool Packed = false;
 | 
						|
  ArrayRef<llvm::Constant*> UnpackedElems = Elems;
 | 
						|
  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
 | 
						|
  if ((DesiredSize < AlignedSize && !AllowOversized) ||
 | 
						|
      DesiredSize.alignTo(Align) != DesiredSize) {
 | 
						|
    // The natural layout would be the wrong size; force use of a packed layout.
 | 
						|
    NaturalLayout = false;
 | 
						|
    Packed = true;
 | 
						|
  } else if (DesiredSize > AlignedSize) {
 | 
						|
    // The constant would be too small. Add padding to fix it.
 | 
						|
    UnpackedElemStorage.assign(Elems.begin(), Elems.end());
 | 
						|
    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
 | 
						|
    UnpackedElems = UnpackedElemStorage;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we don't have a natural layout, insert padding as necessary.
 | 
						|
  // As we go, double-check to see if we can actually just emit Elems
 | 
						|
  // as a non-packed struct and do so opportunistically if possible.
 | 
						|
  llvm::SmallVector<llvm::Constant*, 32> PackedElems;
 | 
						|
  if (!NaturalLayout) {
 | 
						|
    CharUnits SizeSoFar = CharUnits::Zero();
 | 
						|
    for (size_t I = 0; I != Elems.size(); ++I) {
 | 
						|
      CharUnits Align = Utils.getAlignment(Elems[I]);
 | 
						|
      CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
 | 
						|
      CharUnits DesiredOffset = Offset(I);
 | 
						|
      assert(DesiredOffset >= SizeSoFar && "elements out of order");
 | 
						|
 | 
						|
      if (DesiredOffset != NaturalOffset)
 | 
						|
        Packed = true;
 | 
						|
      if (DesiredOffset != SizeSoFar)
 | 
						|
        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
 | 
						|
      PackedElems.push_back(Elems[I]);
 | 
						|
      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
 | 
						|
    }
 | 
						|
    // If we're using the packed layout, pad it out to the desired size if
 | 
						|
    // necessary.
 | 
						|
    if (Packed) {
 | 
						|
      assert((SizeSoFar <= DesiredSize || AllowOversized) &&
 | 
						|
             "requested size is too small for contents");
 | 
						|
      if (SizeSoFar < DesiredSize)
 | 
						|
        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
 | 
						|
      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
 | 
						|
 | 
						|
  // Pick the type to use.  If the type is layout identical to the desired
 | 
						|
  // type then use it, otherwise use whatever the builder produced for us.
 | 
						|
  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
 | 
						|
    if (DesiredSTy->isLayoutIdentical(STy))
 | 
						|
      STy = DesiredSTy;
 | 
						|
  }
 | 
						|
 | 
						|
  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
 | 
						|
}
 | 
						|
 | 
						|
void ConstantAggregateBuilder::condense(CharUnits Offset,
 | 
						|
                                        llvm::Type *DesiredTy) {
 | 
						|
  CharUnits Size = getSize(DesiredTy);
 | 
						|
 | 
						|
  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
 | 
						|
  if (!FirstElemToReplace)
 | 
						|
    return;
 | 
						|
  size_t First = *FirstElemToReplace;
 | 
						|
 | 
						|
  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
 | 
						|
  if (!LastElemToReplace)
 | 
						|
    return;
 | 
						|
  size_t Last = *LastElemToReplace;
 | 
						|
 | 
						|
  size_t Length = Last - First;
 | 
						|
  if (Length == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Length == 1 && Offsets[First] == Offset &&
 | 
						|
      getSize(Elems[First]) == Size) {
 | 
						|
    // Re-wrap single element structs if necessary. Otherwise, leave any single
 | 
						|
    // element constant of the right size alone even if it has the wrong type.
 | 
						|
    auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
 | 
						|
    if (STy && STy->getNumElements() == 1 &&
 | 
						|
        STy->getElementType(0) == Elems[First]->getType())
 | 
						|
      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *Replacement = buildFrom(
 | 
						|
      CGM, makeArrayRef(Elems).slice(First, Length),
 | 
						|
      makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
 | 
						|
      /*known to have natural layout=*/false, DesiredTy, false);
 | 
						|
  replace(Elems, First, Last, {Replacement});
 | 
						|
  replace(Offsets, First, Last, {Offset});
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            ConstStructBuilder
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
class ConstStructBuilder {
 | 
						|
  CodeGenModule &CGM;
 | 
						|
  ConstantEmitter &Emitter;
 | 
						|
  ConstantAggregateBuilder &Builder;
 | 
						|
  CharUnits StartOffset;
 | 
						|
 | 
						|
public:
 | 
						|
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
 | 
						|
                                     InitListExpr *ILE, QualType StructTy);
 | 
						|
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
 | 
						|
                                     const APValue &Value, QualType ValTy);
 | 
						|
  static bool UpdateStruct(ConstantEmitter &Emitter,
 | 
						|
                           ConstantAggregateBuilder &Const, CharUnits Offset,
 | 
						|
                           InitListExpr *Updater);
 | 
						|
 | 
						|
private:
 | 
						|
  ConstStructBuilder(ConstantEmitter &Emitter,
 | 
						|
                     ConstantAggregateBuilder &Builder, CharUnits StartOffset)
 | 
						|
      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
 | 
						|
        StartOffset(StartOffset) {}
 | 
						|
 | 
						|
  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
 | 
						|
                   llvm::Constant *InitExpr, bool AllowOverwrite = false);
 | 
						|
 | 
						|
  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
 | 
						|
                   bool AllowOverwrite = false);
 | 
						|
 | 
						|
  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
 | 
						|
                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
 | 
						|
 | 
						|
  bool Build(InitListExpr *ILE, bool AllowOverwrite);
 | 
						|
  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
 | 
						|
             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
 | 
						|
  llvm::Constant *Finalize(QualType Ty);
 | 
						|
};
 | 
						|
 | 
						|
bool ConstStructBuilder::AppendField(
 | 
						|
    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
 | 
						|
    bool AllowOverwrite) {
 | 
						|
  const ASTContext &Context = CGM.getContext();
 | 
						|
 | 
						|
  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
 | 
						|
 | 
						|
  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
 | 
						|
                                     llvm::Constant *InitCst,
 | 
						|
                                     bool AllowOverwrite) {
 | 
						|
  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstStructBuilder::AppendBitField(
 | 
						|
    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
 | 
						|
    bool AllowOverwrite) {
 | 
						|
  uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
 | 
						|
  llvm::APInt FieldValue = CI->getValue();
 | 
						|
 | 
						|
  // Promote the size of FieldValue if necessary
 | 
						|
  // FIXME: This should never occur, but currently it can because initializer
 | 
						|
  // constants are cast to bool, and because clang is not enforcing bitfield
 | 
						|
  // width limits.
 | 
						|
  if (FieldSize > FieldValue.getBitWidth())
 | 
						|
    FieldValue = FieldValue.zext(FieldSize);
 | 
						|
 | 
						|
  // Truncate the size of FieldValue to the bit field size.
 | 
						|
  if (FieldSize < FieldValue.getBitWidth())
 | 
						|
    FieldValue = FieldValue.trunc(FieldSize);
 | 
						|
 | 
						|
  return Builder.addBits(FieldValue,
 | 
						|
                         CGM.getContext().toBits(StartOffset) + FieldOffset,
 | 
						|
                         AllowOverwrite);
 | 
						|
}
 | 
						|
 | 
						|
static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
 | 
						|
                                      ConstantAggregateBuilder &Const,
 | 
						|
                                      CharUnits Offset, QualType Type,
 | 
						|
                                      InitListExpr *Updater) {
 | 
						|
  if (Type->isRecordType())
 | 
						|
    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
 | 
						|
 | 
						|
  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
 | 
						|
  if (!CAT)
 | 
						|
    return false;
 | 
						|
  QualType ElemType = CAT->getElementType();
 | 
						|
  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
 | 
						|
  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
 | 
						|
 | 
						|
  llvm::Constant *FillC = nullptr;
 | 
						|
  if (Expr *Filler = Updater->getArrayFiller()) {
 | 
						|
    if (!isa<NoInitExpr>(Filler)) {
 | 
						|
      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
 | 
						|
      if (!FillC)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumElementsToUpdate =
 | 
						|
      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
 | 
						|
  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
 | 
						|
    Expr *Init = nullptr;
 | 
						|
    if (I < Updater->getNumInits())
 | 
						|
      Init = Updater->getInit(I);
 | 
						|
 | 
						|
    if (!Init && FillC) {
 | 
						|
      if (!Const.add(FillC, Offset, true))
 | 
						|
        return false;
 | 
						|
    } else if (!Init || isa<NoInitExpr>(Init)) {
 | 
						|
      continue;
 | 
						|
    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
 | 
						|
      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
 | 
						|
                                     ChildILE))
 | 
						|
        return false;
 | 
						|
      // Attempt to reduce the array element to a single constant if necessary.
 | 
						|
      Const.condense(Offset, ElemTy);
 | 
						|
    } else {
 | 
						|
      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
 | 
						|
      if (!Const.add(Val, Offset, true))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
 | 
						|
  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
 | 
						|
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
 | 
						|
 | 
						|
  unsigned FieldNo = -1;
 | 
						|
  unsigned ElementNo = 0;
 | 
						|
 | 
						|
  // Bail out if we have base classes. We could support these, but they only
 | 
						|
  // arise in C++1z where we will have already constant folded most interesting
 | 
						|
  // cases. FIXME: There are still a few more cases we can handle this way.
 | 
						|
  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | 
						|
    if (CXXRD->getNumBases())
 | 
						|
      return false;
 | 
						|
 | 
						|
  for (FieldDecl *Field : RD->fields()) {
 | 
						|
    ++FieldNo;
 | 
						|
 | 
						|
    // If this is a union, skip all the fields that aren't being initialized.
 | 
						|
    if (RD->isUnion() &&
 | 
						|
        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't emit anonymous bitfields or zero-sized fields.
 | 
						|
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get the initializer.  A struct can include fields without initializers,
 | 
						|
    // we just use explicit null values for them.
 | 
						|
    Expr *Init = nullptr;
 | 
						|
    if (ElementNo < ILE->getNumInits())
 | 
						|
      Init = ILE->getInit(ElementNo++);
 | 
						|
    if (Init && isa<NoInitExpr>(Init))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
 | 
						|
    // represents additional overwriting of our current constant value, and not
 | 
						|
    // a new constant to emit independently.
 | 
						|
    if (AllowOverwrite &&
 | 
						|
        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
 | 
						|
      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
 | 
						|
        CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
 | 
						|
            Layout.getFieldOffset(FieldNo));
 | 
						|
        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
 | 
						|
                                       Field->getType(), SubILE))
 | 
						|
          return false;
 | 
						|
        // If we split apart the field's value, try to collapse it down to a
 | 
						|
        // single value now.
 | 
						|
        Builder.condense(StartOffset + Offset,
 | 
						|
                         CGM.getTypes().ConvertTypeForMem(Field->getType()));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::Constant *EltInit =
 | 
						|
        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
 | 
						|
             : Emitter.emitNullForMemory(Field->getType());
 | 
						|
    if (!EltInit)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!Field->isBitField()) {
 | 
						|
      // Handle non-bitfield members.
 | 
						|
      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
 | 
						|
                       AllowOverwrite))
 | 
						|
        return false;
 | 
						|
      // After emitting a non-empty field with [[no_unique_address]], we may
 | 
						|
      // need to overwrite its tail padding.
 | 
						|
      if (Field->hasAttr<NoUniqueAddressAttr>())
 | 
						|
        AllowOverwrite = true;
 | 
						|
    } else {
 | 
						|
      // Otherwise we have a bitfield.
 | 
						|
      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
 | 
						|
        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
 | 
						|
                            AllowOverwrite))
 | 
						|
          return false;
 | 
						|
      } else {
 | 
						|
        // We are trying to initialize a bitfield with a non-trivial constant,
 | 
						|
        // this must require run-time code.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct BaseInfo {
 | 
						|
  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
 | 
						|
    : Decl(Decl), Offset(Offset), Index(Index) {
 | 
						|
  }
 | 
						|
 | 
						|
  const CXXRecordDecl *Decl;
 | 
						|
  CharUnits Offset;
 | 
						|
  unsigned Index;
 | 
						|
 | 
						|
  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
 | 
						|
                               bool IsPrimaryBase,
 | 
						|
                               const CXXRecordDecl *VTableClass,
 | 
						|
                               CharUnits Offset) {
 | 
						|
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
 | 
						|
 | 
						|
  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
    // Add a vtable pointer, if we need one and it hasn't already been added.
 | 
						|
    if (CD->isDynamicClass() && !IsPrimaryBase) {
 | 
						|
      llvm::Constant *VTableAddressPoint =
 | 
						|
          CGM.getCXXABI().getVTableAddressPointForConstExpr(
 | 
						|
              BaseSubobject(CD, Offset), VTableClass);
 | 
						|
      if (!AppendBytes(Offset, VTableAddressPoint))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Accumulate and sort bases, in order to visit them in address order, which
 | 
						|
    // may not be the same as declaration order.
 | 
						|
    SmallVector<BaseInfo, 8> Bases;
 | 
						|
    Bases.reserve(CD->getNumBases());
 | 
						|
    unsigned BaseNo = 0;
 | 
						|
    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
 | 
						|
         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
 | 
						|
      assert(!Base->isVirtual() && "should not have virtual bases here");
 | 
						|
      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
 | 
						|
      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
 | 
						|
      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
 | 
						|
    }
 | 
						|
    llvm::stable_sort(Bases);
 | 
						|
 | 
						|
    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
 | 
						|
      BaseInfo &Base = Bases[I];
 | 
						|
 | 
						|
      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
 | 
						|
      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
 | 
						|
            VTableClass, Offset + Base.Offset);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned FieldNo = 0;
 | 
						|
  uint64_t OffsetBits = CGM.getContext().toBits(Offset);
 | 
						|
 | 
						|
  bool AllowOverwrite = false;
 | 
						|
  for (RecordDecl::field_iterator Field = RD->field_begin(),
 | 
						|
       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
 | 
						|
    // If this is a union, skip all the fields that aren't being initialized.
 | 
						|
    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't emit anonymous bitfields or zero-sized fields.
 | 
						|
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Emit the value of the initializer.
 | 
						|
    const APValue &FieldValue =
 | 
						|
      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
 | 
						|
    llvm::Constant *EltInit =
 | 
						|
      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
 | 
						|
    if (!EltInit)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!Field->isBitField()) {
 | 
						|
      // Handle non-bitfield members.
 | 
						|
      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
 | 
						|
                       EltInit, AllowOverwrite))
 | 
						|
        return false;
 | 
						|
      // After emitting a non-empty field with [[no_unique_address]], we may
 | 
						|
      // need to overwrite its tail padding.
 | 
						|
      if (Field->hasAttr<NoUniqueAddressAttr>())
 | 
						|
        AllowOverwrite = true;
 | 
						|
    } else {
 | 
						|
      // Otherwise we have a bitfield.
 | 
						|
      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
 | 
						|
                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
 | 
						|
  RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
 | 
						|
  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
 | 
						|
  return Builder.build(ValTy, RD->hasFlexibleArrayMember());
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
 | 
						|
                                                InitListExpr *ILE,
 | 
						|
                                                QualType ValTy) {
 | 
						|
  ConstantAggregateBuilder Const(Emitter.CGM);
 | 
						|
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
 | 
						|
 | 
						|
  if (!Builder.Build(ILE, /*AllowOverwrite*/false))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return Builder.Finalize(ValTy);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
 | 
						|
                                                const APValue &Val,
 | 
						|
                                                QualType ValTy) {
 | 
						|
  ConstantAggregateBuilder Const(Emitter.CGM);
 | 
						|
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
 | 
						|
 | 
						|
  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
 | 
						|
  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
 | 
						|
  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return Builder.Finalize(ValTy);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
 | 
						|
                                      ConstantAggregateBuilder &Const,
 | 
						|
                                      CharUnits Offset, InitListExpr *Updater) {
 | 
						|
  return ConstStructBuilder(Emitter, Const, Offset)
 | 
						|
      .Build(Updater, /*AllowOverwrite*/ true);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             ConstExprEmitter
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
 | 
						|
                                                    CodeGenFunction *CGF,
 | 
						|
                                              const CompoundLiteralExpr *E) {
 | 
						|
  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
 | 
						|
  if (llvm::GlobalVariable *Addr =
 | 
						|
          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
 | 
						|
    return ConstantAddress(Addr, Align);
 | 
						|
 | 
						|
  LangAS addressSpace = E->getType().getAddressSpace();
 | 
						|
 | 
						|
  ConstantEmitter emitter(CGM, CGF);
 | 
						|
  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
 | 
						|
                                                    addressSpace, E->getType());
 | 
						|
  if (!C) {
 | 
						|
    assert(!E->isFileScope() &&
 | 
						|
           "file-scope compound literal did not have constant initializer!");
 | 
						|
    return ConstantAddress::invalid();
 | 
						|
  }
 | 
						|
 | 
						|
  auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
 | 
						|
                                     CGM.isTypeConstant(E->getType(), true),
 | 
						|
                                     llvm::GlobalValue::InternalLinkage,
 | 
						|
                                     C, ".compoundliteral", nullptr,
 | 
						|
                                     llvm::GlobalVariable::NotThreadLocal,
 | 
						|
                    CGM.getContext().getTargetAddressSpace(addressSpace));
 | 
						|
  emitter.finalize(GV);
 | 
						|
  GV->setAlignment(Align.getAsAlign());
 | 
						|
  CGM.setAddrOfConstantCompoundLiteral(E, GV);
 | 
						|
  return ConstantAddress(GV, Align);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *
 | 
						|
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
 | 
						|
                  llvm::Type *CommonElementType, unsigned ArrayBound,
 | 
						|
                  SmallVectorImpl<llvm::Constant *> &Elements,
 | 
						|
                  llvm::Constant *Filler) {
 | 
						|
  // Figure out how long the initial prefix of non-zero elements is.
 | 
						|
  unsigned NonzeroLength = ArrayBound;
 | 
						|
  if (Elements.size() < NonzeroLength && Filler->isNullValue())
 | 
						|
    NonzeroLength = Elements.size();
 | 
						|
  if (NonzeroLength == Elements.size()) {
 | 
						|
    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
 | 
						|
      --NonzeroLength;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NonzeroLength == 0)
 | 
						|
    return llvm::ConstantAggregateZero::get(DesiredType);
 | 
						|
 | 
						|
  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
 | 
						|
  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
 | 
						|
  if (TrailingZeroes >= 8) {
 | 
						|
    assert(Elements.size() >= NonzeroLength &&
 | 
						|
           "missing initializer for non-zero element");
 | 
						|
 | 
						|
    // If all the elements had the same type up to the trailing zeroes, emit a
 | 
						|
    // struct of two arrays (the nonzero data and the zeroinitializer).
 | 
						|
    if (CommonElementType && NonzeroLength >= 8) {
 | 
						|
      llvm::Constant *Initial = llvm::ConstantArray::get(
 | 
						|
          llvm::ArrayType::get(CommonElementType, NonzeroLength),
 | 
						|
          makeArrayRef(Elements).take_front(NonzeroLength));
 | 
						|
      Elements.resize(2);
 | 
						|
      Elements[0] = Initial;
 | 
						|
    } else {
 | 
						|
      Elements.resize(NonzeroLength + 1);
 | 
						|
    }
 | 
						|
 | 
						|
    auto *FillerType =
 | 
						|
        CommonElementType ? CommonElementType : DesiredType->getElementType();
 | 
						|
    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
 | 
						|
    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
 | 
						|
    CommonElementType = nullptr;
 | 
						|
  } else if (Elements.size() != ArrayBound) {
 | 
						|
    // Otherwise pad to the right size with the filler if necessary.
 | 
						|
    Elements.resize(ArrayBound, Filler);
 | 
						|
    if (Filler->getType() != CommonElementType)
 | 
						|
      CommonElementType = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all elements have the same type, just emit an array constant.
 | 
						|
  if (CommonElementType)
 | 
						|
    return llvm::ConstantArray::get(
 | 
						|
        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
 | 
						|
 | 
						|
  // We have mixed types. Use a packed struct.
 | 
						|
  llvm::SmallVector<llvm::Type *, 16> Types;
 | 
						|
  Types.reserve(Elements.size());
 | 
						|
  for (llvm::Constant *Elt : Elements)
 | 
						|
    Types.push_back(Elt->getType());
 | 
						|
  llvm::StructType *SType =
 | 
						|
      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
 | 
						|
  return llvm::ConstantStruct::get(SType, Elements);
 | 
						|
}
 | 
						|
 | 
						|
// This class only needs to handle arrays, structs and unions. Outside C++11
 | 
						|
// mode, we don't currently constant fold those types.  All other types are
 | 
						|
// handled by constant folding.
 | 
						|
//
 | 
						|
// Constant folding is currently missing support for a few features supported
 | 
						|
// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
 | 
						|
class ConstExprEmitter :
 | 
						|
  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
 | 
						|
  CodeGenModule &CGM;
 | 
						|
  ConstantEmitter &Emitter;
 | 
						|
  llvm::LLVMContext &VMContext;
 | 
						|
public:
 | 
						|
  ConstExprEmitter(ConstantEmitter &emitter)
 | 
						|
    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                            Visitor Methods
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
 | 
						|
    return Visit(CE->getSubExpr(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
 | 
						|
    return Visit(PE->getSubExpr(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *
 | 
						|
  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
 | 
						|
                                    QualType T) {
 | 
						|
    return Visit(PE->getReplacement(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
 | 
						|
                                            QualType T) {
 | 
						|
    return Visit(GE->getResultExpr(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
 | 
						|
    return Visit(CE->getChosenSubExpr(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
 | 
						|
    return Visit(E->getInitializer(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
 | 
						|
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
 | 
						|
      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
 | 
						|
    Expr *subExpr = E->getSubExpr();
 | 
						|
 | 
						|
    switch (E->getCastKind()) {
 | 
						|
    case CK_ToUnion: {
 | 
						|
      // GCC cast to union extension
 | 
						|
      assert(E->getType()->isUnionType() &&
 | 
						|
             "Destination type is not union type!");
 | 
						|
 | 
						|
      auto field = E->getTargetUnionField();
 | 
						|
 | 
						|
      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
 | 
						|
      if (!C) return nullptr;
 | 
						|
 | 
						|
      auto destTy = ConvertType(destType);
 | 
						|
      if (C->getType() == destTy) return C;
 | 
						|
 | 
						|
      // Build a struct with the union sub-element as the first member,
 | 
						|
      // and padded to the appropriate size.
 | 
						|
      SmallVector<llvm::Constant*, 2> Elts;
 | 
						|
      SmallVector<llvm::Type*, 2> Types;
 | 
						|
      Elts.push_back(C);
 | 
						|
      Types.push_back(C->getType());
 | 
						|
      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
 | 
						|
      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
 | 
						|
 | 
						|
      assert(CurSize <= TotalSize && "Union size mismatch!");
 | 
						|
      if (unsigned NumPadBytes = TotalSize - CurSize) {
 | 
						|
        llvm::Type *Ty = CGM.Int8Ty;
 | 
						|
        if (NumPadBytes > 1)
 | 
						|
          Ty = llvm::ArrayType::get(Ty, NumPadBytes);
 | 
						|
 | 
						|
        Elts.push_back(llvm::UndefValue::get(Ty));
 | 
						|
        Types.push_back(Ty);
 | 
						|
      }
 | 
						|
 | 
						|
      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
 | 
						|
      return llvm::ConstantStruct::get(STy, Elts);
 | 
						|
    }
 | 
						|
 | 
						|
    case CK_AddressSpaceConversion: {
 | 
						|
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
 | 
						|
      if (!C) return nullptr;
 | 
						|
      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
 | 
						|
      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
 | 
						|
      llvm::Type *destTy = ConvertType(E->getType());
 | 
						|
      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
 | 
						|
                                                             destAS, destTy);
 | 
						|
    }
 | 
						|
 | 
						|
    case CK_LValueToRValue:
 | 
						|
    case CK_AtomicToNonAtomic:
 | 
						|
    case CK_NonAtomicToAtomic:
 | 
						|
    case CK_NoOp:
 | 
						|
    case CK_ConstructorConversion:
 | 
						|
      return Visit(subExpr, destType);
 | 
						|
 | 
						|
    case CK_IntToOCLSampler:
 | 
						|
      llvm_unreachable("global sampler variables are not generated");
 | 
						|
 | 
						|
    case CK_Dependent: llvm_unreachable("saw dependent cast!");
 | 
						|
 | 
						|
    case CK_BuiltinFnToFnPtr:
 | 
						|
      llvm_unreachable("builtin functions are handled elsewhere");
 | 
						|
 | 
						|
    case CK_ReinterpretMemberPointer:
 | 
						|
    case CK_DerivedToBaseMemberPointer:
 | 
						|
    case CK_BaseToDerivedMemberPointer: {
 | 
						|
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
 | 
						|
      if (!C) return nullptr;
 | 
						|
      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
 | 
						|
    }
 | 
						|
 | 
						|
    // These will never be supported.
 | 
						|
    case CK_ObjCObjectLValueCast:
 | 
						|
    case CK_ARCProduceObject:
 | 
						|
    case CK_ARCConsumeObject:
 | 
						|
    case CK_ARCReclaimReturnedObject:
 | 
						|
    case CK_ARCExtendBlockObject:
 | 
						|
    case CK_CopyAndAutoreleaseBlockObject:
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // These don't need to be handled here because Evaluate knows how to
 | 
						|
    // evaluate them in the cases where they can be folded.
 | 
						|
    case CK_BitCast:
 | 
						|
    case CK_ToVoid:
 | 
						|
    case CK_Dynamic:
 | 
						|
    case CK_LValueBitCast:
 | 
						|
    case CK_LValueToRValueBitCast:
 | 
						|
    case CK_NullToMemberPointer:
 | 
						|
    case CK_UserDefinedConversion:
 | 
						|
    case CK_CPointerToObjCPointerCast:
 | 
						|
    case CK_BlockPointerToObjCPointerCast:
 | 
						|
    case CK_AnyPointerToBlockPointerCast:
 | 
						|
    case CK_ArrayToPointerDecay:
 | 
						|
    case CK_FunctionToPointerDecay:
 | 
						|
    case CK_BaseToDerived:
 | 
						|
    case CK_DerivedToBase:
 | 
						|
    case CK_UncheckedDerivedToBase:
 | 
						|
    case CK_MemberPointerToBoolean:
 | 
						|
    case CK_VectorSplat:
 | 
						|
    case CK_FloatingRealToComplex:
 | 
						|
    case CK_FloatingComplexToReal:
 | 
						|
    case CK_FloatingComplexToBoolean:
 | 
						|
    case CK_FloatingComplexCast:
 | 
						|
    case CK_FloatingComplexToIntegralComplex:
 | 
						|
    case CK_IntegralRealToComplex:
 | 
						|
    case CK_IntegralComplexToReal:
 | 
						|
    case CK_IntegralComplexToBoolean:
 | 
						|
    case CK_IntegralComplexCast:
 | 
						|
    case CK_IntegralComplexToFloatingComplex:
 | 
						|
    case CK_PointerToIntegral:
 | 
						|
    case CK_PointerToBoolean:
 | 
						|
    case CK_NullToPointer:
 | 
						|
    case CK_IntegralCast:
 | 
						|
    case CK_BooleanToSignedIntegral:
 | 
						|
    case CK_IntegralToPointer:
 | 
						|
    case CK_IntegralToBoolean:
 | 
						|
    case CK_IntegralToFloating:
 | 
						|
    case CK_FloatingToIntegral:
 | 
						|
    case CK_FloatingToBoolean:
 | 
						|
    case CK_FloatingCast:
 | 
						|
    case CK_FixedPointCast:
 | 
						|
    case CK_FixedPointToBoolean:
 | 
						|
    case CK_FixedPointToIntegral:
 | 
						|
    case CK_IntegralToFixedPoint:
 | 
						|
    case CK_ZeroToOCLOpaqueType:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    llvm_unreachable("Invalid CastKind");
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
 | 
						|
    // No need for a DefaultInitExprScope: we don't handle 'this' in a
 | 
						|
    // constant expression.
 | 
						|
    return Visit(DIE->getExpr(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
 | 
						|
    if (!E->cleanupsHaveSideEffects())
 | 
						|
      return Visit(E->getSubExpr(), T);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
 | 
						|
                                                QualType T) {
 | 
						|
    return Visit(E->GetTemporaryExpr(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
 | 
						|
    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
 | 
						|
    assert(CAT && "can't emit array init for non-constant-bound array");
 | 
						|
    unsigned NumInitElements = ILE->getNumInits();
 | 
						|
    unsigned NumElements = CAT->getSize().getZExtValue();
 | 
						|
 | 
						|
    // Initialising an array requires us to automatically
 | 
						|
    // initialise any elements that have not been initialised explicitly
 | 
						|
    unsigned NumInitableElts = std::min(NumInitElements, NumElements);
 | 
						|
 | 
						|
    QualType EltType = CAT->getElementType();
 | 
						|
 | 
						|
    // Initialize remaining array elements.
 | 
						|
    llvm::Constant *fillC = nullptr;
 | 
						|
    if (Expr *filler = ILE->getArrayFiller()) {
 | 
						|
      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
 | 
						|
      if (!fillC)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Copy initializer elements.
 | 
						|
    SmallVector<llvm::Constant*, 16> Elts;
 | 
						|
    if (fillC && fillC->isNullValue())
 | 
						|
      Elts.reserve(NumInitableElts + 1);
 | 
						|
    else
 | 
						|
      Elts.reserve(NumElements);
 | 
						|
 | 
						|
    llvm::Type *CommonElementType = nullptr;
 | 
						|
    for (unsigned i = 0; i < NumInitableElts; ++i) {
 | 
						|
      Expr *Init = ILE->getInit(i);
 | 
						|
      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
 | 
						|
      if (!C)
 | 
						|
        return nullptr;
 | 
						|
      if (i == 0)
 | 
						|
        CommonElementType = C->getType();
 | 
						|
      else if (C->getType() != CommonElementType)
 | 
						|
        CommonElementType = nullptr;
 | 
						|
      Elts.push_back(C);
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::ArrayType *Desired =
 | 
						|
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
 | 
						|
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
 | 
						|
                             fillC);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
 | 
						|
    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
 | 
						|
                                             QualType T) {
 | 
						|
    return CGM.EmitNullConstant(T);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
 | 
						|
    if (ILE->isTransparent())
 | 
						|
      return Visit(ILE->getInit(0), T);
 | 
						|
 | 
						|
    if (ILE->getType()->isArrayType())
 | 
						|
      return EmitArrayInitialization(ILE, T);
 | 
						|
 | 
						|
    if (ILE->getType()->isRecordType())
 | 
						|
      return EmitRecordInitialization(ILE, T);
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
 | 
						|
                                                QualType destType) {
 | 
						|
    auto C = Visit(E->getBase(), destType);
 | 
						|
    if (!C)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    ConstantAggregateBuilder Const(CGM);
 | 
						|
    Const.add(C, CharUnits::Zero(), false);
 | 
						|
 | 
						|
    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
 | 
						|
                                   E->getUpdater()))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
 | 
						|
    bool HasFlexibleArray = false;
 | 
						|
    if (auto *RT = destType->getAs<RecordType>())
 | 
						|
      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
 | 
						|
    return Const.build(ValTy, HasFlexibleArray);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
 | 
						|
    if (!E->getConstructor()->isTrivial())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // FIXME: We should not have to call getBaseElementType here.
 | 
						|
    const auto *RT =
 | 
						|
        CGM.getContext().getBaseElementType(Ty)->castAs<RecordType>();
 | 
						|
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
 | 
						|
    // If the class doesn't have a trivial destructor, we can't emit it as a
 | 
						|
    // constant expr.
 | 
						|
    if (!RD->hasTrivialDestructor())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Only copy and default constructors can be trivial.
 | 
						|
 | 
						|
 | 
						|
    if (E->getNumArgs()) {
 | 
						|
      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
 | 
						|
      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
 | 
						|
             "trivial ctor has argument but isn't a copy/move ctor");
 | 
						|
 | 
						|
      Expr *Arg = E->getArg(0);
 | 
						|
      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
 | 
						|
             "argument to copy ctor is of wrong type");
 | 
						|
 | 
						|
      return Visit(Arg, Ty);
 | 
						|
    }
 | 
						|
 | 
						|
    return CGM.EmitNullConstant(Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
 | 
						|
    // This is a string literal initializing an array in an initializer.
 | 
						|
    return CGM.GetConstantArrayFromStringLiteral(E);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
 | 
						|
    // This must be an @encode initializing an array in a static initializer.
 | 
						|
    // Don't emit it as the address of the string, emit the string data itself
 | 
						|
    // as an inline array.
 | 
						|
    std::string Str;
 | 
						|
    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
 | 
						|
    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
 | 
						|
 | 
						|
    // Resize the string to the right size, adding zeros at the end, or
 | 
						|
    // truncating as needed.
 | 
						|
    Str.resize(CAT->getSize().getZExtValue(), '\0');
 | 
						|
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
 | 
						|
    return Visit(E->getSubExpr(), T);
 | 
						|
  }
 | 
						|
 | 
						|
  // Utility methods
 | 
						|
  llvm::Type *ConvertType(QualType T) {
 | 
						|
    return CGM.getTypes().ConvertType(T);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // end anonymous namespace.
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
 | 
						|
                                                        AbstractState saved) {
 | 
						|
  Abstract = saved.OldValue;
 | 
						|
 | 
						|
  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
 | 
						|
         "created a placeholder while doing an abstract emission?");
 | 
						|
 | 
						|
  // No validation necessary for now.
 | 
						|
  // No cleanup to do for now.
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
 | 
						|
  auto state = pushAbstract();
 | 
						|
  auto C = tryEmitPrivateForVarInit(D);
 | 
						|
  return validateAndPopAbstract(C, state);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
 | 
						|
  auto state = pushAbstract();
 | 
						|
  auto C = tryEmitPrivate(E, destType);
 | 
						|
  return validateAndPopAbstract(C, state);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
 | 
						|
  auto state = pushAbstract();
 | 
						|
  auto C = tryEmitPrivate(value, destType);
 | 
						|
  return validateAndPopAbstract(C, state);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
 | 
						|
  auto state = pushAbstract();
 | 
						|
  auto C = tryEmitPrivate(E, destType);
 | 
						|
  C = validateAndPopAbstract(C, state);
 | 
						|
  if (!C) {
 | 
						|
    CGM.Error(E->getExprLoc(),
 | 
						|
              "internal error: could not emit constant value \"abstractly\"");
 | 
						|
    C = CGM.EmitNullConstant(destType);
 | 
						|
  }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
 | 
						|
                              QualType destType) {
 | 
						|
  auto state = pushAbstract();
 | 
						|
  auto C = tryEmitPrivate(value, destType);
 | 
						|
  C = validateAndPopAbstract(C, state);
 | 
						|
  if (!C) {
 | 
						|
    CGM.Error(loc,
 | 
						|
              "internal error: could not emit constant value \"abstractly\"");
 | 
						|
    C = CGM.EmitNullConstant(destType);
 | 
						|
  }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
 | 
						|
  initializeNonAbstract(D.getType().getAddressSpace());
 | 
						|
  return markIfFailed(tryEmitPrivateForVarInit(D));
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
 | 
						|
                                                       LangAS destAddrSpace,
 | 
						|
                                                       QualType destType) {
 | 
						|
  initializeNonAbstract(destAddrSpace);
 | 
						|
  return markIfFailed(tryEmitPrivateForMemory(E, destType));
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
 | 
						|
                                                    LangAS destAddrSpace,
 | 
						|
                                                    QualType destType) {
 | 
						|
  initializeNonAbstract(destAddrSpace);
 | 
						|
  auto C = tryEmitPrivateForMemory(value, destType);
 | 
						|
  assert(C && "couldn't emit constant value non-abstractly?");
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
 | 
						|
  assert(!Abstract && "cannot get current address for abstract constant");
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // Make an obviously ill-formed global that should blow up compilation
 | 
						|
  // if it survives.
 | 
						|
  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
 | 
						|
                                         llvm::GlobalValue::PrivateLinkage,
 | 
						|
                                         /*init*/ nullptr,
 | 
						|
                                         /*name*/ "",
 | 
						|
                                         /*before*/ nullptr,
 | 
						|
                                         llvm::GlobalVariable::NotThreadLocal,
 | 
						|
                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));
 | 
						|
 | 
						|
  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
 | 
						|
 | 
						|
  return global;
 | 
						|
}
 | 
						|
 | 
						|
void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
 | 
						|
                                           llvm::GlobalValue *placeholder) {
 | 
						|
  assert(!PlaceholderAddresses.empty());
 | 
						|
  assert(PlaceholderAddresses.back().first == nullptr);
 | 
						|
  assert(PlaceholderAddresses.back().second == placeholder);
 | 
						|
  PlaceholderAddresses.back().first = signal;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ReplacePlaceholders {
 | 
						|
    CodeGenModule &CGM;
 | 
						|
 | 
						|
    /// The base address of the global.
 | 
						|
    llvm::Constant *Base;
 | 
						|
    llvm::Type *BaseValueTy = nullptr;
 | 
						|
 | 
						|
    /// The placeholder addresses that were registered during emission.
 | 
						|
    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
 | 
						|
 | 
						|
    /// The locations of the placeholder signals.
 | 
						|
    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
 | 
						|
 | 
						|
    /// The current index stack.  We use a simple unsigned stack because
 | 
						|
    /// we assume that placeholders will be relatively sparse in the
 | 
						|
    /// initializer, but we cache the index values we find just in case.
 | 
						|
    llvm::SmallVector<unsigned, 8> Indices;
 | 
						|
    llvm::SmallVector<llvm::Constant*, 8> IndexValues;
 | 
						|
 | 
						|
    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
 | 
						|
                        ArrayRef<std::pair<llvm::Constant*,
 | 
						|
                                           llvm::GlobalVariable*>> addresses)
 | 
						|
        : CGM(CGM), Base(base),
 | 
						|
          PlaceholderAddresses(addresses.begin(), addresses.end()) {
 | 
						|
    }
 | 
						|
 | 
						|
    void replaceInInitializer(llvm::Constant *init) {
 | 
						|
      // Remember the type of the top-most initializer.
 | 
						|
      BaseValueTy = init->getType();
 | 
						|
 | 
						|
      // Initialize the stack.
 | 
						|
      Indices.push_back(0);
 | 
						|
      IndexValues.push_back(nullptr);
 | 
						|
 | 
						|
      // Recurse into the initializer.
 | 
						|
      findLocations(init);
 | 
						|
 | 
						|
      // Check invariants.
 | 
						|
      assert(IndexValues.size() == Indices.size() && "mismatch");
 | 
						|
      assert(Indices.size() == 1 && "didn't pop all indices");
 | 
						|
 | 
						|
      // Do the replacement; this basically invalidates 'init'.
 | 
						|
      assert(Locations.size() == PlaceholderAddresses.size() &&
 | 
						|
             "missed a placeholder?");
 | 
						|
 | 
						|
      // We're iterating over a hashtable, so this would be a source of
 | 
						|
      // non-determinism in compiler output *except* that we're just
 | 
						|
      // messing around with llvm::Constant structures, which never itself
 | 
						|
      // does anything that should be visible in compiler output.
 | 
						|
      for (auto &entry : Locations) {
 | 
						|
        assert(entry.first->getParent() == nullptr && "not a placeholder!");
 | 
						|
        entry.first->replaceAllUsesWith(entry.second);
 | 
						|
        entry.first->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void findLocations(llvm::Constant *init) {
 | 
						|
      // Recurse into aggregates.
 | 
						|
      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
 | 
						|
        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
 | 
						|
          Indices.push_back(i);
 | 
						|
          IndexValues.push_back(nullptr);
 | 
						|
 | 
						|
          findLocations(agg->getOperand(i));
 | 
						|
 | 
						|
          IndexValues.pop_back();
 | 
						|
          Indices.pop_back();
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, check for registered constants.
 | 
						|
      while (true) {
 | 
						|
        auto it = PlaceholderAddresses.find(init);
 | 
						|
        if (it != PlaceholderAddresses.end()) {
 | 
						|
          setLocation(it->second);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        // Look through bitcasts or other expressions.
 | 
						|
        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
 | 
						|
          init = expr->getOperand(0);
 | 
						|
        } else {
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void setLocation(llvm::GlobalVariable *placeholder) {
 | 
						|
      assert(Locations.find(placeholder) == Locations.end() &&
 | 
						|
             "already found location for placeholder!");
 | 
						|
 | 
						|
      // Lazily fill in IndexValues with the values from Indices.
 | 
						|
      // We do this in reverse because we should always have a strict
 | 
						|
      // prefix of indices from the start.
 | 
						|
      assert(Indices.size() == IndexValues.size());
 | 
						|
      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
 | 
						|
        if (IndexValues[i]) {
 | 
						|
#ifndef NDEBUG
 | 
						|
          for (size_t j = 0; j != i + 1; ++j) {
 | 
						|
            assert(IndexValues[j] &&
 | 
						|
                   isa<llvm::ConstantInt>(IndexValues[j]) &&
 | 
						|
                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
 | 
						|
                     == Indices[j]);
 | 
						|
          }
 | 
						|
#endif
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
 | 
						|
      }
 | 
						|
 | 
						|
      // Form a GEP and then bitcast to the placeholder type so that the
 | 
						|
      // replacement will succeed.
 | 
						|
      llvm::Constant *location =
 | 
						|
        llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
 | 
						|
                                                     Base, IndexValues);
 | 
						|
      location = llvm::ConstantExpr::getBitCast(location,
 | 
						|
                                                placeholder->getType());
 | 
						|
 | 
						|
      Locations.insert({placeholder, location});
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
 | 
						|
  assert(InitializedNonAbstract &&
 | 
						|
         "finalizing emitter that was used for abstract emission?");
 | 
						|
  assert(!Finalized && "finalizing emitter multiple times");
 | 
						|
  assert(global->getInitializer());
 | 
						|
 | 
						|
  // Note that we might also be Failed.
 | 
						|
  Finalized = true;
 | 
						|
 | 
						|
  if (!PlaceholderAddresses.empty()) {
 | 
						|
    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
 | 
						|
      .replaceInInitializer(global->getInitializer());
 | 
						|
    PlaceholderAddresses.clear(); // satisfy
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ConstantEmitter::~ConstantEmitter() {
 | 
						|
  assert((!InitializedNonAbstract || Finalized || Failed) &&
 | 
						|
         "not finalized after being initialized for non-abstract emission");
 | 
						|
  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
 | 
						|
}
 | 
						|
 | 
						|
static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
 | 
						|
  if (auto AT = type->getAs<AtomicType>()) {
 | 
						|
    return CGM.getContext().getQualifiedType(AT->getValueType(),
 | 
						|
                                             type.getQualifiers());
 | 
						|
  }
 | 
						|
  return type;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
 | 
						|
  // Make a quick check if variable can be default NULL initialized
 | 
						|
  // and avoid going through rest of code which may do, for c++11,
 | 
						|
  // initialization of memory to all NULLs.
 | 
						|
  if (!D.hasLocalStorage()) {
 | 
						|
    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
 | 
						|
    if (Ty->isRecordType())
 | 
						|
      if (const CXXConstructExpr *E =
 | 
						|
          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
 | 
						|
        const CXXConstructorDecl *CD = E->getConstructor();
 | 
						|
        if (CD->isTrivial() && CD->isDefaultConstructor())
 | 
						|
          return CGM.EmitNullConstant(D.getType());
 | 
						|
      }
 | 
						|
    InConstantContext = true;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType destType = D.getType();
 | 
						|
 | 
						|
  // Try to emit the initializer.  Note that this can allow some things that
 | 
						|
  // are not allowed by tryEmitPrivateForMemory alone.
 | 
						|
  if (auto value = D.evaluateValue()) {
 | 
						|
    return tryEmitPrivateForMemory(*value, destType);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
 | 
						|
  // reference is a constant expression, and the reference binds to a temporary,
 | 
						|
  // then constant initialization is performed. ConstExprEmitter will
 | 
						|
  // incorrectly emit a prvalue constant in this case, and the calling code
 | 
						|
  // interprets that as the (pointer) value of the reference, rather than the
 | 
						|
  // desired value of the referee.
 | 
						|
  if (destType->isReferenceType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const Expr *E = D.getInit();
 | 
						|
  assert(E && "No initializer to emit");
 | 
						|
 | 
						|
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | 
						|
  auto C =
 | 
						|
    ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
 | 
						|
  return (C ? emitForMemory(C, destType) : nullptr);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
 | 
						|
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | 
						|
  auto C = tryEmitAbstract(E, nonMemoryDestType);
 | 
						|
  return (C ? emitForMemory(C, destType) : nullptr);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
 | 
						|
                                          QualType destType) {
 | 
						|
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | 
						|
  auto C = tryEmitAbstract(value, nonMemoryDestType);
 | 
						|
  return (C ? emitForMemory(C, destType) : nullptr);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
 | 
						|
                                                         QualType destType) {
 | 
						|
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | 
						|
  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
 | 
						|
  return (C ? emitForMemory(C, destType) : nullptr);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
 | 
						|
                                                         QualType destType) {
 | 
						|
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
 | 
						|
  auto C = tryEmitPrivate(value, nonMemoryDestType);
 | 
						|
  return (C ? emitForMemory(C, destType) : nullptr);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
 | 
						|
                                               llvm::Constant *C,
 | 
						|
                                               QualType destType) {
 | 
						|
  // For an _Atomic-qualified constant, we may need to add tail padding.
 | 
						|
  if (auto AT = destType->getAs<AtomicType>()) {
 | 
						|
    QualType destValueType = AT->getValueType();
 | 
						|
    C = emitForMemory(CGM, C, destValueType);
 | 
						|
 | 
						|
    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
 | 
						|
    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
 | 
						|
    if (innerSize == outerSize)
 | 
						|
      return C;
 | 
						|
 | 
						|
    assert(innerSize < outerSize && "emitted over-large constant for atomic");
 | 
						|
    llvm::Constant *elts[] = {
 | 
						|
      C,
 | 
						|
      llvm::ConstantAggregateZero::get(
 | 
						|
          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
 | 
						|
    };
 | 
						|
    return llvm::ConstantStruct::getAnon(elts);
 | 
						|
  }
 | 
						|
 | 
						|
  // Zero-extend bool.
 | 
						|
  if (C->getType()->isIntegerTy(1)) {
 | 
						|
    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
 | 
						|
    return llvm::ConstantExpr::getZExt(C, boolTy);
 | 
						|
  }
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
 | 
						|
                                                QualType destType) {
 | 
						|
  Expr::EvalResult Result;
 | 
						|
 | 
						|
  bool Success = false;
 | 
						|
 | 
						|
  if (destType->isReferenceType())
 | 
						|
    Success = E->EvaluateAsLValue(Result, CGM.getContext());
 | 
						|
  else
 | 
						|
    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
 | 
						|
 | 
						|
  llvm::Constant *C;
 | 
						|
  if (Success && !Result.HasSideEffects)
 | 
						|
    C = tryEmitPrivate(Result.Val, destType);
 | 
						|
  else
 | 
						|
    C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
 | 
						|
  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// A struct which can be used to peephole certain kinds of finalization
 | 
						|
/// that normally happen during l-value emission.
 | 
						|
struct ConstantLValue {
 | 
						|
  llvm::Constant *Value;
 | 
						|
  bool HasOffsetApplied;
 | 
						|
 | 
						|
  /*implicit*/ ConstantLValue(llvm::Constant *value,
 | 
						|
                              bool hasOffsetApplied = false)
 | 
						|
    : Value(value), HasOffsetApplied(false) {}
 | 
						|
 | 
						|
  /*implicit*/ ConstantLValue(ConstantAddress address)
 | 
						|
    : ConstantLValue(address.getPointer()) {}
 | 
						|
};
 | 
						|
 | 
						|
/// A helper class for emitting constant l-values.
 | 
						|
class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
 | 
						|
                                                      ConstantLValue> {
 | 
						|
  CodeGenModule &CGM;
 | 
						|
  ConstantEmitter &Emitter;
 | 
						|
  const APValue &Value;
 | 
						|
  QualType DestType;
 | 
						|
 | 
						|
  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
 | 
						|
  friend StmtVisitorBase;
 | 
						|
 | 
						|
public:
 | 
						|
  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
 | 
						|
                        QualType destType)
 | 
						|
    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
 | 
						|
 | 
						|
  llvm::Constant *tryEmit();
 | 
						|
 | 
						|
private:
 | 
						|
  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
 | 
						|
  ConstantLValue tryEmitBase(const APValue::LValueBase &base);
 | 
						|
 | 
						|
  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
 | 
						|
  ConstantLValue VisitConstantExpr(const ConstantExpr *E);
 | 
						|
  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
 | 
						|
  ConstantLValue VisitStringLiteral(const StringLiteral *E);
 | 
						|
  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
 | 
						|
  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
 | 
						|
  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
 | 
						|
  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
 | 
						|
  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
 | 
						|
  ConstantLValue VisitCallExpr(const CallExpr *E);
 | 
						|
  ConstantLValue VisitBlockExpr(const BlockExpr *E);
 | 
						|
  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
 | 
						|
  ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
 | 
						|
  ConstantLValue VisitMaterializeTemporaryExpr(
 | 
						|
                                         const MaterializeTemporaryExpr *E);
 | 
						|
 | 
						|
  bool hasNonZeroOffset() const {
 | 
						|
    return !Value.getLValueOffset().isZero();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the value offset.
 | 
						|
  llvm::Constant *getOffset() {
 | 
						|
    return llvm::ConstantInt::get(CGM.Int64Ty,
 | 
						|
                                  Value.getLValueOffset().getQuantity());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Apply the value offset to the given constant.
 | 
						|
  llvm::Constant *applyOffset(llvm::Constant *C) {
 | 
						|
    if (!hasNonZeroOffset())
 | 
						|
      return C;
 | 
						|
 | 
						|
    llvm::Type *origPtrTy = C->getType();
 | 
						|
    unsigned AS = origPtrTy->getPointerAddressSpace();
 | 
						|
    llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
 | 
						|
    C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
 | 
						|
    C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
 | 
						|
    C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantLValueEmitter::tryEmit() {
 | 
						|
  const APValue::LValueBase &base = Value.getLValueBase();
 | 
						|
 | 
						|
  // The destination type should be a pointer or reference
 | 
						|
  // type, but it might also be a cast thereof.
 | 
						|
  //
 | 
						|
  // FIXME: the chain of casts required should be reflected in the APValue.
 | 
						|
  // We need this in order to correctly handle things like a ptrtoint of a
 | 
						|
  // non-zero null pointer and addrspace casts that aren't trivially
 | 
						|
  // represented in LLVM IR.
 | 
						|
  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
 | 
						|
  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
 | 
						|
 | 
						|
  // If there's no base at all, this is a null or absolute pointer,
 | 
						|
  // possibly cast back to an integer type.
 | 
						|
  if (!base) {
 | 
						|
    return tryEmitAbsolute(destTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, try to emit the base.
 | 
						|
  ConstantLValue result = tryEmitBase(base);
 | 
						|
 | 
						|
  // If that failed, we're done.
 | 
						|
  llvm::Constant *value = result.Value;
 | 
						|
  if (!value) return nullptr;
 | 
						|
 | 
						|
  // Apply the offset if necessary and not already done.
 | 
						|
  if (!result.HasOffsetApplied) {
 | 
						|
    value = applyOffset(value);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert to the appropriate type; this could be an lvalue for
 | 
						|
  // an integer.  FIXME: performAddrSpaceCast
 | 
						|
  if (isa<llvm::PointerType>(destTy))
 | 
						|
    return llvm::ConstantExpr::getPointerCast(value, destTy);
 | 
						|
 | 
						|
  return llvm::ConstantExpr::getPtrToInt(value, destTy);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to emit an absolute l-value, such as a null pointer or an integer
 | 
						|
/// bitcast to pointer type.
 | 
						|
llvm::Constant *
 | 
						|
ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
 | 
						|
  // If we're producing a pointer, this is easy.
 | 
						|
  auto destPtrTy = cast<llvm::PointerType>(destTy);
 | 
						|
  if (Value.isNullPointer()) {
 | 
						|
    // FIXME: integer offsets from non-zero null pointers.
 | 
						|
    return CGM.getNullPointer(destPtrTy, DestType);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the integer to a pointer-sized integer before converting it
 | 
						|
  // to a pointer.
 | 
						|
  // FIXME: signedness depends on the original integer type.
 | 
						|
  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
 | 
						|
  llvm::Constant *C;
 | 
						|
  C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
 | 
						|
                                         /*isSigned*/ false);
 | 
						|
  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
 | 
						|
  // Handle values.
 | 
						|
  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
 | 
						|
    if (D->hasAttr<WeakRefAttr>())
 | 
						|
      return CGM.GetWeakRefReference(D).getPointer();
 | 
						|
 | 
						|
    if (auto FD = dyn_cast<FunctionDecl>(D))
 | 
						|
      return CGM.GetAddrOfFunction(FD);
 | 
						|
 | 
						|
    if (auto VD = dyn_cast<VarDecl>(D)) {
 | 
						|
      // We can never refer to a variable with local storage.
 | 
						|
      if (!VD->hasLocalStorage()) {
 | 
						|
        if (VD->isFileVarDecl() || VD->hasExternalStorage())
 | 
						|
          return CGM.GetAddrOfGlobalVar(VD);
 | 
						|
 | 
						|
        if (VD->isLocalVarDecl()) {
 | 
						|
          return CGM.getOrCreateStaticVarDecl(
 | 
						|
              *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle typeid(T).
 | 
						|
  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
 | 
						|
    llvm::Type *StdTypeInfoPtrTy =
 | 
						|
        CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
 | 
						|
    llvm::Constant *TypeInfo =
 | 
						|
        CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
 | 
						|
    if (TypeInfo->getType() != StdTypeInfoPtrTy)
 | 
						|
      TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
 | 
						|
    return TypeInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, it must be an expression.
 | 
						|
  return Visit(base.get<const Expr*>());
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
 | 
						|
  return Visit(E->getSubExpr());
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
 | 
						|
  return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
 | 
						|
  return CGM.GetAddrOfConstantStringFromLiteral(E);
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
 | 
						|
  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
 | 
						|
}
 | 
						|
 | 
						|
static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
 | 
						|
                                                    QualType T,
 | 
						|
                                                    CodeGenModule &CGM) {
 | 
						|
  auto C = CGM.getObjCRuntime().GenerateConstantString(S);
 | 
						|
  return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
 | 
						|
  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
 | 
						|
  assert(E->isExpressibleAsConstantInitializer() &&
 | 
						|
         "this boxed expression can't be emitted as a compile-time constant");
 | 
						|
  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
 | 
						|
  return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
 | 
						|
  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
 | 
						|
  assert(Emitter.CGF && "Invalid address of label expression outside function");
 | 
						|
  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
 | 
						|
  Ptr = llvm::ConstantExpr::getBitCast(Ptr,
 | 
						|
                                   CGM.getTypes().ConvertType(E->getType()));
 | 
						|
  return Ptr;
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
 | 
						|
  unsigned builtin = E->getBuiltinCallee();
 | 
						|
  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
 | 
						|
      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
 | 
						|
  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
 | 
						|
    return CGM.getObjCRuntime().GenerateConstantString(literal);
 | 
						|
  } else {
 | 
						|
    // FIXME: need to deal with UCN conversion issues.
 | 
						|
    return CGM.GetAddrOfConstantCFString(literal);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
 | 
						|
  StringRef functionName;
 | 
						|
  if (auto CGF = Emitter.CGF)
 | 
						|
    functionName = CGF->CurFn->getName();
 | 
						|
  else
 | 
						|
    functionName = "global";
 | 
						|
 | 
						|
  return CGM.GetAddrOfGlobalBlock(E, functionName);
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
 | 
						|
  QualType T;
 | 
						|
  if (E->isTypeOperand())
 | 
						|
    T = E->getTypeOperand(CGM.getContext());
 | 
						|
  else
 | 
						|
    T = E->getExprOperand()->getType();
 | 
						|
  return CGM.GetAddrOfRTTIDescriptor(T);
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
 | 
						|
  return CGM.GetAddrOfUuidDescriptor(E);
 | 
						|
}
 | 
						|
 | 
						|
ConstantLValue
 | 
						|
ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
 | 
						|
                                            const MaterializeTemporaryExpr *E) {
 | 
						|
  assert(E->getStorageDuration() == SD_Static);
 | 
						|
  SmallVector<const Expr *, 2> CommaLHSs;
 | 
						|
  SmallVector<SubobjectAdjustment, 2> Adjustments;
 | 
						|
  const Expr *Inner = E->GetTemporaryExpr()
 | 
						|
      ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
 | 
						|
  return CGM.GetAddrOfGlobalTemporary(E, Inner);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
 | 
						|
                                                QualType DestType) {
 | 
						|
  switch (Value.getKind()) {
 | 
						|
  case APValue::None:
 | 
						|
  case APValue::Indeterminate:
 | 
						|
    // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
 | 
						|
    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
 | 
						|
  case APValue::LValue:
 | 
						|
    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
 | 
						|
  case APValue::Int:
 | 
						|
    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
 | 
						|
  case APValue::FixedPoint:
 | 
						|
    return llvm::ConstantInt::get(CGM.getLLVMContext(),
 | 
						|
                                  Value.getFixedPoint().getValue());
 | 
						|
  case APValue::ComplexInt: {
 | 
						|
    llvm::Constant *Complex[2];
 | 
						|
 | 
						|
    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
 | 
						|
                                        Value.getComplexIntReal());
 | 
						|
    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
 | 
						|
                                        Value.getComplexIntImag());
 | 
						|
 | 
						|
    // FIXME: the target may want to specify that this is packed.
 | 
						|
    llvm::StructType *STy =
 | 
						|
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
 | 
						|
    return llvm::ConstantStruct::get(STy, Complex);
 | 
						|
  }
 | 
						|
  case APValue::Float: {
 | 
						|
    const llvm::APFloat &Init = Value.getFloat();
 | 
						|
    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
 | 
						|
        !CGM.getContext().getLangOpts().NativeHalfType &&
 | 
						|
        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
 | 
						|
      return llvm::ConstantInt::get(CGM.getLLVMContext(),
 | 
						|
                                    Init.bitcastToAPInt());
 | 
						|
    else
 | 
						|
      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
 | 
						|
  }
 | 
						|
  case APValue::ComplexFloat: {
 | 
						|
    llvm::Constant *Complex[2];
 | 
						|
 | 
						|
    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
 | 
						|
                                       Value.getComplexFloatReal());
 | 
						|
    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
 | 
						|
                                       Value.getComplexFloatImag());
 | 
						|
 | 
						|
    // FIXME: the target may want to specify that this is packed.
 | 
						|
    llvm::StructType *STy =
 | 
						|
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
 | 
						|
    return llvm::ConstantStruct::get(STy, Complex);
 | 
						|
  }
 | 
						|
  case APValue::Vector: {
 | 
						|
    unsigned NumElts = Value.getVectorLength();
 | 
						|
    SmallVector<llvm::Constant *, 4> Inits(NumElts);
 | 
						|
 | 
						|
    for (unsigned I = 0; I != NumElts; ++I) {
 | 
						|
      const APValue &Elt = Value.getVectorElt(I);
 | 
						|
      if (Elt.isInt())
 | 
						|
        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
 | 
						|
      else if (Elt.isFloat())
 | 
						|
        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
 | 
						|
      else
 | 
						|
        llvm_unreachable("unsupported vector element type");
 | 
						|
    }
 | 
						|
    return llvm::ConstantVector::get(Inits);
 | 
						|
  }
 | 
						|
  case APValue::AddrLabelDiff: {
 | 
						|
    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
 | 
						|
    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
 | 
						|
    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
 | 
						|
    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
 | 
						|
    if (!LHS || !RHS) return nullptr;
 | 
						|
 | 
						|
    // Compute difference
 | 
						|
    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
 | 
						|
    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
 | 
						|
    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
 | 
						|
    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
 | 
						|
 | 
						|
    // LLVM is a bit sensitive about the exact format of the
 | 
						|
    // address-of-label difference; make sure to truncate after
 | 
						|
    // the subtraction.
 | 
						|
    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
 | 
						|
  }
 | 
						|
  case APValue::Struct:
 | 
						|
  case APValue::Union:
 | 
						|
    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
 | 
						|
  case APValue::Array: {
 | 
						|
    const ConstantArrayType *CAT =
 | 
						|
        CGM.getContext().getAsConstantArrayType(DestType);
 | 
						|
    unsigned NumElements = Value.getArraySize();
 | 
						|
    unsigned NumInitElts = Value.getArrayInitializedElts();
 | 
						|
 | 
						|
    // Emit array filler, if there is one.
 | 
						|
    llvm::Constant *Filler = nullptr;
 | 
						|
    if (Value.hasArrayFiller()) {
 | 
						|
      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
 | 
						|
                                        CAT->getElementType());
 | 
						|
      if (!Filler)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit initializer elements.
 | 
						|
    SmallVector<llvm::Constant*, 16> Elts;
 | 
						|
    if (Filler && Filler->isNullValue())
 | 
						|
      Elts.reserve(NumInitElts + 1);
 | 
						|
    else
 | 
						|
      Elts.reserve(NumElements);
 | 
						|
 | 
						|
    llvm::Type *CommonElementType = nullptr;
 | 
						|
    for (unsigned I = 0; I < NumInitElts; ++I) {
 | 
						|
      llvm::Constant *C = tryEmitPrivateForMemory(
 | 
						|
          Value.getArrayInitializedElt(I), CAT->getElementType());
 | 
						|
      if (!C) return nullptr;
 | 
						|
 | 
						|
      if (I == 0)
 | 
						|
        CommonElementType = C->getType();
 | 
						|
      else if (C->getType() != CommonElementType)
 | 
						|
        CommonElementType = nullptr;
 | 
						|
      Elts.push_back(C);
 | 
						|
    }
 | 
						|
 | 
						|
    // This means that the array type is probably "IncompleteType" or some
 | 
						|
    // type that is not ConstantArray.
 | 
						|
    if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
 | 
						|
      const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
 | 
						|
      CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
 | 
						|
      llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
 | 
						|
                                                    NumElements);
 | 
						|
      return llvm::ConstantAggregateZero::get(AType);
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::ArrayType *Desired =
 | 
						|
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
 | 
						|
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
 | 
						|
                             Filler);
 | 
						|
  }
 | 
						|
  case APValue::MemberPointer:
 | 
						|
    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown APValue kind");
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
 | 
						|
    const CompoundLiteralExpr *E) {
 | 
						|
  return EmittedCompoundLiterals.lookup(E);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setAddrOfConstantCompoundLiteral(
 | 
						|
    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
 | 
						|
  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
 | 
						|
  (void)Ok;
 | 
						|
  assert(Ok && "CLE has already been emitted!");
 | 
						|
}
 | 
						|
 | 
						|
ConstantAddress
 | 
						|
CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
 | 
						|
  assert(E->isFileScope() && "not a file-scope compound literal expr");
 | 
						|
  return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
 | 
						|
  // Member pointer constants always have a very particular form.
 | 
						|
  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
 | 
						|
  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
 | 
						|
 | 
						|
  // A member function pointer.
 | 
						|
  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
 | 
						|
    return getCXXABI().EmitMemberFunctionPointer(method);
 | 
						|
 | 
						|
  // Otherwise, a member data pointer.
 | 
						|
  uint64_t fieldOffset = getContext().getFieldOffset(decl);
 | 
						|
  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
 | 
						|
  return getCXXABI().EmitMemberDataPointer(type, chars);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
 | 
						|
                                               llvm::Type *baseType,
 | 
						|
                                               const CXXRecordDecl *base);
 | 
						|
 | 
						|
static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
 | 
						|
                                        const RecordDecl *record,
 | 
						|
                                        bool asCompleteObject) {
 | 
						|
  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
 | 
						|
  llvm::StructType *structure =
 | 
						|
    (asCompleteObject ? layout.getLLVMType()
 | 
						|
                      : layout.getBaseSubobjectLLVMType());
 | 
						|
 | 
						|
  unsigned numElements = structure->getNumElements();
 | 
						|
  std::vector<llvm::Constant *> elements(numElements);
 | 
						|
 | 
						|
  auto CXXR = dyn_cast<CXXRecordDecl>(record);
 | 
						|
  // Fill in all the bases.
 | 
						|
  if (CXXR) {
 | 
						|
    for (const auto &I : CXXR->bases()) {
 | 
						|
      if (I.isVirtual()) {
 | 
						|
        // Ignore virtual bases; if we're laying out for a complete
 | 
						|
        // object, we'll lay these out later.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      const CXXRecordDecl *base =
 | 
						|
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
      // Ignore empty bases.
 | 
						|
      if (base->isEmpty() ||
 | 
						|
          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
 | 
						|
              .isZero())
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
 | 
						|
      llvm::Type *baseType = structure->getElementType(fieldIndex);
 | 
						|
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fill in all the fields.
 | 
						|
  for (const auto *Field : record->fields()) {
 | 
						|
    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
 | 
						|
    // will fill in later.)
 | 
						|
    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
 | 
						|
      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
 | 
						|
      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
 | 
						|
    }
 | 
						|
 | 
						|
    // For unions, stop after the first named field.
 | 
						|
    if (record->isUnion()) {
 | 
						|
      if (Field->getIdentifier())
 | 
						|
        break;
 | 
						|
      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
 | 
						|
        if (FieldRD->findFirstNamedDataMember())
 | 
						|
          break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fill in the virtual bases, if we're working with the complete object.
 | 
						|
  if (CXXR && asCompleteObject) {
 | 
						|
    for (const auto &I : CXXR->vbases()) {
 | 
						|
      const CXXRecordDecl *base =
 | 
						|
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
      // Ignore empty bases.
 | 
						|
      if (base->isEmpty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned fieldIndex = layout.getVirtualBaseIndex(base);
 | 
						|
 | 
						|
      // We might have already laid this field out.
 | 
						|
      if (elements[fieldIndex]) continue;
 | 
						|
 | 
						|
      llvm::Type *baseType = structure->getElementType(fieldIndex);
 | 
						|
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now go through all other fields and zero them out.
 | 
						|
  for (unsigned i = 0; i != numElements; ++i) {
 | 
						|
    if (!elements[i])
 | 
						|
      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
 | 
						|
  }
 | 
						|
 | 
						|
  return llvm::ConstantStruct::get(structure, elements);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit the null constant for a base subobject.
 | 
						|
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
 | 
						|
                                               llvm::Type *baseType,
 | 
						|
                                               const CXXRecordDecl *base) {
 | 
						|
  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
 | 
						|
 | 
						|
  // Just zero out bases that don't have any pointer to data members.
 | 
						|
  if (baseLayout.isZeroInitializableAsBase())
 | 
						|
    return llvm::Constant::getNullValue(baseType);
 | 
						|
 | 
						|
  // Otherwise, we can just use its null constant.
 | 
						|
  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
 | 
						|
                                                   QualType T) {
 | 
						|
  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
 | 
						|
  if (T->getAs<PointerType>())
 | 
						|
    return getNullPointer(
 | 
						|
        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
 | 
						|
 | 
						|
  if (getTypes().isZeroInitializable(T))
 | 
						|
    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
 | 
						|
 | 
						|
  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
 | 
						|
    llvm::ArrayType *ATy =
 | 
						|
      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
 | 
						|
 | 
						|
    QualType ElementTy = CAT->getElementType();
 | 
						|
 | 
						|
    llvm::Constant *Element =
 | 
						|
      ConstantEmitter::emitNullForMemory(*this, ElementTy);
 | 
						|
    unsigned NumElements = CAT->getSize().getZExtValue();
 | 
						|
    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
 | 
						|
    return llvm::ConstantArray::get(ATy, Array);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const RecordType *RT = T->getAs<RecordType>())
 | 
						|
    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
 | 
						|
 | 
						|
  assert(T->isMemberDataPointerType() &&
 | 
						|
         "Should only see pointers to data members here!");
 | 
						|
 | 
						|
  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
 | 
						|
  return ::EmitNullConstant(*this, Record, false);
 | 
						|
}
 |