forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1901 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1901 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the NumericLiteralParser, CharLiteralParser, and
 | 
						|
// StringLiteralParser interfaces.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Lex/LiteralSupport.h"
 | 
						|
#include "clang/Basic/CharInfo.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "clang/Basic/SourceLocation.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/LexDiagnostic.h"
 | 
						|
#include "clang/Lex/Lexer.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Lex/Token.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/Support/ConvertUTF.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstring>
 | 
						|
#include <string>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
 | 
						|
  switch (kind) {
 | 
						|
  default: llvm_unreachable("Unknown token type!");
 | 
						|
  case tok::char_constant:
 | 
						|
  case tok::string_literal:
 | 
						|
  case tok::utf8_char_constant:
 | 
						|
  case tok::utf8_string_literal:
 | 
						|
    return Target.getCharWidth();
 | 
						|
  case tok::wide_char_constant:
 | 
						|
  case tok::wide_string_literal:
 | 
						|
    return Target.getWCharWidth();
 | 
						|
  case tok::utf16_char_constant:
 | 
						|
  case tok::utf16_string_literal:
 | 
						|
    return Target.getChar16Width();
 | 
						|
  case tok::utf32_char_constant:
 | 
						|
  case tok::utf32_string_literal:
 | 
						|
    return Target.getChar32Width();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
 | 
						|
                                           FullSourceLoc TokLoc,
 | 
						|
                                           const char *TokBegin,
 | 
						|
                                           const char *TokRangeBegin,
 | 
						|
                                           const char *TokRangeEnd) {
 | 
						|
  SourceLocation Begin =
 | 
						|
    Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
 | 
						|
                                   TokLoc.getManager(), Features);
 | 
						|
  SourceLocation End =
 | 
						|
    Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
 | 
						|
                                   TokLoc.getManager(), Features);
 | 
						|
  return CharSourceRange::getCharRange(Begin, End);
 | 
						|
}
 | 
						|
 | 
						|
/// Produce a diagnostic highlighting some portion of a literal.
 | 
						|
///
 | 
						|
/// Emits the diagnostic \p DiagID, highlighting the range of characters from
 | 
						|
/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
 | 
						|
/// a substring of a spelling buffer for the token beginning at \p TokBegin.
 | 
						|
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
 | 
						|
                              const LangOptions &Features, FullSourceLoc TokLoc,
 | 
						|
                              const char *TokBegin, const char *TokRangeBegin,
 | 
						|
                              const char *TokRangeEnd, unsigned DiagID) {
 | 
						|
  SourceLocation Begin =
 | 
						|
    Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
 | 
						|
                                   TokLoc.getManager(), Features);
 | 
						|
  return Diags->Report(Begin, DiagID) <<
 | 
						|
    MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
 | 
						|
/// either a character or a string literal.
 | 
						|
static unsigned ProcessCharEscape(const char *ThisTokBegin,
 | 
						|
                                  const char *&ThisTokBuf,
 | 
						|
                                  const char *ThisTokEnd, bool &HadError,
 | 
						|
                                  FullSourceLoc Loc, unsigned CharWidth,
 | 
						|
                                  DiagnosticsEngine *Diags,
 | 
						|
                                  const LangOptions &Features) {
 | 
						|
  const char *EscapeBegin = ThisTokBuf;
 | 
						|
 | 
						|
  // Skip the '\' char.
 | 
						|
  ++ThisTokBuf;
 | 
						|
 | 
						|
  // We know that this character can't be off the end of the buffer, because
 | 
						|
  // that would have been \", which would not have been the end of string.
 | 
						|
  unsigned ResultChar = *ThisTokBuf++;
 | 
						|
  switch (ResultChar) {
 | 
						|
  // These map to themselves.
 | 
						|
  case '\\': case '\'': case '"': case '?': break;
 | 
						|
 | 
						|
    // These have fixed mappings.
 | 
						|
  case 'a':
 | 
						|
    // TODO: K&R: the meaning of '\\a' is different in traditional C
 | 
						|
    ResultChar = 7;
 | 
						|
    break;
 | 
						|
  case 'b':
 | 
						|
    ResultChar = 8;
 | 
						|
    break;
 | 
						|
  case 'e':
 | 
						|
    if (Diags)
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | 
						|
           diag::ext_nonstandard_escape) << "e";
 | 
						|
    ResultChar = 27;
 | 
						|
    break;
 | 
						|
  case 'E':
 | 
						|
    if (Diags)
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | 
						|
           diag::ext_nonstandard_escape) << "E";
 | 
						|
    ResultChar = 27;
 | 
						|
    break;
 | 
						|
  case 'f':
 | 
						|
    ResultChar = 12;
 | 
						|
    break;
 | 
						|
  case 'n':
 | 
						|
    ResultChar = 10;
 | 
						|
    break;
 | 
						|
  case 'r':
 | 
						|
    ResultChar = 13;
 | 
						|
    break;
 | 
						|
  case 't':
 | 
						|
    ResultChar = 9;
 | 
						|
    break;
 | 
						|
  case 'v':
 | 
						|
    ResultChar = 11;
 | 
						|
    break;
 | 
						|
  case 'x': { // Hex escape.
 | 
						|
    ResultChar = 0;
 | 
						|
    if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
 | 
						|
      if (Diags)
 | 
						|
        Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | 
						|
             diag::err_hex_escape_no_digits) << "x";
 | 
						|
      HadError = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Hex escapes are a maximal series of hex digits.
 | 
						|
    bool Overflow = false;
 | 
						|
    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
 | 
						|
      int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
 | 
						|
      if (CharVal == -1) break;
 | 
						|
      // About to shift out a digit?
 | 
						|
      if (ResultChar & 0xF0000000)
 | 
						|
        Overflow = true;
 | 
						|
      ResultChar <<= 4;
 | 
						|
      ResultChar |= CharVal;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if any bits will be truncated when evaluated as a character.
 | 
						|
    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | 
						|
      Overflow = true;
 | 
						|
      ResultChar &= ~0U >> (32-CharWidth);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for overflow.
 | 
						|
    if (Overflow && Diags)   // Too many digits to fit in
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | 
						|
           diag::err_escape_too_large) << 0;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case '0': case '1': case '2': case '3':
 | 
						|
  case '4': case '5': case '6': case '7': {
 | 
						|
    // Octal escapes.
 | 
						|
    --ThisTokBuf;
 | 
						|
    ResultChar = 0;
 | 
						|
 | 
						|
    // Octal escapes are a series of octal digits with maximum length 3.
 | 
						|
    // "\0123" is a two digit sequence equal to "\012" "3".
 | 
						|
    unsigned NumDigits = 0;
 | 
						|
    do {
 | 
						|
      ResultChar <<= 3;
 | 
						|
      ResultChar |= *ThisTokBuf++ - '0';
 | 
						|
      ++NumDigits;
 | 
						|
    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
 | 
						|
             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
 | 
						|
 | 
						|
    // Check for overflow.  Reject '\777', but not L'\777'.
 | 
						|
    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | 
						|
      if (Diags)
 | 
						|
        Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | 
						|
             diag::err_escape_too_large) << 1;
 | 
						|
      ResultChar &= ~0U >> (32-CharWidth);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
    // Otherwise, these are not valid escapes.
 | 
						|
  case '(': case '{': case '[': case '%':
 | 
						|
    // GCC accepts these as extensions.  We warn about them as such though.
 | 
						|
    if (Diags)
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | 
						|
           diag::ext_nonstandard_escape)
 | 
						|
        << std::string(1, ResultChar);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    if (!Diags)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (isPrintable(ResultChar))
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | 
						|
           diag::ext_unknown_escape)
 | 
						|
        << std::string(1, ResultChar);
 | 
						|
    else
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | 
						|
           diag::ext_unknown_escape)
 | 
						|
        << "x" + llvm::utohexstr(ResultChar);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return ResultChar;
 | 
						|
}
 | 
						|
 | 
						|
static void appendCodePoint(unsigned Codepoint,
 | 
						|
                            llvm::SmallVectorImpl<char> &Str) {
 | 
						|
  char ResultBuf[4];
 | 
						|
  char *ResultPtr = ResultBuf;
 | 
						|
  bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
 | 
						|
  (void)Res;
 | 
						|
  assert(Res && "Unexpected conversion failure");
 | 
						|
  Str.append(ResultBuf, ResultPtr);
 | 
						|
}
 | 
						|
 | 
						|
void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
 | 
						|
  for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
 | 
						|
    if (*I != '\\') {
 | 
						|
      Buf.push_back(*I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ++I;
 | 
						|
    assert(*I == 'u' || *I == 'U');
 | 
						|
 | 
						|
    unsigned NumHexDigits;
 | 
						|
    if (*I == 'u')
 | 
						|
      NumHexDigits = 4;
 | 
						|
    else
 | 
						|
      NumHexDigits = 8;
 | 
						|
 | 
						|
    assert(I + NumHexDigits <= E);
 | 
						|
 | 
						|
    uint32_t CodePoint = 0;
 | 
						|
    for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
 | 
						|
      unsigned Value = llvm::hexDigitValue(*I);
 | 
						|
      assert(Value != -1U);
 | 
						|
 | 
						|
      CodePoint <<= 4;
 | 
						|
      CodePoint += Value;
 | 
						|
    }
 | 
						|
 | 
						|
    appendCodePoint(CodePoint, Buf);
 | 
						|
    --I;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
 | 
						|
/// return the UTF32.
 | 
						|
static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
 | 
						|
                             const char *ThisTokEnd,
 | 
						|
                             uint32_t &UcnVal, unsigned short &UcnLen,
 | 
						|
                             FullSourceLoc Loc, DiagnosticsEngine *Diags,
 | 
						|
                             const LangOptions &Features,
 | 
						|
                             bool in_char_string_literal = false) {
 | 
						|
  const char *UcnBegin = ThisTokBuf;
 | 
						|
 | 
						|
  // Skip the '\u' char's.
 | 
						|
  ThisTokBuf += 2;
 | 
						|
 | 
						|
  if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
 | 
						|
    if (Diags)
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | 
						|
           diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
 | 
						|
  unsigned short UcnLenSave = UcnLen;
 | 
						|
  for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
 | 
						|
    int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
 | 
						|
    if (CharVal == -1) break;
 | 
						|
    UcnVal <<= 4;
 | 
						|
    UcnVal |= CharVal;
 | 
						|
  }
 | 
						|
  // If we didn't consume the proper number of digits, there is a problem.
 | 
						|
  if (UcnLenSave) {
 | 
						|
    if (Diags)
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | 
						|
           diag::err_ucn_escape_incomplete);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
 | 
						|
  if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
 | 
						|
      UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
 | 
						|
    if (Diags)
 | 
						|
      Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | 
						|
           diag::err_ucn_escape_invalid);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 allows UCNs that refer to control characters and basic source
 | 
						|
  // characters inside character and string literals
 | 
						|
  if (UcnVal < 0xa0 &&
 | 
						|
      (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
 | 
						|
    bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
 | 
						|
    if (Diags) {
 | 
						|
      char BasicSCSChar = UcnVal;
 | 
						|
      if (UcnVal >= 0x20 && UcnVal < 0x7f)
 | 
						|
        Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | 
						|
             IsError ? diag::err_ucn_escape_basic_scs :
 | 
						|
                       diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
 | 
						|
            << StringRef(&BasicSCSChar, 1);
 | 
						|
      else
 | 
						|
        Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | 
						|
             IsError ? diag::err_ucn_control_character :
 | 
						|
                       diag::warn_cxx98_compat_literal_ucn_control_character);
 | 
						|
    }
 | 
						|
    if (IsError)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Features.CPlusPlus && !Features.C99 && Diags)
 | 
						|
    Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | 
						|
         diag::warn_ucn_not_valid_in_c89_literal);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// MeasureUCNEscape - Determine the number of bytes within the resulting string
 | 
						|
/// which this UCN will occupy.
 | 
						|
static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
 | 
						|
                            const char *ThisTokEnd, unsigned CharByteWidth,
 | 
						|
                            const LangOptions &Features, bool &HadError) {
 | 
						|
  // UTF-32: 4 bytes per escape.
 | 
						|
  if (CharByteWidth == 4)
 | 
						|
    return 4;
 | 
						|
 | 
						|
  uint32_t UcnVal = 0;
 | 
						|
  unsigned short UcnLen = 0;
 | 
						|
  FullSourceLoc Loc;
 | 
						|
 | 
						|
  if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
 | 
						|
                        UcnLen, Loc, nullptr, Features, true)) {
 | 
						|
    HadError = true;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
 | 
						|
  if (CharByteWidth == 2)
 | 
						|
    return UcnVal <= 0xFFFF ? 2 : 4;
 | 
						|
 | 
						|
  // UTF-8.
 | 
						|
  if (UcnVal < 0x80)
 | 
						|
    return 1;
 | 
						|
  if (UcnVal < 0x800)
 | 
						|
    return 2;
 | 
						|
  if (UcnVal < 0x10000)
 | 
						|
    return 3;
 | 
						|
  return 4;
 | 
						|
}
 | 
						|
 | 
						|
/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
 | 
						|
/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
 | 
						|
/// StringLiteralParser. When we decide to implement UCN's for identifiers,
 | 
						|
/// we will likely rework our support for UCN's.
 | 
						|
static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
 | 
						|
                            const char *ThisTokEnd,
 | 
						|
                            char *&ResultBuf, bool &HadError,
 | 
						|
                            FullSourceLoc Loc, unsigned CharByteWidth,
 | 
						|
                            DiagnosticsEngine *Diags,
 | 
						|
                            const LangOptions &Features) {
 | 
						|
  typedef uint32_t UTF32;
 | 
						|
  UTF32 UcnVal = 0;
 | 
						|
  unsigned short UcnLen = 0;
 | 
						|
  if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
 | 
						|
                        Loc, Diags, Features, true)) {
 | 
						|
    HadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
 | 
						|
         "only character widths of 1, 2, or 4 bytes supported");
 | 
						|
 | 
						|
  (void)UcnLen;
 | 
						|
  assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
 | 
						|
 | 
						|
  if (CharByteWidth == 4) {
 | 
						|
    // FIXME: Make the type of the result buffer correct instead of
 | 
						|
    // using reinterpret_cast.
 | 
						|
    llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
 | 
						|
    *ResultPtr = UcnVal;
 | 
						|
    ResultBuf += 4;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CharByteWidth == 2) {
 | 
						|
    // FIXME: Make the type of the result buffer correct instead of
 | 
						|
    // using reinterpret_cast.
 | 
						|
    llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
 | 
						|
 | 
						|
    if (UcnVal <= (UTF32)0xFFFF) {
 | 
						|
      *ResultPtr = UcnVal;
 | 
						|
      ResultBuf += 2;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Convert to UTF16.
 | 
						|
    UcnVal -= 0x10000;
 | 
						|
    *ResultPtr     = 0xD800 + (UcnVal >> 10);
 | 
						|
    *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
 | 
						|
    ResultBuf += 4;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
 | 
						|
 | 
						|
  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
 | 
						|
  // The conversion below was inspired by:
 | 
						|
  //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
 | 
						|
  // First, we determine how many bytes the result will require.
 | 
						|
  typedef uint8_t UTF8;
 | 
						|
 | 
						|
  unsigned short bytesToWrite = 0;
 | 
						|
  if (UcnVal < (UTF32)0x80)
 | 
						|
    bytesToWrite = 1;
 | 
						|
  else if (UcnVal < (UTF32)0x800)
 | 
						|
    bytesToWrite = 2;
 | 
						|
  else if (UcnVal < (UTF32)0x10000)
 | 
						|
    bytesToWrite = 3;
 | 
						|
  else
 | 
						|
    bytesToWrite = 4;
 | 
						|
 | 
						|
  const unsigned byteMask = 0xBF;
 | 
						|
  const unsigned byteMark = 0x80;
 | 
						|
 | 
						|
  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
 | 
						|
  // into the first byte, depending on how many bytes follow.
 | 
						|
  static const UTF8 firstByteMark[5] = {
 | 
						|
    0x00, 0x00, 0xC0, 0xE0, 0xF0
 | 
						|
  };
 | 
						|
  // Finally, we write the bytes into ResultBuf.
 | 
						|
  ResultBuf += bytesToWrite;
 | 
						|
  switch (bytesToWrite) { // note: everything falls through.
 | 
						|
  case 4:
 | 
						|
    *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case 3:
 | 
						|
    *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case 2:
 | 
						|
    *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case 1:
 | 
						|
    *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
 | 
						|
  }
 | 
						|
  // Update the buffer.
 | 
						|
  ResultBuf += bytesToWrite;
 | 
						|
}
 | 
						|
 | 
						|
///       integer-constant: [C99 6.4.4.1]
 | 
						|
///         decimal-constant integer-suffix
 | 
						|
///         octal-constant integer-suffix
 | 
						|
///         hexadecimal-constant integer-suffix
 | 
						|
///         binary-literal integer-suffix [GNU, C++1y]
 | 
						|
///       user-defined-integer-literal: [C++11 lex.ext]
 | 
						|
///         decimal-literal ud-suffix
 | 
						|
///         octal-literal ud-suffix
 | 
						|
///         hexadecimal-literal ud-suffix
 | 
						|
///         binary-literal ud-suffix [GNU, C++1y]
 | 
						|
///       decimal-constant:
 | 
						|
///         nonzero-digit
 | 
						|
///         decimal-constant digit
 | 
						|
///       octal-constant:
 | 
						|
///         0
 | 
						|
///         octal-constant octal-digit
 | 
						|
///       hexadecimal-constant:
 | 
						|
///         hexadecimal-prefix hexadecimal-digit
 | 
						|
///         hexadecimal-constant hexadecimal-digit
 | 
						|
///       hexadecimal-prefix: one of
 | 
						|
///         0x 0X
 | 
						|
///       binary-literal:
 | 
						|
///         0b binary-digit
 | 
						|
///         0B binary-digit
 | 
						|
///         binary-literal binary-digit
 | 
						|
///       integer-suffix:
 | 
						|
///         unsigned-suffix [long-suffix]
 | 
						|
///         unsigned-suffix [long-long-suffix]
 | 
						|
///         long-suffix [unsigned-suffix]
 | 
						|
///         long-long-suffix [unsigned-sufix]
 | 
						|
///       nonzero-digit:
 | 
						|
///         1 2 3 4 5 6 7 8 9
 | 
						|
///       octal-digit:
 | 
						|
///         0 1 2 3 4 5 6 7
 | 
						|
///       hexadecimal-digit:
 | 
						|
///         0 1 2 3 4 5 6 7 8 9
 | 
						|
///         a b c d e f
 | 
						|
///         A B C D E F
 | 
						|
///       binary-digit:
 | 
						|
///         0
 | 
						|
///         1
 | 
						|
///       unsigned-suffix: one of
 | 
						|
///         u U
 | 
						|
///       long-suffix: one of
 | 
						|
///         l L
 | 
						|
///       long-long-suffix: one of
 | 
						|
///         ll LL
 | 
						|
///
 | 
						|
///       floating-constant: [C99 6.4.4.2]
 | 
						|
///         TODO: add rules...
 | 
						|
///
 | 
						|
NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
 | 
						|
                                           SourceLocation TokLoc,
 | 
						|
                                           Preprocessor &PP)
 | 
						|
  : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
 | 
						|
 | 
						|
  // This routine assumes that the range begin/end matches the regex for integer
 | 
						|
  // and FP constants (specifically, the 'pp-number' regex), and assumes that
 | 
						|
  // the byte at "*end" is both valid and not part of the regex.  Because of
 | 
						|
  // this, it doesn't have to check for 'overscan' in various places.
 | 
						|
  assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
 | 
						|
 | 
						|
  s = DigitsBegin = ThisTokBegin;
 | 
						|
  saw_exponent = false;
 | 
						|
  saw_period = false;
 | 
						|
  saw_ud_suffix = false;
 | 
						|
  saw_fixed_point_suffix = false;
 | 
						|
  isLong = false;
 | 
						|
  isUnsigned = false;
 | 
						|
  isLongLong = false;
 | 
						|
  isHalf = false;
 | 
						|
  isFloat = false;
 | 
						|
  isImaginary = false;
 | 
						|
  isFloat16 = false;
 | 
						|
  isFloat128 = false;
 | 
						|
  MicrosoftInteger = 0;
 | 
						|
  isFract = false;
 | 
						|
  isAccum = false;
 | 
						|
  hadError = false;
 | 
						|
 | 
						|
  if (*s == '0') { // parse radix
 | 
						|
    ParseNumberStartingWithZero(TokLoc);
 | 
						|
    if (hadError)
 | 
						|
      return;
 | 
						|
  } else { // the first digit is non-zero
 | 
						|
    radix = 10;
 | 
						|
    s = SkipDigits(s);
 | 
						|
    if (s == ThisTokEnd) {
 | 
						|
      // Done.
 | 
						|
    } else {
 | 
						|
      ParseDecimalOrOctalCommon(TokLoc);
 | 
						|
      if (hadError)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SuffixBegin = s;
 | 
						|
  checkSeparator(TokLoc, s, CSK_AfterDigits);
 | 
						|
 | 
						|
  // Initial scan to lookahead for fixed point suffix.
 | 
						|
  if (PP.getLangOpts().FixedPoint) {
 | 
						|
    for (const char *c = s; c != ThisTokEnd; ++c) {
 | 
						|
      if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
 | 
						|
        saw_fixed_point_suffix = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse the suffix.  At this point we can classify whether we have an FP or
 | 
						|
  // integer constant.
 | 
						|
  bool isFPConstant = isFloatingLiteral();
 | 
						|
 | 
						|
  // Loop over all of the characters of the suffix.  If we see something bad,
 | 
						|
  // we break out of the loop.
 | 
						|
  for (; s != ThisTokEnd; ++s) {
 | 
						|
    switch (*s) {
 | 
						|
    case 'R':
 | 
						|
    case 'r':
 | 
						|
      if (!PP.getLangOpts().FixedPoint) break;
 | 
						|
      if (isFract || isAccum) break;
 | 
						|
      if (!(saw_period || saw_exponent)) break;
 | 
						|
      isFract = true;
 | 
						|
      continue;
 | 
						|
    case 'K':
 | 
						|
    case 'k':
 | 
						|
      if (!PP.getLangOpts().FixedPoint) break;
 | 
						|
      if (isFract || isAccum) break;
 | 
						|
      if (!(saw_period || saw_exponent)) break;
 | 
						|
      isAccum = true;
 | 
						|
      continue;
 | 
						|
    case 'h':      // FP Suffix for "half".
 | 
						|
    case 'H':
 | 
						|
      // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
 | 
						|
      if (!(PP.getLangOpts().Half || PP.getLangOpts().FixedPoint)) break;
 | 
						|
      if (isIntegerLiteral()) break;  // Error for integer constant.
 | 
						|
      if (isHalf || isFloat || isLong) break; // HH, FH, LH invalid.
 | 
						|
      isHalf = true;
 | 
						|
      continue;  // Success.
 | 
						|
    case 'f':      // FP Suffix for "float"
 | 
						|
    case 'F':
 | 
						|
      if (!isFPConstant) break;  // Error for integer constant.
 | 
						|
      if (isHalf || isFloat || isLong || isFloat128)
 | 
						|
        break; // HF, FF, LF, QF invalid.
 | 
						|
 | 
						|
      // CUDA host and device may have different _Float16 support, therefore
 | 
						|
      // allows f16 literals to avoid false alarm.
 | 
						|
      // ToDo: more precise check for CUDA.
 | 
						|
      if ((PP.getTargetInfo().hasFloat16Type() || PP.getLangOpts().CUDA) &&
 | 
						|
          s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
 | 
						|
        s += 2; // success, eat up 2 characters.
 | 
						|
        isFloat16 = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      isFloat = true;
 | 
						|
      continue;  // Success.
 | 
						|
    case 'q':    // FP Suffix for "__float128"
 | 
						|
    case 'Q':
 | 
						|
      if (!isFPConstant) break;  // Error for integer constant.
 | 
						|
      if (isHalf || isFloat || isLong || isFloat128)
 | 
						|
        break; // HQ, FQ, LQ, QQ invalid.
 | 
						|
      isFloat128 = true;
 | 
						|
      continue;  // Success.
 | 
						|
    case 'u':
 | 
						|
    case 'U':
 | 
						|
      if (isFPConstant) break;  // Error for floating constant.
 | 
						|
      if (isUnsigned) break;    // Cannot be repeated.
 | 
						|
      isUnsigned = true;
 | 
						|
      continue;  // Success.
 | 
						|
    case 'l':
 | 
						|
    case 'L':
 | 
						|
      if (isLong || isLongLong) break;  // Cannot be repeated.
 | 
						|
      if (isHalf || isFloat || isFloat128) break;     // LH, LF, LQ invalid.
 | 
						|
 | 
						|
      // Check for long long.  The L's need to be adjacent and the same case.
 | 
						|
      if (s[1] == s[0]) {
 | 
						|
        assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
 | 
						|
        if (isFPConstant) break;        // long long invalid for floats.
 | 
						|
        isLongLong = true;
 | 
						|
        ++s;  // Eat both of them.
 | 
						|
      } else {
 | 
						|
        isLong = true;
 | 
						|
      }
 | 
						|
      continue;  // Success.
 | 
						|
    case 'i':
 | 
						|
    case 'I':
 | 
						|
      if (PP.getLangOpts().MicrosoftExt) {
 | 
						|
        if (isLong || isLongLong || MicrosoftInteger)
 | 
						|
          break;
 | 
						|
 | 
						|
        if (!isFPConstant) {
 | 
						|
          // Allow i8, i16, i32, and i64.
 | 
						|
          switch (s[1]) {
 | 
						|
          case '8':
 | 
						|
            s += 2; // i8 suffix
 | 
						|
            MicrosoftInteger = 8;
 | 
						|
            break;
 | 
						|
          case '1':
 | 
						|
            if (s[2] == '6') {
 | 
						|
              s += 3; // i16 suffix
 | 
						|
              MicrosoftInteger = 16;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case '3':
 | 
						|
            if (s[2] == '2') {
 | 
						|
              s += 3; // i32 suffix
 | 
						|
              MicrosoftInteger = 32;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          case '6':
 | 
						|
            if (s[2] == '4') {
 | 
						|
              s += 3; // i64 suffix
 | 
						|
              MicrosoftInteger = 64;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (MicrosoftInteger) {
 | 
						|
          assert(s <= ThisTokEnd && "didn't maximally munch?");
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case 'j':
 | 
						|
    case 'J':
 | 
						|
      if (isImaginary) break;   // Cannot be repeated.
 | 
						|
      isImaginary = true;
 | 
						|
      continue;  // Success.
 | 
						|
    }
 | 
						|
    // If we reached here, there was an error or a ud-suffix.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // "i", "if", and "il" are user-defined suffixes in C++1y.
 | 
						|
  if (s != ThisTokEnd || isImaginary) {
 | 
						|
    // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
 | 
						|
    expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
 | 
						|
    if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
 | 
						|
      if (!isImaginary) {
 | 
						|
        // Any suffix pieces we might have parsed are actually part of the
 | 
						|
        // ud-suffix.
 | 
						|
        isLong = false;
 | 
						|
        isUnsigned = false;
 | 
						|
        isLongLong = false;
 | 
						|
        isFloat = false;
 | 
						|
        isFloat16 = false;
 | 
						|
        isHalf = false;
 | 
						|
        isImaginary = false;
 | 
						|
        MicrosoftInteger = 0;
 | 
						|
        saw_fixed_point_suffix = false;
 | 
						|
        isFract = false;
 | 
						|
        isAccum = false;
 | 
						|
      }
 | 
						|
 | 
						|
      saw_ud_suffix = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s != ThisTokEnd) {
 | 
						|
      // Report an error if there are any.
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
 | 
						|
              diag::err_invalid_suffix_constant)
 | 
						|
          << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) << isFPConstant;
 | 
						|
      hadError = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!hadError && saw_fixed_point_suffix) {
 | 
						|
    assert(isFract || isAccum);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParseDecimalOrOctalCommon - This method is called for decimal or octal
 | 
						|
/// numbers. It issues an error for illegal digits, and handles floating point
 | 
						|
/// parsing. If it detects a floating point number, the radix is set to 10.
 | 
						|
void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
 | 
						|
  assert((radix == 8 || radix == 10) && "Unexpected radix");
 | 
						|
 | 
						|
  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
 | 
						|
  // the code is using an incorrect base.
 | 
						|
  if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
 | 
						|
      !isValidUDSuffix(PP.getLangOpts(), StringRef(s, ThisTokEnd - s))) {
 | 
						|
    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | 
						|
            diag::err_invalid_digit) << StringRef(s, 1) << (radix == 8 ? 1 : 0);
 | 
						|
    hadError = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (*s == '.') {
 | 
						|
    checkSeparator(TokLoc, s, CSK_AfterDigits);
 | 
						|
    s++;
 | 
						|
    radix = 10;
 | 
						|
    saw_period = true;
 | 
						|
    checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | 
						|
    s = SkipDigits(s); // Skip suffix.
 | 
						|
  }
 | 
						|
  if (*s == 'e' || *s == 'E') { // exponent
 | 
						|
    checkSeparator(TokLoc, s, CSK_AfterDigits);
 | 
						|
    const char *Exponent = s;
 | 
						|
    s++;
 | 
						|
    radix = 10;
 | 
						|
    saw_exponent = true;
 | 
						|
    if (s != ThisTokEnd && (*s == '+' || *s == '-'))  s++; // sign
 | 
						|
    const char *first_non_digit = SkipDigits(s);
 | 
						|
    if (containsDigits(s, first_non_digit)) {
 | 
						|
      checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | 
						|
      s = first_non_digit;
 | 
						|
    } else {
 | 
						|
      if (!hadError) {
 | 
						|
        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
 | 
						|
                diag::err_exponent_has_no_digits);
 | 
						|
        hadError = true;
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
 | 
						|
/// suffixes as ud-suffixes, because the diagnostic experience is better if we
 | 
						|
/// treat it as an invalid suffix.
 | 
						|
bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
 | 
						|
                                           StringRef Suffix) {
 | 
						|
  if (!LangOpts.CPlusPlus11 || Suffix.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
 | 
						|
  if (Suffix[0] == '_')
 | 
						|
    return true;
 | 
						|
 | 
						|
  // In C++11, there are no library suffixes.
 | 
						|
  if (!LangOpts.CPlusPlus14)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
 | 
						|
  // Per tweaked N3660, "il", "i", and "if" are also used in the library.
 | 
						|
  // In C++2a "d" and "y" are used in the library.
 | 
						|
  return llvm::StringSwitch<bool>(Suffix)
 | 
						|
      .Cases("h", "min", "s", true)
 | 
						|
      .Cases("ms", "us", "ns", true)
 | 
						|
      .Cases("il", "i", "if", true)
 | 
						|
      .Cases("d", "y", LangOpts.CPlusPlus2a)
 | 
						|
      .Default(false);
 | 
						|
}
 | 
						|
 | 
						|
void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
 | 
						|
                                          const char *Pos,
 | 
						|
                                          CheckSeparatorKind IsAfterDigits) {
 | 
						|
  if (IsAfterDigits == CSK_AfterDigits) {
 | 
						|
    if (Pos == ThisTokBegin)
 | 
						|
      return;
 | 
						|
    --Pos;
 | 
						|
  } else if (Pos == ThisTokEnd)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (isDigitSeparator(*Pos)) {
 | 
						|
    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
 | 
						|
            diag::err_digit_separator_not_between_digits)
 | 
						|
      << IsAfterDigits;
 | 
						|
    hadError = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParseNumberStartingWithZero - This method is called when the first character
 | 
						|
/// of the number is found to be a zero.  This means it is either an octal
 | 
						|
/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
 | 
						|
/// a floating point number (01239.123e4).  Eat the prefix, determining the
 | 
						|
/// radix etc.
 | 
						|
void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
 | 
						|
  assert(s[0] == '0' && "Invalid method call");
 | 
						|
  s++;
 | 
						|
 | 
						|
  int c1 = s[0];
 | 
						|
 | 
						|
  // Handle a hex number like 0x1234.
 | 
						|
  if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
 | 
						|
    s++;
 | 
						|
    assert(s < ThisTokEnd && "didn't maximally munch?");
 | 
						|
    radix = 16;
 | 
						|
    DigitsBegin = s;
 | 
						|
    s = SkipHexDigits(s);
 | 
						|
    bool HasSignificandDigits = containsDigits(DigitsBegin, s);
 | 
						|
    if (s == ThisTokEnd) {
 | 
						|
      // Done.
 | 
						|
    } else if (*s == '.') {
 | 
						|
      s++;
 | 
						|
      saw_period = true;
 | 
						|
      const char *floatDigitsBegin = s;
 | 
						|
      s = SkipHexDigits(s);
 | 
						|
      if (containsDigits(floatDigitsBegin, s))
 | 
						|
        HasSignificandDigits = true;
 | 
						|
      if (HasSignificandDigits)
 | 
						|
        checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!HasSignificandDigits) {
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
 | 
						|
              diag::err_hex_constant_requires)
 | 
						|
          << PP.getLangOpts().CPlusPlus << 1;
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // A binary exponent can appear with or with a '.'. If dotted, the
 | 
						|
    // binary exponent is required.
 | 
						|
    if (*s == 'p' || *s == 'P') {
 | 
						|
      checkSeparator(TokLoc, s, CSK_AfterDigits);
 | 
						|
      const char *Exponent = s;
 | 
						|
      s++;
 | 
						|
      saw_exponent = true;
 | 
						|
      if (s != ThisTokEnd && (*s == '+' || *s == '-'))  s++; // sign
 | 
						|
      const char *first_non_digit = SkipDigits(s);
 | 
						|
      if (!containsDigits(s, first_non_digit)) {
 | 
						|
        if (!hadError) {
 | 
						|
          PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
 | 
						|
                  diag::err_exponent_has_no_digits);
 | 
						|
          hadError = true;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | 
						|
      s = first_non_digit;
 | 
						|
 | 
						|
      if (!PP.getLangOpts().HexFloats)
 | 
						|
        PP.Diag(TokLoc, PP.getLangOpts().CPlusPlus
 | 
						|
                            ? diag::ext_hex_literal_invalid
 | 
						|
                            : diag::ext_hex_constant_invalid);
 | 
						|
      else if (PP.getLangOpts().CPlusPlus17)
 | 
						|
        PP.Diag(TokLoc, diag::warn_cxx17_hex_literal);
 | 
						|
    } else if (saw_period) {
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
 | 
						|
              diag::err_hex_constant_requires)
 | 
						|
          << PP.getLangOpts().CPlusPlus << 0;
 | 
						|
      hadError = true;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle simple binary numbers 0b01010
 | 
						|
  if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
 | 
						|
    // 0b101010 is a C++1y / GCC extension.
 | 
						|
    PP.Diag(TokLoc,
 | 
						|
            PP.getLangOpts().CPlusPlus14
 | 
						|
              ? diag::warn_cxx11_compat_binary_literal
 | 
						|
              : PP.getLangOpts().CPlusPlus
 | 
						|
                ? diag::ext_binary_literal_cxx14
 | 
						|
                : diag::ext_binary_literal);
 | 
						|
    ++s;
 | 
						|
    assert(s < ThisTokEnd && "didn't maximally munch?");
 | 
						|
    radix = 2;
 | 
						|
    DigitsBegin = s;
 | 
						|
    s = SkipBinaryDigits(s);
 | 
						|
    if (s == ThisTokEnd) {
 | 
						|
      // Done.
 | 
						|
    } else if (isHexDigit(*s) &&
 | 
						|
               !isValidUDSuffix(PP.getLangOpts(),
 | 
						|
                                StringRef(s, ThisTokEnd - s))) {
 | 
						|
      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | 
						|
              diag::err_invalid_digit) << StringRef(s, 1) << 2;
 | 
						|
      hadError = true;
 | 
						|
    }
 | 
						|
    // Other suffixes will be diagnosed by the caller.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For now, the radix is set to 8. If we discover that we have a
 | 
						|
  // floating point constant, the radix will change to 10. Octal floating
 | 
						|
  // point constants are not permitted (only decimal and hexadecimal).
 | 
						|
  radix = 8;
 | 
						|
  DigitsBegin = s;
 | 
						|
  s = SkipOctalDigits(s);
 | 
						|
  if (s == ThisTokEnd)
 | 
						|
    return; // Done, simple octal number like 01234
 | 
						|
 | 
						|
  // If we have some other non-octal digit that *is* a decimal digit, see if
 | 
						|
  // this is part of a floating point number like 094.123 or 09e1.
 | 
						|
  if (isDigit(*s)) {
 | 
						|
    const char *EndDecimal = SkipDigits(s);
 | 
						|
    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
 | 
						|
      s = EndDecimal;
 | 
						|
      radix = 10;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ParseDecimalOrOctalCommon(TokLoc);
 | 
						|
}
 | 
						|
 | 
						|
static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
 | 
						|
  switch (Radix) {
 | 
						|
  case 2:
 | 
						|
    return NumDigits <= 64;
 | 
						|
  case 8:
 | 
						|
    return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
 | 
						|
  case 10:
 | 
						|
    return NumDigits <= 19; // floor(log10(2^64))
 | 
						|
  case 16:
 | 
						|
    return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
 | 
						|
  default:
 | 
						|
    llvm_unreachable("impossible Radix");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetIntegerValue - Convert this numeric literal value to an APInt that
 | 
						|
/// matches Val's input width.  If there is an overflow, set Val to the low bits
 | 
						|
/// of the result and return true.  Otherwise, return false.
 | 
						|
bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
 | 
						|
  // Fast path: Compute a conservative bound on the maximum number of
 | 
						|
  // bits per digit in this radix. If we can't possibly overflow a
 | 
						|
  // uint64 based on that bound then do the simple conversion to
 | 
						|
  // integer. This avoids the expensive overflow checking below, and
 | 
						|
  // handles the common cases that matter (small decimal integers and
 | 
						|
  // hex/octal values which don't overflow).
 | 
						|
  const unsigned NumDigits = SuffixBegin - DigitsBegin;
 | 
						|
  if (alwaysFitsInto64Bits(radix, NumDigits)) {
 | 
						|
    uint64_t N = 0;
 | 
						|
    for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
 | 
						|
      if (!isDigitSeparator(*Ptr))
 | 
						|
        N = N * radix + llvm::hexDigitValue(*Ptr);
 | 
						|
 | 
						|
    // This will truncate the value to Val's input width. Simply check
 | 
						|
    // for overflow by comparing.
 | 
						|
    Val = N;
 | 
						|
    return Val.getZExtValue() != N;
 | 
						|
  }
 | 
						|
 | 
						|
  Val = 0;
 | 
						|
  const char *Ptr = DigitsBegin;
 | 
						|
 | 
						|
  llvm::APInt RadixVal(Val.getBitWidth(), radix);
 | 
						|
  llvm::APInt CharVal(Val.getBitWidth(), 0);
 | 
						|
  llvm::APInt OldVal = Val;
 | 
						|
 | 
						|
  bool OverflowOccurred = false;
 | 
						|
  while (Ptr < SuffixBegin) {
 | 
						|
    if (isDigitSeparator(*Ptr)) {
 | 
						|
      ++Ptr;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned C = llvm::hexDigitValue(*Ptr++);
 | 
						|
 | 
						|
    // If this letter is out of bound for this radix, reject it.
 | 
						|
    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
 | 
						|
 | 
						|
    CharVal = C;
 | 
						|
 | 
						|
    // Add the digit to the value in the appropriate radix.  If adding in digits
 | 
						|
    // made the value smaller, then this overflowed.
 | 
						|
    OldVal = Val;
 | 
						|
 | 
						|
    // Multiply by radix, did overflow occur on the multiply?
 | 
						|
    Val *= RadixVal;
 | 
						|
    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
 | 
						|
 | 
						|
    // Add value, did overflow occur on the value?
 | 
						|
    //   (a + b) ult b  <=> overflow
 | 
						|
    Val += CharVal;
 | 
						|
    OverflowOccurred |= Val.ult(CharVal);
 | 
						|
  }
 | 
						|
  return OverflowOccurred;
 | 
						|
}
 | 
						|
 | 
						|
llvm::APFloat::opStatus
 | 
						|
NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
 | 
						|
  using llvm::APFloat;
 | 
						|
 | 
						|
  unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
 | 
						|
 | 
						|
  llvm::SmallString<16> Buffer;
 | 
						|
  StringRef Str(ThisTokBegin, n);
 | 
						|
  if (Str.find('\'') != StringRef::npos) {
 | 
						|
    Buffer.reserve(n);
 | 
						|
    std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
 | 
						|
                        &isDigitSeparator);
 | 
						|
    Str = Buffer;
 | 
						|
  }
 | 
						|
 | 
						|
  auto StatusOrErr =
 | 
						|
      Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
 | 
						|
  assert(StatusOrErr && "Invalid floating point representation");
 | 
						|
  return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
 | 
						|
                                               : APFloat::opInvalidOp;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool IsExponentPart(char c) {
 | 
						|
  return c == 'p' || c == 'P' || c == 'e' || c == 'E';
 | 
						|
}
 | 
						|
 | 
						|
bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
 | 
						|
  assert(radix == 16 || radix == 10);
 | 
						|
 | 
						|
  // Find how many digits are needed to store the whole literal.
 | 
						|
  unsigned NumDigits = SuffixBegin - DigitsBegin;
 | 
						|
  if (saw_period) --NumDigits;
 | 
						|
 | 
						|
  // Initial scan of the exponent if it exists
 | 
						|
  bool ExpOverflowOccurred = false;
 | 
						|
  bool NegativeExponent = false;
 | 
						|
  const char *ExponentBegin;
 | 
						|
  uint64_t Exponent = 0;
 | 
						|
  int64_t BaseShift = 0;
 | 
						|
  if (saw_exponent) {
 | 
						|
    const char *Ptr = DigitsBegin;
 | 
						|
 | 
						|
    while (!IsExponentPart(*Ptr)) ++Ptr;
 | 
						|
    ExponentBegin = Ptr;
 | 
						|
    ++Ptr;
 | 
						|
    NegativeExponent = *Ptr == '-';
 | 
						|
    if (NegativeExponent) ++Ptr;
 | 
						|
 | 
						|
    unsigned NumExpDigits = SuffixBegin - Ptr;
 | 
						|
    if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
 | 
						|
      llvm::StringRef ExpStr(Ptr, NumExpDigits);
 | 
						|
      llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
 | 
						|
      Exponent = ExpInt.getZExtValue();
 | 
						|
    } else {
 | 
						|
      ExpOverflowOccurred = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NegativeExponent) BaseShift -= Exponent;
 | 
						|
    else BaseShift += Exponent;
 | 
						|
  }
 | 
						|
 | 
						|
  // Number of bits needed for decimal literal is
 | 
						|
  //   ceil(NumDigits * log2(10))       Integral part
 | 
						|
  // + Scale                            Fractional part
 | 
						|
  // + ceil(Exponent * log2(10))        Exponent
 | 
						|
  // --------------------------------------------------
 | 
						|
  //   ceil((NumDigits + Exponent) * log2(10)) + Scale
 | 
						|
  //
 | 
						|
  // But for simplicity in handling integers, we can round up log2(10) to 4,
 | 
						|
  // making:
 | 
						|
  // 4 * (NumDigits + Exponent) + Scale
 | 
						|
  //
 | 
						|
  // Number of digits needed for hexadecimal literal is
 | 
						|
  //   4 * NumDigits                    Integral part
 | 
						|
  // + Scale                            Fractional part
 | 
						|
  // + Exponent                         Exponent
 | 
						|
  // --------------------------------------------------
 | 
						|
  //   (4 * NumDigits) + Scale + Exponent
 | 
						|
  uint64_t NumBitsNeeded;
 | 
						|
  if (radix == 10)
 | 
						|
    NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
 | 
						|
  else
 | 
						|
    NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
 | 
						|
 | 
						|
  if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
 | 
						|
    ExpOverflowOccurred = true;
 | 
						|
  llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
 | 
						|
 | 
						|
  bool FoundDecimal = false;
 | 
						|
 | 
						|
  int64_t FractBaseShift = 0;
 | 
						|
  const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
 | 
						|
  for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
 | 
						|
    if (*Ptr == '.') {
 | 
						|
      FoundDecimal = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Normal reading of an integer
 | 
						|
    unsigned C = llvm::hexDigitValue(*Ptr);
 | 
						|
    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
 | 
						|
 | 
						|
    Val *= radix;
 | 
						|
    Val += C;
 | 
						|
 | 
						|
    if (FoundDecimal)
 | 
						|
      // Keep track of how much we will need to adjust this value by from the
 | 
						|
      // number of digits past the radix point.
 | 
						|
      --FractBaseShift;
 | 
						|
  }
 | 
						|
 | 
						|
  // For a radix of 16, we will be multiplying by 2 instead of 16.
 | 
						|
  if (radix == 16) FractBaseShift *= 4;
 | 
						|
  BaseShift += FractBaseShift;
 | 
						|
 | 
						|
  Val <<= Scale;
 | 
						|
 | 
						|
  uint64_t Base = (radix == 16) ? 2 : 10;
 | 
						|
  if (BaseShift > 0) {
 | 
						|
    for (int64_t i = 0; i < BaseShift; ++i) {
 | 
						|
      Val *= Base;
 | 
						|
    }
 | 
						|
  } else if (BaseShift < 0) {
 | 
						|
    for (int64_t i = BaseShift; i < 0 && !Val.isNullValue(); ++i)
 | 
						|
      Val = Val.udiv(Base);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IntOverflowOccurred = false;
 | 
						|
  auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
 | 
						|
  if (Val.getBitWidth() > StoreVal.getBitWidth()) {
 | 
						|
    IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
 | 
						|
    StoreVal = Val.trunc(StoreVal.getBitWidth());
 | 
						|
  } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
 | 
						|
    IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
 | 
						|
    StoreVal = Val.zext(StoreVal.getBitWidth());
 | 
						|
  } else {
 | 
						|
    StoreVal = Val;
 | 
						|
  }
 | 
						|
 | 
						|
  return IntOverflowOccurred || ExpOverflowOccurred;
 | 
						|
}
 | 
						|
 | 
						|
/// \verbatim
 | 
						|
///       user-defined-character-literal: [C++11 lex.ext]
 | 
						|
///         character-literal ud-suffix
 | 
						|
///       ud-suffix:
 | 
						|
///         identifier
 | 
						|
///       character-literal: [C++11 lex.ccon]
 | 
						|
///         ' c-char-sequence '
 | 
						|
///         u' c-char-sequence '
 | 
						|
///         U' c-char-sequence '
 | 
						|
///         L' c-char-sequence '
 | 
						|
///         u8' c-char-sequence ' [C++1z lex.ccon]
 | 
						|
///       c-char-sequence:
 | 
						|
///         c-char
 | 
						|
///         c-char-sequence c-char
 | 
						|
///       c-char:
 | 
						|
///         any member of the source character set except the single-quote ',
 | 
						|
///           backslash \, or new-line character
 | 
						|
///         escape-sequence
 | 
						|
///         universal-character-name
 | 
						|
///       escape-sequence:
 | 
						|
///         simple-escape-sequence
 | 
						|
///         octal-escape-sequence
 | 
						|
///         hexadecimal-escape-sequence
 | 
						|
///       simple-escape-sequence:
 | 
						|
///         one of \' \" \? \\ \a \b \f \n \r \t \v
 | 
						|
///       octal-escape-sequence:
 | 
						|
///         \ octal-digit
 | 
						|
///         \ octal-digit octal-digit
 | 
						|
///         \ octal-digit octal-digit octal-digit
 | 
						|
///       hexadecimal-escape-sequence:
 | 
						|
///         \x hexadecimal-digit
 | 
						|
///         hexadecimal-escape-sequence hexadecimal-digit
 | 
						|
///       universal-character-name: [C++11 lex.charset]
 | 
						|
///         \u hex-quad
 | 
						|
///         \U hex-quad hex-quad
 | 
						|
///       hex-quad:
 | 
						|
///         hex-digit hex-digit hex-digit hex-digit
 | 
						|
/// \endverbatim
 | 
						|
///
 | 
						|
CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
 | 
						|
                                     SourceLocation Loc, Preprocessor &PP,
 | 
						|
                                     tok::TokenKind kind) {
 | 
						|
  // At this point we know that the character matches the regex "(L|u|U)?'.*'".
 | 
						|
  HadError = false;
 | 
						|
 | 
						|
  Kind = kind;
 | 
						|
 | 
						|
  const char *TokBegin = begin;
 | 
						|
 | 
						|
  // Skip over wide character determinant.
 | 
						|
  if (Kind != tok::char_constant)
 | 
						|
    ++begin;
 | 
						|
  if (Kind == tok::utf8_char_constant)
 | 
						|
    ++begin;
 | 
						|
 | 
						|
  // Skip over the entry quote.
 | 
						|
  assert(begin[0] == '\'' && "Invalid token lexed");
 | 
						|
  ++begin;
 | 
						|
 | 
						|
  // Remove an optional ud-suffix.
 | 
						|
  if (end[-1] != '\'') {
 | 
						|
    const char *UDSuffixEnd = end;
 | 
						|
    do {
 | 
						|
      --end;
 | 
						|
    } while (end[-1] != '\'');
 | 
						|
    // FIXME: Don't bother with this if !tok.hasUCN().
 | 
						|
    expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
 | 
						|
    UDSuffixOffset = end - TokBegin;
 | 
						|
  }
 | 
						|
 | 
						|
  // Trim the ending quote.
 | 
						|
  assert(end != begin && "Invalid token lexed");
 | 
						|
  --end;
 | 
						|
 | 
						|
  // FIXME: The "Value" is an uint64_t so we can handle char literals of
 | 
						|
  // up to 64-bits.
 | 
						|
  // FIXME: This extensively assumes that 'char' is 8-bits.
 | 
						|
  assert(PP.getTargetInfo().getCharWidth() == 8 &&
 | 
						|
         "Assumes char is 8 bits");
 | 
						|
  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
 | 
						|
         (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
 | 
						|
         "Assumes sizeof(int) on target is <= 64 and a multiple of char");
 | 
						|
  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
 | 
						|
         "Assumes sizeof(wchar) on target is <= 64");
 | 
						|
 | 
						|
  SmallVector<uint32_t, 4> codepoint_buffer;
 | 
						|
  codepoint_buffer.resize(end - begin);
 | 
						|
  uint32_t *buffer_begin = &codepoint_buffer.front();
 | 
						|
  uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
 | 
						|
 | 
						|
  // Unicode escapes representing characters that cannot be correctly
 | 
						|
  // represented in a single code unit are disallowed in character literals
 | 
						|
  // by this implementation.
 | 
						|
  uint32_t largest_character_for_kind;
 | 
						|
  if (tok::wide_char_constant == Kind) {
 | 
						|
    largest_character_for_kind =
 | 
						|
        0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
 | 
						|
  } else if (tok::utf8_char_constant == Kind) {
 | 
						|
    largest_character_for_kind = 0x7F;
 | 
						|
  } else if (tok::utf16_char_constant == Kind) {
 | 
						|
    largest_character_for_kind = 0xFFFF;
 | 
						|
  } else if (tok::utf32_char_constant == Kind) {
 | 
						|
    largest_character_for_kind = 0x10FFFF;
 | 
						|
  } else {
 | 
						|
    largest_character_for_kind = 0x7Fu;
 | 
						|
  }
 | 
						|
 | 
						|
  while (begin != end) {
 | 
						|
    // Is this a span of non-escape characters?
 | 
						|
    if (begin[0] != '\\') {
 | 
						|
      char const *start = begin;
 | 
						|
      do {
 | 
						|
        ++begin;
 | 
						|
      } while (begin != end && *begin != '\\');
 | 
						|
 | 
						|
      char const *tmp_in_start = start;
 | 
						|
      uint32_t *tmp_out_start = buffer_begin;
 | 
						|
      llvm::ConversionResult res =
 | 
						|
          llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
 | 
						|
                             reinterpret_cast<llvm::UTF8 const *>(begin),
 | 
						|
                             &buffer_begin, buffer_end, llvm::strictConversion);
 | 
						|
      if (res != llvm::conversionOK) {
 | 
						|
        // If we see bad encoding for unprefixed character literals, warn and
 | 
						|
        // simply copy the byte values, for compatibility with gcc and
 | 
						|
        // older versions of clang.
 | 
						|
        bool NoErrorOnBadEncoding = isAscii();
 | 
						|
        unsigned Msg = diag::err_bad_character_encoding;
 | 
						|
        if (NoErrorOnBadEncoding)
 | 
						|
          Msg = diag::warn_bad_character_encoding;
 | 
						|
        PP.Diag(Loc, Msg);
 | 
						|
        if (NoErrorOnBadEncoding) {
 | 
						|
          start = tmp_in_start;
 | 
						|
          buffer_begin = tmp_out_start;
 | 
						|
          for (; start != begin; ++start, ++buffer_begin)
 | 
						|
            *buffer_begin = static_cast<uint8_t>(*start);
 | 
						|
        } else {
 | 
						|
          HadError = true;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
 | 
						|
          if (*tmp_out_start > largest_character_for_kind) {
 | 
						|
            HadError = true;
 | 
						|
            PP.Diag(Loc, diag::err_character_too_large);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Is this a Universal Character Name escape?
 | 
						|
    if (begin[1] == 'u' || begin[1] == 'U') {
 | 
						|
      unsigned short UcnLen = 0;
 | 
						|
      if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
 | 
						|
                            FullSourceLoc(Loc, PP.getSourceManager()),
 | 
						|
                            &PP.getDiagnostics(), PP.getLangOpts(), true)) {
 | 
						|
        HadError = true;
 | 
						|
      } else if (*buffer_begin > largest_character_for_kind) {
 | 
						|
        HadError = true;
 | 
						|
        PP.Diag(Loc, diag::err_character_too_large);
 | 
						|
      }
 | 
						|
 | 
						|
      ++buffer_begin;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
 | 
						|
    uint64_t result =
 | 
						|
      ProcessCharEscape(TokBegin, begin, end, HadError,
 | 
						|
                        FullSourceLoc(Loc,PP.getSourceManager()),
 | 
						|
                        CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
 | 
						|
    *buffer_begin++ = result;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
 | 
						|
 | 
						|
  if (NumCharsSoFar > 1) {
 | 
						|
    if (isWide())
 | 
						|
      PP.Diag(Loc, diag::warn_extraneous_char_constant);
 | 
						|
    else if (isAscii() && NumCharsSoFar == 4)
 | 
						|
      PP.Diag(Loc, diag::ext_four_char_character_literal);
 | 
						|
    else if (isAscii())
 | 
						|
      PP.Diag(Loc, diag::ext_multichar_character_literal);
 | 
						|
    else
 | 
						|
      PP.Diag(Loc, diag::err_multichar_utf_character_literal);
 | 
						|
    IsMultiChar = true;
 | 
						|
  } else {
 | 
						|
    IsMultiChar = false;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
 | 
						|
 | 
						|
  // Narrow character literals act as though their value is concatenated
 | 
						|
  // in this implementation, but warn on overflow.
 | 
						|
  bool multi_char_too_long = false;
 | 
						|
  if (isAscii() && isMultiChar()) {
 | 
						|
    LitVal = 0;
 | 
						|
    for (size_t i = 0; i < NumCharsSoFar; ++i) {
 | 
						|
      // check for enough leading zeros to shift into
 | 
						|
      multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
 | 
						|
      LitVal <<= 8;
 | 
						|
      LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
 | 
						|
    }
 | 
						|
  } else if (NumCharsSoFar > 0) {
 | 
						|
    // otherwise just take the last character
 | 
						|
    LitVal = buffer_begin[-1];
 | 
						|
  }
 | 
						|
 | 
						|
  if (!HadError && multi_char_too_long) {
 | 
						|
    PP.Diag(Loc, diag::warn_char_constant_too_large);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transfer the value from APInt to uint64_t
 | 
						|
  Value = LitVal.getZExtValue();
 | 
						|
 | 
						|
  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
 | 
						|
  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
 | 
						|
  // character constants are not sign extended in the this implementation:
 | 
						|
  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
 | 
						|
  if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
 | 
						|
      PP.getLangOpts().CharIsSigned)
 | 
						|
    Value = (signed char)Value;
 | 
						|
}
 | 
						|
 | 
						|
/// \verbatim
 | 
						|
///       string-literal: [C++0x lex.string]
 | 
						|
///         encoding-prefix " [s-char-sequence] "
 | 
						|
///         encoding-prefix R raw-string
 | 
						|
///       encoding-prefix:
 | 
						|
///         u8
 | 
						|
///         u
 | 
						|
///         U
 | 
						|
///         L
 | 
						|
///       s-char-sequence:
 | 
						|
///         s-char
 | 
						|
///         s-char-sequence s-char
 | 
						|
///       s-char:
 | 
						|
///         any member of the source character set except the double-quote ",
 | 
						|
///           backslash \, or new-line character
 | 
						|
///         escape-sequence
 | 
						|
///         universal-character-name
 | 
						|
///       raw-string:
 | 
						|
///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
 | 
						|
///       r-char-sequence:
 | 
						|
///         r-char
 | 
						|
///         r-char-sequence r-char
 | 
						|
///       r-char:
 | 
						|
///         any member of the source character set, except a right parenthesis )
 | 
						|
///           followed by the initial d-char-sequence (which may be empty)
 | 
						|
///           followed by a double quote ".
 | 
						|
///       d-char-sequence:
 | 
						|
///         d-char
 | 
						|
///         d-char-sequence d-char
 | 
						|
///       d-char:
 | 
						|
///         any member of the basic source character set except:
 | 
						|
///           space, the left parenthesis (, the right parenthesis ),
 | 
						|
///           the backslash \, and the control characters representing horizontal
 | 
						|
///           tab, vertical tab, form feed, and newline.
 | 
						|
///       escape-sequence: [C++0x lex.ccon]
 | 
						|
///         simple-escape-sequence
 | 
						|
///         octal-escape-sequence
 | 
						|
///         hexadecimal-escape-sequence
 | 
						|
///       simple-escape-sequence:
 | 
						|
///         one of \' \" \? \\ \a \b \f \n \r \t \v
 | 
						|
///       octal-escape-sequence:
 | 
						|
///         \ octal-digit
 | 
						|
///         \ octal-digit octal-digit
 | 
						|
///         \ octal-digit octal-digit octal-digit
 | 
						|
///       hexadecimal-escape-sequence:
 | 
						|
///         \x hexadecimal-digit
 | 
						|
///         hexadecimal-escape-sequence hexadecimal-digit
 | 
						|
///       universal-character-name:
 | 
						|
///         \u hex-quad
 | 
						|
///         \U hex-quad hex-quad
 | 
						|
///       hex-quad:
 | 
						|
///         hex-digit hex-digit hex-digit hex-digit
 | 
						|
/// \endverbatim
 | 
						|
///
 | 
						|
StringLiteralParser::
 | 
						|
StringLiteralParser(ArrayRef<Token> StringToks,
 | 
						|
                    Preprocessor &PP, bool Complain)
 | 
						|
  : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
 | 
						|
    Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
 | 
						|
    MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
 | 
						|
    ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
 | 
						|
  init(StringToks);
 | 
						|
}
 | 
						|
 | 
						|
void StringLiteralParser::init(ArrayRef<Token> StringToks){
 | 
						|
  // The literal token may have come from an invalid source location (e.g. due
 | 
						|
  // to a PCH error), in which case the token length will be 0.
 | 
						|
  if (StringToks.empty() || StringToks[0].getLength() < 2)
 | 
						|
    return DiagnoseLexingError(SourceLocation());
 | 
						|
 | 
						|
  // Scan all of the string portions, remember the max individual token length,
 | 
						|
  // computing a bound on the concatenated string length, and see whether any
 | 
						|
  // piece is a wide-string.  If any of the string portions is a wide-string
 | 
						|
  // literal, the result is a wide-string literal [C99 6.4.5p4].
 | 
						|
  assert(!StringToks.empty() && "expected at least one token");
 | 
						|
  MaxTokenLength = StringToks[0].getLength();
 | 
						|
  assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
 | 
						|
  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
 | 
						|
  Kind = StringToks[0].getKind();
 | 
						|
 | 
						|
  hadError = false;
 | 
						|
 | 
						|
  // Implement Translation Phase #6: concatenation of string literals
 | 
						|
  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
 | 
						|
  for (unsigned i = 1; i != StringToks.size(); ++i) {
 | 
						|
    if (StringToks[i].getLength() < 2)
 | 
						|
      return DiagnoseLexingError(StringToks[i].getLocation());
 | 
						|
 | 
						|
    // The string could be shorter than this if it needs cleaning, but this is a
 | 
						|
    // reasonable bound, which is all we need.
 | 
						|
    assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
 | 
						|
    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
 | 
						|
 | 
						|
    // Remember maximum string piece length.
 | 
						|
    if (StringToks[i].getLength() > MaxTokenLength)
 | 
						|
      MaxTokenLength = StringToks[i].getLength();
 | 
						|
 | 
						|
    // Remember if we see any wide or utf-8/16/32 strings.
 | 
						|
    // Also check for illegal concatenations.
 | 
						|
    if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
 | 
						|
      if (isAscii()) {
 | 
						|
        Kind = StringToks[i].getKind();
 | 
						|
      } else {
 | 
						|
        if (Diags)
 | 
						|
          Diags->Report(StringToks[i].getLocation(),
 | 
						|
                        diag::err_unsupported_string_concat);
 | 
						|
        hadError = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Include space for the null terminator.
 | 
						|
  ++SizeBound;
 | 
						|
 | 
						|
  // TODO: K&R warning: "traditional C rejects string constant concatenation"
 | 
						|
 | 
						|
  // Get the width in bytes of char/wchar_t/char16_t/char32_t
 | 
						|
  CharByteWidth = getCharWidth(Kind, Target);
 | 
						|
  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
 | 
						|
  CharByteWidth /= 8;
 | 
						|
 | 
						|
  // The output buffer size needs to be large enough to hold wide characters.
 | 
						|
  // This is a worst-case assumption which basically corresponds to L"" "long".
 | 
						|
  SizeBound *= CharByteWidth;
 | 
						|
 | 
						|
  // Size the temporary buffer to hold the result string data.
 | 
						|
  ResultBuf.resize(SizeBound);
 | 
						|
 | 
						|
  // Likewise, but for each string piece.
 | 
						|
  SmallString<512> TokenBuf;
 | 
						|
  TokenBuf.resize(MaxTokenLength);
 | 
						|
 | 
						|
  // Loop over all the strings, getting their spelling, and expanding them to
 | 
						|
  // wide strings as appropriate.
 | 
						|
  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
 | 
						|
 | 
						|
  Pascal = false;
 | 
						|
 | 
						|
  SourceLocation UDSuffixTokLoc;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
 | 
						|
    const char *ThisTokBuf = &TokenBuf[0];
 | 
						|
    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
 | 
						|
    // that ThisTokBuf points to a buffer that is big enough for the whole token
 | 
						|
    // and 'spelled' tokens can only shrink.
 | 
						|
    bool StringInvalid = false;
 | 
						|
    unsigned ThisTokLen =
 | 
						|
      Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
 | 
						|
                         &StringInvalid);
 | 
						|
    if (StringInvalid)
 | 
						|
      return DiagnoseLexingError(StringToks[i].getLocation());
 | 
						|
 | 
						|
    const char *ThisTokBegin = ThisTokBuf;
 | 
						|
    const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
 | 
						|
 | 
						|
    // Remove an optional ud-suffix.
 | 
						|
    if (ThisTokEnd[-1] != '"') {
 | 
						|
      const char *UDSuffixEnd = ThisTokEnd;
 | 
						|
      do {
 | 
						|
        --ThisTokEnd;
 | 
						|
      } while (ThisTokEnd[-1] != '"');
 | 
						|
 | 
						|
      StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
 | 
						|
 | 
						|
      if (UDSuffixBuf.empty()) {
 | 
						|
        if (StringToks[i].hasUCN())
 | 
						|
          expandUCNs(UDSuffixBuf, UDSuffix);
 | 
						|
        else
 | 
						|
          UDSuffixBuf.assign(UDSuffix);
 | 
						|
        UDSuffixToken = i;
 | 
						|
        UDSuffixOffset = ThisTokEnd - ThisTokBuf;
 | 
						|
        UDSuffixTokLoc = StringToks[i].getLocation();
 | 
						|
      } else {
 | 
						|
        SmallString<32> ExpandedUDSuffix;
 | 
						|
        if (StringToks[i].hasUCN()) {
 | 
						|
          expandUCNs(ExpandedUDSuffix, UDSuffix);
 | 
						|
          UDSuffix = ExpandedUDSuffix;
 | 
						|
        }
 | 
						|
 | 
						|
        // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
 | 
						|
        // result of a concatenation involving at least one user-defined-string-
 | 
						|
        // literal, all the participating user-defined-string-literals shall
 | 
						|
        // have the same ud-suffix.
 | 
						|
        if (UDSuffixBuf != UDSuffix) {
 | 
						|
          if (Diags) {
 | 
						|
            SourceLocation TokLoc = StringToks[i].getLocation();
 | 
						|
            Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
 | 
						|
              << UDSuffixBuf << UDSuffix
 | 
						|
              << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
 | 
						|
              << SourceRange(TokLoc, TokLoc);
 | 
						|
          }
 | 
						|
          hadError = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Strip the end quote.
 | 
						|
    --ThisTokEnd;
 | 
						|
 | 
						|
    // TODO: Input character set mapping support.
 | 
						|
 | 
						|
    // Skip marker for wide or unicode strings.
 | 
						|
    if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
 | 
						|
      ++ThisTokBuf;
 | 
						|
      // Skip 8 of u8 marker for utf8 strings.
 | 
						|
      if (ThisTokBuf[0] == '8')
 | 
						|
        ++ThisTokBuf;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for raw string
 | 
						|
    if (ThisTokBuf[0] == 'R') {
 | 
						|
      ThisTokBuf += 2; // skip R"
 | 
						|
 | 
						|
      const char *Prefix = ThisTokBuf;
 | 
						|
      while (ThisTokBuf[0] != '(')
 | 
						|
        ++ThisTokBuf;
 | 
						|
      ++ThisTokBuf; // skip '('
 | 
						|
 | 
						|
      // Remove same number of characters from the end
 | 
						|
      ThisTokEnd -= ThisTokBuf - Prefix;
 | 
						|
      assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
 | 
						|
 | 
						|
      // C++14 [lex.string]p4: A source-file new-line in a raw string literal
 | 
						|
      // results in a new-line in the resulting execution string-literal.
 | 
						|
      StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
 | 
						|
      while (!RemainingTokenSpan.empty()) {
 | 
						|
        // Split the string literal on \r\n boundaries.
 | 
						|
        size_t CRLFPos = RemainingTokenSpan.find("\r\n");
 | 
						|
        StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
 | 
						|
        StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
 | 
						|
 | 
						|
        // Copy everything before the \r\n sequence into the string literal.
 | 
						|
        if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
 | 
						|
          hadError = true;
 | 
						|
 | 
						|
        // Point into the \n inside the \r\n sequence and operate on the
 | 
						|
        // remaining portion of the literal.
 | 
						|
        RemainingTokenSpan = AfterCRLF.substr(1);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (ThisTokBuf[0] != '"') {
 | 
						|
        // The file may have come from PCH and then changed after loading the
 | 
						|
        // PCH; Fail gracefully.
 | 
						|
        return DiagnoseLexingError(StringToks[i].getLocation());
 | 
						|
      }
 | 
						|
      ++ThisTokBuf; // skip "
 | 
						|
 | 
						|
      // Check if this is a pascal string
 | 
						|
      if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
 | 
						|
          ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
 | 
						|
 | 
						|
        // If the \p sequence is found in the first token, we have a pascal string
 | 
						|
        // Otherwise, if we already have a pascal string, ignore the first \p
 | 
						|
        if (i == 0) {
 | 
						|
          ++ThisTokBuf;
 | 
						|
          Pascal = true;
 | 
						|
        } else if (Pascal)
 | 
						|
          ThisTokBuf += 2;
 | 
						|
      }
 | 
						|
 | 
						|
      while (ThisTokBuf != ThisTokEnd) {
 | 
						|
        // Is this a span of non-escape characters?
 | 
						|
        if (ThisTokBuf[0] != '\\') {
 | 
						|
          const char *InStart = ThisTokBuf;
 | 
						|
          do {
 | 
						|
            ++ThisTokBuf;
 | 
						|
          } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
 | 
						|
 | 
						|
          // Copy the character span over.
 | 
						|
          if (CopyStringFragment(StringToks[i], ThisTokBegin,
 | 
						|
                                 StringRef(InStart, ThisTokBuf - InStart)))
 | 
						|
            hadError = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Is this a Universal Character Name escape?
 | 
						|
        if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
 | 
						|
          EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
 | 
						|
                          ResultPtr, hadError,
 | 
						|
                          FullSourceLoc(StringToks[i].getLocation(), SM),
 | 
						|
                          CharByteWidth, Diags, Features);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Otherwise, this is a non-UCN escape character.  Process it.
 | 
						|
        unsigned ResultChar =
 | 
						|
          ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
 | 
						|
                            FullSourceLoc(StringToks[i].getLocation(), SM),
 | 
						|
                            CharByteWidth*8, Diags, Features);
 | 
						|
 | 
						|
        if (CharByteWidth == 4) {
 | 
						|
          // FIXME: Make the type of the result buffer correct instead of
 | 
						|
          // using reinterpret_cast.
 | 
						|
          llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
 | 
						|
          *ResultWidePtr = ResultChar;
 | 
						|
          ResultPtr += 4;
 | 
						|
        } else if (CharByteWidth == 2) {
 | 
						|
          // FIXME: Make the type of the result buffer correct instead of
 | 
						|
          // using reinterpret_cast.
 | 
						|
          llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
 | 
						|
          *ResultWidePtr = ResultChar & 0xFFFF;
 | 
						|
          ResultPtr += 2;
 | 
						|
        } else {
 | 
						|
          assert(CharByteWidth == 1 && "Unexpected char width");
 | 
						|
          *ResultPtr++ = ResultChar & 0xFF;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pascal) {
 | 
						|
    if (CharByteWidth == 4) {
 | 
						|
      // FIXME: Make the type of the result buffer correct instead of
 | 
						|
      // using reinterpret_cast.
 | 
						|
      llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
 | 
						|
      ResultWidePtr[0] = GetNumStringChars() - 1;
 | 
						|
    } else if (CharByteWidth == 2) {
 | 
						|
      // FIXME: Make the type of the result buffer correct instead of
 | 
						|
      // using reinterpret_cast.
 | 
						|
      llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
 | 
						|
      ResultWidePtr[0] = GetNumStringChars() - 1;
 | 
						|
    } else {
 | 
						|
      assert(CharByteWidth == 1 && "Unexpected char width");
 | 
						|
      ResultBuf[0] = GetNumStringChars() - 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Verify that pascal strings aren't too large.
 | 
						|
    if (GetStringLength() > 256) {
 | 
						|
      if (Diags)
 | 
						|
        Diags->Report(StringToks.front().getLocation(),
 | 
						|
                      diag::err_pascal_string_too_long)
 | 
						|
          << SourceRange(StringToks.front().getLocation(),
 | 
						|
                         StringToks.back().getLocation());
 | 
						|
      hadError = true;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (Diags) {
 | 
						|
    // Complain if this string literal has too many characters.
 | 
						|
    unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
 | 
						|
 | 
						|
    if (GetNumStringChars() > MaxChars)
 | 
						|
      Diags->Report(StringToks.front().getLocation(),
 | 
						|
                    diag::ext_string_too_long)
 | 
						|
        << GetNumStringChars() << MaxChars
 | 
						|
        << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
 | 
						|
        << SourceRange(StringToks.front().getLocation(),
 | 
						|
                       StringToks.back().getLocation());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static const char *resyncUTF8(const char *Err, const char *End) {
 | 
						|
  if (Err == End)
 | 
						|
    return End;
 | 
						|
  End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
 | 
						|
  while (++Err != End && (*Err & 0xC0) == 0x80)
 | 
						|
    ;
 | 
						|
  return Err;
 | 
						|
}
 | 
						|
 | 
						|
/// This function copies from Fragment, which is a sequence of bytes
 | 
						|
/// within Tok's contents (which begin at TokBegin) into ResultPtr.
 | 
						|
/// Performs widening for multi-byte characters.
 | 
						|
bool StringLiteralParser::CopyStringFragment(const Token &Tok,
 | 
						|
                                             const char *TokBegin,
 | 
						|
                                             StringRef Fragment) {
 | 
						|
  const llvm::UTF8 *ErrorPtrTmp;
 | 
						|
  if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we see bad encoding for unprefixed string literals, warn and
 | 
						|
  // simply copy the byte values, for compatibility with gcc and older
 | 
						|
  // versions of clang.
 | 
						|
  bool NoErrorOnBadEncoding = isAscii();
 | 
						|
  if (NoErrorOnBadEncoding) {
 | 
						|
    memcpy(ResultPtr, Fragment.data(), Fragment.size());
 | 
						|
    ResultPtr += Fragment.size();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Diags) {
 | 
						|
    const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
 | 
						|
 | 
						|
    FullSourceLoc SourceLoc(Tok.getLocation(), SM);
 | 
						|
    const DiagnosticBuilder &Builder =
 | 
						|
      Diag(Diags, Features, SourceLoc, TokBegin,
 | 
						|
           ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
 | 
						|
           NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
 | 
						|
                                : diag::err_bad_string_encoding);
 | 
						|
 | 
						|
    const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
 | 
						|
    StringRef NextFragment(NextStart, Fragment.end()-NextStart);
 | 
						|
 | 
						|
    // Decode into a dummy buffer.
 | 
						|
    SmallString<512> Dummy;
 | 
						|
    Dummy.reserve(Fragment.size() * CharByteWidth);
 | 
						|
    char *Ptr = Dummy.data();
 | 
						|
 | 
						|
    while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
 | 
						|
      const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
 | 
						|
      NextStart = resyncUTF8(ErrorPtr, Fragment.end());
 | 
						|
      Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
 | 
						|
                                     ErrorPtr, NextStart);
 | 
						|
      NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return !NoErrorOnBadEncoding;
 | 
						|
}
 | 
						|
 | 
						|
void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
 | 
						|
  hadError = true;
 | 
						|
  if (Diags)
 | 
						|
    Diags->Report(Loc, diag::err_lexing_string);
 | 
						|
}
 | 
						|
 | 
						|
/// getOffsetOfStringByte - This function returns the offset of the
 | 
						|
/// specified byte of the string data represented by Token.  This handles
 | 
						|
/// advancing over escape sequences in the string.
 | 
						|
unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
 | 
						|
                                                    unsigned ByteNo) const {
 | 
						|
  // Get the spelling of the token.
 | 
						|
  SmallString<32> SpellingBuffer;
 | 
						|
  SpellingBuffer.resize(Tok.getLength());
 | 
						|
 | 
						|
  bool StringInvalid = false;
 | 
						|
  const char *SpellingPtr = &SpellingBuffer[0];
 | 
						|
  unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
 | 
						|
                                       &StringInvalid);
 | 
						|
  if (StringInvalid)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const char *SpellingStart = SpellingPtr;
 | 
						|
  const char *SpellingEnd = SpellingPtr+TokLen;
 | 
						|
 | 
						|
  // Handle UTF-8 strings just like narrow strings.
 | 
						|
  if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
 | 
						|
    SpellingPtr += 2;
 | 
						|
 | 
						|
  assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
 | 
						|
         SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
 | 
						|
 | 
						|
  // For raw string literals, this is easy.
 | 
						|
  if (SpellingPtr[0] == 'R') {
 | 
						|
    assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
 | 
						|
    // Skip 'R"'.
 | 
						|
    SpellingPtr += 2;
 | 
						|
    while (*SpellingPtr != '(') {
 | 
						|
      ++SpellingPtr;
 | 
						|
      assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
 | 
						|
    }
 | 
						|
    // Skip '('.
 | 
						|
    ++SpellingPtr;
 | 
						|
    return SpellingPtr - SpellingStart + ByteNo;
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip over the leading quote
 | 
						|
  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
 | 
						|
  ++SpellingPtr;
 | 
						|
 | 
						|
  // Skip over bytes until we find the offset we're looking for.
 | 
						|
  while (ByteNo) {
 | 
						|
    assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
 | 
						|
 | 
						|
    // Step over non-escapes simply.
 | 
						|
    if (*SpellingPtr != '\\') {
 | 
						|
      ++SpellingPtr;
 | 
						|
      --ByteNo;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, this is an escape character.  Advance over it.
 | 
						|
    bool HadError = false;
 | 
						|
    if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
 | 
						|
      const char *EscapePtr = SpellingPtr;
 | 
						|
      unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
 | 
						|
                                      1, Features, HadError);
 | 
						|
      if (Len > ByteNo) {
 | 
						|
        // ByteNo is somewhere within the escape sequence.
 | 
						|
        SpellingPtr = EscapePtr;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      ByteNo -= Len;
 | 
						|
    } else {
 | 
						|
      ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
 | 
						|
                        FullSourceLoc(Tok.getLocation(), SM),
 | 
						|
                        CharByteWidth*8, Diags, Features);
 | 
						|
      --ByteNo;
 | 
						|
    }
 | 
						|
    assert(!HadError && "This method isn't valid on erroneous strings");
 | 
						|
  }
 | 
						|
 | 
						|
  return SpellingPtr-SpellingStart;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
 | 
						|
/// suffixes as ud-suffixes, because the diagnostic experience is better if we
 | 
						|
/// treat it as an invalid suffix.
 | 
						|
bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
 | 
						|
                                          StringRef Suffix) {
 | 
						|
  return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
 | 
						|
         Suffix == "sv";
 | 
						|
}
 |