forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1872 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1872 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the top level handling of macro expansion for the
 | 
						|
// preprocessor.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Basic/Attributes.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/FileManager.h"
 | 
						|
#include "clang/Basic/IdentifierTable.h"
 | 
						|
#include "clang/Basic/LLVM.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "clang/Basic/ObjCRuntime.h"
 | 
						|
#include "clang/Basic/SourceLocation.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/CodeCompletionHandler.h"
 | 
						|
#include "clang/Lex/DirectoryLookup.h"
 | 
						|
#include "clang/Lex/ExternalPreprocessorSource.h"
 | 
						|
#include "clang/Lex/HeaderSearch.h"
 | 
						|
#include "clang/Lex/LexDiagnostic.h"
 | 
						|
#include "clang/Lex/MacroArgs.h"
 | 
						|
#include "clang/Lex/MacroInfo.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Lex/PreprocessorLexer.h"
 | 
						|
#include "clang/Lex/PreprocessorOptions.h"
 | 
						|
#include "clang/Lex/Token.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/Path.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstring>
 | 
						|
#include <ctime>
 | 
						|
#include <string>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
MacroDirective *
 | 
						|
Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
 | 
						|
  if (!II->hadMacroDefinition())
 | 
						|
    return nullptr;
 | 
						|
  auto Pos = CurSubmoduleState->Macros.find(II);
 | 
						|
  return Pos == CurSubmoduleState->Macros.end() ? nullptr
 | 
						|
                                                : Pos->second.getLatest();
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
 | 
						|
  assert(MD && "MacroDirective should be non-zero!");
 | 
						|
  assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
 | 
						|
 | 
						|
  MacroState &StoredMD = CurSubmoduleState->Macros[II];
 | 
						|
  auto *OldMD = StoredMD.getLatest();
 | 
						|
  MD->setPrevious(OldMD);
 | 
						|
  StoredMD.setLatest(MD);
 | 
						|
  StoredMD.overrideActiveModuleMacros(*this, II);
 | 
						|
 | 
						|
  if (needModuleMacros()) {
 | 
						|
    // Track that we created a new macro directive, so we know we should
 | 
						|
    // consider building a ModuleMacro for it when we get to the end of
 | 
						|
    // the module.
 | 
						|
    PendingModuleMacroNames.push_back(II);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set up the identifier as having associated macro history.
 | 
						|
  II->setHasMacroDefinition(true);
 | 
						|
  if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
 | 
						|
    II->setHasMacroDefinition(false);
 | 
						|
  if (II->isFromAST())
 | 
						|
    II->setChangedSinceDeserialization();
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
 | 
						|
                                           MacroDirective *ED,
 | 
						|
                                           MacroDirective *MD) {
 | 
						|
  // Normally, when a macro is defined, it goes through appendMacroDirective()
 | 
						|
  // above, which chains a macro to previous defines, undefs, etc.
 | 
						|
  // However, in a pch, the whole macro history up to the end of the pch is
 | 
						|
  // stored, so ASTReader goes through this function instead.
 | 
						|
  // However, built-in macros are already registered in the Preprocessor
 | 
						|
  // ctor, and ASTWriter stops writing the macro chain at built-in macros,
 | 
						|
  // so in that case the chain from the pch needs to be spliced to the existing
 | 
						|
  // built-in.
 | 
						|
 | 
						|
  assert(II && MD);
 | 
						|
  MacroState &StoredMD = CurSubmoduleState->Macros[II];
 | 
						|
 | 
						|
  if (auto *OldMD = StoredMD.getLatest()) {
 | 
						|
    // shouldIgnoreMacro() in ASTWriter also stops at macros from the
 | 
						|
    // predefines buffer in module builds. However, in module builds, modules
 | 
						|
    // are loaded completely before predefines are processed, so StoredMD
 | 
						|
    // will be nullptr for them when they're loaded. StoredMD should only be
 | 
						|
    // non-nullptr for builtins read from a pch file.
 | 
						|
    assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
 | 
						|
           "only built-ins should have an entry here");
 | 
						|
    assert(!OldMD->getPrevious() && "builtin should only have a single entry");
 | 
						|
    ED->setPrevious(OldMD);
 | 
						|
    StoredMD.setLatest(MD);
 | 
						|
  } else {
 | 
						|
    StoredMD = MD;
 | 
						|
  }
 | 
						|
 | 
						|
  // Setup the identifier as having associated macro history.
 | 
						|
  II->setHasMacroDefinition(true);
 | 
						|
  if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
 | 
						|
    II->setHasMacroDefinition(false);
 | 
						|
}
 | 
						|
 | 
						|
ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
 | 
						|
                                          MacroInfo *Macro,
 | 
						|
                                          ArrayRef<ModuleMacro *> Overrides,
 | 
						|
                                          bool &New) {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ModuleMacro::Profile(ID, Mod, II);
 | 
						|
 | 
						|
  void *InsertPos;
 | 
						|
  if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
 | 
						|
    New = false;
 | 
						|
    return MM;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
 | 
						|
  ModuleMacros.InsertNode(MM, InsertPos);
 | 
						|
 | 
						|
  // Each overridden macro is now overridden by one more macro.
 | 
						|
  bool HidAny = false;
 | 
						|
  for (auto *O : Overrides) {
 | 
						|
    HidAny |= (O->NumOverriddenBy == 0);
 | 
						|
    ++O->NumOverriddenBy;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we were the first overrider for any macro, it's no longer a leaf.
 | 
						|
  auto &LeafMacros = LeafModuleMacros[II];
 | 
						|
  if (HidAny) {
 | 
						|
    LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
 | 
						|
                                    [](ModuleMacro *MM) {
 | 
						|
                                      return MM->NumOverriddenBy != 0;
 | 
						|
                                    }),
 | 
						|
                     LeafMacros.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // The new macro is always a leaf macro.
 | 
						|
  LeafMacros.push_back(MM);
 | 
						|
  // The identifier now has defined macros (that may or may not be visible).
 | 
						|
  II->setHasMacroDefinition(true);
 | 
						|
 | 
						|
  New = true;
 | 
						|
  return MM;
 | 
						|
}
 | 
						|
 | 
						|
ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ModuleMacro::Profile(ID, Mod, II);
 | 
						|
 | 
						|
  void *InsertPos;
 | 
						|
  return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
 | 
						|
                                         ModuleMacroInfo &Info) {
 | 
						|
  assert(Info.ActiveModuleMacrosGeneration !=
 | 
						|
             CurSubmoduleState->VisibleModules.getGeneration() &&
 | 
						|
         "don't need to update this macro name info");
 | 
						|
  Info.ActiveModuleMacrosGeneration =
 | 
						|
      CurSubmoduleState->VisibleModules.getGeneration();
 | 
						|
 | 
						|
  auto Leaf = LeafModuleMacros.find(II);
 | 
						|
  if (Leaf == LeafModuleMacros.end()) {
 | 
						|
    // No imported macros at all: nothing to do.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Info.ActiveModuleMacros.clear();
 | 
						|
 | 
						|
  // Every macro that's locally overridden is overridden by a visible macro.
 | 
						|
  llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
 | 
						|
  for (auto *O : Info.OverriddenMacros)
 | 
						|
    NumHiddenOverrides[O] = -1;
 | 
						|
 | 
						|
  // Collect all macros that are not overridden by a visible macro.
 | 
						|
  llvm::SmallVector<ModuleMacro *, 16> Worklist;
 | 
						|
  for (auto *LeafMM : Leaf->second) {
 | 
						|
    assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
 | 
						|
    if (NumHiddenOverrides.lookup(LeafMM) == 0)
 | 
						|
      Worklist.push_back(LeafMM);
 | 
						|
  }
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    auto *MM = Worklist.pop_back_val();
 | 
						|
    if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
 | 
						|
      // We only care about collecting definitions; undefinitions only act
 | 
						|
      // to override other definitions.
 | 
						|
      if (MM->getMacroInfo())
 | 
						|
        Info.ActiveModuleMacros.push_back(MM);
 | 
						|
    } else {
 | 
						|
      for (auto *O : MM->overrides())
 | 
						|
        if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
 | 
						|
          Worklist.push_back(O);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Our reverse postorder walk found the macros in reverse order.
 | 
						|
  std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
 | 
						|
 | 
						|
  // Determine whether the macro name is ambiguous.
 | 
						|
  MacroInfo *MI = nullptr;
 | 
						|
  bool IsSystemMacro = true;
 | 
						|
  bool IsAmbiguous = false;
 | 
						|
  if (auto *MD = Info.MD) {
 | 
						|
    while (MD && isa<VisibilityMacroDirective>(MD))
 | 
						|
      MD = MD->getPrevious();
 | 
						|
    if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
 | 
						|
      MI = DMD->getInfo();
 | 
						|
      IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (auto *Active : Info.ActiveModuleMacros) {
 | 
						|
    auto *NewMI = Active->getMacroInfo();
 | 
						|
 | 
						|
    // Before marking the macro as ambiguous, check if this is a case where
 | 
						|
    // both macros are in system headers. If so, we trust that the system
 | 
						|
    // did not get it wrong. This also handles cases where Clang's own
 | 
						|
    // headers have a different spelling of certain system macros:
 | 
						|
    //   #define LONG_MAX __LONG_MAX__ (clang's limits.h)
 | 
						|
    //   #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
 | 
						|
    //
 | 
						|
    // FIXME: Remove the defined-in-system-headers check. clang's limits.h
 | 
						|
    // overrides the system limits.h's macros, so there's no conflict here.
 | 
						|
    if (MI && NewMI != MI &&
 | 
						|
        !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
 | 
						|
      IsAmbiguous = true;
 | 
						|
    IsSystemMacro &= Active->getOwningModule()->IsSystem ||
 | 
						|
                     SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
 | 
						|
    MI = NewMI;
 | 
						|
  }
 | 
						|
  Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
 | 
						|
  ArrayRef<ModuleMacro*> Leaf;
 | 
						|
  auto LeafIt = LeafModuleMacros.find(II);
 | 
						|
  if (LeafIt != LeafModuleMacros.end())
 | 
						|
    Leaf = LeafIt->second;
 | 
						|
  const MacroState *State = nullptr;
 | 
						|
  auto Pos = CurSubmoduleState->Macros.find(II);
 | 
						|
  if (Pos != CurSubmoduleState->Macros.end())
 | 
						|
    State = &Pos->second;
 | 
						|
 | 
						|
  llvm::errs() << "MacroState " << State << " " << II->getNameStart();
 | 
						|
  if (State && State->isAmbiguous(*this, II))
 | 
						|
    llvm::errs() << " ambiguous";
 | 
						|
  if (State && !State->getOverriddenMacros().empty()) {
 | 
						|
    llvm::errs() << " overrides";
 | 
						|
    for (auto *O : State->getOverriddenMacros())
 | 
						|
      llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
 | 
						|
  }
 | 
						|
  llvm::errs() << "\n";
 | 
						|
 | 
						|
  // Dump local macro directives.
 | 
						|
  for (auto *MD = State ? State->getLatest() : nullptr; MD;
 | 
						|
       MD = MD->getPrevious()) {
 | 
						|
    llvm::errs() << " ";
 | 
						|
    MD->dump();
 | 
						|
  }
 | 
						|
 | 
						|
  // Dump module macros.
 | 
						|
  llvm::DenseSet<ModuleMacro*> Active;
 | 
						|
  for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
 | 
						|
    Active.insert(MM);
 | 
						|
  llvm::DenseSet<ModuleMacro*> Visited;
 | 
						|
  llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    auto *MM = Worklist.pop_back_val();
 | 
						|
    llvm::errs() << " ModuleMacro " << MM << " "
 | 
						|
                 << MM->getOwningModule()->getFullModuleName();
 | 
						|
    if (!MM->getMacroInfo())
 | 
						|
      llvm::errs() << " undef";
 | 
						|
 | 
						|
    if (Active.count(MM))
 | 
						|
      llvm::errs() << " active";
 | 
						|
    else if (!CurSubmoduleState->VisibleModules.isVisible(
 | 
						|
                 MM->getOwningModule()))
 | 
						|
      llvm::errs() << " hidden";
 | 
						|
    else if (MM->getMacroInfo())
 | 
						|
      llvm::errs() << " overridden";
 | 
						|
 | 
						|
    if (!MM->overrides().empty()) {
 | 
						|
      llvm::errs() << " overrides";
 | 
						|
      for (auto *O : MM->overrides()) {
 | 
						|
        llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
 | 
						|
        if (Visited.insert(O).second)
 | 
						|
          Worklist.push_back(O);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    llvm::errs() << "\n";
 | 
						|
    if (auto *MI = MM->getMacroInfo()) {
 | 
						|
      llvm::errs() << "  ";
 | 
						|
      MI->dump();
 | 
						|
      llvm::errs() << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RegisterBuiltinMacro - Register the specified identifier in the identifier
 | 
						|
/// table and mark it as a builtin macro to be expanded.
 | 
						|
static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
 | 
						|
  // Get the identifier.
 | 
						|
  IdentifierInfo *Id = PP.getIdentifierInfo(Name);
 | 
						|
 | 
						|
  // Mark it as being a macro that is builtin.
 | 
						|
  MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
 | 
						|
  MI->setIsBuiltinMacro();
 | 
						|
  PP.appendDefMacroDirective(Id, MI);
 | 
						|
  return Id;
 | 
						|
}
 | 
						|
 | 
						|
/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
 | 
						|
/// identifier table.
 | 
						|
void Preprocessor::RegisterBuiltinMacros() {
 | 
						|
  Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
 | 
						|
  Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
 | 
						|
  Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
 | 
						|
  Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
 | 
						|
  Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
 | 
						|
  Ident_Pragma  = RegisterBuiltinMacro(*this, "_Pragma");
 | 
						|
 | 
						|
  // C++ Standing Document Extensions.
 | 
						|
  if (LangOpts.CPlusPlus)
 | 
						|
    Ident__has_cpp_attribute =
 | 
						|
        RegisterBuiltinMacro(*this, "__has_cpp_attribute");
 | 
						|
  else
 | 
						|
    Ident__has_cpp_attribute = nullptr;
 | 
						|
 | 
						|
  // GCC Extensions.
 | 
						|
  Ident__BASE_FILE__     = RegisterBuiltinMacro(*this, "__BASE_FILE__");
 | 
						|
  Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
 | 
						|
  Ident__TIMESTAMP__     = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
 | 
						|
 | 
						|
  // Microsoft Extensions.
 | 
						|
  if (LangOpts.MicrosoftExt) {
 | 
						|
    Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
 | 
						|
    Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
 | 
						|
  } else {
 | 
						|
    Ident__identifier = nullptr;
 | 
						|
    Ident__pragma = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Clang Extensions.
 | 
						|
  Ident__FILE_NAME__      = RegisterBuiltinMacro(*this, "__FILE_NAME__");
 | 
						|
  Ident__has_feature      = RegisterBuiltinMacro(*this, "__has_feature");
 | 
						|
  Ident__has_extension    = RegisterBuiltinMacro(*this, "__has_extension");
 | 
						|
  Ident__has_builtin      = RegisterBuiltinMacro(*this, "__has_builtin");
 | 
						|
  Ident__has_attribute    = RegisterBuiltinMacro(*this, "__has_attribute");
 | 
						|
  if (!LangOpts.CPlusPlus)
 | 
						|
    Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute");
 | 
						|
  else
 | 
						|
    Ident__has_c_attribute = nullptr;
 | 
						|
 | 
						|
  Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
 | 
						|
  Ident__has_include      = RegisterBuiltinMacro(*this, "__has_include");
 | 
						|
  Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
 | 
						|
  Ident__has_warning      = RegisterBuiltinMacro(*this, "__has_warning");
 | 
						|
  Ident__is_identifier    = RegisterBuiltinMacro(*this, "__is_identifier");
 | 
						|
  Ident__is_target_arch   = RegisterBuiltinMacro(*this, "__is_target_arch");
 | 
						|
  Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
 | 
						|
  Ident__is_target_os     = RegisterBuiltinMacro(*this, "__is_target_os");
 | 
						|
  Ident__is_target_environment =
 | 
						|
      RegisterBuiltinMacro(*this, "__is_target_environment");
 | 
						|
 | 
						|
  // Modules.
 | 
						|
  Ident__building_module  = RegisterBuiltinMacro(*this, "__building_module");
 | 
						|
  if (!LangOpts.CurrentModule.empty())
 | 
						|
    Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
 | 
						|
  else
 | 
						|
    Ident__MODULE__ = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
 | 
						|
/// in its expansion, currently expands to that token literally.
 | 
						|
static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
 | 
						|
                                          const IdentifierInfo *MacroIdent,
 | 
						|
                                          Preprocessor &PP) {
 | 
						|
  IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
 | 
						|
 | 
						|
  // If the token isn't an identifier, it's always literally expanded.
 | 
						|
  if (!II) return true;
 | 
						|
 | 
						|
  // If the information about this identifier is out of date, update it from
 | 
						|
  // the external source.
 | 
						|
  if (II->isOutOfDate())
 | 
						|
    PP.getExternalSource()->updateOutOfDateIdentifier(*II);
 | 
						|
 | 
						|
  // If the identifier is a macro, and if that macro is enabled, it may be
 | 
						|
  // expanded so it's not a trivial expansion.
 | 
						|
  if (auto *ExpansionMI = PP.getMacroInfo(II))
 | 
						|
    if (ExpansionMI->isEnabled() &&
 | 
						|
        // Fast expanding "#define X X" is ok, because X would be disabled.
 | 
						|
        II != MacroIdent)
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If this is an object-like macro invocation, it is safe to trivially expand
 | 
						|
  // it.
 | 
						|
  if (MI->isObjectLike()) return true;
 | 
						|
 | 
						|
  // If this is a function-like macro invocation, it's safe to trivially expand
 | 
						|
  // as long as the identifier is not a macro argument.
 | 
						|
  return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end();
 | 
						|
}
 | 
						|
 | 
						|
/// isNextPPTokenLParen - Determine whether the next preprocessor token to be
 | 
						|
/// lexed is a '('.  If so, consume the token and return true, if not, this
 | 
						|
/// method should have no observable side-effect on the lexed tokens.
 | 
						|
bool Preprocessor::isNextPPTokenLParen() {
 | 
						|
  // Do some quick tests for rejection cases.
 | 
						|
  unsigned Val;
 | 
						|
  if (CurLexer)
 | 
						|
    Val = CurLexer->isNextPPTokenLParen();
 | 
						|
  else
 | 
						|
    Val = CurTokenLexer->isNextTokenLParen();
 | 
						|
 | 
						|
  if (Val == 2) {
 | 
						|
    // We have run off the end.  If it's a source file we don't
 | 
						|
    // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
 | 
						|
    // macro stack.
 | 
						|
    if (CurPPLexer)
 | 
						|
      return false;
 | 
						|
    for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
 | 
						|
      if (Entry.TheLexer)
 | 
						|
        Val = Entry.TheLexer->isNextPPTokenLParen();
 | 
						|
      else
 | 
						|
        Val = Entry.TheTokenLexer->isNextTokenLParen();
 | 
						|
 | 
						|
      if (Val != 2)
 | 
						|
        break;
 | 
						|
 | 
						|
      // Ran off the end of a source file?
 | 
						|
      if (Entry.ThePPLexer)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
 | 
						|
  // have found something that isn't a '(' or we found the end of the
 | 
						|
  // translation unit.  In either case, return false.
 | 
						|
  return Val == 1;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
 | 
						|
/// expanded as a macro, handle it and return the next token as 'Identifier'.
 | 
						|
bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
 | 
						|
                                                 const MacroDefinition &M) {
 | 
						|
  MacroInfo *MI = M.getMacroInfo();
 | 
						|
 | 
						|
  // If this is a macro expansion in the "#if !defined(x)" line for the file,
 | 
						|
  // then the macro could expand to different things in other contexts, we need
 | 
						|
  // to disable the optimization in this case.
 | 
						|
  if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
 | 
						|
 | 
						|
  // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
 | 
						|
  if (MI->isBuiltinMacro()) {
 | 
						|
    if (Callbacks)
 | 
						|
      Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
 | 
						|
                              /*Args=*/nullptr);
 | 
						|
    ExpandBuiltinMacro(Identifier);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Args - If this is a function-like macro expansion, this contains,
 | 
						|
  /// for each macro argument, the list of tokens that were provided to the
 | 
						|
  /// invocation.
 | 
						|
  MacroArgs *Args = nullptr;
 | 
						|
 | 
						|
  // Remember where the end of the expansion occurred.  For an object-like
 | 
						|
  // macro, this is the identifier.  For a function-like macro, this is the ')'.
 | 
						|
  SourceLocation ExpansionEnd = Identifier.getLocation();
 | 
						|
 | 
						|
  // If this is a function-like macro, read the arguments.
 | 
						|
  if (MI->isFunctionLike()) {
 | 
						|
    // Remember that we are now parsing the arguments to a macro invocation.
 | 
						|
    // Preprocessor directives used inside macro arguments are not portable, and
 | 
						|
    // this enables the warning.
 | 
						|
    InMacroArgs = true;
 | 
						|
    ArgMacro = &Identifier;
 | 
						|
 | 
						|
    Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
 | 
						|
 | 
						|
    // Finished parsing args.
 | 
						|
    InMacroArgs = false;
 | 
						|
    ArgMacro = nullptr;
 | 
						|
 | 
						|
    // If there was an error parsing the arguments, bail out.
 | 
						|
    if (!Args) return true;
 | 
						|
 | 
						|
    ++NumFnMacroExpanded;
 | 
						|
  } else {
 | 
						|
    ++NumMacroExpanded;
 | 
						|
  }
 | 
						|
 | 
						|
  // Notice that this macro has been used.
 | 
						|
  markMacroAsUsed(MI);
 | 
						|
 | 
						|
  // Remember where the token is expanded.
 | 
						|
  SourceLocation ExpandLoc = Identifier.getLocation();
 | 
						|
  SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
 | 
						|
 | 
						|
  if (Callbacks) {
 | 
						|
    if (InMacroArgs) {
 | 
						|
      // We can have macro expansion inside a conditional directive while
 | 
						|
      // reading the function macro arguments. To ensure, in that case, that
 | 
						|
      // MacroExpands callbacks still happen in source order, queue this
 | 
						|
      // callback to have it happen after the function macro callback.
 | 
						|
      DelayedMacroExpandsCallbacks.push_back(
 | 
						|
          MacroExpandsInfo(Identifier, M, ExpansionRange));
 | 
						|
    } else {
 | 
						|
      Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
 | 
						|
      if (!DelayedMacroExpandsCallbacks.empty()) {
 | 
						|
        for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
 | 
						|
          // FIXME: We lose macro args info with delayed callback.
 | 
						|
          Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
 | 
						|
                                  /*Args=*/nullptr);
 | 
						|
        }
 | 
						|
        DelayedMacroExpandsCallbacks.clear();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the macro definition is ambiguous, complain.
 | 
						|
  if (M.isAmbiguous()) {
 | 
						|
    Diag(Identifier, diag::warn_pp_ambiguous_macro)
 | 
						|
      << Identifier.getIdentifierInfo();
 | 
						|
    Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
 | 
						|
      << Identifier.getIdentifierInfo();
 | 
						|
    M.forAllDefinitions([&](const MacroInfo *OtherMI) {
 | 
						|
      if (OtherMI != MI)
 | 
						|
        Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
 | 
						|
          << Identifier.getIdentifierInfo();
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  // If we started lexing a macro, enter the macro expansion body.
 | 
						|
 | 
						|
  // If this macro expands to no tokens, don't bother to push it onto the
 | 
						|
  // expansion stack, only to take it right back off.
 | 
						|
  if (MI->getNumTokens() == 0) {
 | 
						|
    // No need for arg info.
 | 
						|
    if (Args) Args->destroy(*this);
 | 
						|
 | 
						|
    // Propagate whitespace info as if we had pushed, then popped,
 | 
						|
    // a macro context.
 | 
						|
    Identifier.setFlag(Token::LeadingEmptyMacro);
 | 
						|
    PropagateLineStartLeadingSpaceInfo(Identifier);
 | 
						|
    ++NumFastMacroExpanded;
 | 
						|
    return false;
 | 
						|
  } else if (MI->getNumTokens() == 1 &&
 | 
						|
             isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
 | 
						|
                                           *this)) {
 | 
						|
    // Otherwise, if this macro expands into a single trivially-expanded
 | 
						|
    // token: expand it now.  This handles common cases like
 | 
						|
    // "#define VAL 42".
 | 
						|
 | 
						|
    // No need for arg info.
 | 
						|
    if (Args) Args->destroy(*this);
 | 
						|
 | 
						|
    // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
 | 
						|
    // identifier to the expanded token.
 | 
						|
    bool isAtStartOfLine = Identifier.isAtStartOfLine();
 | 
						|
    bool hasLeadingSpace = Identifier.hasLeadingSpace();
 | 
						|
 | 
						|
    // Replace the result token.
 | 
						|
    Identifier = MI->getReplacementToken(0);
 | 
						|
 | 
						|
    // Restore the StartOfLine/LeadingSpace markers.
 | 
						|
    Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
 | 
						|
    Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
 | 
						|
 | 
						|
    // Update the tokens location to include both its expansion and physical
 | 
						|
    // locations.
 | 
						|
    SourceLocation Loc =
 | 
						|
      SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
 | 
						|
                                   ExpansionEnd,Identifier.getLength());
 | 
						|
    Identifier.setLocation(Loc);
 | 
						|
 | 
						|
    // If this is a disabled macro or #define X X, we must mark the result as
 | 
						|
    // unexpandable.
 | 
						|
    if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
 | 
						|
      if (MacroInfo *NewMI = getMacroInfo(NewII))
 | 
						|
        if (!NewMI->isEnabled() || NewMI == MI) {
 | 
						|
          Identifier.setFlag(Token::DisableExpand);
 | 
						|
          // Don't warn for "#define X X" like "#define bool bool" from
 | 
						|
          // stdbool.h.
 | 
						|
          if (NewMI != MI || MI->isFunctionLike())
 | 
						|
            Diag(Identifier, diag::pp_disabled_macro_expansion);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Since this is not an identifier token, it can't be macro expanded, so
 | 
						|
    // we're done.
 | 
						|
    ++NumFastMacroExpanded;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Start expanding the macro.
 | 
						|
  EnterMacro(Identifier, ExpansionEnd, MI, Args);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
enum Bracket {
 | 
						|
  Brace,
 | 
						|
  Paren
 | 
						|
};
 | 
						|
 | 
						|
/// CheckMatchedBrackets - Returns true if the braces and parentheses in the
 | 
						|
/// token vector are properly nested.
 | 
						|
static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
 | 
						|
  SmallVector<Bracket, 8> Brackets;
 | 
						|
  for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
 | 
						|
                                              E = Tokens.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->is(tok::l_paren)) {
 | 
						|
      Brackets.push_back(Paren);
 | 
						|
    } else if (I->is(tok::r_paren)) {
 | 
						|
      if (Brackets.empty() || Brackets.back() == Brace)
 | 
						|
        return false;
 | 
						|
      Brackets.pop_back();
 | 
						|
    } else if (I->is(tok::l_brace)) {
 | 
						|
      Brackets.push_back(Brace);
 | 
						|
    } else if (I->is(tok::r_brace)) {
 | 
						|
      if (Brackets.empty() || Brackets.back() == Paren)
 | 
						|
        return false;
 | 
						|
      Brackets.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Brackets.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
 | 
						|
/// vector of tokens in NewTokens.  The new number of arguments will be placed
 | 
						|
/// in NumArgs and the ranges which need to surrounded in parentheses will be
 | 
						|
/// in ParenHints.
 | 
						|
/// Returns false if the token stream cannot be changed.  If this is because
 | 
						|
/// of an initializer list starting a macro argument, the range of those
 | 
						|
/// initializer lists will be place in InitLists.
 | 
						|
static bool GenerateNewArgTokens(Preprocessor &PP,
 | 
						|
                                 SmallVectorImpl<Token> &OldTokens,
 | 
						|
                                 SmallVectorImpl<Token> &NewTokens,
 | 
						|
                                 unsigned &NumArgs,
 | 
						|
                                 SmallVectorImpl<SourceRange> &ParenHints,
 | 
						|
                                 SmallVectorImpl<SourceRange> &InitLists) {
 | 
						|
  if (!CheckMatchedBrackets(OldTokens))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Once it is known that the brackets are matched, only a simple count of the
 | 
						|
  // braces is needed.
 | 
						|
  unsigned Braces = 0;
 | 
						|
 | 
						|
  // First token of a new macro argument.
 | 
						|
  SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
 | 
						|
 | 
						|
  // First closing brace in a new macro argument.  Used to generate
 | 
						|
  // SourceRanges for InitLists.
 | 
						|
  SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
 | 
						|
  NumArgs = 0;
 | 
						|
  Token TempToken;
 | 
						|
  // Set to true when a macro separator token is found inside a braced list.
 | 
						|
  // If true, the fixed argument spans multiple old arguments and ParenHints
 | 
						|
  // will be updated.
 | 
						|
  bool FoundSeparatorToken = false;
 | 
						|
  for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
 | 
						|
                                        E = OldTokens.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->is(tok::l_brace)) {
 | 
						|
      ++Braces;
 | 
						|
    } else if (I->is(tok::r_brace)) {
 | 
						|
      --Braces;
 | 
						|
      if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
 | 
						|
        ClosingBrace = I;
 | 
						|
    } else if (I->is(tok::eof)) {
 | 
						|
      // EOF token is used to separate macro arguments
 | 
						|
      if (Braces != 0) {
 | 
						|
        // Assume comma separator is actually braced list separator and change
 | 
						|
        // it back to a comma.
 | 
						|
        FoundSeparatorToken = true;
 | 
						|
        I->setKind(tok::comma);
 | 
						|
        I->setLength(1);
 | 
						|
      } else { // Braces == 0
 | 
						|
        // Separator token still separates arguments.
 | 
						|
        ++NumArgs;
 | 
						|
 | 
						|
        // If the argument starts with a brace, it can't be fixed with
 | 
						|
        // parentheses.  A different diagnostic will be given.
 | 
						|
        if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
 | 
						|
          InitLists.push_back(
 | 
						|
              SourceRange(ArgStartIterator->getLocation(),
 | 
						|
                          PP.getLocForEndOfToken(ClosingBrace->getLocation())));
 | 
						|
          ClosingBrace = E;
 | 
						|
        }
 | 
						|
 | 
						|
        // Add left paren
 | 
						|
        if (FoundSeparatorToken) {
 | 
						|
          TempToken.startToken();
 | 
						|
          TempToken.setKind(tok::l_paren);
 | 
						|
          TempToken.setLocation(ArgStartIterator->getLocation());
 | 
						|
          TempToken.setLength(0);
 | 
						|
          NewTokens.push_back(TempToken);
 | 
						|
        }
 | 
						|
 | 
						|
        // Copy over argument tokens
 | 
						|
        NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
 | 
						|
 | 
						|
        // Add right paren and store the paren locations in ParenHints
 | 
						|
        if (FoundSeparatorToken) {
 | 
						|
          SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
 | 
						|
          TempToken.startToken();
 | 
						|
          TempToken.setKind(tok::r_paren);
 | 
						|
          TempToken.setLocation(Loc);
 | 
						|
          TempToken.setLength(0);
 | 
						|
          NewTokens.push_back(TempToken);
 | 
						|
          ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
 | 
						|
                                           Loc));
 | 
						|
        }
 | 
						|
 | 
						|
        // Copy separator token
 | 
						|
        NewTokens.push_back(*I);
 | 
						|
 | 
						|
        // Reset values
 | 
						|
        ArgStartIterator = I + 1;
 | 
						|
        FoundSeparatorToken = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return !ParenHints.empty() && InitLists.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
 | 
						|
/// token is the '(' of the macro, this method is invoked to read all of the
 | 
						|
/// actual arguments specified for the macro invocation.  This returns null on
 | 
						|
/// error.
 | 
						|
MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
 | 
						|
                                                   MacroInfo *MI,
 | 
						|
                                                   SourceLocation &MacroEnd) {
 | 
						|
  // The number of fixed arguments to parse.
 | 
						|
  unsigned NumFixedArgsLeft = MI->getNumParams();
 | 
						|
  bool isVariadic = MI->isVariadic();
 | 
						|
 | 
						|
  // Outer loop, while there are more arguments, keep reading them.
 | 
						|
  Token Tok;
 | 
						|
 | 
						|
  // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
 | 
						|
  // an argument value in a macro could expand to ',' or '(' or ')'.
 | 
						|
  LexUnexpandedToken(Tok);
 | 
						|
  assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
 | 
						|
 | 
						|
  // ArgTokens - Build up a list of tokens that make up each argument.  Each
 | 
						|
  // argument is separated by an EOF token.  Use a SmallVector so we can avoid
 | 
						|
  // heap allocations in the common case.
 | 
						|
  SmallVector<Token, 64> ArgTokens;
 | 
						|
  bool ContainsCodeCompletionTok = false;
 | 
						|
  bool FoundElidedComma = false;
 | 
						|
 | 
						|
  SourceLocation TooManyArgsLoc;
 | 
						|
 | 
						|
  unsigned NumActuals = 0;
 | 
						|
  while (Tok.isNot(tok::r_paren)) {
 | 
						|
    if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
 | 
						|
      break;
 | 
						|
 | 
						|
    assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
 | 
						|
           "only expect argument separators here");
 | 
						|
 | 
						|
    size_t ArgTokenStart = ArgTokens.size();
 | 
						|
    SourceLocation ArgStartLoc = Tok.getLocation();
 | 
						|
 | 
						|
    // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
 | 
						|
    // that we already consumed the first one.
 | 
						|
    unsigned NumParens = 0;
 | 
						|
 | 
						|
    while (true) {
 | 
						|
      // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
 | 
						|
      // an argument value in a macro could expand to ',' or '(' or ')'.
 | 
						|
      LexUnexpandedToken(Tok);
 | 
						|
 | 
						|
      if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
 | 
						|
        if (!ContainsCodeCompletionTok) {
 | 
						|
          Diag(MacroName, diag::err_unterm_macro_invoc);
 | 
						|
          Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | 
						|
            << MacroName.getIdentifierInfo();
 | 
						|
          // Do not lose the EOF/EOD.  Return it to the client.
 | 
						|
          MacroName = Tok;
 | 
						|
          return nullptr;
 | 
						|
        }
 | 
						|
        // Do not lose the EOF/EOD.
 | 
						|
        auto Toks = std::make_unique<Token[]>(1);
 | 
						|
        Toks[0] = Tok;
 | 
						|
        EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
 | 
						|
        break;
 | 
						|
      } else if (Tok.is(tok::r_paren)) {
 | 
						|
        // If we found the ) token, the macro arg list is done.
 | 
						|
        if (NumParens-- == 0) {
 | 
						|
          MacroEnd = Tok.getLocation();
 | 
						|
          if (!ArgTokens.empty() &&
 | 
						|
              ArgTokens.back().commaAfterElided()) {
 | 
						|
            FoundElidedComma = true;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } else if (Tok.is(tok::l_paren)) {
 | 
						|
        ++NumParens;
 | 
						|
      } else if (Tok.is(tok::comma)) {
 | 
						|
        // In Microsoft-compatibility mode, single commas from nested macro
 | 
						|
        // expansions should not be considered as argument separators. We test
 | 
						|
        // for this with the IgnoredComma token flag.
 | 
						|
        if (Tok.getFlags() & Token::IgnoredComma) {
 | 
						|
          // However, in MSVC's preprocessor, subsequent expansions do treat
 | 
						|
          // these commas as argument separators. This leads to a common
 | 
						|
          // workaround used in macros that need to work in both MSVC and
 | 
						|
          // compliant preprocessors. Therefore, the IgnoredComma flag can only
 | 
						|
          // apply once to any given token.
 | 
						|
          Tok.clearFlag(Token::IgnoredComma);
 | 
						|
        } else if (NumParens == 0) {
 | 
						|
          // Comma ends this argument if there are more fixed arguments
 | 
						|
          // expected. However, if this is a variadic macro, and this is part of
 | 
						|
          // the variadic part, then the comma is just an argument token.
 | 
						|
          if (!isVariadic)
 | 
						|
            break;
 | 
						|
          if (NumFixedArgsLeft > 1)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
      } else if (Tok.is(tok::comment) && !KeepMacroComments) {
 | 
						|
        // If this is a comment token in the argument list and we're just in
 | 
						|
        // -C mode (not -CC mode), discard the comment.
 | 
						|
        continue;
 | 
						|
      } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
 | 
						|
        // Reading macro arguments can cause macros that we are currently
 | 
						|
        // expanding from to be popped off the expansion stack.  Doing so causes
 | 
						|
        // them to be reenabled for expansion.  Here we record whether any
 | 
						|
        // identifiers we lex as macro arguments correspond to disabled macros.
 | 
						|
        // If so, we mark the token as noexpand.  This is a subtle aspect of
 | 
						|
        // C99 6.10.3.4p2.
 | 
						|
        if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
 | 
						|
          if (!MI->isEnabled())
 | 
						|
            Tok.setFlag(Token::DisableExpand);
 | 
						|
      } else if (Tok.is(tok::code_completion)) {
 | 
						|
        ContainsCodeCompletionTok = true;
 | 
						|
        if (CodeComplete)
 | 
						|
          CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
 | 
						|
                                                  MI, NumActuals);
 | 
						|
        // Don't mark that we reached the code-completion point because the
 | 
						|
        // parser is going to handle the token and there will be another
 | 
						|
        // code-completion callback.
 | 
						|
      }
 | 
						|
 | 
						|
      ArgTokens.push_back(Tok);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this was an empty argument list foo(), don't add this as an empty
 | 
						|
    // argument.
 | 
						|
    if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
 | 
						|
      break;
 | 
						|
 | 
						|
    // If this is not a variadic macro, and too many args were specified, emit
 | 
						|
    // an error.
 | 
						|
    if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
 | 
						|
      if (ArgTokens.size() != ArgTokenStart)
 | 
						|
        TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
 | 
						|
      else
 | 
						|
        TooManyArgsLoc = ArgStartLoc;
 | 
						|
    }
 | 
						|
 | 
						|
    // Empty arguments are standard in C99 and C++0x, and are supported as an
 | 
						|
    // extension in other modes.
 | 
						|
    if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
 | 
						|
      Diag(Tok, LangOpts.CPlusPlus11 ?
 | 
						|
           diag::warn_cxx98_compat_empty_fnmacro_arg :
 | 
						|
           diag::ext_empty_fnmacro_arg);
 | 
						|
 | 
						|
    // Add a marker EOF token to the end of the token list for this argument.
 | 
						|
    Token EOFTok;
 | 
						|
    EOFTok.startToken();
 | 
						|
    EOFTok.setKind(tok::eof);
 | 
						|
    EOFTok.setLocation(Tok.getLocation());
 | 
						|
    EOFTok.setLength(0);
 | 
						|
    ArgTokens.push_back(EOFTok);
 | 
						|
    ++NumActuals;
 | 
						|
    if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
 | 
						|
      --NumFixedArgsLeft;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we either found the r_paren.  Check to see if we parsed too few
 | 
						|
  // arguments.
 | 
						|
  unsigned MinArgsExpected = MI->getNumParams();
 | 
						|
 | 
						|
  // If this is not a variadic macro, and too many args were specified, emit
 | 
						|
  // an error.
 | 
						|
  if (!isVariadic && NumActuals > MinArgsExpected &&
 | 
						|
      !ContainsCodeCompletionTok) {
 | 
						|
    // Emit the diagnostic at the macro name in case there is a missing ).
 | 
						|
    // Emitting it at the , could be far away from the macro name.
 | 
						|
    Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
 | 
						|
    Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | 
						|
      << MacroName.getIdentifierInfo();
 | 
						|
 | 
						|
    // Commas from braced initializer lists will be treated as argument
 | 
						|
    // separators inside macros.  Attempt to correct for this with parentheses.
 | 
						|
    // TODO: See if this can be generalized to angle brackets for templates
 | 
						|
    // inside macro arguments.
 | 
						|
 | 
						|
    SmallVector<Token, 4> FixedArgTokens;
 | 
						|
    unsigned FixedNumArgs = 0;
 | 
						|
    SmallVector<SourceRange, 4> ParenHints, InitLists;
 | 
						|
    if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
 | 
						|
                              ParenHints, InitLists)) {
 | 
						|
      if (!InitLists.empty()) {
 | 
						|
        DiagnosticBuilder DB =
 | 
						|
            Diag(MacroName,
 | 
						|
                 diag::note_init_list_at_beginning_of_macro_argument);
 | 
						|
        for (SourceRange Range : InitLists)
 | 
						|
          DB << Range;
 | 
						|
      }
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    if (FixedNumArgs != MinArgsExpected)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
 | 
						|
    for (SourceRange ParenLocation : ParenHints) {
 | 
						|
      DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
 | 
						|
      DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
 | 
						|
    }
 | 
						|
    ArgTokens.swap(FixedArgTokens);
 | 
						|
    NumActuals = FixedNumArgs;
 | 
						|
  }
 | 
						|
 | 
						|
  // See MacroArgs instance var for description of this.
 | 
						|
  bool isVarargsElided = false;
 | 
						|
 | 
						|
  if (ContainsCodeCompletionTok) {
 | 
						|
    // Recover from not-fully-formed macro invocation during code-completion.
 | 
						|
    Token EOFTok;
 | 
						|
    EOFTok.startToken();
 | 
						|
    EOFTok.setKind(tok::eof);
 | 
						|
    EOFTok.setLocation(Tok.getLocation());
 | 
						|
    EOFTok.setLength(0);
 | 
						|
    for (; NumActuals < MinArgsExpected; ++NumActuals)
 | 
						|
      ArgTokens.push_back(EOFTok);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumActuals < MinArgsExpected) {
 | 
						|
    // There are several cases where too few arguments is ok, handle them now.
 | 
						|
    if (NumActuals == 0 && MinArgsExpected == 1) {
 | 
						|
      // #define A(X)  or  #define A(...)   ---> A()
 | 
						|
 | 
						|
      // If there is exactly one argument, and that argument is missing,
 | 
						|
      // then we have an empty "()" argument empty list.  This is fine, even if
 | 
						|
      // the macro expects one argument (the argument is just empty).
 | 
						|
      isVarargsElided = MI->isVariadic();
 | 
						|
    } else if ((FoundElidedComma || MI->isVariadic()) &&
 | 
						|
               (NumActuals+1 == MinArgsExpected ||  // A(x, ...) -> A(X)
 | 
						|
                (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
 | 
						|
      // Varargs where the named vararg parameter is missing: OK as extension.
 | 
						|
      //   #define A(x, ...)
 | 
						|
      //   A("blah")
 | 
						|
      //
 | 
						|
      // If the macro contains the comma pasting extension, the diagnostic
 | 
						|
      // is suppressed; we know we'll get another diagnostic later.
 | 
						|
      if (!MI->hasCommaPasting()) {
 | 
						|
        Diag(Tok, diag::ext_missing_varargs_arg);
 | 
						|
        Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | 
						|
          << MacroName.getIdentifierInfo();
 | 
						|
      }
 | 
						|
 | 
						|
      // Remember this occurred, allowing us to elide the comma when used for
 | 
						|
      // cases like:
 | 
						|
      //   #define A(x, foo...) blah(a, ## foo)
 | 
						|
      //   #define B(x, ...) blah(a, ## __VA_ARGS__)
 | 
						|
      //   #define C(...) blah(a, ## __VA_ARGS__)
 | 
						|
      //  A(x) B(x) C()
 | 
						|
      isVarargsElided = true;
 | 
						|
    } else if (!ContainsCodeCompletionTok) {
 | 
						|
      // Otherwise, emit the error.
 | 
						|
      Diag(Tok, diag::err_too_few_args_in_macro_invoc);
 | 
						|
      Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | 
						|
        << MacroName.getIdentifierInfo();
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a marker EOF token to the end of the token list for this argument.
 | 
						|
    SourceLocation EndLoc = Tok.getLocation();
 | 
						|
    Tok.startToken();
 | 
						|
    Tok.setKind(tok::eof);
 | 
						|
    Tok.setLocation(EndLoc);
 | 
						|
    Tok.setLength(0);
 | 
						|
    ArgTokens.push_back(Tok);
 | 
						|
 | 
						|
    // If we expect two arguments, add both as empty.
 | 
						|
    if (NumActuals == 0 && MinArgsExpected == 2)
 | 
						|
      ArgTokens.push_back(Tok);
 | 
						|
 | 
						|
  } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
 | 
						|
             !ContainsCodeCompletionTok) {
 | 
						|
    // Emit the diagnostic at the macro name in case there is a missing ).
 | 
						|
    // Emitting it at the , could be far away from the macro name.
 | 
						|
    Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
 | 
						|
    Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | 
						|
      << MacroName.getIdentifierInfo();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
 | 
						|
}
 | 
						|
 | 
						|
/// Keeps macro expanded tokens for TokenLexers.
 | 
						|
//
 | 
						|
/// Works like a stack; a TokenLexer adds the macro expanded tokens that is
 | 
						|
/// going to lex in the cache and when it finishes the tokens are removed
 | 
						|
/// from the end of the cache.
 | 
						|
Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
 | 
						|
                                              ArrayRef<Token> tokens) {
 | 
						|
  assert(tokLexer);
 | 
						|
  if (tokens.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  size_t newIndex = MacroExpandedTokens.size();
 | 
						|
  bool cacheNeedsToGrow = tokens.size() >
 | 
						|
                      MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
 | 
						|
  MacroExpandedTokens.append(tokens.begin(), tokens.end());
 | 
						|
 | 
						|
  if (cacheNeedsToGrow) {
 | 
						|
    // Go through all the TokenLexers whose 'Tokens' pointer points in the
 | 
						|
    // buffer and update the pointers to the (potential) new buffer array.
 | 
						|
    for (const auto &Lexer : MacroExpandingLexersStack) {
 | 
						|
      TokenLexer *prevLexer;
 | 
						|
      size_t tokIndex;
 | 
						|
      std::tie(prevLexer, tokIndex) = Lexer;
 | 
						|
      prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
 | 
						|
  return MacroExpandedTokens.data() + newIndex;
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
 | 
						|
  assert(!MacroExpandingLexersStack.empty());
 | 
						|
  size_t tokIndex = MacroExpandingLexersStack.back().second;
 | 
						|
  assert(tokIndex < MacroExpandedTokens.size());
 | 
						|
  // Pop the cached macro expanded tokens from the end.
 | 
						|
  MacroExpandedTokens.resize(tokIndex);
 | 
						|
  MacroExpandingLexersStack.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeDATE_TIME - Compute the current time, enter it into the specified
 | 
						|
/// scratch buffer, then return DATELoc/TIMELoc locations with the position of
 | 
						|
/// the identifier tokens inserted.
 | 
						|
static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
 | 
						|
                             Preprocessor &PP) {
 | 
						|
  time_t TT = time(nullptr);
 | 
						|
  struct tm *TM = localtime(&TT);
 | 
						|
 | 
						|
  static const char * const Months[] = {
 | 
						|
    "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
 | 
						|
  };
 | 
						|
 | 
						|
  {
 | 
						|
    SmallString<32> TmpBuffer;
 | 
						|
    llvm::raw_svector_ostream TmpStream(TmpBuffer);
 | 
						|
    TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
 | 
						|
                              TM->tm_mday, TM->tm_year + 1900);
 | 
						|
    Token TmpTok;
 | 
						|
    TmpTok.startToken();
 | 
						|
    PP.CreateString(TmpStream.str(), TmpTok);
 | 
						|
    DATELoc = TmpTok.getLocation();
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    SmallString<32> TmpBuffer;
 | 
						|
    llvm::raw_svector_ostream TmpStream(TmpBuffer);
 | 
						|
    TmpStream << llvm::format("\"%02d:%02d:%02d\"",
 | 
						|
                              TM->tm_hour, TM->tm_min, TM->tm_sec);
 | 
						|
    Token TmpTok;
 | 
						|
    TmpTok.startToken();
 | 
						|
    PP.CreateString(TmpStream.str(), TmpTok);
 | 
						|
    TIMELoc = TmpTok.getLocation();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HasFeature - Return true if we recognize and implement the feature
 | 
						|
/// specified by the identifier as a standard language feature.
 | 
						|
static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
 | 
						|
  const LangOptions &LangOpts = PP.getLangOpts();
 | 
						|
 | 
						|
  // Normalize the feature name, __foo__ becomes foo.
 | 
						|
  if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
 | 
						|
    Feature = Feature.substr(2, Feature.size() - 4);
 | 
						|
 | 
						|
#define FEATURE(Name, Predicate) .Case(#Name, Predicate)
 | 
						|
  return llvm::StringSwitch<bool>(Feature)
 | 
						|
#include "clang/Basic/Features.def"
 | 
						|
      .Default(false);
 | 
						|
#undef FEATURE
 | 
						|
}
 | 
						|
 | 
						|
/// HasExtension - Return true if we recognize and implement the feature
 | 
						|
/// specified by the identifier, either as an extension or a standard language
 | 
						|
/// feature.
 | 
						|
static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
 | 
						|
  if (HasFeature(PP, Extension))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the use of an extension results in an error diagnostic, extensions are
 | 
						|
  // effectively unavailable, so just return false here.
 | 
						|
  if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
 | 
						|
      diag::Severity::Error)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const LangOptions &LangOpts = PP.getLangOpts();
 | 
						|
 | 
						|
  // Normalize the extension name, __foo__ becomes foo.
 | 
						|
  if (Extension.startswith("__") && Extension.endswith("__") &&
 | 
						|
      Extension.size() >= 4)
 | 
						|
    Extension = Extension.substr(2, Extension.size() - 4);
 | 
						|
 | 
						|
    // Because we inherit the feature list from HasFeature, this string switch
 | 
						|
    // must be less restrictive than HasFeature's.
 | 
						|
#define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
 | 
						|
  return llvm::StringSwitch<bool>(Extension)
 | 
						|
#include "clang/Basic/Features.def"
 | 
						|
      .Default(false);
 | 
						|
#undef EXTENSION
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateHasIncludeCommon - Process a '__has_include("path")'
 | 
						|
/// or '__has_include_next("path")' expression.
 | 
						|
/// Returns true if successful.
 | 
						|
static bool EvaluateHasIncludeCommon(Token &Tok,
 | 
						|
                                     IdentifierInfo *II, Preprocessor &PP,
 | 
						|
                                     const DirectoryLookup *LookupFrom,
 | 
						|
                                     const FileEntry *LookupFromFile) {
 | 
						|
  // Save the location of the current token.  If a '(' is later found, use
 | 
						|
  // that location.  If not, use the end of this location instead.
 | 
						|
  SourceLocation LParenLoc = Tok.getLocation();
 | 
						|
 | 
						|
  // These expressions are only allowed within a preprocessor directive.
 | 
						|
  if (!PP.isParsingIfOrElifDirective()) {
 | 
						|
    PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
 | 
						|
    // Return a valid identifier token.
 | 
						|
    assert(Tok.is(tok::identifier));
 | 
						|
    Tok.setIdentifierInfo(II);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get '('. If we don't have a '(', try to form a header-name token.
 | 
						|
  do {
 | 
						|
    if (PP.LexHeaderName(Tok))
 | 
						|
      return false;
 | 
						|
  } while (Tok.getKind() == tok::comment);
 | 
						|
 | 
						|
  // Ensure we have a '('.
 | 
						|
  if (Tok.isNot(tok::l_paren)) {
 | 
						|
    // No '(', use end of last token.
 | 
						|
    LParenLoc = PP.getLocForEndOfToken(LParenLoc);
 | 
						|
    PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
 | 
						|
    // If the next token looks like a filename or the start of one,
 | 
						|
    // assume it is and process it as such.
 | 
						|
    if (Tok.isNot(tok::header_name))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // Save '(' location for possible missing ')' message.
 | 
						|
    LParenLoc = Tok.getLocation();
 | 
						|
    if (PP.LexHeaderName(Tok))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Tok.isNot(tok::header_name)) {
 | 
						|
    PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reserve a buffer to get the spelling.
 | 
						|
  SmallString<128> FilenameBuffer;
 | 
						|
  bool Invalid = false;
 | 
						|
  StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
 | 
						|
  if (Invalid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SourceLocation FilenameLoc = Tok.getLocation();
 | 
						|
 | 
						|
  // Get ')'.
 | 
						|
  PP.LexNonComment(Tok);
 | 
						|
 | 
						|
  // Ensure we have a trailing ).
 | 
						|
  if (Tok.isNot(tok::r_paren)) {
 | 
						|
    PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
 | 
						|
        << II << tok::r_paren;
 | 
						|
    PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
 | 
						|
  // If GetIncludeFilenameSpelling set the start ptr to null, there was an
 | 
						|
  // error.
 | 
						|
  if (Filename.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Search include directories.
 | 
						|
  const DirectoryLookup *CurDir;
 | 
						|
  Optional<FileEntryRef> File =
 | 
						|
      PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
 | 
						|
                    CurDir, nullptr, nullptr, nullptr, nullptr, nullptr);
 | 
						|
 | 
						|
  if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
 | 
						|
    SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
 | 
						|
    if (File)
 | 
						|
      FileType =
 | 
						|
          PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry());
 | 
						|
    Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the result value.  A result of true means the file exists.
 | 
						|
  return File.hasValue();
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateHasInclude - Process a '__has_include("path")' expression.
 | 
						|
/// Returns true if successful.
 | 
						|
static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
 | 
						|
                               Preprocessor &PP) {
 | 
						|
  return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
/// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
 | 
						|
/// Returns true if successful.
 | 
						|
static bool EvaluateHasIncludeNext(Token &Tok,
 | 
						|
                                   IdentifierInfo *II, Preprocessor &PP) {
 | 
						|
  // __has_include_next is like __has_include, except that we start
 | 
						|
  // searching after the current found directory.  If we can't do this,
 | 
						|
  // issue a diagnostic.
 | 
						|
  // FIXME: Factor out duplication with
 | 
						|
  // Preprocessor::HandleIncludeNextDirective.
 | 
						|
  const DirectoryLookup *Lookup = PP.GetCurDirLookup();
 | 
						|
  const FileEntry *LookupFromFile = nullptr;
 | 
						|
  if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) {
 | 
						|
    // If the main file is a header, then it's either for PCH/AST generation,
 | 
						|
    // or libclang opened it. Either way, handle it as a normal include below
 | 
						|
    // and do not complain about __has_include_next.
 | 
						|
  } else if (PP.isInPrimaryFile()) {
 | 
						|
    Lookup = nullptr;
 | 
						|
    PP.Diag(Tok, diag::pp_include_next_in_primary);
 | 
						|
  } else if (PP.getCurrentLexerSubmodule()) {
 | 
						|
    // Start looking up in the directory *after* the one in which the current
 | 
						|
    // file would be found, if any.
 | 
						|
    assert(PP.getCurrentLexer() && "#include_next directive in macro?");
 | 
						|
    LookupFromFile = PP.getCurrentLexer()->getFileEntry();
 | 
						|
    Lookup = nullptr;
 | 
						|
  } else if (!Lookup) {
 | 
						|
    PP.Diag(Tok, diag::pp_include_next_absolute_path);
 | 
						|
  } else {
 | 
						|
    // Start looking up in the next directory.
 | 
						|
    ++Lookup;
 | 
						|
  }
 | 
						|
 | 
						|
  return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
 | 
						|
}
 | 
						|
 | 
						|
/// Process single-argument builtin feature-like macros that return
 | 
						|
/// integer values.
 | 
						|
static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
 | 
						|
                                            Token &Tok, IdentifierInfo *II,
 | 
						|
                                            Preprocessor &PP,
 | 
						|
                                            llvm::function_ref<
 | 
						|
                                              int(Token &Tok,
 | 
						|
                                                  bool &HasLexedNextTok)> Op) {
 | 
						|
  // Parse the initial '('.
 | 
						|
  PP.LexUnexpandedToken(Tok);
 | 
						|
  if (Tok.isNot(tok::l_paren)) {
 | 
						|
    PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
 | 
						|
                                                            << tok::l_paren;
 | 
						|
 | 
						|
    // Provide a dummy '0' value on output stream to elide further errors.
 | 
						|
    if (!Tok.isOneOf(tok::eof, tok::eod)) {
 | 
						|
      OS << 0;
 | 
						|
      Tok.setKind(tok::numeric_constant);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ParenDepth = 1;
 | 
						|
  SourceLocation LParenLoc = Tok.getLocation();
 | 
						|
  llvm::Optional<int> Result;
 | 
						|
 | 
						|
  Token ResultTok;
 | 
						|
  bool SuppressDiagnostic = false;
 | 
						|
  while (true) {
 | 
						|
    // Parse next token.
 | 
						|
    PP.LexUnexpandedToken(Tok);
 | 
						|
 | 
						|
already_lexed:
 | 
						|
    switch (Tok.getKind()) {
 | 
						|
      case tok::eof:
 | 
						|
      case tok::eod:
 | 
						|
        // Don't provide even a dummy value if the eod or eof marker is
 | 
						|
        // reached.  Simply provide a diagnostic.
 | 
						|
        PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
 | 
						|
        return;
 | 
						|
 | 
						|
      case tok::comma:
 | 
						|
        if (!SuppressDiagnostic) {
 | 
						|
          PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
 | 
						|
          SuppressDiagnostic = true;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
 | 
						|
      case tok::l_paren:
 | 
						|
        ++ParenDepth;
 | 
						|
        if (Result.hasValue())
 | 
						|
          break;
 | 
						|
        if (!SuppressDiagnostic) {
 | 
						|
          PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
 | 
						|
          SuppressDiagnostic = true;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
 | 
						|
      case tok::r_paren:
 | 
						|
        if (--ParenDepth > 0)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // The last ')' has been reached; return the value if one found or
 | 
						|
        // a diagnostic and a dummy value.
 | 
						|
        if (Result.hasValue()) {
 | 
						|
          OS << Result.getValue();
 | 
						|
          // For strict conformance to __has_cpp_attribute rules, use 'L'
 | 
						|
          // suffix for dated literals.
 | 
						|
          if (Result.getValue() > 1)
 | 
						|
            OS << 'L';
 | 
						|
        } else {
 | 
						|
          OS << 0;
 | 
						|
          if (!SuppressDiagnostic)
 | 
						|
            PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
 | 
						|
        }
 | 
						|
        Tok.setKind(tok::numeric_constant);
 | 
						|
        return;
 | 
						|
 | 
						|
      default: {
 | 
						|
        // Parse the macro argument, if one not found so far.
 | 
						|
        if (Result.hasValue())
 | 
						|
          break;
 | 
						|
 | 
						|
        bool HasLexedNextToken = false;
 | 
						|
        Result = Op(Tok, HasLexedNextToken);
 | 
						|
        ResultTok = Tok;
 | 
						|
        if (HasLexedNextToken)
 | 
						|
          goto already_lexed;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Diagnose missing ')'.
 | 
						|
    if (!SuppressDiagnostic) {
 | 
						|
      if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
 | 
						|
        if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
 | 
						|
          Diag << LastII;
 | 
						|
        else
 | 
						|
          Diag << ResultTok.getKind();
 | 
						|
        Diag << tok::r_paren << ResultTok.getLocation();
 | 
						|
      }
 | 
						|
      PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
 | 
						|
      SuppressDiagnostic = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to return the IdentifierInfo structure of a Token
 | 
						|
/// or generate a diagnostic if none available.
 | 
						|
static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
 | 
						|
                                                   Preprocessor &PP,
 | 
						|
                                                   signed DiagID) {
 | 
						|
  IdentifierInfo *II;
 | 
						|
  if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
 | 
						|
    return II;
 | 
						|
 | 
						|
  PP.Diag(Tok.getLocation(), DiagID);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Implements the __is_target_arch builtin macro.
 | 
						|
static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
 | 
						|
  std::string ArchName = II->getName().lower() + "--";
 | 
						|
  llvm::Triple Arch(ArchName);
 | 
						|
  const llvm::Triple &TT = TI.getTriple();
 | 
						|
  if (TT.isThumb()) {
 | 
						|
    // arm matches thumb or thumbv7. armv7 matches thumbv7.
 | 
						|
    if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
 | 
						|
         Arch.getSubArch() == TT.getSubArch()) &&
 | 
						|
        ((TT.getArch() == llvm::Triple::thumb &&
 | 
						|
          Arch.getArch() == llvm::Triple::arm) ||
 | 
						|
         (TT.getArch() == llvm::Triple::thumbeb &&
 | 
						|
          Arch.getArch() == llvm::Triple::armeb)))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  // Check the parsed arch when it has no sub arch to allow Clang to
 | 
						|
  // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
 | 
						|
  return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
 | 
						|
          Arch.getSubArch() == TT.getSubArch()) &&
 | 
						|
         Arch.getArch() == TT.getArch();
 | 
						|
}
 | 
						|
 | 
						|
/// Implements the __is_target_vendor builtin macro.
 | 
						|
static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
 | 
						|
  StringRef VendorName = TI.getTriple().getVendorName();
 | 
						|
  if (VendorName.empty())
 | 
						|
    VendorName = "unknown";
 | 
						|
  return VendorName.equals_lower(II->getName());
 | 
						|
}
 | 
						|
 | 
						|
/// Implements the __is_target_os builtin macro.
 | 
						|
static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
 | 
						|
  std::string OSName =
 | 
						|
      (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
 | 
						|
  llvm::Triple OS(OSName);
 | 
						|
  if (OS.getOS() == llvm::Triple::Darwin) {
 | 
						|
    // Darwin matches macos, ios, etc.
 | 
						|
    return TI.getTriple().isOSDarwin();
 | 
						|
  }
 | 
						|
  return TI.getTriple().getOS() == OS.getOS();
 | 
						|
}
 | 
						|
 | 
						|
/// Implements the __is_target_environment builtin macro.
 | 
						|
static bool isTargetEnvironment(const TargetInfo &TI,
 | 
						|
                                const IdentifierInfo *II) {
 | 
						|
  std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
 | 
						|
  llvm::Triple Env(EnvName);
 | 
						|
  return TI.getTriple().getEnvironment() == Env.getEnvironment();
 | 
						|
}
 | 
						|
 | 
						|
static void remapMacroPath(
 | 
						|
    SmallString<256> &Path,
 | 
						|
    const std::map<std::string, std::string, std::greater<std::string>>
 | 
						|
        &MacroPrefixMap) {
 | 
						|
  for (const auto &Entry : MacroPrefixMap)
 | 
						|
    if (Path.startswith(Entry.first)) {
 | 
						|
      Path = (Twine(Entry.second) + Path.substr(Entry.first.size())).str();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
 | 
						|
/// as a builtin macro, handle it and return the next token as 'Tok'.
 | 
						|
void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
 | 
						|
  // Figure out which token this is.
 | 
						|
  IdentifierInfo *II = Tok.getIdentifierInfo();
 | 
						|
  assert(II && "Can't be a macro without id info!");
 | 
						|
 | 
						|
  // If this is an _Pragma or Microsoft __pragma directive, expand it,
 | 
						|
  // invoke the pragma handler, then lex the token after it.
 | 
						|
  if (II == Ident_Pragma)
 | 
						|
    return Handle_Pragma(Tok);
 | 
						|
  else if (II == Ident__pragma) // in non-MS mode this is null
 | 
						|
    return HandleMicrosoft__pragma(Tok);
 | 
						|
 | 
						|
  ++NumBuiltinMacroExpanded;
 | 
						|
 | 
						|
  SmallString<128> TmpBuffer;
 | 
						|
  llvm::raw_svector_ostream OS(TmpBuffer);
 | 
						|
 | 
						|
  // Set up the return result.
 | 
						|
  Tok.setIdentifierInfo(nullptr);
 | 
						|
  Tok.clearFlag(Token::NeedsCleaning);
 | 
						|
  bool IsAtStartOfLine = Tok.isAtStartOfLine();
 | 
						|
  bool HasLeadingSpace = Tok.hasLeadingSpace();
 | 
						|
 | 
						|
  if (II == Ident__LINE__) {
 | 
						|
    // C99 6.10.8: "__LINE__: The presumed line number (within the current
 | 
						|
    // source file) of the current source line (an integer constant)".  This can
 | 
						|
    // be affected by #line.
 | 
						|
    SourceLocation Loc = Tok.getLocation();
 | 
						|
 | 
						|
    // Advance to the location of the first _, this might not be the first byte
 | 
						|
    // of the token if it starts with an escaped newline.
 | 
						|
    Loc = AdvanceToTokenCharacter(Loc, 0);
 | 
						|
 | 
						|
    // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
 | 
						|
    // a macro expansion.  This doesn't matter for object-like macros, but
 | 
						|
    // can matter for a function-like macro that expands to contain __LINE__.
 | 
						|
    // Skip down through expansion points until we find a file loc for the
 | 
						|
    // end of the expansion history.
 | 
						|
    Loc = SourceMgr.getExpansionRange(Loc).getEnd();
 | 
						|
    PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
 | 
						|
 | 
						|
    // __LINE__ expands to a simple numeric value.
 | 
						|
    OS << (PLoc.isValid()? PLoc.getLine() : 1);
 | 
						|
    Tok.setKind(tok::numeric_constant);
 | 
						|
  } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
 | 
						|
             II == Ident__FILE_NAME__) {
 | 
						|
    // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
 | 
						|
    // character string literal)". This can be affected by #line.
 | 
						|
    PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
 | 
						|
 | 
						|
    // __BASE_FILE__ is a GNU extension that returns the top of the presumed
 | 
						|
    // #include stack instead of the current file.
 | 
						|
    if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
 | 
						|
      SourceLocation NextLoc = PLoc.getIncludeLoc();
 | 
						|
      while (NextLoc.isValid()) {
 | 
						|
        PLoc = SourceMgr.getPresumedLoc(NextLoc);
 | 
						|
        if (PLoc.isInvalid())
 | 
						|
          break;
 | 
						|
 | 
						|
        NextLoc = PLoc.getIncludeLoc();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
 | 
						|
    SmallString<256> FN;
 | 
						|
    if (PLoc.isValid()) {
 | 
						|
      // __FILE_NAME__ is a Clang-specific extension that expands to the
 | 
						|
      // the last part of __FILE__.
 | 
						|
      if (II == Ident__FILE_NAME__) {
 | 
						|
        // Try to get the last path component, failing that return the original
 | 
						|
        // presumed location.
 | 
						|
        StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
 | 
						|
        if (PLFileName != "")
 | 
						|
          FN += PLFileName;
 | 
						|
        else
 | 
						|
          FN += PLoc.getFilename();
 | 
						|
      } else {
 | 
						|
        FN += PLoc.getFilename();
 | 
						|
      }
 | 
						|
      Lexer::Stringify(FN);
 | 
						|
      remapMacroPath(FN, PPOpts->MacroPrefixMap);
 | 
						|
      OS << '"' << FN << '"';
 | 
						|
    }
 | 
						|
    Tok.setKind(tok::string_literal);
 | 
						|
  } else if (II == Ident__DATE__) {
 | 
						|
    Diag(Tok.getLocation(), diag::warn_pp_date_time);
 | 
						|
    if (!DATELoc.isValid())
 | 
						|
      ComputeDATE_TIME(DATELoc, TIMELoc, *this);
 | 
						|
    Tok.setKind(tok::string_literal);
 | 
						|
    Tok.setLength(strlen("\"Mmm dd yyyy\""));
 | 
						|
    Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
 | 
						|
                                                 Tok.getLocation(),
 | 
						|
                                                 Tok.getLength()));
 | 
						|
    return;
 | 
						|
  } else if (II == Ident__TIME__) {
 | 
						|
    Diag(Tok.getLocation(), diag::warn_pp_date_time);
 | 
						|
    if (!TIMELoc.isValid())
 | 
						|
      ComputeDATE_TIME(DATELoc, TIMELoc, *this);
 | 
						|
    Tok.setKind(tok::string_literal);
 | 
						|
    Tok.setLength(strlen("\"hh:mm:ss\""));
 | 
						|
    Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
 | 
						|
                                                 Tok.getLocation(),
 | 
						|
                                                 Tok.getLength()));
 | 
						|
    return;
 | 
						|
  } else if (II == Ident__INCLUDE_LEVEL__) {
 | 
						|
    // Compute the presumed include depth of this token.  This can be affected
 | 
						|
    // by GNU line markers.
 | 
						|
    unsigned Depth = 0;
 | 
						|
 | 
						|
    PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
 | 
						|
    if (PLoc.isValid()) {
 | 
						|
      PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
 | 
						|
      for (; PLoc.isValid(); ++Depth)
 | 
						|
        PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // __INCLUDE_LEVEL__ expands to a simple numeric value.
 | 
						|
    OS << Depth;
 | 
						|
    Tok.setKind(tok::numeric_constant);
 | 
						|
  } else if (II == Ident__TIMESTAMP__) {
 | 
						|
    Diag(Tok.getLocation(), diag::warn_pp_date_time);
 | 
						|
    // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
 | 
						|
    // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
 | 
						|
 | 
						|
    // Get the file that we are lexing out of.  If we're currently lexing from
 | 
						|
    // a macro, dig into the include stack.
 | 
						|
    const FileEntry *CurFile = nullptr;
 | 
						|
    PreprocessorLexer *TheLexer = getCurrentFileLexer();
 | 
						|
 | 
						|
    if (TheLexer)
 | 
						|
      CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
 | 
						|
 | 
						|
    const char *Result;
 | 
						|
    if (CurFile) {
 | 
						|
      time_t TT = CurFile->getModificationTime();
 | 
						|
      struct tm *TM = localtime(&TT);
 | 
						|
      Result = asctime(TM);
 | 
						|
    } else {
 | 
						|
      Result = "??? ??? ?? ??:??:?? ????\n";
 | 
						|
    }
 | 
						|
    // Surround the string with " and strip the trailing newline.
 | 
						|
    OS << '"' << StringRef(Result).drop_back() << '"';
 | 
						|
    Tok.setKind(tok::string_literal);
 | 
						|
  } else if (II == Ident__COUNTER__) {
 | 
						|
    // __COUNTER__ expands to a simple numeric value.
 | 
						|
    OS << CounterValue++;
 | 
						|
    Tok.setKind(tok::numeric_constant);
 | 
						|
  } else if (II == Ident__has_feature) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | 
						|
      [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
        IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | 
						|
                                           diag::err_feature_check_malformed);
 | 
						|
        return II && HasFeature(*this, II->getName());
 | 
						|
      });
 | 
						|
  } else if (II == Ident__has_extension) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | 
						|
      [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
        IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | 
						|
                                           diag::err_feature_check_malformed);
 | 
						|
        return II && HasExtension(*this, II->getName());
 | 
						|
      });
 | 
						|
  } else if (II == Ident__has_builtin) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | 
						|
      [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
        IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | 
						|
                                           diag::err_feature_check_malformed);
 | 
						|
        const LangOptions &LangOpts = getLangOpts();
 | 
						|
        if (!II)
 | 
						|
          return false;
 | 
						|
        else if (II->getBuiltinID() != 0) {
 | 
						|
          switch (II->getBuiltinID()) {
 | 
						|
          case Builtin::BI__builtin_operator_new:
 | 
						|
          case Builtin::BI__builtin_operator_delete:
 | 
						|
            // denotes date of behavior change to support calling arbitrary
 | 
						|
            // usual allocation and deallocation functions. Required by libc++
 | 
						|
            return 201802;
 | 
						|
          default:
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
          return true;
 | 
						|
        } else if (II->getTokenID() != tok::identifier ||
 | 
						|
                   II->hasRevertedTokenIDToIdentifier()) {
 | 
						|
          // Treat all keywords that introduce a custom syntax of the form
 | 
						|
          //
 | 
						|
          //   '__some_keyword' '(' [...] ')'
 | 
						|
          //
 | 
						|
          // as being "builtin functions", even if the syntax isn't a valid
 | 
						|
          // function call (for example, because the builtin takes a type
 | 
						|
          // argument).
 | 
						|
          if (II->getName().startswith("__builtin_") ||
 | 
						|
              II->getName().startswith("__is_") ||
 | 
						|
              II->getName().startswith("__has_"))
 | 
						|
            return true;
 | 
						|
          return llvm::StringSwitch<bool>(II->getName())
 | 
						|
              .Case("__array_rank", true)
 | 
						|
              .Case("__array_extent", true)
 | 
						|
              .Case("__reference_binds_to_temporary", true)
 | 
						|
              .Case("__underlying_type", true)
 | 
						|
              .Default(false);
 | 
						|
        } else {
 | 
						|
          return llvm::StringSwitch<bool>(II->getName())
 | 
						|
              // Report builtin templates as being builtins.
 | 
						|
              .Case("__make_integer_seq", LangOpts.CPlusPlus)
 | 
						|
              .Case("__type_pack_element", LangOpts.CPlusPlus)
 | 
						|
              // Likewise for some builtin preprocessor macros.
 | 
						|
              // FIXME: This is inconsistent; we usually suggest detecting
 | 
						|
              // builtin macros via #ifdef. Don't add more cases here.
 | 
						|
              .Case("__is_target_arch", true)
 | 
						|
              .Case("__is_target_vendor", true)
 | 
						|
              .Case("__is_target_os", true)
 | 
						|
              .Case("__is_target_environment", true)
 | 
						|
              .Default(false);
 | 
						|
        }
 | 
						|
      });
 | 
						|
  } else if (II == Ident__is_identifier) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | 
						|
      [](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
        return Tok.is(tok::identifier);
 | 
						|
      });
 | 
						|
  } else if (II == Ident__has_attribute) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | 
						|
      [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
        IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | 
						|
                                           diag::err_feature_check_malformed);
 | 
						|
        return II ? hasAttribute(AttrSyntax::GNU, nullptr, II,
 | 
						|
                                 getTargetInfo(), getLangOpts()) : 0;
 | 
						|
      });
 | 
						|
  } else if (II == Ident__has_declspec) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | 
						|
      [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
        IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | 
						|
                                           diag::err_feature_check_malformed);
 | 
						|
        return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II,
 | 
						|
                                 getTargetInfo(), getLangOpts()) : 0;
 | 
						|
      });
 | 
						|
  } else if (II == Ident__has_cpp_attribute ||
 | 
						|
             II == Ident__has_c_attribute) {
 | 
						|
    bool IsCXX = II == Ident__has_cpp_attribute;
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(
 | 
						|
        OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
          IdentifierInfo *ScopeII = nullptr;
 | 
						|
          IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | 
						|
              Tok, *this, diag::err_feature_check_malformed);
 | 
						|
          if (!II)
 | 
						|
            return false;
 | 
						|
 | 
						|
          // It is possible to receive a scope token.  Read the "::", if it is
 | 
						|
          // available, and the subsequent identifier.
 | 
						|
          LexUnexpandedToken(Tok);
 | 
						|
          if (Tok.isNot(tok::coloncolon))
 | 
						|
            HasLexedNextToken = true;
 | 
						|
          else {
 | 
						|
            ScopeII = II;
 | 
						|
            LexUnexpandedToken(Tok);
 | 
						|
            II = ExpectFeatureIdentifierInfo(Tok, *this,
 | 
						|
                                             diag::err_feature_check_malformed);
 | 
						|
          }
 | 
						|
 | 
						|
          AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C;
 | 
						|
          return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
 | 
						|
                                   getLangOpts())
 | 
						|
                    : 0;
 | 
						|
        });
 | 
						|
  } else if (II == Ident__has_include ||
 | 
						|
             II == Ident__has_include_next) {
 | 
						|
    // The argument to these two builtins should be a parenthesized
 | 
						|
    // file name string literal using angle brackets (<>) or
 | 
						|
    // double-quotes ("").
 | 
						|
    bool Value;
 | 
						|
    if (II == Ident__has_include)
 | 
						|
      Value = EvaluateHasInclude(Tok, II, *this);
 | 
						|
    else
 | 
						|
      Value = EvaluateHasIncludeNext(Tok, II, *this);
 | 
						|
 | 
						|
    if (Tok.isNot(tok::r_paren))
 | 
						|
      return;
 | 
						|
    OS << (int)Value;
 | 
						|
    Tok.setKind(tok::numeric_constant);
 | 
						|
  } else if (II == Ident__has_warning) {
 | 
						|
    // The argument should be a parenthesized string literal.
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | 
						|
      [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
        std::string WarningName;
 | 
						|
        SourceLocation StrStartLoc = Tok.getLocation();
 | 
						|
 | 
						|
        HasLexedNextToken = Tok.is(tok::string_literal);
 | 
						|
        if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
 | 
						|
                                    /*AllowMacroExpansion=*/false))
 | 
						|
          return false;
 | 
						|
 | 
						|
        // FIXME: Should we accept "-R..." flags here, or should that be
 | 
						|
        // handled by a separate __has_remark?
 | 
						|
        if (WarningName.size() < 3 || WarningName[0] != '-' ||
 | 
						|
            WarningName[1] != 'W') {
 | 
						|
          Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        // Finally, check if the warning flags maps to a diagnostic group.
 | 
						|
        // We construct a SmallVector here to talk to getDiagnosticIDs().
 | 
						|
        // Although we don't use the result, this isn't a hot path, and not
 | 
						|
        // worth special casing.
 | 
						|
        SmallVector<diag::kind, 10> Diags;
 | 
						|
        return !getDiagnostics().getDiagnosticIDs()->
 | 
						|
                getDiagnosticsInGroup(diag::Flavor::WarningOrError,
 | 
						|
                                      WarningName.substr(2), Diags);
 | 
						|
      });
 | 
						|
  } else if (II == Ident__building_module) {
 | 
						|
    // The argument to this builtin should be an identifier. The
 | 
						|
    // builtin evaluates to 1 when that identifier names the module we are
 | 
						|
    // currently building.
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | 
						|
      [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
        IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | 
						|
                                       diag::err_expected_id_building_module);
 | 
						|
        return getLangOpts().isCompilingModule() && II &&
 | 
						|
               (II->getName() == getLangOpts().CurrentModule);
 | 
						|
      });
 | 
						|
  } else if (II == Ident__MODULE__) {
 | 
						|
    // The current module as an identifier.
 | 
						|
    OS << getLangOpts().CurrentModule;
 | 
						|
    IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
 | 
						|
    Tok.setIdentifierInfo(ModuleII);
 | 
						|
    Tok.setKind(ModuleII->getTokenID());
 | 
						|
  } else if (II == Ident__identifier) {
 | 
						|
    SourceLocation Loc = Tok.getLocation();
 | 
						|
 | 
						|
    // We're expecting '__identifier' '(' identifier ')'. Try to recover
 | 
						|
    // if the parens are missing.
 | 
						|
    LexNonComment(Tok);
 | 
						|
    if (Tok.isNot(tok::l_paren)) {
 | 
						|
      // No '(', use end of last token.
 | 
						|
      Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
 | 
						|
        << II << tok::l_paren;
 | 
						|
      // If the next token isn't valid as our argument, we can't recover.
 | 
						|
      if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
 | 
						|
        Tok.setKind(tok::identifier);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    SourceLocation LParenLoc = Tok.getLocation();
 | 
						|
    LexNonComment(Tok);
 | 
						|
 | 
						|
    if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
 | 
						|
      Tok.setKind(tok::identifier);
 | 
						|
    else {
 | 
						|
      Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
 | 
						|
        << Tok.getKind();
 | 
						|
      // Don't walk past anything that's not a real token.
 | 
						|
      if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Discard the ')', preserving 'Tok' as our result.
 | 
						|
    Token RParen;
 | 
						|
    LexNonComment(RParen);
 | 
						|
    if (RParen.isNot(tok::r_paren)) {
 | 
						|
      Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
 | 
						|
        << Tok.getKind() << tok::r_paren;
 | 
						|
      Diag(LParenLoc, diag::note_matching) << tok::l_paren;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  } else if (II == Ident__is_target_arch) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(
 | 
						|
        OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
          IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | 
						|
              Tok, *this, diag::err_feature_check_malformed);
 | 
						|
          return II && isTargetArch(getTargetInfo(), II);
 | 
						|
        });
 | 
						|
  } else if (II == Ident__is_target_vendor) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(
 | 
						|
        OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
          IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | 
						|
              Tok, *this, diag::err_feature_check_malformed);
 | 
						|
          return II && isTargetVendor(getTargetInfo(), II);
 | 
						|
        });
 | 
						|
  } else if (II == Ident__is_target_os) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(
 | 
						|
        OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
          IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | 
						|
              Tok, *this, diag::err_feature_check_malformed);
 | 
						|
          return II && isTargetOS(getTargetInfo(), II);
 | 
						|
        });
 | 
						|
  } else if (II == Ident__is_target_environment) {
 | 
						|
    EvaluateFeatureLikeBuiltinMacro(
 | 
						|
        OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | 
						|
          IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | 
						|
              Tok, *this, diag::err_feature_check_malformed);
 | 
						|
          return II && isTargetEnvironment(getTargetInfo(), II);
 | 
						|
        });
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown identifier!");
 | 
						|
  }
 | 
						|
  CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
 | 
						|
  Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
 | 
						|
  Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
 | 
						|
  // If the 'used' status changed, and the macro requires 'unused' warning,
 | 
						|
  // remove its SourceLocation from the warn-for-unused-macro locations.
 | 
						|
  if (MI->isWarnIfUnused() && !MI->isUsed())
 | 
						|
    WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
 | 
						|
  MI->setIsUsed(true);
 | 
						|
}
 |