forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			752 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			752 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/CGSCCPassManager.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/LazyCallGraph.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/PassManagerImpl.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/TimeProfiler.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <iterator>
 | 
						|
 | 
						|
#define DEBUG_TYPE "cgscc"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Explicit template instantiations and specialization definitions for core
 | 
						|
// template typedefs.
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
// Explicit instantiations for the core proxy templates.
 | 
						|
template class AllAnalysesOn<LazyCallGraph::SCC>;
 | 
						|
template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
 | 
						|
template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
 | 
						|
                           LazyCallGraph &, CGSCCUpdateResult &>;
 | 
						|
template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
 | 
						|
template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
 | 
						|
                                         LazyCallGraph::SCC, LazyCallGraph &>;
 | 
						|
template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
 | 
						|
 | 
						|
/// Explicitly specialize the pass manager run method to handle call graph
 | 
						|
/// updates.
 | 
						|
template <>
 | 
						|
PreservedAnalyses
 | 
						|
PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
 | 
						|
            CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
 | 
						|
                                      CGSCCAnalysisManager &AM,
 | 
						|
                                      LazyCallGraph &G, CGSCCUpdateResult &UR) {
 | 
						|
  // Request PassInstrumentation from analysis manager, will use it to run
 | 
						|
  // instrumenting callbacks for the passes later.
 | 
						|
  PassInstrumentation PI =
 | 
						|
      AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
 | 
						|
 | 
						|
  PreservedAnalyses PA = PreservedAnalyses::all();
 | 
						|
 | 
						|
  if (DebugLogging)
 | 
						|
    dbgs() << "Starting CGSCC pass manager run.\n";
 | 
						|
 | 
						|
  // The SCC may be refined while we are running passes over it, so set up
 | 
						|
  // a pointer that we can update.
 | 
						|
  LazyCallGraph::SCC *C = &InitialC;
 | 
						|
 | 
						|
  for (auto &Pass : Passes) {
 | 
						|
    if (DebugLogging)
 | 
						|
      dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
 | 
						|
 | 
						|
    // Check the PassInstrumentation's BeforePass callbacks before running the
 | 
						|
    // pass, skip its execution completely if asked to (callback returns false).
 | 
						|
    if (!PI.runBeforePass(*Pass, *C))
 | 
						|
      continue;
 | 
						|
 | 
						|
    PreservedAnalyses PassPA;
 | 
						|
    {
 | 
						|
      TimeTraceScope TimeScope(Pass->name());
 | 
						|
      PassPA = Pass->run(*C, AM, G, UR);
 | 
						|
    }
 | 
						|
 | 
						|
    if (UR.InvalidatedSCCs.count(C))
 | 
						|
      PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass);
 | 
						|
    else
 | 
						|
      PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C);
 | 
						|
 | 
						|
    // Update the SCC if necessary.
 | 
						|
    C = UR.UpdatedC ? UR.UpdatedC : C;
 | 
						|
 | 
						|
    // If the CGSCC pass wasn't able to provide a valid updated SCC, the
 | 
						|
    // current SCC may simply need to be skipped if invalid.
 | 
						|
    if (UR.InvalidatedSCCs.count(C)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // Check that we didn't miss any update scenario.
 | 
						|
    assert(C->begin() != C->end() && "Cannot have an empty SCC!");
 | 
						|
 | 
						|
    // Update the analysis manager as each pass runs and potentially
 | 
						|
    // invalidates analyses.
 | 
						|
    AM.invalidate(*C, PassPA);
 | 
						|
 | 
						|
    // Finally, we intersect the final preserved analyses to compute the
 | 
						|
    // aggregate preserved set for this pass manager.
 | 
						|
    PA.intersect(std::move(PassPA));
 | 
						|
 | 
						|
    // FIXME: Historically, the pass managers all called the LLVM context's
 | 
						|
    // yield function here. We don't have a generic way to acquire the
 | 
						|
    // context and it isn't yet clear what the right pattern is for yielding
 | 
						|
    // in the new pass manager so it is currently omitted.
 | 
						|
    // ...getContext().yield();
 | 
						|
  }
 | 
						|
 | 
						|
  // Before we mark all of *this* SCC's analyses as preserved below, intersect
 | 
						|
  // this with the cross-SCC preserved analysis set. This is used to allow
 | 
						|
  // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
 | 
						|
  // for them.
 | 
						|
  UR.CrossSCCPA.intersect(PA);
 | 
						|
 | 
						|
  // Invalidation was handled after each pass in the above loop for the current
 | 
						|
  // SCC. Therefore, the remaining analysis results in the AnalysisManager are
 | 
						|
  // preserved. We mark this with a set so that we don't need to inspect each
 | 
						|
  // one individually.
 | 
						|
  PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
 | 
						|
 | 
						|
  if (DebugLogging)
 | 
						|
    dbgs() << "Finished CGSCC pass manager run.\n";
 | 
						|
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
 | 
						|
    Module &M, const PreservedAnalyses &PA,
 | 
						|
    ModuleAnalysisManager::Invalidator &Inv) {
 | 
						|
  // If literally everything is preserved, we're done.
 | 
						|
  if (PA.areAllPreserved())
 | 
						|
    return false; // This is still a valid proxy.
 | 
						|
 | 
						|
  // If this proxy or the call graph is going to be invalidated, we also need
 | 
						|
  // to clear all the keys coming from that analysis.
 | 
						|
  //
 | 
						|
  // We also directly invalidate the FAM's module proxy if necessary, and if
 | 
						|
  // that proxy isn't preserved we can't preserve this proxy either. We rely on
 | 
						|
  // it to handle module -> function analysis invalidation in the face of
 | 
						|
  // structural changes and so if it's unavailable we conservatively clear the
 | 
						|
  // entire SCC layer as well rather than trying to do invalidation ourselves.
 | 
						|
  auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
 | 
						|
  if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
 | 
						|
      Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
 | 
						|
      Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
 | 
						|
    InnerAM->clear();
 | 
						|
 | 
						|
    // And the proxy itself should be marked as invalid so that we can observe
 | 
						|
    // the new call graph. This isn't strictly necessary because we cheat
 | 
						|
    // above, but is still useful.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Directly check if the relevant set is preserved so we can short circuit
 | 
						|
  // invalidating SCCs below.
 | 
						|
  bool AreSCCAnalysesPreserved =
 | 
						|
      PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
 | 
						|
 | 
						|
  // Ok, we have a graph, so we can propagate the invalidation down into it.
 | 
						|
  G->buildRefSCCs();
 | 
						|
  for (auto &RC : G->postorder_ref_sccs())
 | 
						|
    for (auto &C : RC) {
 | 
						|
      Optional<PreservedAnalyses> InnerPA;
 | 
						|
 | 
						|
      // Check to see whether the preserved set needs to be adjusted based on
 | 
						|
      // module-level analysis invalidation triggering deferred invalidation
 | 
						|
      // for this SCC.
 | 
						|
      if (auto *OuterProxy =
 | 
						|
              InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
 | 
						|
        for (const auto &OuterInvalidationPair :
 | 
						|
             OuterProxy->getOuterInvalidations()) {
 | 
						|
          AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
 | 
						|
          const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | 
						|
          if (Inv.invalidate(OuterAnalysisID, M, PA)) {
 | 
						|
            if (!InnerPA)
 | 
						|
              InnerPA = PA;
 | 
						|
            for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | 
						|
              InnerPA->abandon(InnerAnalysisID);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      // Check if we needed a custom PA set. If so we'll need to run the inner
 | 
						|
      // invalidation.
 | 
						|
      if (InnerPA) {
 | 
						|
        InnerAM->invalidate(C, *InnerPA);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise we only need to do invalidation if the original PA set didn't
 | 
						|
      // preserve all SCC analyses.
 | 
						|
      if (!AreSCCAnalysesPreserved)
 | 
						|
        InnerAM->invalidate(C, PA);
 | 
						|
    }
 | 
						|
 | 
						|
  // Return false to indicate that this result is still a valid proxy.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <>
 | 
						|
CGSCCAnalysisManagerModuleProxy::Result
 | 
						|
CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
 | 
						|
  // Force the Function analysis manager to also be available so that it can
 | 
						|
  // be accessed in an SCC analysis and proxied onward to function passes.
 | 
						|
  // FIXME: It is pretty awkward to just drop the result here and assert that
 | 
						|
  // we can find it again later.
 | 
						|
  (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
 | 
						|
 | 
						|
  return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
 | 
						|
 | 
						|
FunctionAnalysisManagerCGSCCProxy::Result
 | 
						|
FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
 | 
						|
                                       CGSCCAnalysisManager &AM,
 | 
						|
                                       LazyCallGraph &CG) {
 | 
						|
  // Collect the FunctionAnalysisManager from the Module layer and use that to
 | 
						|
  // build the proxy result.
 | 
						|
  //
 | 
						|
  // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
 | 
						|
  // invalidate the function analyses.
 | 
						|
  auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
 | 
						|
  Module &M = *C.begin()->getFunction().getParent();
 | 
						|
  auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
 | 
						|
  assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
 | 
						|
                     "proxy is run on the module prior to entering the CGSCC "
 | 
						|
                     "walk.");
 | 
						|
 | 
						|
  // Note that we special-case invalidation handling of this proxy in the CGSCC
 | 
						|
  // analysis manager's Module proxy. This avoids the need to do anything
 | 
						|
  // special here to recompute all of this if ever the FAM's module proxy goes
 | 
						|
  // away.
 | 
						|
  return Result(FAMProxy->getManager());
 | 
						|
}
 | 
						|
 | 
						|
bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
 | 
						|
    LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
 | 
						|
    CGSCCAnalysisManager::Invalidator &Inv) {
 | 
						|
  // If literally everything is preserved, we're done.
 | 
						|
  if (PA.areAllPreserved())
 | 
						|
    return false; // This is still a valid proxy.
 | 
						|
 | 
						|
  // If this proxy isn't marked as preserved, then even if the result remains
 | 
						|
  // valid, the key itself may no longer be valid, so we clear everything.
 | 
						|
  //
 | 
						|
  // Note that in order to preserve this proxy, a module pass must ensure that
 | 
						|
  // the FAM has been completely updated to handle the deletion of functions.
 | 
						|
  // Specifically, any FAM-cached results for those functions need to have been
 | 
						|
  // forcibly cleared. When preserved, this proxy will only invalidate results
 | 
						|
  // cached on functions *still in the module* at the end of the module pass.
 | 
						|
  auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
 | 
						|
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
 | 
						|
    for (LazyCallGraph::Node &N : C)
 | 
						|
      FAM->clear(N.getFunction(), N.getFunction().getName());
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Directly check if the relevant set is preserved.
 | 
						|
  bool AreFunctionAnalysesPreserved =
 | 
						|
      PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
 | 
						|
 | 
						|
  // Now walk all the functions to see if any inner analysis invalidation is
 | 
						|
  // necessary.
 | 
						|
  for (LazyCallGraph::Node &N : C) {
 | 
						|
    Function &F = N.getFunction();
 | 
						|
    Optional<PreservedAnalyses> FunctionPA;
 | 
						|
 | 
						|
    // Check to see whether the preserved set needs to be pruned based on
 | 
						|
    // SCC-level analysis invalidation that triggers deferred invalidation
 | 
						|
    // registered with the outer analysis manager proxy for this function.
 | 
						|
    if (auto *OuterProxy =
 | 
						|
            FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
 | 
						|
      for (const auto &OuterInvalidationPair :
 | 
						|
           OuterProxy->getOuterInvalidations()) {
 | 
						|
        AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
 | 
						|
        const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | 
						|
        if (Inv.invalidate(OuterAnalysisID, C, PA)) {
 | 
						|
          if (!FunctionPA)
 | 
						|
            FunctionPA = PA;
 | 
						|
          for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | 
						|
            FunctionPA->abandon(InnerAnalysisID);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Check if we needed a custom PA set, and if so we'll need to run the
 | 
						|
    // inner invalidation.
 | 
						|
    if (FunctionPA) {
 | 
						|
      FAM->invalidate(F, *FunctionPA);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we only need to do invalidation if the original PA set didn't
 | 
						|
    // preserve all function analyses.
 | 
						|
    if (!AreFunctionAnalysesPreserved)
 | 
						|
      FAM->invalidate(F, PA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Return false to indicate that this result is still a valid proxy.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
/// When a new SCC is created for the graph and there might be function
 | 
						|
/// analysis results cached for the functions now in that SCC two forms of
 | 
						|
/// updates are required.
 | 
						|
///
 | 
						|
/// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
 | 
						|
/// created so that any subsequent invalidation events to the SCC are
 | 
						|
/// propagated to the function analysis results cached for functions within it.
 | 
						|
///
 | 
						|
/// Second, if any of the functions within the SCC have analysis results with
 | 
						|
/// outer analysis dependencies, then those dependencies would point to the
 | 
						|
/// *wrong* SCC's analysis result. We forcibly invalidate the necessary
 | 
						|
/// function analyses so that they don't retain stale handles.
 | 
						|
static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
 | 
						|
                                         LazyCallGraph &G,
 | 
						|
                                         CGSCCAnalysisManager &AM) {
 | 
						|
  // Get the relevant function analysis manager.
 | 
						|
  auto &FAM =
 | 
						|
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
 | 
						|
 | 
						|
  // Now walk the functions in this SCC and invalidate any function analysis
 | 
						|
  // results that might have outer dependencies on an SCC analysis.
 | 
						|
  for (LazyCallGraph::Node &N : C) {
 | 
						|
    Function &F = N.getFunction();
 | 
						|
 | 
						|
    auto *OuterProxy =
 | 
						|
        FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
 | 
						|
    if (!OuterProxy)
 | 
						|
      // No outer analyses were queried, nothing to do.
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Forcibly abandon all the inner analyses with dependencies, but
 | 
						|
    // invalidate nothing else.
 | 
						|
    auto PA = PreservedAnalyses::all();
 | 
						|
    for (const auto &OuterInvalidationPair :
 | 
						|
         OuterProxy->getOuterInvalidations()) {
 | 
						|
      const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | 
						|
      for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | 
						|
        PA.abandon(InnerAnalysisID);
 | 
						|
    }
 | 
						|
 | 
						|
    // Now invalidate anything we found.
 | 
						|
    FAM.invalidate(F, PA);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
 | 
						|
/// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
 | 
						|
/// added SCCs.
 | 
						|
///
 | 
						|
/// The range of new SCCs must be in postorder already. The SCC they were split
 | 
						|
/// out of must be provided as \p C. The current node being mutated and
 | 
						|
/// triggering updates must be passed as \p N.
 | 
						|
///
 | 
						|
/// This function returns the SCC containing \p N. This will be either \p C if
 | 
						|
/// no new SCCs have been split out, or it will be the new SCC containing \p N.
 | 
						|
template <typename SCCRangeT>
 | 
						|
static LazyCallGraph::SCC *
 | 
						|
incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
 | 
						|
                       LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
 | 
						|
                       CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
 | 
						|
  using SCC = LazyCallGraph::SCC;
 | 
						|
 | 
						|
  if (NewSCCRange.begin() == NewSCCRange.end())
 | 
						|
    return C;
 | 
						|
 | 
						|
  // Add the current SCC to the worklist as its shape has changed.
 | 
						|
  UR.CWorklist.insert(C);
 | 
						|
  LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
 | 
						|
                    << "\n");
 | 
						|
 | 
						|
  SCC *OldC = C;
 | 
						|
 | 
						|
  // Update the current SCC. Note that if we have new SCCs, this must actually
 | 
						|
  // change the SCC.
 | 
						|
  assert(C != &*NewSCCRange.begin() &&
 | 
						|
         "Cannot insert new SCCs without changing current SCC!");
 | 
						|
  C = &*NewSCCRange.begin();
 | 
						|
  assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
 | 
						|
 | 
						|
  // If we had a cached FAM proxy originally, we will want to create more of
 | 
						|
  // them for each SCC that was split off.
 | 
						|
  bool NeedFAMProxy =
 | 
						|
      AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
 | 
						|
 | 
						|
  // We need to propagate an invalidation call to all but the newly current SCC
 | 
						|
  // because the outer pass manager won't do that for us after splitting them.
 | 
						|
  // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
 | 
						|
  // there are preserved analysis we can avoid invalidating them here for
 | 
						|
  // split-off SCCs.
 | 
						|
  // We know however that this will preserve any FAM proxy so go ahead and mark
 | 
						|
  // that.
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | 
						|
  AM.invalidate(*OldC, PA);
 | 
						|
 | 
						|
  // Ensure the now-current SCC's function analyses are updated.
 | 
						|
  if (NeedFAMProxy)
 | 
						|
    updateNewSCCFunctionAnalyses(*C, G, AM);
 | 
						|
 | 
						|
  for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
 | 
						|
                                            NewSCCRange.end()))) {
 | 
						|
    assert(C != &NewC && "No need to re-visit the current SCC!");
 | 
						|
    assert(OldC != &NewC && "Already handled the original SCC!");
 | 
						|
    UR.CWorklist.insert(&NewC);
 | 
						|
    LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
 | 
						|
 | 
						|
    // Ensure new SCCs' function analyses are updated.
 | 
						|
    if (NeedFAMProxy)
 | 
						|
      updateNewSCCFunctionAnalyses(NewC, G, AM);
 | 
						|
 | 
						|
    // Also propagate a normal invalidation to the new SCC as only the current
 | 
						|
    // will get one from the pass manager infrastructure.
 | 
						|
    AM.invalidate(NewC, PA);
 | 
						|
  }
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
 | 
						|
    LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
 | 
						|
    CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool FunctionPass) {
 | 
						|
  using Node = LazyCallGraph::Node;
 | 
						|
  using Edge = LazyCallGraph::Edge;
 | 
						|
  using SCC = LazyCallGraph::SCC;
 | 
						|
  using RefSCC = LazyCallGraph::RefSCC;
 | 
						|
 | 
						|
  RefSCC &InitialRC = InitialC.getOuterRefSCC();
 | 
						|
  SCC *C = &InitialC;
 | 
						|
  RefSCC *RC = &InitialRC;
 | 
						|
  Function &F = N.getFunction();
 | 
						|
 | 
						|
  // Walk the function body and build up the set of retained, promoted, and
 | 
						|
  // demoted edges.
 | 
						|
  SmallVector<Constant *, 16> Worklist;
 | 
						|
  SmallPtrSet<Constant *, 16> Visited;
 | 
						|
  SmallPtrSet<Node *, 16> RetainedEdges;
 | 
						|
  SmallSetVector<Node *, 4> PromotedRefTargets;
 | 
						|
  SmallSetVector<Node *, 4> DemotedCallTargets;
 | 
						|
  SmallSetVector<Node *, 4> NewCallEdges;
 | 
						|
  SmallSetVector<Node *, 4> NewRefEdges;
 | 
						|
 | 
						|
  // First walk the function and handle all called functions. We do this first
 | 
						|
  // because if there is a single call edge, whether there are ref edges is
 | 
						|
  // irrelevant.
 | 
						|
  for (Instruction &I : instructions(F))
 | 
						|
    if (auto CS = CallSite(&I))
 | 
						|
      if (Function *Callee = CS.getCalledFunction())
 | 
						|
        if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
 | 
						|
          Node &CalleeN = *G.lookup(*Callee);
 | 
						|
          Edge *E = N->lookup(CalleeN);
 | 
						|
          assert((E || !FunctionPass) &&
 | 
						|
                 "No function transformations should introduce *new* "
 | 
						|
                 "call edges! Any new calls should be modeled as "
 | 
						|
                 "promoted existing ref edges!");
 | 
						|
          bool Inserted = RetainedEdges.insert(&CalleeN).second;
 | 
						|
          (void)Inserted;
 | 
						|
          assert(Inserted && "We should never visit a function twice.");
 | 
						|
          if (!E)
 | 
						|
            NewCallEdges.insert(&CalleeN);
 | 
						|
          else if (!E->isCall())
 | 
						|
            PromotedRefTargets.insert(&CalleeN);
 | 
						|
        }
 | 
						|
 | 
						|
  // Now walk all references.
 | 
						|
  for (Instruction &I : instructions(F))
 | 
						|
    for (Value *Op : I.operand_values())
 | 
						|
      if (auto *C = dyn_cast<Constant>(Op))
 | 
						|
        if (Visited.insert(C).second)
 | 
						|
          Worklist.push_back(C);
 | 
						|
 | 
						|
  auto VisitRef = [&](Function &Referee) {
 | 
						|
    Node &RefereeN = *G.lookup(Referee);
 | 
						|
    Edge *E = N->lookup(RefereeN);
 | 
						|
    assert((E || !FunctionPass) &&
 | 
						|
           "No function transformations should introduce *new* ref "
 | 
						|
           "edges! Any new ref edges would require IPO which "
 | 
						|
           "function passes aren't allowed to do!");
 | 
						|
    bool Inserted = RetainedEdges.insert(&RefereeN).second;
 | 
						|
    (void)Inserted;
 | 
						|
    assert(Inserted && "We should never visit a function twice.");
 | 
						|
    if (!E)
 | 
						|
      NewRefEdges.insert(&RefereeN);
 | 
						|
    else if (E->isCall())
 | 
						|
      DemotedCallTargets.insert(&RefereeN);
 | 
						|
  };
 | 
						|
  LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
 | 
						|
 | 
						|
  // Handle new ref edges.
 | 
						|
  for (Node *RefTarget : NewRefEdges) {
 | 
						|
    SCC &TargetC = *G.lookupSCC(*RefTarget);
 | 
						|
    RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | 
						|
    (void)TargetRC;
 | 
						|
    // TODO: This only allows trivial edges to be added for now.
 | 
						|
    assert((RC == &TargetRC ||
 | 
						|
           RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
 | 
						|
    RC->insertTrivialRefEdge(N, *RefTarget);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle new call edges.
 | 
						|
  for (Node *CallTarget : NewCallEdges) {
 | 
						|
    SCC &TargetC = *G.lookupSCC(*CallTarget);
 | 
						|
    RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | 
						|
    (void)TargetRC;
 | 
						|
    // TODO: This only allows trivial edges to be added for now.
 | 
						|
    assert((RC == &TargetRC ||
 | 
						|
           RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
 | 
						|
    RC->insertTrivialCallEdge(N, *CallTarget);
 | 
						|
  }
 | 
						|
 | 
						|
  // Include synthetic reference edges to known, defined lib functions.
 | 
						|
  for (auto *F : G.getLibFunctions())
 | 
						|
    // While the list of lib functions doesn't have repeats, don't re-visit
 | 
						|
    // anything handled above.
 | 
						|
    if (!Visited.count(F))
 | 
						|
      VisitRef(*F);
 | 
						|
 | 
						|
  // First remove all of the edges that are no longer present in this function.
 | 
						|
  // The first step makes these edges uniformly ref edges and accumulates them
 | 
						|
  // into a separate data structure so removal doesn't invalidate anything.
 | 
						|
  SmallVector<Node *, 4> DeadTargets;
 | 
						|
  for (Edge &E : *N) {
 | 
						|
    if (RetainedEdges.count(&E.getNode()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SCC &TargetC = *G.lookupSCC(E.getNode());
 | 
						|
    RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | 
						|
    if (&TargetRC == RC && E.isCall()) {
 | 
						|
      if (C != &TargetC) {
 | 
						|
        // For separate SCCs this is trivial.
 | 
						|
        RC->switchTrivialInternalEdgeToRef(N, E.getNode());
 | 
						|
      } else {
 | 
						|
        // Now update the call graph.
 | 
						|
        C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
 | 
						|
                                   G, N, C, AM, UR);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that this is ready for actual removal, put it into our list.
 | 
						|
    DeadTargets.push_back(&E.getNode());
 | 
						|
  }
 | 
						|
  // Remove the easy cases quickly and actually pull them out of our list.
 | 
						|
  DeadTargets.erase(
 | 
						|
      llvm::remove_if(DeadTargets,
 | 
						|
                      [&](Node *TargetN) {
 | 
						|
                        SCC &TargetC = *G.lookupSCC(*TargetN);
 | 
						|
                        RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | 
						|
 | 
						|
                        // We can't trivially remove internal targets, so skip
 | 
						|
                        // those.
 | 
						|
                        if (&TargetRC == RC)
 | 
						|
                          return false;
 | 
						|
 | 
						|
                        RC->removeOutgoingEdge(N, *TargetN);
 | 
						|
                        LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
 | 
						|
                                          << N << "' to '" << TargetN << "'\n");
 | 
						|
                        return true;
 | 
						|
                      }),
 | 
						|
      DeadTargets.end());
 | 
						|
 | 
						|
  // Now do a batch removal of the internal ref edges left.
 | 
						|
  auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
 | 
						|
  if (!NewRefSCCs.empty()) {
 | 
						|
    // The old RefSCC is dead, mark it as such.
 | 
						|
    UR.InvalidatedRefSCCs.insert(RC);
 | 
						|
 | 
						|
    // Note that we don't bother to invalidate analyses as ref-edge
 | 
						|
    // connectivity is not really observable in any way and is intended
 | 
						|
    // exclusively to be used for ordering of transforms rather than for
 | 
						|
    // analysis conclusions.
 | 
						|
 | 
						|
    // Update RC to the "bottom".
 | 
						|
    assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
 | 
						|
    RC = &C->getOuterRefSCC();
 | 
						|
    assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
 | 
						|
 | 
						|
    // The RC worklist is in reverse postorder, so we enqueue the new ones in
 | 
						|
    // RPO except for the one which contains the source node as that is the
 | 
						|
    // "bottom" we will continue processing in the bottom-up walk.
 | 
						|
    assert(NewRefSCCs.front() == RC &&
 | 
						|
           "New current RefSCC not first in the returned list!");
 | 
						|
    for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
 | 
						|
                                                  NewRefSCCs.end()))) {
 | 
						|
      assert(NewRC != RC && "Should not encounter the current RefSCC further "
 | 
						|
                            "in the postorder list of new RefSCCs.");
 | 
						|
      UR.RCWorklist.insert(NewRC);
 | 
						|
      LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
 | 
						|
                        << *NewRC << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Next demote all the call edges that are now ref edges. This helps make
 | 
						|
  // the SCCs small which should minimize the work below as we don't want to
 | 
						|
  // form cycles that this would break.
 | 
						|
  for (Node *RefTarget : DemotedCallTargets) {
 | 
						|
    SCC &TargetC = *G.lookupSCC(*RefTarget);
 | 
						|
    RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | 
						|
 | 
						|
    // The easy case is when the target RefSCC is not this RefSCC. This is
 | 
						|
    // only supported when the target RefSCC is a child of this RefSCC.
 | 
						|
    if (&TargetRC != RC) {
 | 
						|
      assert(RC->isAncestorOf(TargetRC) &&
 | 
						|
             "Cannot potentially form RefSCC cycles here!");
 | 
						|
      RC->switchOutgoingEdgeToRef(N, *RefTarget);
 | 
						|
      LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
 | 
						|
                        << "' to '" << *RefTarget << "'\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We are switching an internal call edge to a ref edge. This may split up
 | 
						|
    // some SCCs.
 | 
						|
    if (C != &TargetC) {
 | 
						|
      // For separate SCCs this is trivial.
 | 
						|
      RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now update the call graph.
 | 
						|
    C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
 | 
						|
                               C, AM, UR);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now promote ref edges into call edges.
 | 
						|
  for (Node *CallTarget : PromotedRefTargets) {
 | 
						|
    SCC &TargetC = *G.lookupSCC(*CallTarget);
 | 
						|
    RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | 
						|
 | 
						|
    // The easy case is when the target RefSCC is not this RefSCC. This is
 | 
						|
    // only supported when the target RefSCC is a child of this RefSCC.
 | 
						|
    if (&TargetRC != RC) {
 | 
						|
      assert(RC->isAncestorOf(TargetRC) &&
 | 
						|
             "Cannot potentially form RefSCC cycles here!");
 | 
						|
      RC->switchOutgoingEdgeToCall(N, *CallTarget);
 | 
						|
      LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
 | 
						|
                        << "' to '" << *CallTarget << "'\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
 | 
						|
                      << N << "' to '" << *CallTarget << "'\n");
 | 
						|
 | 
						|
    // Otherwise we are switching an internal ref edge to a call edge. This
 | 
						|
    // may merge away some SCCs, and we add those to the UpdateResult. We also
 | 
						|
    // need to make sure to update the worklist in the event SCCs have moved
 | 
						|
    // before the current one in the post-order sequence
 | 
						|
    bool HasFunctionAnalysisProxy = false;
 | 
						|
    auto InitialSCCIndex = RC->find(*C) - RC->begin();
 | 
						|
    bool FormedCycle = RC->switchInternalEdgeToCall(
 | 
						|
        N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
 | 
						|
          for (SCC *MergedC : MergedSCCs) {
 | 
						|
            assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
 | 
						|
 | 
						|
            HasFunctionAnalysisProxy |=
 | 
						|
                AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
 | 
						|
                    *MergedC) != nullptr;
 | 
						|
 | 
						|
            // Mark that this SCC will no longer be valid.
 | 
						|
            UR.InvalidatedSCCs.insert(MergedC);
 | 
						|
 | 
						|
            // FIXME: We should really do a 'clear' here to forcibly release
 | 
						|
            // memory, but we don't have a good way of doing that and
 | 
						|
            // preserving the function analyses.
 | 
						|
            auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
 | 
						|
            PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | 
						|
            AM.invalidate(*MergedC, PA);
 | 
						|
          }
 | 
						|
        });
 | 
						|
 | 
						|
    // If we formed a cycle by creating this call, we need to update more data
 | 
						|
    // structures.
 | 
						|
    if (FormedCycle) {
 | 
						|
      C = &TargetC;
 | 
						|
      assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
 | 
						|
 | 
						|
      // If one of the invalidated SCCs had a cached proxy to a function
 | 
						|
      // analysis manager, we need to create a proxy in the new current SCC as
 | 
						|
      // the invalidated SCCs had their functions moved.
 | 
						|
      if (HasFunctionAnalysisProxy)
 | 
						|
        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
 | 
						|
 | 
						|
      // Any analyses cached for this SCC are no longer precise as the shape
 | 
						|
      // has changed by introducing this cycle. However, we have taken care to
 | 
						|
      // update the proxies so it remains valide.
 | 
						|
      auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
 | 
						|
      PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | 
						|
      AM.invalidate(*C, PA);
 | 
						|
    }
 | 
						|
    auto NewSCCIndex = RC->find(*C) - RC->begin();
 | 
						|
    // If we have actually moved an SCC to be topologically "below" the current
 | 
						|
    // one due to merging, we will need to revisit the current SCC after
 | 
						|
    // visiting those moved SCCs.
 | 
						|
    //
 | 
						|
    // It is critical that we *do not* revisit the current SCC unless we
 | 
						|
    // actually move SCCs in the process of merging because otherwise we may
 | 
						|
    // form a cycle where an SCC is split apart, merged, split, merged and so
 | 
						|
    // on infinitely.
 | 
						|
    if (InitialSCCIndex < NewSCCIndex) {
 | 
						|
      // Put our current SCC back onto the worklist as we'll visit other SCCs
 | 
						|
      // that are now definitively ordered prior to the current one in the
 | 
						|
      // post-order sequence, and may end up observing more precise context to
 | 
						|
      // optimize the current SCC.
 | 
						|
      UR.CWorklist.insert(C);
 | 
						|
      LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
 | 
						|
                        << "\n");
 | 
						|
      // Enqueue in reverse order as we pop off the back of the worklist.
 | 
						|
      for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
 | 
						|
                                                  RC->begin() + NewSCCIndex))) {
 | 
						|
        UR.CWorklist.insert(&MovedC);
 | 
						|
        LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
 | 
						|
                          << MovedC << "\n");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
 | 
						|
  assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
 | 
						|
  assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
 | 
						|
 | 
						|
  // Record the current RefSCC and SCC for higher layers of the CGSCC pass
 | 
						|
  // manager now that all the updates have been applied.
 | 
						|
  if (RC != &InitialRC)
 | 
						|
    UR.UpdatedRC = RC;
 | 
						|
  if (C != &InitialC)
 | 
						|
    UR.UpdatedC = C;
 | 
						|
 | 
						|
  return *C;
 | 
						|
}
 | 
						|
 | 
						|
LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
 | 
						|
    LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
 | 
						|
    CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
 | 
						|
  return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR,
 | 
						|
                                           /* FunctionPass */ true);
 | 
						|
}
 | 
						|
LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
 | 
						|
    LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
 | 
						|
    CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
 | 
						|
  return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR,
 | 
						|
                                           /* FunctionPass */ false);
 | 
						|
}
 |