forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			490 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements a demanded bits analysis. A demanded bit is one that
 | 
						|
// contributes to a result; bits that are not demanded can be either zero or
 | 
						|
// one without affecting control or data flow. For example in this sequence:
 | 
						|
//
 | 
						|
//   %1 = add i32 %x, %y
 | 
						|
//   %2 = trunc i32 %1 to i16
 | 
						|
//
 | 
						|
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
 | 
						|
// trunc.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/DemandedBits.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstdint>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "demanded-bits"
 | 
						|
 | 
						|
char DemandedBitsWrapperPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
 | 
						|
                      "Demanded bits analysis", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
 | 
						|
                    "Demanded bits analysis", false, false)
 | 
						|
 | 
						|
DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
 | 
						|
  initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
 | 
						|
  DB->print(OS);
 | 
						|
}
 | 
						|
 | 
						|
static bool isAlwaysLive(Instruction *I) {
 | 
						|
  return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
 | 
						|
         I->mayHaveSideEffects();
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBits::determineLiveOperandBits(
 | 
						|
    const Instruction *UserI, const Value *Val, unsigned OperandNo,
 | 
						|
    const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
 | 
						|
    bool &KnownBitsComputed) {
 | 
						|
  unsigned BitWidth = AB.getBitWidth();
 | 
						|
 | 
						|
  // We're called once per operand, but for some instructions, we need to
 | 
						|
  // compute known bits of both operands in order to determine the live bits of
 | 
						|
  // either (when both operands are instructions themselves). We don't,
 | 
						|
  // however, want to do this twice, so we cache the result in APInts that live
 | 
						|
  // in the caller. For the two-relevant-operands case, both operand values are
 | 
						|
  // provided here.
 | 
						|
  auto ComputeKnownBits =
 | 
						|
      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
 | 
						|
        if (KnownBitsComputed)
 | 
						|
          return;
 | 
						|
        KnownBitsComputed = true;
 | 
						|
 | 
						|
        const DataLayout &DL = UserI->getModule()->getDataLayout();
 | 
						|
        Known = KnownBits(BitWidth);
 | 
						|
        computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
 | 
						|
 | 
						|
        if (V2) {
 | 
						|
          Known2 = KnownBits(BitWidth);
 | 
						|
          computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
 | 
						|
        }
 | 
						|
      };
 | 
						|
 | 
						|
  switch (UserI->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Invoke:
 | 
						|
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
 | 
						|
      switch (II->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::bswap:
 | 
						|
        // The alive bits of the input are the swapped alive bits of
 | 
						|
        // the output.
 | 
						|
        AB = AOut.byteSwap();
 | 
						|
        break;
 | 
						|
      case Intrinsic::bitreverse:
 | 
						|
        // The alive bits of the input are the reversed alive bits of
 | 
						|
        // the output.
 | 
						|
        AB = AOut.reverseBits();
 | 
						|
        break;
 | 
						|
      case Intrinsic::ctlz:
 | 
						|
        if (OperandNo == 0) {
 | 
						|
          // We need some output bits, so we need all bits of the
 | 
						|
          // input to the left of, and including, the leftmost bit
 | 
						|
          // known to be one.
 | 
						|
          ComputeKnownBits(BitWidth, Val, nullptr);
 | 
						|
          AB = APInt::getHighBitsSet(BitWidth,
 | 
						|
                 std::min(BitWidth, Known.countMaxLeadingZeros()+1));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Intrinsic::cttz:
 | 
						|
        if (OperandNo == 0) {
 | 
						|
          // We need some output bits, so we need all bits of the
 | 
						|
          // input to the right of, and including, the rightmost bit
 | 
						|
          // known to be one.
 | 
						|
          ComputeKnownBits(BitWidth, Val, nullptr);
 | 
						|
          AB = APInt::getLowBitsSet(BitWidth,
 | 
						|
                 std::min(BitWidth, Known.countMaxTrailingZeros()+1));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Intrinsic::fshl:
 | 
						|
      case Intrinsic::fshr: {
 | 
						|
        const APInt *SA;
 | 
						|
        if (OperandNo == 2) {
 | 
						|
          // Shift amount is modulo the bitwidth. For powers of two we have
 | 
						|
          // SA % BW == SA & (BW - 1).
 | 
						|
          if (isPowerOf2_32(BitWidth))
 | 
						|
            AB = BitWidth - 1;
 | 
						|
        } else if (match(II->getOperand(2), m_APInt(SA))) {
 | 
						|
          // Normalize to funnel shift left. APInt shifts of BitWidth are well-
 | 
						|
          // defined, so no need to special-case zero shifts here.
 | 
						|
          uint64_t ShiftAmt = SA->urem(BitWidth);
 | 
						|
          if (II->getIntrinsicID() == Intrinsic::fshr)
 | 
						|
            ShiftAmt = BitWidth - ShiftAmt;
 | 
						|
 | 
						|
          if (OperandNo == 0)
 | 
						|
            AB = AOut.lshr(ShiftAmt);
 | 
						|
          else if (OperandNo == 1)
 | 
						|
            AB = AOut.shl(BitWidth - ShiftAmt);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      }
 | 
						|
    break;
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // Find the highest live output bit. We don't need any more input
 | 
						|
    // bits than that (adds, and thus subtracts, ripple only to the
 | 
						|
    // left).
 | 
						|
    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
    if (OperandNo == 0) {
 | 
						|
      const APInt *ShiftAmtC;
 | 
						|
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
 | 
						|
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
 | 
						|
        AB = AOut.lshr(ShiftAmt);
 | 
						|
 | 
						|
        // If the shift is nuw/nsw, then the high bits are not dead
 | 
						|
        // (because we've promised that they *must* be zero).
 | 
						|
        const ShlOperator *S = cast<ShlOperator>(UserI);
 | 
						|
        if (S->hasNoSignedWrap())
 | 
						|
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
 | 
						|
        else if (S->hasNoUnsignedWrap())
 | 
						|
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    if (OperandNo == 0) {
 | 
						|
      const APInt *ShiftAmtC;
 | 
						|
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
 | 
						|
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
 | 
						|
        AB = AOut.shl(ShiftAmt);
 | 
						|
 | 
						|
        // If the shift is exact, then the low bits are not dead
 | 
						|
        // (they must be zero).
 | 
						|
        if (cast<LShrOperator>(UserI)->isExact())
 | 
						|
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::AShr:
 | 
						|
    if (OperandNo == 0) {
 | 
						|
      const APInt *ShiftAmtC;
 | 
						|
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
 | 
						|
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
 | 
						|
        AB = AOut.shl(ShiftAmt);
 | 
						|
        // Because the high input bit is replicated into the
 | 
						|
        // high-order bits of the result, if we need any of those
 | 
						|
        // bits, then we must keep the highest input bit.
 | 
						|
        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
 | 
						|
            .getBoolValue())
 | 
						|
          AB.setSignBit();
 | 
						|
 | 
						|
        // If the shift is exact, then the low bits are not dead
 | 
						|
        // (they must be zero).
 | 
						|
        if (cast<AShrOperator>(UserI)->isExact())
 | 
						|
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::And:
 | 
						|
    AB = AOut;
 | 
						|
 | 
						|
    // For bits that are known zero, the corresponding bits in the
 | 
						|
    // other operand are dead (unless they're both zero, in which
 | 
						|
    // case they can't both be dead, so just mark the LHS bits as
 | 
						|
    // dead).
 | 
						|
    ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
 | 
						|
    if (OperandNo == 0)
 | 
						|
      AB &= ~Known2.Zero;
 | 
						|
    else
 | 
						|
      AB &= ~(Known.Zero & ~Known2.Zero);
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    AB = AOut;
 | 
						|
 | 
						|
    // For bits that are known one, the corresponding bits in the
 | 
						|
    // other operand are dead (unless they're both one, in which
 | 
						|
    // case they can't both be dead, so just mark the LHS bits as
 | 
						|
    // dead).
 | 
						|
    ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
 | 
						|
    if (OperandNo == 0)
 | 
						|
      AB &= ~Known2.One;
 | 
						|
    else
 | 
						|
      AB &= ~(Known.One & ~Known2.One);
 | 
						|
    break;
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::PHI:
 | 
						|
    AB = AOut;
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc:
 | 
						|
    AB = AOut.zext(BitWidth);
 | 
						|
    break;
 | 
						|
  case Instruction::ZExt:
 | 
						|
    AB = AOut.trunc(BitWidth);
 | 
						|
    break;
 | 
						|
  case Instruction::SExt:
 | 
						|
    AB = AOut.trunc(BitWidth);
 | 
						|
    // Because the high input bit is replicated into the
 | 
						|
    // high-order bits of the result, if we need any of those
 | 
						|
    // bits, then we must keep the highest input bit.
 | 
						|
    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
 | 
						|
                                      AOut.getBitWidth() - BitWidth))
 | 
						|
        .getBoolValue())
 | 
						|
      AB.setSignBit();
 | 
						|
    break;
 | 
						|
  case Instruction::Select:
 | 
						|
    if (OperandNo != 0)
 | 
						|
      AB = AOut;
 | 
						|
    break;
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    if (OperandNo == 0)
 | 
						|
      AB = AOut;
 | 
						|
    break;
 | 
						|
  case Instruction::InsertElement:
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    if (OperandNo == 0 || OperandNo == 1)
 | 
						|
      AB = AOut;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
 | 
						|
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  DB.emplace(F, AC, DT);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBitsWrapperPass::releaseMemory() {
 | 
						|
  DB.reset();
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBits::performAnalysis() {
 | 
						|
  if (Analyzed)
 | 
						|
    // Analysis already completed for this function.
 | 
						|
    return;
 | 
						|
  Analyzed = true;
 | 
						|
 | 
						|
  Visited.clear();
 | 
						|
  AliveBits.clear();
 | 
						|
  DeadUses.clear();
 | 
						|
 | 
						|
  SmallSetVector<Instruction*, 16> Worklist;
 | 
						|
 | 
						|
  // Collect the set of "root" instructions that are known live.
 | 
						|
  for (Instruction &I : instructions(F)) {
 | 
						|
    if (!isAlwaysLive(&I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
 | 
						|
    // For integer-valued instructions, set up an initial empty set of alive
 | 
						|
    // bits and add the instruction to the work list. For other instructions
 | 
						|
    // add their operands to the work list (for integer values operands, mark
 | 
						|
    // all bits as live).
 | 
						|
    Type *T = I.getType();
 | 
						|
    if (T->isIntOrIntVectorTy()) {
 | 
						|
      if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
 | 
						|
        Worklist.insert(&I);
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-integer-typed instructions...
 | 
						|
    for (Use &OI : I.operands()) {
 | 
						|
      if (Instruction *J = dyn_cast<Instruction>(OI)) {
 | 
						|
        Type *T = J->getType();
 | 
						|
        if (T->isIntOrIntVectorTy())
 | 
						|
          AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits());
 | 
						|
        else
 | 
						|
          Visited.insert(J);
 | 
						|
        Worklist.insert(J);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // To save memory, we don't add I to the Visited set here. Instead, we
 | 
						|
    // check isAlwaysLive on every instruction when searching for dead
 | 
						|
    // instructions later (we need to check isAlwaysLive for the
 | 
						|
    // integer-typed instructions anyway).
 | 
						|
  }
 | 
						|
 | 
						|
  // Propagate liveness backwards to operands.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *UserI = Worklist.pop_back_val();
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
 | 
						|
    APInt AOut;
 | 
						|
    bool InputIsKnownDead = false;
 | 
						|
    if (UserI->getType()->isIntOrIntVectorTy()) {
 | 
						|
      AOut = AliveBits[UserI];
 | 
						|
      LLVM_DEBUG(dbgs() << " Alive Out: 0x"
 | 
						|
                        << Twine::utohexstr(AOut.getLimitedValue()));
 | 
						|
 | 
						|
      // If all bits of the output are dead, then all bits of the input
 | 
						|
      // are also dead.
 | 
						|
      InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
    KnownBits Known, Known2;
 | 
						|
    bool KnownBitsComputed = false;
 | 
						|
    // Compute the set of alive bits for each operand. These are anded into the
 | 
						|
    // existing set, if any, and if that changes the set of alive bits, the
 | 
						|
    // operand is added to the work-list.
 | 
						|
    for (Use &OI : UserI->operands()) {
 | 
						|
      // We also want to detect dead uses of arguments, but will only store
 | 
						|
      // demanded bits for instructions.
 | 
						|
      Instruction *I = dyn_cast<Instruction>(OI);
 | 
						|
      if (!I && !isa<Argument>(OI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      Type *T = OI->getType();
 | 
						|
      if (T->isIntOrIntVectorTy()) {
 | 
						|
        unsigned BitWidth = T->getScalarSizeInBits();
 | 
						|
        APInt AB = APInt::getAllOnesValue(BitWidth);
 | 
						|
        if (InputIsKnownDead) {
 | 
						|
          AB = APInt(BitWidth, 0);
 | 
						|
        } else {
 | 
						|
          // Bits of each operand that are used to compute alive bits of the
 | 
						|
          // output are alive, all others are dead.
 | 
						|
          determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
 | 
						|
                                   Known, Known2, KnownBitsComputed);
 | 
						|
 | 
						|
          // Keep track of uses which have no demanded bits.
 | 
						|
          if (AB.isNullValue())
 | 
						|
            DeadUses.insert(&OI);
 | 
						|
          else
 | 
						|
            DeadUses.erase(&OI);
 | 
						|
        }
 | 
						|
 | 
						|
        if (I) {
 | 
						|
          // If we've added to the set of alive bits (or the operand has not
 | 
						|
          // been previously visited), then re-queue the operand to be visited
 | 
						|
          // again.
 | 
						|
          auto Res = AliveBits.try_emplace(I);
 | 
						|
          if (Res.second || (AB |= Res.first->second) != Res.first->second) {
 | 
						|
            Res.first->second = std::move(AB);
 | 
						|
            Worklist.insert(I);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (I && Visited.insert(I).second) {
 | 
						|
        Worklist.insert(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APInt DemandedBits::getDemandedBits(Instruction *I) {
 | 
						|
  performAnalysis();
 | 
						|
 | 
						|
  auto Found = AliveBits.find(I);
 | 
						|
  if (Found != AliveBits.end())
 | 
						|
    return Found->second;
 | 
						|
 | 
						|
  const DataLayout &DL = I->getModule()->getDataLayout();
 | 
						|
  return APInt::getAllOnesValue(
 | 
						|
      DL.getTypeSizeInBits(I->getType()->getScalarType()));
 | 
						|
}
 | 
						|
 | 
						|
bool DemandedBits::isInstructionDead(Instruction *I) {
 | 
						|
  performAnalysis();
 | 
						|
 | 
						|
  return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
 | 
						|
    !isAlwaysLive(I);
 | 
						|
}
 | 
						|
 | 
						|
bool DemandedBits::isUseDead(Use *U) {
 | 
						|
  // We only track integer uses, everything else is assumed live.
 | 
						|
  if (!(*U)->getType()->isIntOrIntVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Uses by always-live instructions are never dead.
 | 
						|
  Instruction *UserI = cast<Instruction>(U->getUser());
 | 
						|
  if (isAlwaysLive(UserI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  performAnalysis();
 | 
						|
  if (DeadUses.count(U))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If no output bits are demanded, no input bits are demanded and the use
 | 
						|
  // is dead. These uses might not be explicitly present in the DeadUses map.
 | 
						|
  if (UserI->getType()->isIntOrIntVectorTy()) {
 | 
						|
    auto Found = AliveBits.find(UserI);
 | 
						|
    if (Found != AliveBits.end() && Found->second.isNullValue())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void DemandedBits::print(raw_ostream &OS) {
 | 
						|
  performAnalysis();
 | 
						|
  for (auto &KV : AliveBits) {
 | 
						|
    OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
 | 
						|
       << " for " << *KV.first << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createDemandedBitsWrapperPass() {
 | 
						|
  return new DemandedBitsWrapperPass();
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey DemandedBitsAnalysis::Key;
 | 
						|
 | 
						|
DemandedBits DemandedBitsAnalysis::run(Function &F,
 | 
						|
                                             FunctionAnalysisManager &AM) {
 | 
						|
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  return DemandedBits(F, AC, DT);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
 | 
						|
                                               FunctionAnalysisManager &AM) {
 | 
						|
  AM.getResult<DemandedBitsAnalysis>(F).print(OS);
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 |