forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			513 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			513 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- DependenceGraphBuilder.cpp ------------------------------------------==//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// This file implements common steps of the build algorithm for construction
 | 
						|
// of dependence graphs such as DDG and PDG.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/DependenceGraphBuilder.h"
 | 
						|
#include "llvm/ADT/EnumeratedArray.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/DDG.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "dgb"
 | 
						|
 | 
						|
STATISTIC(TotalGraphs, "Number of dependence graphs created.");
 | 
						|
STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
 | 
						|
STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
 | 
						|
STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
 | 
						|
STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
 | 
						|
STATISTIC(TotalConfusedEdges,
 | 
						|
          "Number of confused memory dependencies between two nodes.");
 | 
						|
STATISTIC(TotalEdgeReversals,
 | 
						|
          "Number of times the source and sink of dependence was reversed to "
 | 
						|
          "expose cycles in the graph.");
 | 
						|
 | 
						|
using InstructionListType = SmallVector<Instruction *, 2>;
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
// AbstractDependenceGraphBuilder implementation
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
template <class G>
 | 
						|
void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
 | 
						|
  // The BBList is expected to be in program order.
 | 
						|
  size_t NextOrdinal = 1;
 | 
						|
  for (auto *BB : BBList)
 | 
						|
    for (auto &I : *BB)
 | 
						|
      InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
 | 
						|
}
 | 
						|
 | 
						|
template <class G>
 | 
						|
void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
 | 
						|
  ++TotalGraphs;
 | 
						|
  assert(IMap.empty() && "Expected empty instruction map at start");
 | 
						|
  for (BasicBlock *BB : BBList)
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      auto &NewNode = createFineGrainedNode(I);
 | 
						|
      IMap.insert(std::make_pair(&I, &NewNode));
 | 
						|
      NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
 | 
						|
      ++TotalFineGrainedNodes;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template <class G>
 | 
						|
void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
 | 
						|
  // Create a root node that connects to every connected component of the graph.
 | 
						|
  // This is done to allow graph iterators to visit all the disjoint components
 | 
						|
  // of the graph, in a single walk.
 | 
						|
  //
 | 
						|
  // This algorithm works by going through each node of the graph and for each
 | 
						|
  // node N, do a DFS starting from N. A rooted edge is established between the
 | 
						|
  // root node and N (if N is not yet visited). All the nodes reachable from N
 | 
						|
  // are marked as visited and are skipped in the DFS of subsequent nodes.
 | 
						|
  //
 | 
						|
  // Note: This algorithm tries to limit the number of edges out of the root
 | 
						|
  // node to some extent, but there may be redundant edges created depending on
 | 
						|
  // the iteration order. For example for a graph {A -> B}, an edge from the
 | 
						|
  // root node is added to both nodes if B is visited before A. While it does
 | 
						|
  // not result in minimal number of edges, this approach saves compile-time
 | 
						|
  // while keeping the number of edges in check.
 | 
						|
  auto &RootNode = createRootNode();
 | 
						|
  df_iterator_default_set<const NodeType *, 4> Visited;
 | 
						|
  for (auto *N : Graph) {
 | 
						|
    if (*N == RootNode)
 | 
						|
      continue;
 | 
						|
    for (auto I : depth_first_ext(N, Visited))
 | 
						|
      if (I == N)
 | 
						|
        createRootedEdge(RootNode, *N);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
 | 
						|
  if (!shouldCreatePiBlocks())
 | 
						|
    return;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
 | 
						|
 | 
						|
  // The overall algorithm is as follows:
 | 
						|
  // 1. Identify SCCs and for each SCC create a pi-block node containing all
 | 
						|
  //    the nodes in that SCC.
 | 
						|
  // 2. Identify incoming edges incident to the nodes inside of the SCC and
 | 
						|
  //    reconnect them to the pi-block node.
 | 
						|
  // 3. Identify outgoing edges from the nodes inside of the SCC to nodes
 | 
						|
  //    outside of it and reconnect them so that the edges are coming out of the
 | 
						|
  //    SCC node instead.
 | 
						|
 | 
						|
  // Adding nodes as we iterate through the SCCs cause the SCC
 | 
						|
  // iterators to get invalidated. To prevent this invalidation, we first
 | 
						|
  // collect a list of nodes that are part of an SCC, and then iterate over
 | 
						|
  // those lists to create the pi-block nodes. Each element of the list is a
 | 
						|
  // list of nodes in an SCC. Note: trivial SCCs containing a single node are
 | 
						|
  // ignored.
 | 
						|
  SmallVector<NodeListType, 4> ListOfSCCs;
 | 
						|
  for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
 | 
						|
    if (SCC.size() > 1)
 | 
						|
      ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
 | 
						|
  }
 | 
						|
 | 
						|
  for (NodeListType &NL : ListOfSCCs) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
 | 
						|
                      << " nodes in it.\n");
 | 
						|
 | 
						|
    // SCC iterator may put the nodes in an order that's different from the
 | 
						|
    // program order. To preserve original program order, we sort the list of
 | 
						|
    // nodes based on ordinal numbers computed earlier.
 | 
						|
    llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
 | 
						|
      return getOrdinal(*LHS) < getOrdinal(*RHS);
 | 
						|
    });
 | 
						|
 | 
						|
    NodeType &PiNode = createPiBlock(NL);
 | 
						|
    ++TotalPiBlockNodes;
 | 
						|
 | 
						|
    // Build a set to speed up the lookup for edges whose targets
 | 
						|
    // are inside the SCC.
 | 
						|
    SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
 | 
						|
 | 
						|
    // We have the set of nodes in the SCC. We go through the set of nodes
 | 
						|
    // that are outside of the SCC and look for edges that cross the two sets.
 | 
						|
    for (NodeType *N : Graph) {
 | 
						|
 | 
						|
      // Skip the SCC node and all the nodes inside of it.
 | 
						|
      if (*N == PiNode || NodesInSCC.count(N))
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (NodeType *SCCNode : NL) {
 | 
						|
 | 
						|
        enum Direction {
 | 
						|
          Incoming,      // Incoming edges to the SCC
 | 
						|
          Outgoing,      // Edges going ot of the SCC
 | 
						|
          DirectionCount // To make the enum usable as an array index.
 | 
						|
        };
 | 
						|
 | 
						|
        // Use these flags to help us avoid creating redundant edges. If there
 | 
						|
        // are more than one edges from an outside node to inside nodes, we only
 | 
						|
        // keep one edge from that node to the pi-block node. Similarly, if
 | 
						|
        // there are more than one edges from inside nodes to an outside node,
 | 
						|
        // we only keep one edge from the pi-block node to the outside node.
 | 
						|
        // There is a flag defined for each direction (incoming vs outgoing) and
 | 
						|
        // for each type of edge supported, using a two-dimensional boolean
 | 
						|
        // array.
 | 
						|
        using EdgeKind = typename EdgeType::EdgeKind;
 | 
						|
        EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{
 | 
						|
            false, false};
 | 
						|
 | 
						|
        auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
 | 
						|
                                       const EdgeKind K) {
 | 
						|
          switch (K) {
 | 
						|
          case EdgeKind::RegisterDefUse:
 | 
						|
            createDefUseEdge(Src, Dst);
 | 
						|
            break;
 | 
						|
          case EdgeKind::MemoryDependence:
 | 
						|
            createMemoryEdge(Src, Dst);
 | 
						|
            break;
 | 
						|
          case EdgeKind::Rooted:
 | 
						|
            createRootedEdge(Src, Dst);
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            llvm_unreachable("Unsupported type of edge.");
 | 
						|
          }
 | 
						|
        };
 | 
						|
 | 
						|
        auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
 | 
						|
                                  const Direction Dir) {
 | 
						|
          if (!Src->hasEdgeTo(*Dst))
 | 
						|
            return;
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << "reconnecting("
 | 
						|
                     << (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
 | 
						|
                     << ":\nSrc:" << *Src << "\nDst:" << *Dst
 | 
						|
                     << "\nNew:" << *New << "\n");
 | 
						|
          assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
 | 
						|
                 "Invalid direction.");
 | 
						|
 | 
						|
          SmallVector<EdgeType *, 10> EL;
 | 
						|
          Src->findEdgesTo(*Dst, EL);
 | 
						|
          for (EdgeType *OldEdge : EL) {
 | 
						|
            EdgeKind Kind = OldEdge->getKind();
 | 
						|
            if (!EdgeAlreadyCreated[Dir][Kind]) {
 | 
						|
              if (Dir == Direction::Incoming) {
 | 
						|
                createEdgeOfKind(*Src, *New, Kind);
 | 
						|
                LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
 | 
						|
              } else if (Dir == Direction::Outgoing) {
 | 
						|
                createEdgeOfKind(*New, *Dst, Kind);
 | 
						|
                LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
 | 
						|
              }
 | 
						|
              EdgeAlreadyCreated[Dir][Kind] = true;
 | 
						|
            }
 | 
						|
            Src->removeEdge(*OldEdge);
 | 
						|
            destroyEdge(*OldEdge);
 | 
						|
            LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
 | 
						|
          }
 | 
						|
        };
 | 
						|
 | 
						|
        // Process incoming edges incident to the pi-block node.
 | 
						|
        reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
 | 
						|
 | 
						|
        // Process edges that are coming out of the pi-block node.
 | 
						|
        reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ordinal maps are no longer needed.
 | 
						|
  InstOrdinalMap.clear();
 | 
						|
  NodeOrdinalMap.clear();
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
 | 
						|
}
 | 
						|
 | 
						|
template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
 | 
						|
  for (NodeType *N : Graph) {
 | 
						|
    InstructionListType SrcIList;
 | 
						|
    N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
 | 
						|
 | 
						|
    // Use a set to mark the targets that we link to N, so we don't add
 | 
						|
    // duplicate def-use edges when more than one instruction in a target node
 | 
						|
    // use results of instructions that are contained in N.
 | 
						|
    SmallPtrSet<NodeType *, 4> VisitedTargets;
 | 
						|
 | 
						|
    for (Instruction *II : SrcIList) {
 | 
						|
      for (User *U : II->users()) {
 | 
						|
        Instruction *UI = dyn_cast<Instruction>(U);
 | 
						|
        if (!UI)
 | 
						|
          continue;
 | 
						|
        NodeType *DstNode = nullptr;
 | 
						|
        if (IMap.find(UI) != IMap.end())
 | 
						|
          DstNode = IMap.find(UI)->second;
 | 
						|
 | 
						|
        // In the case of loops, the scope of the subgraph is all the
 | 
						|
        // basic blocks (and instructions within them) belonging to the loop. We
 | 
						|
        // simply ignore all the edges coming from (or going into) instructions
 | 
						|
        // or basic blocks outside of this range.
 | 
						|
        if (!DstNode) {
 | 
						|
          LLVM_DEBUG(
 | 
						|
              dbgs()
 | 
						|
              << "skipped def-use edge since the sink" << *UI
 | 
						|
              << " is outside the range of instructions being considered.\n");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Self dependencies are ignored because they are redundant and
 | 
						|
        // uninteresting.
 | 
						|
        if (DstNode == N) {
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << "skipped def-use edge since the sink and the source ("
 | 
						|
                     << N << ") are the same.\n");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (VisitedTargets.insert(DstNode).second) {
 | 
						|
          createDefUseEdge(*N, *DstNode);
 | 
						|
          ++TotalDefUseEdges;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class G>
 | 
						|
void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
 | 
						|
  using DGIterator = typename G::iterator;
 | 
						|
  auto isMemoryAccess = [](const Instruction *I) {
 | 
						|
    return I->mayReadOrWriteMemory();
 | 
						|
  };
 | 
						|
  for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
 | 
						|
    InstructionListType SrcIList;
 | 
						|
    (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
 | 
						|
    if (SrcIList.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
 | 
						|
      if (**SrcIt == **DstIt)
 | 
						|
        continue;
 | 
						|
      InstructionListType DstIList;
 | 
						|
      (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
 | 
						|
      if (DstIList.empty())
 | 
						|
        continue;
 | 
						|
      bool ForwardEdgeCreated = false;
 | 
						|
      bool BackwardEdgeCreated = false;
 | 
						|
      for (Instruction *ISrc : SrcIList) {
 | 
						|
        for (Instruction *IDst : DstIList) {
 | 
						|
          auto D = DI.depends(ISrc, IDst, true);
 | 
						|
          if (!D)
 | 
						|
            continue;
 | 
						|
 | 
						|
          // If we have a dependence with its left-most non-'=' direction
 | 
						|
          // being '>' we need to reverse the direction of the edge, because
 | 
						|
          // the source of the dependence cannot occur after the sink. For
 | 
						|
          // confused dependencies, we will create edges in both directions to
 | 
						|
          // represent the possibility of a cycle.
 | 
						|
 | 
						|
          auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
 | 
						|
            if (!ForwardEdgeCreated) {
 | 
						|
              createMemoryEdge(Src, Dst);
 | 
						|
              ++TotalMemoryEdges;
 | 
						|
            }
 | 
						|
            if (!BackwardEdgeCreated) {
 | 
						|
              createMemoryEdge(Dst, Src);
 | 
						|
              ++TotalMemoryEdges;
 | 
						|
            }
 | 
						|
            ForwardEdgeCreated = BackwardEdgeCreated = true;
 | 
						|
            ++TotalConfusedEdges;
 | 
						|
          };
 | 
						|
 | 
						|
          auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
 | 
						|
            if (!ForwardEdgeCreated) {
 | 
						|
              createMemoryEdge(Src, Dst);
 | 
						|
              ++TotalMemoryEdges;
 | 
						|
            }
 | 
						|
            ForwardEdgeCreated = true;
 | 
						|
          };
 | 
						|
 | 
						|
          auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
 | 
						|
            if (!BackwardEdgeCreated) {
 | 
						|
              createMemoryEdge(Dst, Src);
 | 
						|
              ++TotalMemoryEdges;
 | 
						|
            }
 | 
						|
            BackwardEdgeCreated = true;
 | 
						|
          };
 | 
						|
 | 
						|
          if (D->isConfused())
 | 
						|
            createConfusedEdges(**SrcIt, **DstIt);
 | 
						|
          else if (D->isOrdered() && !D->isLoopIndependent()) {
 | 
						|
            bool ReversedEdge = false;
 | 
						|
            for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
 | 
						|
              if (D->getDirection(Level) == Dependence::DVEntry::EQ)
 | 
						|
                continue;
 | 
						|
              else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
 | 
						|
                createBackwardEdge(**SrcIt, **DstIt);
 | 
						|
                ReversedEdge = true;
 | 
						|
                ++TotalEdgeReversals;
 | 
						|
                break;
 | 
						|
              } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
 | 
						|
                break;
 | 
						|
              else {
 | 
						|
                createConfusedEdges(**SrcIt, **DstIt);
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
            if (!ReversedEdge)
 | 
						|
              createForwardEdge(**SrcIt, **DstIt);
 | 
						|
          } else
 | 
						|
            createForwardEdge(**SrcIt, **DstIt);
 | 
						|
 | 
						|
          // Avoid creating duplicate edges.
 | 
						|
          if (ForwardEdgeCreated && BackwardEdgeCreated)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        // If we've created edges in both directions, there is no more
 | 
						|
        // unique edge that we can create between these two nodes, so we
 | 
						|
        // can exit early.
 | 
						|
        if (ForwardEdgeCreated && BackwardEdgeCreated)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class G> void AbstractDependenceGraphBuilder<G>::simplify() {
 | 
						|
  if (!shouldSimplify())
 | 
						|
    return;
 | 
						|
  LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n");
 | 
						|
 | 
						|
  // This algorithm works by first collecting a set of candidate nodes that have
 | 
						|
  // an out-degree of one (in terms of def-use edges), and then ignoring those
 | 
						|
  // whose targets have an in-degree more than one. Each node in the resulting
 | 
						|
  // set can then be merged with its corresponding target and put back into the
 | 
						|
  // worklist until no further merge candidates are available.
 | 
						|
  SmallPtrSet<NodeType *, 32> CandidateSourceNodes;
 | 
						|
 | 
						|
  // A mapping between nodes and their in-degree. To save space, this map
 | 
						|
  // only contains nodes that are targets of nodes in the CandidateSourceNodes.
 | 
						|
  DenseMap<NodeType *, unsigned> TargetInDegreeMap;
 | 
						|
 | 
						|
  for (NodeType *N : Graph) {
 | 
						|
    if (N->getEdges().size() != 1)
 | 
						|
      continue;
 | 
						|
    EdgeType &Edge = N->back();
 | 
						|
    if (!Edge.isDefUse())
 | 
						|
      continue;
 | 
						|
    CandidateSourceNodes.insert(N);
 | 
						|
 | 
						|
    // Insert an element into the in-degree map and initialize to zero. The
 | 
						|
    // count will get updated in the next step.
 | 
						|
    TargetInDegreeMap.insert({&Edge.getTargetNode(), 0});
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size()
 | 
						|
           << "\nNode with single outgoing def-use edge:\n";
 | 
						|
    for (NodeType *N : CandidateSourceNodes) {
 | 
						|
      dbgs() << N << "\n";
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  for (NodeType *N : Graph) {
 | 
						|
    for (EdgeType *E : *N) {
 | 
						|
      NodeType *Tgt = &E->getTargetNode();
 | 
						|
      auto TgtIT = TargetInDegreeMap.find(Tgt);
 | 
						|
      if (TgtIT != TargetInDegreeMap.end())
 | 
						|
        ++(TgtIT->second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size()
 | 
						|
           << "\nContent of in-degree map:\n";
 | 
						|
    for (auto &I : TargetInDegreeMap) {
 | 
						|
      dbgs() << I.first << " --> " << I.second << "\n";
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(),
 | 
						|
                                       CandidateSourceNodes.end());
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    NodeType &Src = *Worklist.pop_back_val();
 | 
						|
    // As nodes get merged, we need to skip any node that has been removed from
 | 
						|
    // the candidate set (see below).
 | 
						|
    if (CandidateSourceNodes.find(&Src) == CandidateSourceNodes.end())
 | 
						|
      continue;
 | 
						|
    CandidateSourceNodes.erase(&Src);
 | 
						|
 | 
						|
    assert(Src.getEdges().size() == 1 &&
 | 
						|
           "Expected a single edge from the candidate src node.");
 | 
						|
    NodeType &Tgt = Src.back().getTargetNode();
 | 
						|
    assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() &&
 | 
						|
           "Expected target to be in the in-degree map.");
 | 
						|
 | 
						|
    if (TargetInDegreeMap[&Tgt] != 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!areNodesMergeable(Src, Tgt))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Do not merge if there is also an edge from target to src (immediate
 | 
						|
    // cycle).
 | 
						|
    if (Tgt.hasEdgeTo(Src))
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n");
 | 
						|
 | 
						|
    mergeNodes(Src, Tgt);
 | 
						|
 | 
						|
    // If the target node is in the candidate set itself, we need to put the
 | 
						|
    // src node back into the worklist again so it gives the target a chance
 | 
						|
    // to get merged into it. For example if we have:
 | 
						|
    // {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a},
 | 
						|
    // then after merging (a) and (b) together, we need to put (a,b) back in
 | 
						|
    // the worklist so that (c) can get merged in as well resulting in
 | 
						|
    // {(a,b,c) -> d}
 | 
						|
    // We also need to remove the old target (b), from the worklist. We first
 | 
						|
    // remove it from the candidate set here, and skip any item from the
 | 
						|
    // worklist that is not in the set.
 | 
						|
    if (CandidateSourceNodes.find(&Tgt) != CandidateSourceNodes.end()) {
 | 
						|
      Worklist.push_back(&Src);
 | 
						|
      CandidateSourceNodes.insert(&Src);
 | 
						|
      CandidateSourceNodes.erase(&Tgt);
 | 
						|
      LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n");
 | 
						|
}
 | 
						|
 | 
						|
template <class G>
 | 
						|
void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
 | 
						|
 | 
						|
  // If we don't create pi-blocks, then we may not have a DAG.
 | 
						|
  if (!shouldCreatePiBlocks())
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<NodeType *, 64> NodesInPO;
 | 
						|
  using NodeKind = typename NodeType::NodeKind;
 | 
						|
  for (NodeType *N : post_order(&Graph)) {
 | 
						|
    if (N->getKind() == NodeKind::PiBlock) {
 | 
						|
      // Put members of the pi-block right after the pi-block itself, for
 | 
						|
      // convenience.
 | 
						|
      const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
 | 
						|
      NodesInPO.insert(NodesInPO.end(), PiBlockMembers.begin(),
 | 
						|
                       PiBlockMembers.end());
 | 
						|
    }
 | 
						|
    NodesInPO.push_back(N);
 | 
						|
  }
 | 
						|
 | 
						|
  size_t OldSize = Graph.Nodes.size();
 | 
						|
  Graph.Nodes.clear();
 | 
						|
  for (NodeType *N : reverse(NodesInPO))
 | 
						|
    Graph.Nodes.push_back(N);
 | 
						|
  if (Graph.Nodes.size() != OldSize)
 | 
						|
    assert(false &&
 | 
						|
           "Expected the number of nodes to stay the same after the sort");
 | 
						|
}
 | 
						|
 | 
						|
template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
 | 
						|
template class llvm::DependenceGraphInfo<DDGNode>;
 |