forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1115 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1115 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the LoopInfo class that is used to identify natural loops
 | 
						|
// and determine the loop depth of various nodes of the CFG.  Note that the
 | 
						|
// loops identified may actually be several natural loops that share the same
 | 
						|
// header node... not just a single natural loop.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/ScopeExit.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/Analysis/IVDescriptors.h"
 | 
						|
#include "llvm/Analysis/LoopInfoImpl.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/MemorySSA.h"
 | 
						|
#include "llvm/Analysis/MemorySSAUpdater.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRPrintingPasses.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
 | 
						|
template class llvm::LoopBase<BasicBlock, Loop>;
 | 
						|
template class llvm::LoopInfoBase<BasicBlock, Loop>;
 | 
						|
 | 
						|
// Always verify loopinfo if expensive checking is enabled.
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
bool llvm::VerifyLoopInfo = true;
 | 
						|
#else
 | 
						|
bool llvm::VerifyLoopInfo = false;
 | 
						|
#endif
 | 
						|
static cl::opt<bool, true>
 | 
						|
    VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
 | 
						|
                    cl::Hidden, cl::desc("Verify loop info (time consuming)"));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Loop implementation
 | 
						|
//
 | 
						|
 | 
						|
bool Loop::isLoopInvariant(const Value *V) const {
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return !contains(I);
 | 
						|
  return true; // All non-instructions are loop invariant
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
 | 
						|
  return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
 | 
						|
                             MemorySSAUpdater *MSSAU) const {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
 | 
						|
  return true; // All non-instructions are loop-invariant.
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
 | 
						|
                             Instruction *InsertPt,
 | 
						|
                             MemorySSAUpdater *MSSAU) const {
 | 
						|
  // Test if the value is already loop-invariant.
 | 
						|
  if (isLoopInvariant(I))
 | 
						|
    return true;
 | 
						|
  if (!isSafeToSpeculativelyExecute(I))
 | 
						|
    return false;
 | 
						|
  if (I->mayReadFromMemory())
 | 
						|
    return false;
 | 
						|
  // EH block instructions are immobile.
 | 
						|
  if (I->isEHPad())
 | 
						|
    return false;
 | 
						|
  // Determine the insertion point, unless one was given.
 | 
						|
  if (!InsertPt) {
 | 
						|
    BasicBlock *Preheader = getLoopPreheader();
 | 
						|
    // Without a preheader, hoisting is not feasible.
 | 
						|
    if (!Preheader)
 | 
						|
      return false;
 | 
						|
    InsertPt = Preheader->getTerminator();
 | 
						|
  }
 | 
						|
  // Don't hoist instructions with loop-variant operands.
 | 
						|
  for (Value *Operand : I->operands())
 | 
						|
    if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Hoist.
 | 
						|
  I->moveBefore(InsertPt);
 | 
						|
  if (MSSAU)
 | 
						|
    if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
 | 
						|
      MSSAU->moveToPlace(MUD, InsertPt->getParent(),
 | 
						|
                         MemorySSA::BeforeTerminator);
 | 
						|
 | 
						|
  // There is possibility of hoisting this instruction above some arbitrary
 | 
						|
  // condition. Any metadata defined on it can be control dependent on this
 | 
						|
  // condition. Conservatively strip it here so that we don't give any wrong
 | 
						|
  // information to the optimizer.
 | 
						|
  I->dropUnknownNonDebugMetadata();
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
 | 
						|
                                  BasicBlock *&Backedge) const {
 | 
						|
  BasicBlock *H = getHeader();
 | 
						|
 | 
						|
  Incoming = nullptr;
 | 
						|
  Backedge = nullptr;
 | 
						|
  pred_iterator PI = pred_begin(H);
 | 
						|
  assert(PI != pred_end(H) && "Loop must have at least one backedge!");
 | 
						|
  Backedge = *PI++;
 | 
						|
  if (PI == pred_end(H))
 | 
						|
    return false; // dead loop
 | 
						|
  Incoming = *PI++;
 | 
						|
  if (PI != pred_end(H))
 | 
						|
    return false; // multiple backedges?
 | 
						|
 | 
						|
  if (contains(Incoming)) {
 | 
						|
    if (contains(Backedge))
 | 
						|
      return false;
 | 
						|
    std::swap(Incoming, Backedge);
 | 
						|
  } else if (!contains(Backedge))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(Incoming && Backedge && "expected non-null incoming and backedges");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
PHINode *Loop::getCanonicalInductionVariable() const {
 | 
						|
  BasicBlock *H = getHeader();
 | 
						|
 | 
						|
  BasicBlock *Incoming = nullptr, *Backedge = nullptr;
 | 
						|
  if (!getIncomingAndBackEdge(Incoming, Backedge))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes, looking for a canonical indvar.
 | 
						|
  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (ConstantInt *CI =
 | 
						|
            dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
 | 
						|
      if (CI->isZero())
 | 
						|
        if (Instruction *Inc =
 | 
						|
                dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | 
						|
          if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
 | 
						|
            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | 
						|
              if (CI->isOne())
 | 
						|
                return PN;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the latch condition instruction.
 | 
						|
static ICmpInst *getLatchCmpInst(const Loop &L) {
 | 
						|
  if (BasicBlock *Latch = L.getLoopLatch())
 | 
						|
    if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
 | 
						|
      if (BI->isConditional())
 | 
						|
        return dyn_cast<ICmpInst>(BI->getCondition());
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the final value of the loop induction variable if found.
 | 
						|
static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
 | 
						|
                               const Instruction &StepInst) {
 | 
						|
  ICmpInst *LatchCmpInst = getLatchCmpInst(L);
 | 
						|
  if (!LatchCmpInst)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Op0 = LatchCmpInst->getOperand(0);
 | 
						|
  Value *Op1 = LatchCmpInst->getOperand(1);
 | 
						|
  if (Op0 == &IndVar || Op0 == &StepInst)
 | 
						|
    return Op1;
 | 
						|
 | 
						|
  if (Op1 == &IndVar || Op1 == &StepInst)
 | 
						|
    return Op0;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
 | 
						|
                                                       PHINode &IndVar,
 | 
						|
                                                       ScalarEvolution &SE) {
 | 
						|
  InductionDescriptor IndDesc;
 | 
						|
  if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
 | 
						|
    return None;
 | 
						|
 | 
						|
  Value *InitialIVValue = IndDesc.getStartValue();
 | 
						|
  Instruction *StepInst = IndDesc.getInductionBinOp();
 | 
						|
  if (!InitialIVValue || !StepInst)
 | 
						|
    return None;
 | 
						|
 | 
						|
  const SCEV *Step = IndDesc.getStep();
 | 
						|
  Value *StepInstOp1 = StepInst->getOperand(1);
 | 
						|
  Value *StepInstOp0 = StepInst->getOperand(0);
 | 
						|
  Value *StepValue = nullptr;
 | 
						|
  if (SE.getSCEV(StepInstOp1) == Step)
 | 
						|
    StepValue = StepInstOp1;
 | 
						|
  else if (SE.getSCEV(StepInstOp0) == Step)
 | 
						|
    StepValue = StepInstOp0;
 | 
						|
 | 
						|
  Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
 | 
						|
  if (!FinalIVValue)
 | 
						|
    return None;
 | 
						|
 | 
						|
  return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
 | 
						|
                    SE);
 | 
						|
}
 | 
						|
 | 
						|
using Direction = Loop::LoopBounds::Direction;
 | 
						|
 | 
						|
ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
 | 
						|
  BasicBlock *Latch = L.getLoopLatch();
 | 
						|
  assert(Latch && "Expecting valid latch");
 | 
						|
 | 
						|
  BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
 | 
						|
  assert(BI && BI->isConditional() && "Expecting conditional latch branch");
 | 
						|
 | 
						|
  ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
 | 
						|
  assert(LatchCmpInst &&
 | 
						|
         "Expecting the latch compare instruction to be a CmpInst");
 | 
						|
 | 
						|
  // Need to inverse the predicate when first successor is not the loop
 | 
						|
  // header
 | 
						|
  ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
 | 
						|
                                 ? LatchCmpInst->getPredicate()
 | 
						|
                                 : LatchCmpInst->getInversePredicate();
 | 
						|
 | 
						|
  if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
 | 
						|
    Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
 | 
						|
  // Need to flip strictness of the predicate when the latch compare instruction
 | 
						|
  // is not using StepInst
 | 
						|
  if (LatchCmpInst->getOperand(0) == &getStepInst() ||
 | 
						|
      LatchCmpInst->getOperand(1) == &getStepInst())
 | 
						|
    return Pred;
 | 
						|
 | 
						|
  // Cannot flip strictness of NE and EQ
 | 
						|
  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
 | 
						|
    return ICmpInst::getFlippedStrictnessPredicate(Pred);
 | 
						|
 | 
						|
  Direction D = getDirection();
 | 
						|
  if (D == Direction::Increasing)
 | 
						|
    return ICmpInst::ICMP_SLT;
 | 
						|
 | 
						|
  if (D == Direction::Decreasing)
 | 
						|
    return ICmpInst::ICMP_SGT;
 | 
						|
 | 
						|
  // If cannot determine the direction, then unable to find the canonical
 | 
						|
  // predicate
 | 
						|
  return ICmpInst::BAD_ICMP_PREDICATE;
 | 
						|
}
 | 
						|
 | 
						|
Direction Loop::LoopBounds::getDirection() const {
 | 
						|
  if (const SCEVAddRecExpr *StepAddRecExpr =
 | 
						|
          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
 | 
						|
    if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
 | 
						|
      if (SE.isKnownPositive(StepRecur))
 | 
						|
        return Direction::Increasing;
 | 
						|
      if (SE.isKnownNegative(StepRecur))
 | 
						|
        return Direction::Decreasing;
 | 
						|
    }
 | 
						|
 | 
						|
  return Direction::Unknown;
 | 
						|
}
 | 
						|
 | 
						|
Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
 | 
						|
  if (PHINode *IndVar = getInductionVariable(SE))
 | 
						|
    return LoopBounds::getBounds(*this, *IndVar, SE);
 | 
						|
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
 | 
						|
  if (!isLoopSimplifyForm())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BasicBlock *Header = getHeader();
 | 
						|
  assert(Header && "Expected a valid loop header");
 | 
						|
  ICmpInst *CmpInst = getLatchCmpInst(*this);
 | 
						|
  if (!CmpInst)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
 | 
						|
  Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
 | 
						|
 | 
						|
  for (PHINode &IndVar : Header->phis()) {
 | 
						|
    InductionDescriptor IndDesc;
 | 
						|
    if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Instruction *StepInst = IndDesc.getInductionBinOp();
 | 
						|
 | 
						|
    // case 1:
 | 
						|
    // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
 | 
						|
    // StepInst = IndVar + step
 | 
						|
    // cmp = StepInst < FinalValue
 | 
						|
    if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
 | 
						|
      return &IndVar;
 | 
						|
 | 
						|
    // case 2:
 | 
						|
    // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
 | 
						|
    // StepInst = IndVar + step
 | 
						|
    // cmp = IndVar < FinalValue
 | 
						|
    if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
 | 
						|
      return &IndVar;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::getInductionDescriptor(ScalarEvolution &SE,
 | 
						|
                                  InductionDescriptor &IndDesc) const {
 | 
						|
  if (PHINode *IndVar = getInductionVariable(SE))
 | 
						|
    return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
 | 
						|
                                        ScalarEvolution &SE) const {
 | 
						|
  // Located in the loop header
 | 
						|
  BasicBlock *Header = getHeader();
 | 
						|
  if (AuxIndVar.getParent() != Header)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No uses outside of the loop
 | 
						|
  for (User *U : AuxIndVar.users())
 | 
						|
    if (const Instruction *I = dyn_cast<Instruction>(U))
 | 
						|
      if (!contains(I))
 | 
						|
        return false;
 | 
						|
 | 
						|
  InductionDescriptor IndDesc;
 | 
						|
  if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The step instruction opcode should be add or sub.
 | 
						|
  if (IndDesc.getInductionOpcode() != Instruction::Add &&
 | 
						|
      IndDesc.getInductionOpcode() != Instruction::Sub)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Incremented by a loop invariant step for each loop iteration
 | 
						|
  return SE.isLoopInvariant(IndDesc.getStep(), this);
 | 
						|
}
 | 
						|
 | 
						|
BranchInst *Loop::getLoopGuardBranch() const {
 | 
						|
  if (!isLoopSimplifyForm())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BasicBlock *Preheader = getLoopPreheader();
 | 
						|
  assert(Preheader && getLoopLatch() &&
 | 
						|
         "Expecting a loop with valid preheader and latch");
 | 
						|
 | 
						|
  // Loop should be in rotate form.
 | 
						|
  if (!isRotatedForm())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Disallow loops with more than one unique exit block, as we do not verify
 | 
						|
  // that GuardOtherSucc post dominates all exit blocks.
 | 
						|
  BasicBlock *ExitFromLatch = getUniqueExitBlock();
 | 
						|
  if (!ExitFromLatch)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
 | 
						|
  if (!ExitFromLatchSucc)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BasicBlock *GuardBB = Preheader->getUniquePredecessor();
 | 
						|
  if (!GuardBB)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
 | 
						|
 | 
						|
  BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
 | 
						|
  if (!GuardBI || GuardBI->isUnconditional())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
 | 
						|
                                   ? GuardBI->getSuccessor(1)
 | 
						|
                                   : GuardBI->getSuccessor(0);
 | 
						|
  return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isCanonical(ScalarEvolution &SE) const {
 | 
						|
  InductionDescriptor IndDesc;
 | 
						|
  if (!getInductionDescriptor(SE, IndDesc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
 | 
						|
  if (!Init || !Init->isZero())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (IndDesc.getInductionOpcode() != Instruction::Add)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ConstantInt *Step = IndDesc.getConstIntStepValue();
 | 
						|
  if (!Step || !Step->isOne())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Check that 'BB' doesn't have any uses outside of the 'L'
 | 
						|
static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
 | 
						|
                               DominatorTree &DT) {
 | 
						|
  for (const Instruction &I : BB) {
 | 
						|
    // Tokens can't be used in PHI nodes and live-out tokens prevent loop
 | 
						|
    // optimizations, so for the purposes of considered LCSSA form, we
 | 
						|
    // can ignore them.
 | 
						|
    if (I.getType()->isTokenTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (const Use &U : I.uses()) {
 | 
						|
      const Instruction *UI = cast<Instruction>(U.getUser());
 | 
						|
      const BasicBlock *UserBB = UI->getParent();
 | 
						|
      if (const PHINode *P = dyn_cast<PHINode>(UI))
 | 
						|
        UserBB = P->getIncomingBlock(U);
 | 
						|
 | 
						|
      // Check the current block, as a fast-path, before checking whether
 | 
						|
      // the use is anywhere in the loop.  Most values are used in the same
 | 
						|
      // block they are defined in.  Also, blocks not reachable from the
 | 
						|
      // entry are special; uses in them don't need to go through PHIs.
 | 
						|
      if (UserBB != &BB && !L.contains(UserBB) &&
 | 
						|
          DT.isReachableFromEntry(UserBB))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isLCSSAForm(DominatorTree &DT) const {
 | 
						|
  // For each block we check that it doesn't have any uses outside of this loop.
 | 
						|
  return all_of(this->blocks(), [&](const BasicBlock *BB) {
 | 
						|
    return isBlockInLCSSAForm(*this, *BB, DT);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
 | 
						|
  // For each block we check that it doesn't have any uses outside of its
 | 
						|
  // innermost loop. This process will transitively guarantee that the current
 | 
						|
  // loop and all of the nested loops are in LCSSA form.
 | 
						|
  return all_of(this->blocks(), [&](const BasicBlock *BB) {
 | 
						|
    return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isLoopSimplifyForm() const {
 | 
						|
  // Normal-form loops have a preheader, a single backedge, and all of their
 | 
						|
  // exits have all their predecessors inside the loop.
 | 
						|
  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
 | 
						|
}
 | 
						|
 | 
						|
// Routines that reform the loop CFG and split edges often fail on indirectbr.
 | 
						|
bool Loop::isSafeToClone() const {
 | 
						|
  // Return false if any loop blocks contain indirectbrs, or there are any calls
 | 
						|
  // to noduplicate functions.
 | 
						|
  // FIXME: it should be ok to clone CallBrInst's if we correctly update the
 | 
						|
  // operand list to reflect the newly cloned labels.
 | 
						|
  for (BasicBlock *BB : this->blocks()) {
 | 
						|
    if (isa<IndirectBrInst>(BB->getTerminator()) ||
 | 
						|
        isa<CallBrInst>(BB->getTerminator()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    for (Instruction &I : *BB)
 | 
						|
      if (auto CS = CallSite(&I))
 | 
						|
        if (CS.cannotDuplicate())
 | 
						|
          return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MDNode *Loop::getLoopID() const {
 | 
						|
  MDNode *LoopID = nullptr;
 | 
						|
 | 
						|
  // Go through the latch blocks and check the terminator for the metadata.
 | 
						|
  SmallVector<BasicBlock *, 4> LatchesBlocks;
 | 
						|
  getLoopLatches(LatchesBlocks);
 | 
						|
  for (BasicBlock *BB : LatchesBlocks) {
 | 
						|
    Instruction *TI = BB->getTerminator();
 | 
						|
    MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
 | 
						|
 | 
						|
    if (!MD)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (!LoopID)
 | 
						|
      LoopID = MD;
 | 
						|
    else if (MD != LoopID)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  if (!LoopID || LoopID->getNumOperands() == 0 ||
 | 
						|
      LoopID->getOperand(0) != LoopID)
 | 
						|
    return nullptr;
 | 
						|
  return LoopID;
 | 
						|
}
 | 
						|
 | 
						|
void Loop::setLoopID(MDNode *LoopID) const {
 | 
						|
  assert((!LoopID || LoopID->getNumOperands() > 0) &&
 | 
						|
         "Loop ID needs at least one operand");
 | 
						|
  assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
 | 
						|
         "Loop ID should refer to itself");
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 4> LoopLatches;
 | 
						|
  getLoopLatches(LoopLatches);
 | 
						|
  for (BasicBlock *BB : LoopLatches)
 | 
						|
    BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
 | 
						|
}
 | 
						|
 | 
						|
void Loop::setLoopAlreadyUnrolled() {
 | 
						|
  LLVMContext &Context = getHeader()->getContext();
 | 
						|
 | 
						|
  MDNode *DisableUnrollMD =
 | 
						|
      MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
 | 
						|
  MDNode *LoopID = getLoopID();
 | 
						|
  MDNode *NewLoopID = makePostTransformationMetadata(
 | 
						|
      Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
 | 
						|
  setLoopID(NewLoopID);
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isAnnotatedParallel() const {
 | 
						|
  MDNode *DesiredLoopIdMetadata = getLoopID();
 | 
						|
 | 
						|
  if (!DesiredLoopIdMetadata)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MDNode *ParallelAccesses =
 | 
						|
      findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
 | 
						|
  SmallPtrSet<MDNode *, 4>
 | 
						|
      ParallelAccessGroups; // For scalable 'contains' check.
 | 
						|
  if (ParallelAccesses) {
 | 
						|
    for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
 | 
						|
      MDNode *AccGroup = cast<MDNode>(MD.get());
 | 
						|
      assert(isValidAsAccessGroup(AccGroup) &&
 | 
						|
             "List item must be an access group");
 | 
						|
      ParallelAccessGroups.insert(AccGroup);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The loop branch contains the parallel loop metadata. In order to ensure
 | 
						|
  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
 | 
						|
  // dependencies (thus converted the loop back to a sequential loop), check
 | 
						|
  // that all the memory instructions in the loop belong to an access group that
 | 
						|
  // is parallel to this loop.
 | 
						|
  for (BasicBlock *BB : this->blocks()) {
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (!I.mayReadOrWriteMemory())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
 | 
						|
        auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
 | 
						|
          if (AG->getNumOperands() == 0) {
 | 
						|
            assert(isValidAsAccessGroup(AG) && "Item must be an access group");
 | 
						|
            return ParallelAccessGroups.count(AG);
 | 
						|
          }
 | 
						|
 | 
						|
          for (const MDOperand &AccessListItem : AG->operands()) {
 | 
						|
            MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
 | 
						|
            assert(isValidAsAccessGroup(AccGroup) &&
 | 
						|
                   "List item must be an access group");
 | 
						|
            if (ParallelAccessGroups.count(AccGroup))
 | 
						|
              return true;
 | 
						|
          }
 | 
						|
          return false;
 | 
						|
        };
 | 
						|
 | 
						|
        if (ContainsAccessGroup(AccessGroup))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // The memory instruction can refer to the loop identifier metadata
 | 
						|
      // directly or indirectly through another list metadata (in case of
 | 
						|
      // nested parallel loops). The loop identifier metadata refers to
 | 
						|
      // itself so we can check both cases with the same routine.
 | 
						|
      MDNode *LoopIdMD =
 | 
						|
          I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
 | 
						|
 | 
						|
      if (!LoopIdMD)
 | 
						|
        return false;
 | 
						|
 | 
						|
      bool LoopIdMDFound = false;
 | 
						|
      for (const MDOperand &MDOp : LoopIdMD->operands()) {
 | 
						|
        if (MDOp == DesiredLoopIdMetadata) {
 | 
						|
          LoopIdMDFound = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!LoopIdMDFound)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
 | 
						|
 | 
						|
Loop::LocRange Loop::getLocRange() const {
 | 
						|
  // If we have a debug location in the loop ID, then use it.
 | 
						|
  if (MDNode *LoopID = getLoopID()) {
 | 
						|
    DebugLoc Start;
 | 
						|
    // We use the first DebugLoc in the header as the start location of the loop
 | 
						|
    // and if there is a second DebugLoc in the header we use it as end location
 | 
						|
    // of the loop.
 | 
						|
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | 
						|
      if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
 | 
						|
        if (!Start)
 | 
						|
          Start = DebugLoc(L);
 | 
						|
        else
 | 
						|
          return LocRange(Start, DebugLoc(L));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Start)
 | 
						|
      return LocRange(Start);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try the pre-header first.
 | 
						|
  if (BasicBlock *PHeadBB = getLoopPreheader())
 | 
						|
    if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
 | 
						|
      return LocRange(DL);
 | 
						|
 | 
						|
  // If we have no pre-header or there are no instructions with debug
 | 
						|
  // info in it, try the header.
 | 
						|
  if (BasicBlock *HeadBB = getHeader())
 | 
						|
    return LocRange(HeadBB->getTerminator()->getDebugLoc());
 | 
						|
 | 
						|
  return LocRange();
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
 | 
						|
  print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// UnloopUpdater implementation
 | 
						|
//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Find the new parent loop for all blocks within the "unloop" whose last
 | 
						|
/// backedges has just been removed.
 | 
						|
class UnloopUpdater {
 | 
						|
  Loop &Unloop;
 | 
						|
  LoopInfo *LI;
 | 
						|
 | 
						|
  LoopBlocksDFS DFS;
 | 
						|
 | 
						|
  // Map unloop's immediate subloops to their nearest reachable parents. Nested
 | 
						|
  // loops within these subloops will not change parents. However, an immediate
 | 
						|
  // subloop's new parent will be the nearest loop reachable from either its own
 | 
						|
  // exits *or* any of its nested loop's exits.
 | 
						|
  DenseMap<Loop *, Loop *> SubloopParents;
 | 
						|
 | 
						|
  // Flag the presence of an irreducible backedge whose destination is a block
 | 
						|
  // directly contained by the original unloop.
 | 
						|
  bool FoundIB;
 | 
						|
 | 
						|
public:
 | 
						|
  UnloopUpdater(Loop *UL, LoopInfo *LInfo)
 | 
						|
      : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
 | 
						|
 | 
						|
  void updateBlockParents();
 | 
						|
 | 
						|
  void removeBlocksFromAncestors();
 | 
						|
 | 
						|
  void updateSubloopParents();
 | 
						|
 | 
						|
protected:
 | 
						|
  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Update the parent loop for all blocks that are directly contained within the
 | 
						|
/// original "unloop".
 | 
						|
void UnloopUpdater::updateBlockParents() {
 | 
						|
  if (Unloop.getNumBlocks()) {
 | 
						|
    // Perform a post order CFG traversal of all blocks within this loop,
 | 
						|
    // propagating the nearest loop from successors to predecessors.
 | 
						|
    LoopBlocksTraversal Traversal(DFS, LI);
 | 
						|
    for (BasicBlock *POI : Traversal) {
 | 
						|
 | 
						|
      Loop *L = LI->getLoopFor(POI);
 | 
						|
      Loop *NL = getNearestLoop(POI, L);
 | 
						|
 | 
						|
      if (NL != L) {
 | 
						|
        // For reducible loops, NL is now an ancestor of Unloop.
 | 
						|
        assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
 | 
						|
               "uninitialized successor");
 | 
						|
        LI->changeLoopFor(POI, NL);
 | 
						|
      } else {
 | 
						|
        // Or the current block is part of a subloop, in which case its parent
 | 
						|
        // is unchanged.
 | 
						|
        assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Each irreducible loop within the unloop induces a round of iteration using
 | 
						|
  // the DFS result cached by Traversal.
 | 
						|
  bool Changed = FoundIB;
 | 
						|
  for (unsigned NIters = 0; Changed; ++NIters) {
 | 
						|
    assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
 | 
						|
 | 
						|
    // Iterate over the postorder list of blocks, propagating the nearest loop
 | 
						|
    // from successors to predecessors as before.
 | 
						|
    Changed = false;
 | 
						|
    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
 | 
						|
                                   POE = DFS.endPostorder();
 | 
						|
         POI != POE; ++POI) {
 | 
						|
 | 
						|
      Loop *L = LI->getLoopFor(*POI);
 | 
						|
      Loop *NL = getNearestLoop(*POI, L);
 | 
						|
      if (NL != L) {
 | 
						|
        assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
 | 
						|
               "uninitialized successor");
 | 
						|
        LI->changeLoopFor(*POI, NL);
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Remove unloop's blocks from all ancestors below their new parents.
 | 
						|
void UnloopUpdater::removeBlocksFromAncestors() {
 | 
						|
  // Remove all unloop's blocks (including those in nested subloops) from
 | 
						|
  // ancestors below the new parent loop.
 | 
						|
  for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
 | 
						|
       BI != BE; ++BI) {
 | 
						|
    Loop *OuterParent = LI->getLoopFor(*BI);
 | 
						|
    if (Unloop.contains(OuterParent)) {
 | 
						|
      while (OuterParent->getParentLoop() != &Unloop)
 | 
						|
        OuterParent = OuterParent->getParentLoop();
 | 
						|
      OuterParent = SubloopParents[OuterParent];
 | 
						|
    }
 | 
						|
    // Remove blocks from former Ancestors except Unloop itself which will be
 | 
						|
    // deleted.
 | 
						|
    for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
 | 
						|
         OldParent = OldParent->getParentLoop()) {
 | 
						|
      assert(OldParent && "new loop is not an ancestor of the original");
 | 
						|
      OldParent->removeBlockFromLoop(*BI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update the parent loop for all subloops directly nested within unloop.
 | 
						|
void UnloopUpdater::updateSubloopParents() {
 | 
						|
  while (!Unloop.empty()) {
 | 
						|
    Loop *Subloop = *std::prev(Unloop.end());
 | 
						|
    Unloop.removeChildLoop(std::prev(Unloop.end()));
 | 
						|
 | 
						|
    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
 | 
						|
    if (Loop *Parent = SubloopParents[Subloop])
 | 
						|
      Parent->addChildLoop(Subloop);
 | 
						|
    else
 | 
						|
      LI->addTopLevelLoop(Subloop);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return the nearest parent loop among this block's successors. If a successor
 | 
						|
/// is a subloop header, consider its parent to be the nearest parent of the
 | 
						|
/// subloop's exits.
 | 
						|
///
 | 
						|
/// For subloop blocks, simply update SubloopParents and return NULL.
 | 
						|
Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
 | 
						|
 | 
						|
  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
 | 
						|
  // is considered uninitialized.
 | 
						|
  Loop *NearLoop = BBLoop;
 | 
						|
 | 
						|
  Loop *Subloop = nullptr;
 | 
						|
  if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
 | 
						|
    Subloop = NearLoop;
 | 
						|
    // Find the subloop ancestor that is directly contained within Unloop.
 | 
						|
    while (Subloop->getParentLoop() != &Unloop) {
 | 
						|
      Subloop = Subloop->getParentLoop();
 | 
						|
      assert(Subloop && "subloop is not an ancestor of the original loop");
 | 
						|
    }
 | 
						|
    // Get the current nearest parent of the Subloop exits, initially Unloop.
 | 
						|
    NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
 | 
						|
  }
 | 
						|
 | 
						|
  succ_iterator I = succ_begin(BB), E = succ_end(BB);
 | 
						|
  if (I == E) {
 | 
						|
    assert(!Subloop && "subloop blocks must have a successor");
 | 
						|
    NearLoop = nullptr; // unloop blocks may now exit the function.
 | 
						|
  }
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    if (*I == BB)
 | 
						|
      continue; // self loops are uninteresting
 | 
						|
 | 
						|
    Loop *L = LI->getLoopFor(*I);
 | 
						|
    if (L == &Unloop) {
 | 
						|
      // This successor has not been processed. This path must lead to an
 | 
						|
      // irreducible backedge.
 | 
						|
      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
 | 
						|
      FoundIB = true;
 | 
						|
    }
 | 
						|
    if (L != &Unloop && Unloop.contains(L)) {
 | 
						|
      // Successor is in a subloop.
 | 
						|
      if (Subloop)
 | 
						|
        continue; // Branching within subloops. Ignore it.
 | 
						|
 | 
						|
      // BB branches from the original into a subloop header.
 | 
						|
      assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
 | 
						|
 | 
						|
      // Get the current nearest parent of the Subloop's exits.
 | 
						|
      L = SubloopParents[L];
 | 
						|
      // L could be Unloop if the only exit was an irreducible backedge.
 | 
						|
    }
 | 
						|
    if (L == &Unloop) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Handle critical edges from Unloop into a sibling loop.
 | 
						|
    if (L && !L->contains(&Unloop)) {
 | 
						|
      L = L->getParentLoop();
 | 
						|
    }
 | 
						|
    // Remember the nearest parent loop among successors or subloop exits.
 | 
						|
    if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
 | 
						|
      NearLoop = L;
 | 
						|
  }
 | 
						|
  if (Subloop) {
 | 
						|
    SubloopParents[Subloop] = NearLoop;
 | 
						|
    return BBLoop;
 | 
						|
  }
 | 
						|
  return NearLoop;
 | 
						|
}
 | 
						|
 | 
						|
LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
 | 
						|
 | 
						|
bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
 | 
						|
                          FunctionAnalysisManager::Invalidator &) {
 | 
						|
  // Check whether the analysis, all analyses on functions, or the function's
 | 
						|
  // CFG have been preserved.
 | 
						|
  auto PAC = PA.getChecker<LoopAnalysis>();
 | 
						|
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
 | 
						|
           PAC.preservedSet<CFGAnalyses>());
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfo::erase(Loop *Unloop) {
 | 
						|
  assert(!Unloop->isInvalid() && "Loop has already been erased!");
 | 
						|
 | 
						|
  auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
 | 
						|
 | 
						|
  // First handle the special case of no parent loop to simplify the algorithm.
 | 
						|
  if (!Unloop->getParentLoop()) {
 | 
						|
    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
 | 
						|
    for (Loop::block_iterator I = Unloop->block_begin(),
 | 
						|
                              E = Unloop->block_end();
 | 
						|
         I != E; ++I) {
 | 
						|
 | 
						|
      // Don't reparent blocks in subloops.
 | 
						|
      if (getLoopFor(*I) != Unloop)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Blocks no longer have a parent but are still referenced by Unloop until
 | 
						|
      // the Unloop object is deleted.
 | 
						|
      changeLoopFor(*I, nullptr);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove the loop from the top-level LoopInfo object.
 | 
						|
    for (iterator I = begin();; ++I) {
 | 
						|
      assert(I != end() && "Couldn't find loop");
 | 
						|
      if (*I == Unloop) {
 | 
						|
        removeLoop(I);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Move all of the subloops to the top-level.
 | 
						|
    while (!Unloop->empty())
 | 
						|
      addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the parent loop for all blocks within the loop. Blocks within
 | 
						|
  // subloops will not change parents.
 | 
						|
  UnloopUpdater Updater(Unloop, this);
 | 
						|
  Updater.updateBlockParents();
 | 
						|
 | 
						|
  // Remove blocks from former ancestor loops.
 | 
						|
  Updater.removeBlocksFromAncestors();
 | 
						|
 | 
						|
  // Add direct subloops as children in their new parent loop.
 | 
						|
  Updater.updateSubloopParents();
 | 
						|
 | 
						|
  // Remove unloop from its parent loop.
 | 
						|
  Loop *ParentLoop = Unloop->getParentLoop();
 | 
						|
  for (Loop::iterator I = ParentLoop->begin();; ++I) {
 | 
						|
    assert(I != ParentLoop->end() && "Couldn't find loop");
 | 
						|
    if (*I == Unloop) {
 | 
						|
      ParentLoop->removeChildLoop(I);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey LoopAnalysis::Key;
 | 
						|
 | 
						|
LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  // FIXME: Currently we create a LoopInfo from scratch for every function.
 | 
						|
  // This may prove to be too wasteful due to deallocating and re-allocating
 | 
						|
  // memory each time for the underlying map and vector datastructures. At some
 | 
						|
  // point it may prove worthwhile to use a freelist and recycle LoopInfo
 | 
						|
  // objects. I don't want to add that kind of complexity until the scope of
 | 
						|
  // the problem is better understood.
 | 
						|
  LoopInfo LI;
 | 
						|
  LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
 | 
						|
  return LI;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LoopPrinterPass::run(Function &F,
 | 
						|
                                       FunctionAnalysisManager &AM) {
 | 
						|
  AM.getResult<LoopAnalysis>(F).print(OS);
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
 | 
						|
 | 
						|
  if (forcePrintModuleIR()) {
 | 
						|
    // handling -print-module-scope
 | 
						|
    OS << Banner << " (loop: ";
 | 
						|
    L.getHeader()->printAsOperand(OS, false);
 | 
						|
    OS << ")\n";
 | 
						|
 | 
						|
    // printing whole module
 | 
						|
    OS << *L.getHeader()->getModule();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  OS << Banner;
 | 
						|
 | 
						|
  auto *PreHeader = L.getLoopPreheader();
 | 
						|
  if (PreHeader) {
 | 
						|
    OS << "\n; Preheader:";
 | 
						|
    PreHeader->print(OS);
 | 
						|
    OS << "\n; Loop:";
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *Block : L.blocks())
 | 
						|
    if (Block)
 | 
						|
      Block->print(OS);
 | 
						|
    else
 | 
						|
      OS << "Printing <null> block";
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 8> ExitBlocks;
 | 
						|
  L.getExitBlocks(ExitBlocks);
 | 
						|
  if (!ExitBlocks.empty()) {
 | 
						|
    OS << "\n; Exit blocks";
 | 
						|
    for (auto *Block : ExitBlocks)
 | 
						|
      if (Block)
 | 
						|
        Block->print(OS);
 | 
						|
      else
 | 
						|
        OS << "Printing <null> block";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
 | 
						|
  // No loop metadata node, no loop properties.
 | 
						|
  if (!LoopID)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // First operand should refer to the metadata node itself, for legacy reasons.
 | 
						|
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | 
						|
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | 
						|
 | 
						|
  // Iterate over the metdata node operands and look for MDString metadata.
 | 
						|
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
 | 
						|
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | 
						|
    if (!MD || MD->getNumOperands() < 1)
 | 
						|
      continue;
 | 
						|
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | 
						|
    if (!S)
 | 
						|
      continue;
 | 
						|
    // Return the operand node if MDString holds expected metadata.
 | 
						|
    if (Name.equals(S->getString()))
 | 
						|
      return MD;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop property not found.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
 | 
						|
  return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isValidAsAccessGroup(MDNode *Node) {
 | 
						|
  return Node->getNumOperands() == 0 && Node->isDistinct();
 | 
						|
}
 | 
						|
 | 
						|
MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
 | 
						|
                                             MDNode *OrigLoopID,
 | 
						|
                                             ArrayRef<StringRef> RemovePrefixes,
 | 
						|
                                             ArrayRef<MDNode *> AddAttrs) {
 | 
						|
  // First remove any existing loop metadata related to this transformation.
 | 
						|
  SmallVector<Metadata *, 4> MDs;
 | 
						|
 | 
						|
  // Reserve first location for self reference to the LoopID metadata node.
 | 
						|
  TempMDTuple TempNode = MDNode::getTemporary(Context, None);
 | 
						|
  MDs.push_back(TempNode.get());
 | 
						|
 | 
						|
  // Remove metadata for the transformation that has been applied or that became
 | 
						|
  // outdated.
 | 
						|
  if (OrigLoopID) {
 | 
						|
    for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
 | 
						|
      bool IsVectorMetadata = false;
 | 
						|
      Metadata *Op = OrigLoopID->getOperand(i);
 | 
						|
      if (MDNode *MD = dyn_cast<MDNode>(Op)) {
 | 
						|
        const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | 
						|
        if (S)
 | 
						|
          IsVectorMetadata =
 | 
						|
              llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
 | 
						|
                return S->getString().startswith(Prefix);
 | 
						|
              });
 | 
						|
      }
 | 
						|
      if (!IsVectorMetadata)
 | 
						|
        MDs.push_back(Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add metadata to avoid reapplying a transformation, such as
 | 
						|
  // llvm.loop.unroll.disable and llvm.loop.isvectorized.
 | 
						|
  MDs.append(AddAttrs.begin(), AddAttrs.end());
 | 
						|
 | 
						|
  MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
 | 
						|
  // Replace the temporary node with a self-reference.
 | 
						|
  NewLoopID->replaceOperandWith(0, NewLoopID);
 | 
						|
  return NewLoopID;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoopInfo implementation
 | 
						|
//
 | 
						|
 | 
						|
LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) {
 | 
						|
  initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
char LoopInfoWrapperPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
 | 
						|
                      true, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
 | 
						|
                    true, true)
 | 
						|
 | 
						|
bool LoopInfoWrapperPass::runOnFunction(Function &) {
 | 
						|
  releaseMemory();
 | 
						|
  LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfoWrapperPass::verifyAnalysis() const {
 | 
						|
  // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
 | 
						|
  // function each time verifyAnalysis is called is very expensive. The
 | 
						|
  // -verify-loop-info option can enable this. In order to perform some
 | 
						|
  // checking by default, LoopPass has been taught to call verifyLoop manually
 | 
						|
  // during loop pass sequences.
 | 
						|
  if (VerifyLoopInfo) {
 | 
						|
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    LI.verify(DT);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
 | 
						|
  LI.print(OS);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LoopVerifierPass::run(Function &F,
 | 
						|
                                        FunctionAnalysisManager &AM) {
 | 
						|
  LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  LI.verify(DT);
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoopBlocksDFS implementation
 | 
						|
//
 | 
						|
 | 
						|
/// Traverse the loop blocks and store the DFS result.
 | 
						|
/// Useful for clients that just want the final DFS result and don't need to
 | 
						|
/// visit blocks during the initial traversal.
 | 
						|
void LoopBlocksDFS::perform(LoopInfo *LI) {
 | 
						|
  LoopBlocksTraversal Traversal(*this, LI);
 | 
						|
  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
 | 
						|
                                        POE = Traversal.end();
 | 
						|
       POI != POE; ++POI)
 | 
						|
    ;
 | 
						|
}
 |