forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1782 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1782 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements an analysis that determines, for a given memory
 | 
						|
// operation, what preceding memory operations it depends on.  It builds on
 | 
						|
// alias analysis information, and tries to provide a lazy, caching interface to
 | 
						|
// a common kind of alias information query.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/Analysis/PHITransAddr.h"
 | 
						|
#include "llvm/Analysis/PhiValues.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PredIteratorCache.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/AtomicOrdering.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "memdep"
 | 
						|
 | 
						|
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
 | 
						|
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
 | 
						|
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
 | 
						|
 | 
						|
STATISTIC(NumCacheNonLocalPtr,
 | 
						|
          "Number of fully cached non-local ptr responses");
 | 
						|
STATISTIC(NumCacheDirtyNonLocalPtr,
 | 
						|
          "Number of cached, but dirty, non-local ptr responses");
 | 
						|
STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
 | 
						|
STATISTIC(NumCacheCompleteNonLocalPtr,
 | 
						|
          "Number of block queries that were completely cached");
 | 
						|
 | 
						|
// Limit for the number of instructions to scan in a block.
 | 
						|
 | 
						|
static cl::opt<unsigned> BlockScanLimit(
 | 
						|
    "memdep-block-scan-limit", cl::Hidden, cl::init(100),
 | 
						|
    cl::desc("The number of instructions to scan in a block in memory "
 | 
						|
             "dependency analysis (default = 100)"));
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
    BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
 | 
						|
                     cl::desc("The number of blocks to scan during memory "
 | 
						|
                              "dependency analysis (default = 1000)"));
 | 
						|
 | 
						|
// Limit on the number of memdep results to process.
 | 
						|
static const unsigned int NumResultsLimit = 100;
 | 
						|
 | 
						|
/// This is a helper function that removes Val from 'Inst's set in ReverseMap.
 | 
						|
///
 | 
						|
/// If the set becomes empty, remove Inst's entry.
 | 
						|
template <typename KeyTy>
 | 
						|
static void
 | 
						|
RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
 | 
						|
                     Instruction *Inst, KeyTy Val) {
 | 
						|
  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
 | 
						|
      ReverseMap.find(Inst);
 | 
						|
  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
 | 
						|
  bool Found = InstIt->second.erase(Val);
 | 
						|
  assert(Found && "Invalid reverse map!");
 | 
						|
  (void)Found;
 | 
						|
  if (InstIt->second.empty())
 | 
						|
    ReverseMap.erase(InstIt);
 | 
						|
}
 | 
						|
 | 
						|
/// If the given instruction references a specific memory location, fill in Loc
 | 
						|
/// with the details, otherwise set Loc.Ptr to null.
 | 
						|
///
 | 
						|
/// Returns a ModRefInfo value describing the general behavior of the
 | 
						|
/// instruction.
 | 
						|
static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
 | 
						|
                              const TargetLibraryInfo &TLI) {
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | 
						|
    if (LI->isUnordered()) {
 | 
						|
      Loc = MemoryLocation::get(LI);
 | 
						|
      return ModRefInfo::Ref;
 | 
						|
    }
 | 
						|
    if (LI->getOrdering() == AtomicOrdering::Monotonic) {
 | 
						|
      Loc = MemoryLocation::get(LI);
 | 
						|
      return ModRefInfo::ModRef;
 | 
						|
    }
 | 
						|
    Loc = MemoryLocation();
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
    if (SI->isUnordered()) {
 | 
						|
      Loc = MemoryLocation::get(SI);
 | 
						|
      return ModRefInfo::Mod;
 | 
						|
    }
 | 
						|
    if (SI->getOrdering() == AtomicOrdering::Monotonic) {
 | 
						|
      Loc = MemoryLocation::get(SI);
 | 
						|
      return ModRefInfo::ModRef;
 | 
						|
    }
 | 
						|
    Loc = MemoryLocation();
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
 | 
						|
    Loc = MemoryLocation::get(V);
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
 | 
						|
    // calls to free() deallocate the entire structure
 | 
						|
    Loc = MemoryLocation(CI->getArgOperand(0));
 | 
						|
    return ModRefInfo::Mod;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    case Intrinsic::lifetime_start:
 | 
						|
    case Intrinsic::lifetime_end:
 | 
						|
    case Intrinsic::invariant_start:
 | 
						|
      Loc = MemoryLocation::getForArgument(II, 1, TLI);
 | 
						|
      // These intrinsics don't really modify the memory, but returning Mod
 | 
						|
      // will allow them to be handled conservatively.
 | 
						|
      return ModRefInfo::Mod;
 | 
						|
    case Intrinsic::invariant_end:
 | 
						|
      Loc = MemoryLocation::getForArgument(II, 2, TLI);
 | 
						|
      // These intrinsics don't really modify the memory, but returning Mod
 | 
						|
      // will allow them to be handled conservatively.
 | 
						|
      return ModRefInfo::Mod;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, just do the coarse-grained thing that always works.
 | 
						|
  if (Inst->mayWriteToMemory())
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
  if (Inst->mayReadFromMemory())
 | 
						|
    return ModRefInfo::Ref;
 | 
						|
  return ModRefInfo::NoModRef;
 | 
						|
}
 | 
						|
 | 
						|
/// Private helper for finding the local dependencies of a call site.
 | 
						|
MemDepResult MemoryDependenceResults::getCallDependencyFrom(
 | 
						|
    CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
 | 
						|
    BasicBlock *BB) {
 | 
						|
  unsigned Limit = getDefaultBlockScanLimit();
 | 
						|
 | 
						|
  // Walk backwards through the block, looking for dependencies.
 | 
						|
  while (ScanIt != BB->begin()) {
 | 
						|
    Instruction *Inst = &*--ScanIt;
 | 
						|
    // Debug intrinsics don't cause dependences and should not affect Limit
 | 
						|
    if (isa<DbgInfoIntrinsic>(Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Limit the amount of scanning we do so we don't end up with quadratic
 | 
						|
    // running time on extreme testcases.
 | 
						|
    --Limit;
 | 
						|
    if (!Limit)
 | 
						|
      return MemDepResult::getUnknown();
 | 
						|
 | 
						|
    // If this inst is a memory op, get the pointer it accessed
 | 
						|
    MemoryLocation Loc;
 | 
						|
    ModRefInfo MR = GetLocation(Inst, Loc, TLI);
 | 
						|
    if (Loc.Ptr) {
 | 
						|
      // A simple instruction.
 | 
						|
      if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
 | 
						|
        return MemDepResult::getClobber(Inst);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *CallB = dyn_cast<CallBase>(Inst)) {
 | 
						|
      // If these two calls do not interfere, look past it.
 | 
						|
      if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
 | 
						|
        // If the two calls are the same, return Inst as a Def, so that
 | 
						|
        // Call can be found redundant and eliminated.
 | 
						|
        if (isReadOnlyCall && !isModSet(MR) &&
 | 
						|
            Call->isIdenticalToWhenDefined(CallB))
 | 
						|
          return MemDepResult::getDef(Inst);
 | 
						|
 | 
						|
        // Otherwise if the two calls don't interact (e.g. CallB is readnone)
 | 
						|
        // keep scanning.
 | 
						|
        continue;
 | 
						|
      } else
 | 
						|
        return MemDepResult::getClobber(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we could not obtain a pointer for the instruction and the instruction
 | 
						|
    // touches memory then assume that this is a dependency.
 | 
						|
    if (isModOrRefSet(MR))
 | 
						|
      return MemDepResult::getClobber(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  // No dependence found.  If this is the entry block of the function, it is
 | 
						|
  // unknown, otherwise it is non-local.
 | 
						|
  if (BB != &BB->getParent()->getEntryBlock())
 | 
						|
    return MemDepResult::getNonLocal();
 | 
						|
  return MemDepResult::getNonFuncLocal();
 | 
						|
}
 | 
						|
 | 
						|
static bool isVolatile(Instruction *Inst) {
 | 
						|
  if (auto *LI = dyn_cast<LoadInst>(Inst))
 | 
						|
    return LI->isVolatile();
 | 
						|
  if (auto *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
    return SI->isVolatile();
 | 
						|
  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
 | 
						|
    return AI->isVolatile();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
 | 
						|
    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
 | 
						|
    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
 | 
						|
  MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
 | 
						|
  if (QueryInst != nullptr) {
 | 
						|
    if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
 | 
						|
      InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
 | 
						|
 | 
						|
      if (InvariantGroupDependency.isDef())
 | 
						|
        return InvariantGroupDependency;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  MemDepResult SimpleDep = getSimplePointerDependencyFrom(
 | 
						|
      MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
 | 
						|
  if (SimpleDep.isDef())
 | 
						|
    return SimpleDep;
 | 
						|
  // Non-local invariant group dependency indicates there is non local Def
 | 
						|
  // (it only returns nonLocal if it finds nonLocal def), which is better than
 | 
						|
  // local clobber and everything else.
 | 
						|
  if (InvariantGroupDependency.isNonLocal())
 | 
						|
    return InvariantGroupDependency;
 | 
						|
 | 
						|
  assert(InvariantGroupDependency.isUnknown() &&
 | 
						|
         "InvariantGroupDependency should be only unknown at this point");
 | 
						|
  return SimpleDep;
 | 
						|
}
 | 
						|
 | 
						|
MemDepResult
 | 
						|
MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
 | 
						|
                                                            BasicBlock *BB) {
 | 
						|
 | 
						|
  if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
 | 
						|
    return MemDepResult::getUnknown();
 | 
						|
 | 
						|
  // Take the ptr operand after all casts and geps 0. This way we can search
 | 
						|
  // cast graph down only.
 | 
						|
  Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
 | 
						|
 | 
						|
  // It's is not safe to walk the use list of global value, because function
 | 
						|
  // passes aren't allowed to look outside their functions.
 | 
						|
  // FIXME: this could be fixed by filtering instructions from outside
 | 
						|
  // of current function.
 | 
						|
  if (isa<GlobalValue>(LoadOperand))
 | 
						|
    return MemDepResult::getUnknown();
 | 
						|
 | 
						|
  // Queue to process all pointers that are equivalent to load operand.
 | 
						|
  SmallVector<const Value *, 8> LoadOperandsQueue;
 | 
						|
  LoadOperandsQueue.push_back(LoadOperand);
 | 
						|
 | 
						|
  Instruction *ClosestDependency = nullptr;
 | 
						|
  // Order of instructions in uses list is unpredictible. In order to always
 | 
						|
  // get the same result, we will look for the closest dominance.
 | 
						|
  auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
 | 
						|
    assert(Other && "Must call it with not null instruction");
 | 
						|
    if (Best == nullptr || DT.dominates(Best, Other))
 | 
						|
      return Other;
 | 
						|
    return Best;
 | 
						|
  };
 | 
						|
 | 
						|
  // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
 | 
						|
  // we will see all the instructions. This should be fixed in MSSA.
 | 
						|
  while (!LoadOperandsQueue.empty()) {
 | 
						|
    const Value *Ptr = LoadOperandsQueue.pop_back_val();
 | 
						|
    assert(Ptr && !isa<GlobalValue>(Ptr) &&
 | 
						|
           "Null or GlobalValue should not be inserted");
 | 
						|
 | 
						|
    for (const Use &Us : Ptr->uses()) {
 | 
						|
      auto *U = dyn_cast<Instruction>(Us.getUser());
 | 
						|
      if (!U || U == LI || !DT.dominates(U, LI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
 | 
						|
      // users.      U = bitcast Ptr
 | 
						|
      if (isa<BitCastInst>(U)) {
 | 
						|
        LoadOperandsQueue.push_back(U);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Gep with zeros is equivalent to bitcast.
 | 
						|
      // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
 | 
						|
      // or gep 0 to bitcast because of SROA, so there are 2 forms. When
 | 
						|
      // typeless pointers will be ready then both cases will be gone
 | 
						|
      // (and this BFS also won't be needed).
 | 
						|
      if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
 | 
						|
        if (GEP->hasAllZeroIndices()) {
 | 
						|
          LoadOperandsQueue.push_back(U);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
      // If we hit load/store with the same invariant.group metadata (and the
 | 
						|
      // same pointer operand) we can assume that value pointed by pointer
 | 
						|
      // operand didn't change.
 | 
						|
      if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
 | 
						|
          U->hasMetadata(LLVMContext::MD_invariant_group))
 | 
						|
        ClosestDependency = GetClosestDependency(ClosestDependency, U);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ClosestDependency)
 | 
						|
    return MemDepResult::getUnknown();
 | 
						|
  if (ClosestDependency->getParent() == BB)
 | 
						|
    return MemDepResult::getDef(ClosestDependency);
 | 
						|
  // Def(U) can't be returned here because it is non-local. If local
 | 
						|
  // dependency won't be found then return nonLocal counting that the
 | 
						|
  // user will call getNonLocalPointerDependency, which will return cached
 | 
						|
  // result.
 | 
						|
  NonLocalDefsCache.try_emplace(
 | 
						|
      LI, NonLocalDepResult(ClosestDependency->getParent(),
 | 
						|
                            MemDepResult::getDef(ClosestDependency), nullptr));
 | 
						|
  ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
 | 
						|
  return MemDepResult::getNonLocal();
 | 
						|
}
 | 
						|
 | 
						|
MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
 | 
						|
    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
 | 
						|
    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
 | 
						|
  bool isInvariantLoad = false;
 | 
						|
 | 
						|
  unsigned DefaultLimit = getDefaultBlockScanLimit();
 | 
						|
  if (!Limit)
 | 
						|
    Limit = &DefaultLimit;
 | 
						|
 | 
						|
  // We must be careful with atomic accesses, as they may allow another thread
 | 
						|
  //   to touch this location, clobbering it. We are conservative: if the
 | 
						|
  //   QueryInst is not a simple (non-atomic) memory access, we automatically
 | 
						|
  //   return getClobber.
 | 
						|
  // If it is simple, we know based on the results of
 | 
						|
  // "Compiler testing via a theory of sound optimisations in the C11/C++11
 | 
						|
  //   memory model" in PLDI 2013, that a non-atomic location can only be
 | 
						|
  //   clobbered between a pair of a release and an acquire action, with no
 | 
						|
  //   access to the location in between.
 | 
						|
  // Here is an example for giving the general intuition behind this rule.
 | 
						|
  // In the following code:
 | 
						|
  //   store x 0;
 | 
						|
  //   release action; [1]
 | 
						|
  //   acquire action; [4]
 | 
						|
  //   %val = load x;
 | 
						|
  // It is unsafe to replace %val by 0 because another thread may be running:
 | 
						|
  //   acquire action; [2]
 | 
						|
  //   store x 42;
 | 
						|
  //   release action; [3]
 | 
						|
  // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
 | 
						|
  // being 42. A key property of this program however is that if either
 | 
						|
  // 1 or 4 were missing, there would be a race between the store of 42
 | 
						|
  // either the store of 0 or the load (making the whole program racy).
 | 
						|
  // The paper mentioned above shows that the same property is respected
 | 
						|
  // by every program that can detect any optimization of that kind: either
 | 
						|
  // it is racy (undefined) or there is a release followed by an acquire
 | 
						|
  // between the pair of accesses under consideration.
 | 
						|
 | 
						|
  // If the load is invariant, we "know" that it doesn't alias *any* write. We
 | 
						|
  // do want to respect mustalias results since defs are useful for value
 | 
						|
  // forwarding, but any mayalias write can be assumed to be noalias.
 | 
						|
  // Arguably, this logic should be pushed inside AliasAnalysis itself.
 | 
						|
  if (isLoad && QueryInst) {
 | 
						|
    LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
 | 
						|
    if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
 | 
						|
      isInvariantLoad = true;
 | 
						|
  }
 | 
						|
 | 
						|
  const DataLayout &DL = BB->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Return "true" if and only if the instruction I is either a non-simple
 | 
						|
  // load or a non-simple store.
 | 
						|
  auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
 | 
						|
    if (auto *LI = dyn_cast<LoadInst>(I))
 | 
						|
      return !LI->isSimple();
 | 
						|
    if (auto *SI = dyn_cast<StoreInst>(I))
 | 
						|
      return !SI->isSimple();
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Return "true" if I is not a load and not a store, but it does access
 | 
						|
  // memory.
 | 
						|
  auto isOtherMemAccess = [](Instruction *I) -> bool {
 | 
						|
    return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
 | 
						|
  };
 | 
						|
 | 
						|
  // Walk backwards through the basic block, looking for dependencies.
 | 
						|
  while (ScanIt != BB->begin()) {
 | 
						|
    Instruction *Inst = &*--ScanIt;
 | 
						|
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
 | 
						|
      // Debug intrinsics don't (and can't) cause dependencies.
 | 
						|
      if (isa<DbgInfoIntrinsic>(II))
 | 
						|
        continue;
 | 
						|
 | 
						|
    // Limit the amount of scanning we do so we don't end up with quadratic
 | 
						|
    // running time on extreme testcases.
 | 
						|
    --*Limit;
 | 
						|
    if (!*Limit)
 | 
						|
      return MemDepResult::getUnknown();
 | 
						|
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | 
						|
      // If we reach a lifetime begin or end marker, then the query ends here
 | 
						|
      // because the value is undefined.
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
 | 
						|
        // FIXME: This only considers queries directly on the invariant-tagged
 | 
						|
        // pointer, not on query pointers that are indexed off of them.  It'd
 | 
						|
        // be nice to handle that at some point (the right approach is to use
 | 
						|
        // GetPointerBaseWithConstantOffset).
 | 
						|
        if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
 | 
						|
          return MemDepResult::getDef(II);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Values depend on loads if the pointers are must aliased.  This means
 | 
						|
    // that a load depends on another must aliased load from the same value.
 | 
						|
    // One exception is atomic loads: a value can depend on an atomic load that
 | 
						|
    // it does not alias with when this atomic load indicates that another
 | 
						|
    // thread may be accessing the location.
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | 
						|
      // While volatile access cannot be eliminated, they do not have to clobber
 | 
						|
      // non-aliasing locations, as normal accesses, for example, can be safely
 | 
						|
      // reordered with volatile accesses.
 | 
						|
      if (LI->isVolatile()) {
 | 
						|
        if (!QueryInst)
 | 
						|
          // Original QueryInst *may* be volatile
 | 
						|
          return MemDepResult::getClobber(LI);
 | 
						|
        if (isVolatile(QueryInst))
 | 
						|
          // Ordering required if QueryInst is itself volatile
 | 
						|
          return MemDepResult::getClobber(LI);
 | 
						|
        // Otherwise, volatile doesn't imply any special ordering
 | 
						|
      }
 | 
						|
 | 
						|
      // Atomic loads have complications involved.
 | 
						|
      // A Monotonic (or higher) load is OK if the query inst is itself not
 | 
						|
      // atomic.
 | 
						|
      // FIXME: This is overly conservative.
 | 
						|
      if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
 | 
						|
        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
 | 
						|
            isOtherMemAccess(QueryInst))
 | 
						|
          return MemDepResult::getClobber(LI);
 | 
						|
        if (LI->getOrdering() != AtomicOrdering::Monotonic)
 | 
						|
          return MemDepResult::getClobber(LI);
 | 
						|
      }
 | 
						|
 | 
						|
      MemoryLocation LoadLoc = MemoryLocation::get(LI);
 | 
						|
 | 
						|
      // If we found a pointer, check if it could be the same as our pointer.
 | 
						|
      AliasResult R = AA.alias(LoadLoc, MemLoc);
 | 
						|
 | 
						|
      if (isLoad) {
 | 
						|
        if (R == NoAlias)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Must aliased loads are defs of each other.
 | 
						|
        if (R == MustAlias)
 | 
						|
          return MemDepResult::getDef(Inst);
 | 
						|
 | 
						|
#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
 | 
						|
      // in terms of clobbering loads, but since it does this by looking
 | 
						|
      // at the clobbering load directly, it doesn't know about any
 | 
						|
      // phi translation that may have happened along the way.
 | 
						|
 | 
						|
        // If we have a partial alias, then return this as a clobber for the
 | 
						|
        // client to handle.
 | 
						|
        if (R == PartialAlias)
 | 
						|
          return MemDepResult::getClobber(Inst);
 | 
						|
#endif
 | 
						|
 | 
						|
        // Random may-alias loads don't depend on each other without a
 | 
						|
        // dependence.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Stores don't depend on other no-aliased accesses.
 | 
						|
      if (R == NoAlias)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Stores don't alias loads from read-only memory.
 | 
						|
      if (AA.pointsToConstantMemory(LoadLoc))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Stores depend on may/must aliased loads.
 | 
						|
      return MemDepResult::getDef(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
      // Atomic stores have complications involved.
 | 
						|
      // A Monotonic store is OK if the query inst is itself not atomic.
 | 
						|
      // FIXME: This is overly conservative.
 | 
						|
      if (!SI->isUnordered() && SI->isAtomic()) {
 | 
						|
        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
 | 
						|
            isOtherMemAccess(QueryInst))
 | 
						|
          return MemDepResult::getClobber(SI);
 | 
						|
        if (SI->getOrdering() != AtomicOrdering::Monotonic)
 | 
						|
          return MemDepResult::getClobber(SI);
 | 
						|
      }
 | 
						|
 | 
						|
      // FIXME: this is overly conservative.
 | 
						|
      // While volatile access cannot be eliminated, they do not have to clobber
 | 
						|
      // non-aliasing locations, as normal accesses can for example be reordered
 | 
						|
      // with volatile accesses.
 | 
						|
      if (SI->isVolatile())
 | 
						|
        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
 | 
						|
            isOtherMemAccess(QueryInst))
 | 
						|
          return MemDepResult::getClobber(SI);
 | 
						|
 | 
						|
      // If alias analysis can tell that this store is guaranteed to not modify
 | 
						|
      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
 | 
						|
      // the query pointer points to constant memory etc.
 | 
						|
      if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Ok, this store might clobber the query pointer.  Check to see if it is
 | 
						|
      // a must alias: in this case, we want to return this as a def.
 | 
						|
      // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
 | 
						|
      MemoryLocation StoreLoc = MemoryLocation::get(SI);
 | 
						|
 | 
						|
      // If we found a pointer, check if it could be the same as our pointer.
 | 
						|
      AliasResult R = AA.alias(StoreLoc, MemLoc);
 | 
						|
 | 
						|
      if (R == NoAlias)
 | 
						|
        continue;
 | 
						|
      if (R == MustAlias)
 | 
						|
        return MemDepResult::getDef(Inst);
 | 
						|
      if (isInvariantLoad)
 | 
						|
        continue;
 | 
						|
      return MemDepResult::getClobber(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an allocation, and if we know that the accessed pointer is to
 | 
						|
    // the allocation, return Def.  This means that there is no dependence and
 | 
						|
    // the access can be optimized based on that.  For example, a load could
 | 
						|
    // turn into undef.  Note that we can bypass the allocation itself when
 | 
						|
    // looking for a clobber in many cases; that's an alias property and is
 | 
						|
    // handled by BasicAA.
 | 
						|
    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
 | 
						|
      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
 | 
						|
      if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
 | 
						|
        return MemDepResult::getDef(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    if (isInvariantLoad)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A release fence requires that all stores complete before it, but does
 | 
						|
    // not prevent the reordering of following loads or stores 'before' the
 | 
						|
    // fence.  As a result, we look past it when finding a dependency for
 | 
						|
    // loads.  DSE uses this to find preceding stores to delete and thus we
 | 
						|
    // can't bypass the fence if the query instruction is a store.
 | 
						|
    if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
 | 
						|
      if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
 | 
						|
        continue;
 | 
						|
 | 
						|
    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
 | 
						|
    ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
 | 
						|
    // If necessary, perform additional analysis.
 | 
						|
    if (isModAndRefSet(MR))
 | 
						|
      MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
 | 
						|
    switch (clearMust(MR)) {
 | 
						|
    case ModRefInfo::NoModRef:
 | 
						|
      // If the call has no effect on the queried pointer, just ignore it.
 | 
						|
      continue;
 | 
						|
    case ModRefInfo::Mod:
 | 
						|
      return MemDepResult::getClobber(Inst);
 | 
						|
    case ModRefInfo::Ref:
 | 
						|
      // If the call is known to never store to the pointer, and if this is a
 | 
						|
      // load query, we can safely ignore it (scan past it).
 | 
						|
      if (isLoad)
 | 
						|
        continue;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    default:
 | 
						|
      // Otherwise, there is a potential dependence.  Return a clobber.
 | 
						|
      return MemDepResult::getClobber(Inst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // No dependence found.  If this is the entry block of the function, it is
 | 
						|
  // unknown, otherwise it is non-local.
 | 
						|
  if (BB != &BB->getParent()->getEntryBlock())
 | 
						|
    return MemDepResult::getNonLocal();
 | 
						|
  return MemDepResult::getNonFuncLocal();
 | 
						|
}
 | 
						|
 | 
						|
MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
 | 
						|
  Instruction *ScanPos = QueryInst;
 | 
						|
 | 
						|
  // Check for a cached result
 | 
						|
  MemDepResult &LocalCache = LocalDeps[QueryInst];
 | 
						|
 | 
						|
  // If the cached entry is non-dirty, just return it.  Note that this depends
 | 
						|
  // on MemDepResult's default constructing to 'dirty'.
 | 
						|
  if (!LocalCache.isDirty())
 | 
						|
    return LocalCache;
 | 
						|
 | 
						|
  // Otherwise, if we have a dirty entry, we know we can start the scan at that
 | 
						|
  // instruction, which may save us some work.
 | 
						|
  if (Instruction *Inst = LocalCache.getInst()) {
 | 
						|
    ScanPos = Inst;
 | 
						|
 | 
						|
    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *QueryParent = QueryInst->getParent();
 | 
						|
 | 
						|
  // Do the scan.
 | 
						|
  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
 | 
						|
    // No dependence found. If this is the entry block of the function, it is
 | 
						|
    // unknown, otherwise it is non-local.
 | 
						|
    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
 | 
						|
      LocalCache = MemDepResult::getNonLocal();
 | 
						|
    else
 | 
						|
      LocalCache = MemDepResult::getNonFuncLocal();
 | 
						|
  } else {
 | 
						|
    MemoryLocation MemLoc;
 | 
						|
    ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
 | 
						|
    if (MemLoc.Ptr) {
 | 
						|
      // If we can do a pointer scan, make it happen.
 | 
						|
      bool isLoad = !isModSet(MR);
 | 
						|
      if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
 | 
						|
        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
 | 
						|
 | 
						|
      LocalCache =
 | 
						|
          getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
 | 
						|
                                   QueryParent, QueryInst, nullptr);
 | 
						|
    } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
 | 
						|
      bool isReadOnly = AA.onlyReadsMemory(QueryCall);
 | 
						|
      LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
 | 
						|
                                         ScanPos->getIterator(), QueryParent);
 | 
						|
    } else
 | 
						|
      // Non-memory instruction.
 | 
						|
      LocalCache = MemDepResult::getUnknown();
 | 
						|
  }
 | 
						|
 | 
						|
  // Remember the result!
 | 
						|
  if (Instruction *I = LocalCache.getInst())
 | 
						|
    ReverseLocalDeps[I].insert(QueryInst);
 | 
						|
 | 
						|
  return LocalCache;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// This method is used when -debug is specified to verify that cache arrays
 | 
						|
/// are properly kept sorted.
 | 
						|
static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
 | 
						|
                         int Count = -1) {
 | 
						|
  if (Count == -1)
 | 
						|
    Count = Cache.size();
 | 
						|
  assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
 | 
						|
         "Cache isn't sorted!");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
const MemoryDependenceResults::NonLocalDepInfo &
 | 
						|
MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
 | 
						|
  assert(getDependency(QueryCall).isNonLocal() &&
 | 
						|
         "getNonLocalCallDependency should only be used on calls with "
 | 
						|
         "non-local deps!");
 | 
						|
  PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
 | 
						|
  NonLocalDepInfo &Cache = CacheP.first;
 | 
						|
 | 
						|
  // This is the set of blocks that need to be recomputed.  In the cached case,
 | 
						|
  // this can happen due to instructions being deleted etc. In the uncached
 | 
						|
  // case, this starts out as the set of predecessors we care about.
 | 
						|
  SmallVector<BasicBlock *, 32> DirtyBlocks;
 | 
						|
 | 
						|
  if (!Cache.empty()) {
 | 
						|
    // Okay, we have a cache entry.  If we know it is not dirty, just return it
 | 
						|
    // with no computation.
 | 
						|
    if (!CacheP.second) {
 | 
						|
      ++NumCacheNonLocal;
 | 
						|
      return Cache;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we already have a partially computed set of results, scan them to
 | 
						|
    // determine what is dirty, seeding our initial DirtyBlocks worklist.
 | 
						|
    for (auto &Entry : Cache)
 | 
						|
      if (Entry.getResult().isDirty())
 | 
						|
        DirtyBlocks.push_back(Entry.getBB());
 | 
						|
 | 
						|
    // Sort the cache so that we can do fast binary search lookups below.
 | 
						|
    llvm::sort(Cache);
 | 
						|
 | 
						|
    ++NumCacheDirtyNonLocal;
 | 
						|
    // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
 | 
						|
    //     << Cache.size() << " cached: " << *QueryInst;
 | 
						|
  } else {
 | 
						|
    // Seed DirtyBlocks with each of the preds of QueryInst's block.
 | 
						|
    BasicBlock *QueryBB = QueryCall->getParent();
 | 
						|
    for (BasicBlock *Pred : PredCache.get(QueryBB))
 | 
						|
      DirtyBlocks.push_back(Pred);
 | 
						|
    ++NumUncacheNonLocal;
 | 
						|
  }
 | 
						|
 | 
						|
  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
 | 
						|
  bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock *, 32> Visited;
 | 
						|
 | 
						|
  unsigned NumSortedEntries = Cache.size();
 | 
						|
  LLVM_DEBUG(AssertSorted(Cache));
 | 
						|
 | 
						|
  // Iterate while we still have blocks to update.
 | 
						|
  while (!DirtyBlocks.empty()) {
 | 
						|
    BasicBlock *DirtyBB = DirtyBlocks.back();
 | 
						|
    DirtyBlocks.pop_back();
 | 
						|
 | 
						|
    // Already processed this block?
 | 
						|
    if (!Visited.insert(DirtyBB).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Do a binary search to see if we already have an entry for this block in
 | 
						|
    // the cache set.  If so, find it.
 | 
						|
    LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
 | 
						|
    NonLocalDepInfo::iterator Entry =
 | 
						|
        std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
 | 
						|
                         NonLocalDepEntry(DirtyBB));
 | 
						|
    if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
 | 
						|
      --Entry;
 | 
						|
 | 
						|
    NonLocalDepEntry *ExistingResult = nullptr;
 | 
						|
    if (Entry != Cache.begin() + NumSortedEntries &&
 | 
						|
        Entry->getBB() == DirtyBB) {
 | 
						|
      // If we already have an entry, and if it isn't already dirty, the block
 | 
						|
      // is done.
 | 
						|
      if (!Entry->getResult().isDirty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Otherwise, remember this slot so we can update the value.
 | 
						|
      ExistingResult = &*Entry;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the dirty entry has a pointer, start scanning from it so we don't have
 | 
						|
    // to rescan the entire block.
 | 
						|
    BasicBlock::iterator ScanPos = DirtyBB->end();
 | 
						|
    if (ExistingResult) {
 | 
						|
      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
 | 
						|
        ScanPos = Inst->getIterator();
 | 
						|
        // We're removing QueryInst's use of Inst.
 | 
						|
        RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
 | 
						|
                                            QueryCall);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Find out if this block has a local dependency for QueryInst.
 | 
						|
    MemDepResult Dep;
 | 
						|
 | 
						|
    if (ScanPos != DirtyBB->begin()) {
 | 
						|
      Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
 | 
						|
    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
 | 
						|
      // No dependence found.  If this is the entry block of the function, it is
 | 
						|
      // a clobber, otherwise it is unknown.
 | 
						|
      Dep = MemDepResult::getNonLocal();
 | 
						|
    } else {
 | 
						|
      Dep = MemDepResult::getNonFuncLocal();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we had a dirty entry for the block, update it.  Otherwise, just add
 | 
						|
    // a new entry.
 | 
						|
    if (ExistingResult)
 | 
						|
      ExistingResult->setResult(Dep);
 | 
						|
    else
 | 
						|
      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
 | 
						|
 | 
						|
    // If the block has a dependency (i.e. it isn't completely transparent to
 | 
						|
    // the value), remember the association!
 | 
						|
    if (!Dep.isNonLocal()) {
 | 
						|
      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
 | 
						|
      // update this when we remove instructions.
 | 
						|
      if (Instruction *Inst = Dep.getInst())
 | 
						|
        ReverseNonLocalDeps[Inst].insert(QueryCall);
 | 
						|
    } else {
 | 
						|
 | 
						|
      // If the block *is* completely transparent to the load, we need to check
 | 
						|
      // the predecessors of this block.  Add them to our worklist.
 | 
						|
      for (BasicBlock *Pred : PredCache.get(DirtyBB))
 | 
						|
        DirtyBlocks.push_back(Pred);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Cache;
 | 
						|
}
 | 
						|
 | 
						|
void MemoryDependenceResults::getNonLocalPointerDependency(
 | 
						|
    Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
 | 
						|
  const MemoryLocation Loc = MemoryLocation::get(QueryInst);
 | 
						|
  bool isLoad = isa<LoadInst>(QueryInst);
 | 
						|
  BasicBlock *FromBB = QueryInst->getParent();
 | 
						|
  assert(FromBB);
 | 
						|
 | 
						|
  assert(Loc.Ptr->getType()->isPointerTy() &&
 | 
						|
         "Can't get pointer deps of a non-pointer!");
 | 
						|
  Result.clear();
 | 
						|
  {
 | 
						|
    // Check if there is cached Def with invariant.group.
 | 
						|
    auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
 | 
						|
    if (NonLocalDefIt != NonLocalDefsCache.end()) {
 | 
						|
      Result.push_back(NonLocalDefIt->second);
 | 
						|
      ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
 | 
						|
          .erase(QueryInst);
 | 
						|
      NonLocalDefsCache.erase(NonLocalDefIt);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // This routine does not expect to deal with volatile instructions.
 | 
						|
  // Doing so would require piping through the QueryInst all the way through.
 | 
						|
  // TODO: volatiles can't be elided, but they can be reordered with other
 | 
						|
  // non-volatile accesses.
 | 
						|
 | 
						|
  // We currently give up on any instruction which is ordered, but we do handle
 | 
						|
  // atomic instructions which are unordered.
 | 
						|
  // TODO: Handle ordered instructions
 | 
						|
  auto isOrdered = [](Instruction *Inst) {
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | 
						|
      return !LI->isUnordered();
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
      return !SI->isUnordered();
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
  if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
 | 
						|
    Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
 | 
						|
                                       const_cast<Value *>(Loc.Ptr)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  const DataLayout &DL = FromBB->getModule()->getDataLayout();
 | 
						|
  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
 | 
						|
 | 
						|
  // This is the set of blocks we've inspected, and the pointer we consider in
 | 
						|
  // each block.  Because of critical edges, we currently bail out if querying
 | 
						|
  // a block with multiple different pointers.  This can happen during PHI
 | 
						|
  // translation.
 | 
						|
  DenseMap<BasicBlock *, Value *> Visited;
 | 
						|
  if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
 | 
						|
                                   Result, Visited, true))
 | 
						|
    return;
 | 
						|
  Result.clear();
 | 
						|
  Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
 | 
						|
                                     const_cast<Value *>(Loc.Ptr)));
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the memdep value for BB with Pointer/PointeeSize using either
 | 
						|
/// cached information in Cache or by doing a lookup (which may use dirty cache
 | 
						|
/// info if available).
 | 
						|
///
 | 
						|
/// If we do a lookup, add the result to the cache.
 | 
						|
MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
 | 
						|
    Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
 | 
						|
    BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
 | 
						|
 | 
						|
  bool isInvariantLoad = false;
 | 
						|
 | 
						|
  if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
 | 
						|
    isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
 | 
						|
 | 
						|
  // Do a binary search to see if we already have an entry for this block in
 | 
						|
  // the cache set.  If so, find it.
 | 
						|
  NonLocalDepInfo::iterator Entry = std::upper_bound(
 | 
						|
      Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
 | 
						|
  if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
 | 
						|
    --Entry;
 | 
						|
 | 
						|
  NonLocalDepEntry *ExistingResult = nullptr;
 | 
						|
  if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
 | 
						|
    ExistingResult = &*Entry;
 | 
						|
 | 
						|
  // Use cached result for invariant load only if there is no dependency for non
 | 
						|
  // invariant load. In this case invariant load can not have any dependency as
 | 
						|
  // well.
 | 
						|
  if (ExistingResult && isInvariantLoad &&
 | 
						|
      !ExistingResult->getResult().isNonFuncLocal())
 | 
						|
    ExistingResult = nullptr;
 | 
						|
 | 
						|
  // If we have a cached entry, and it is non-dirty, use it as the value for
 | 
						|
  // this dependency.
 | 
						|
  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
 | 
						|
    ++NumCacheNonLocalPtr;
 | 
						|
    return ExistingResult->getResult();
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have to scan for the value.  If we have a dirty cache
 | 
						|
  // entry, start scanning from its position, otherwise we scan from the end
 | 
						|
  // of the block.
 | 
						|
  BasicBlock::iterator ScanPos = BB->end();
 | 
						|
  if (ExistingResult && ExistingResult->getResult().getInst()) {
 | 
						|
    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
 | 
						|
           "Instruction invalidated?");
 | 
						|
    ++NumCacheDirtyNonLocalPtr;
 | 
						|
    ScanPos = ExistingResult->getResult().getInst()->getIterator();
 | 
						|
 | 
						|
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
 | 
						|
    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
 | 
						|
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
 | 
						|
  } else {
 | 
						|
    ++NumUncacheNonLocalPtr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the block for the dependency.
 | 
						|
  MemDepResult Dep =
 | 
						|
      getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
 | 
						|
 | 
						|
  // Don't cache results for invariant load.
 | 
						|
  if (isInvariantLoad)
 | 
						|
    return Dep;
 | 
						|
 | 
						|
  // If we had a dirty entry for the block, update it.  Otherwise, just add
 | 
						|
  // a new entry.
 | 
						|
  if (ExistingResult)
 | 
						|
    ExistingResult->setResult(Dep);
 | 
						|
  else
 | 
						|
    Cache->push_back(NonLocalDepEntry(BB, Dep));
 | 
						|
 | 
						|
  // If the block has a dependency (i.e. it isn't completely transparent to
 | 
						|
  // the value), remember the reverse association because we just added it
 | 
						|
  // to Cache!
 | 
						|
  if (!Dep.isDef() && !Dep.isClobber())
 | 
						|
    return Dep;
 | 
						|
 | 
						|
  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
 | 
						|
  // update MemDep when we remove instructions.
 | 
						|
  Instruction *Inst = Dep.getInst();
 | 
						|
  assert(Inst && "Didn't depend on anything?");
 | 
						|
  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
 | 
						|
  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
 | 
						|
  return Dep;
 | 
						|
}
 | 
						|
 | 
						|
/// Sort the NonLocalDepInfo cache, given a certain number of elements in the
 | 
						|
/// array that are already properly ordered.
 | 
						|
///
 | 
						|
/// This is optimized for the case when only a few entries are added.
 | 
						|
static void
 | 
						|
SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
 | 
						|
                         unsigned NumSortedEntries) {
 | 
						|
  switch (Cache.size() - NumSortedEntries) {
 | 
						|
  case 0:
 | 
						|
    // done, no new entries.
 | 
						|
    break;
 | 
						|
  case 2: {
 | 
						|
    // Two new entries, insert the last one into place.
 | 
						|
    NonLocalDepEntry Val = Cache.back();
 | 
						|
    Cache.pop_back();
 | 
						|
    MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
 | 
						|
        std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
 | 
						|
    Cache.insert(Entry, Val);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  }
 | 
						|
  case 1:
 | 
						|
    // One new entry, Just insert the new value at the appropriate position.
 | 
						|
    if (Cache.size() != 1) {
 | 
						|
      NonLocalDepEntry Val = Cache.back();
 | 
						|
      Cache.pop_back();
 | 
						|
      MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
 | 
						|
          std::upper_bound(Cache.begin(), Cache.end(), Val);
 | 
						|
      Cache.insert(Entry, Val);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // Added many values, do a full scale sort.
 | 
						|
    llvm::sort(Cache);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Perform a dependency query based on pointer/pointeesize starting at the end
 | 
						|
/// of StartBB.
 | 
						|
///
 | 
						|
/// Add any clobber/def results to the results vector and keep track of which
 | 
						|
/// blocks are visited in 'Visited'.
 | 
						|
///
 | 
						|
/// This has special behavior for the first block queries (when SkipFirstBlock
 | 
						|
/// is true).  In this special case, it ignores the contents of the specified
 | 
						|
/// block and starts returning dependence info for its predecessors.
 | 
						|
///
 | 
						|
/// This function returns true on success, or false to indicate that it could
 | 
						|
/// not compute dependence information for some reason.  This should be treated
 | 
						|
/// as a clobber dependence on the first instruction in the predecessor block.
 | 
						|
bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
 | 
						|
    Instruction *QueryInst, const PHITransAddr &Pointer,
 | 
						|
    const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
 | 
						|
    SmallVectorImpl<NonLocalDepResult> &Result,
 | 
						|
    DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
 | 
						|
    bool IsIncomplete) {
 | 
						|
  // Look up the cached info for Pointer.
 | 
						|
  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
 | 
						|
 | 
						|
  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
 | 
						|
  // CacheKey, this value will be inserted as the associated value. Otherwise,
 | 
						|
  // it'll be ignored, and we'll have to check to see if the cached size and
 | 
						|
  // aa tags are consistent with the current query.
 | 
						|
  NonLocalPointerInfo InitialNLPI;
 | 
						|
  InitialNLPI.Size = Loc.Size;
 | 
						|
  InitialNLPI.AATags = Loc.AATags;
 | 
						|
 | 
						|
  bool isInvariantLoad = false;
 | 
						|
  if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
 | 
						|
    isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
 | 
						|
 | 
						|
  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
 | 
						|
  // already have one.
 | 
						|
  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
 | 
						|
      NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
 | 
						|
  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
 | 
						|
 | 
						|
  // If we already have a cache entry for this CacheKey, we may need to do some
 | 
						|
  // work to reconcile the cache entry and the current query.
 | 
						|
  // Invariant loads don't participate in caching. Thus no need to reconcile.
 | 
						|
  if (!isInvariantLoad && !Pair.second) {
 | 
						|
    if (CacheInfo->Size != Loc.Size) {
 | 
						|
      bool ThrowOutEverything;
 | 
						|
      if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
 | 
						|
        // FIXME: We may be able to do better in the face of results with mixed
 | 
						|
        // precision. We don't appear to get them in practice, though, so just
 | 
						|
        // be conservative.
 | 
						|
        ThrowOutEverything =
 | 
						|
            CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
 | 
						|
            CacheInfo->Size.getValue() < Loc.Size.getValue();
 | 
						|
      } else {
 | 
						|
        // For our purposes, unknown size > all others.
 | 
						|
        ThrowOutEverything = !Loc.Size.hasValue();
 | 
						|
      }
 | 
						|
 | 
						|
      if (ThrowOutEverything) {
 | 
						|
        // The query's Size is greater than the cached one. Throw out the
 | 
						|
        // cached data and proceed with the query at the greater size.
 | 
						|
        CacheInfo->Pair = BBSkipFirstBlockPair();
 | 
						|
        CacheInfo->Size = Loc.Size;
 | 
						|
        for (auto &Entry : CacheInfo->NonLocalDeps)
 | 
						|
          if (Instruction *Inst = Entry.getResult().getInst())
 | 
						|
            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
 | 
						|
        CacheInfo->NonLocalDeps.clear();
 | 
						|
        // The cache is cleared (in the above line) so we will have lost
 | 
						|
        // information about blocks we have already visited. We therefore must
 | 
						|
        // assume that the cache information is incomplete.
 | 
						|
        IsIncomplete = true;
 | 
						|
      } else {
 | 
						|
        // This query's Size is less than the cached one. Conservatively restart
 | 
						|
        // the query using the greater size.
 | 
						|
        return getNonLocalPointerDepFromBB(
 | 
						|
            QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
 | 
						|
            StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the query's AATags are inconsistent with the cached one,
 | 
						|
    // conservatively throw out the cached data and restart the query with
 | 
						|
    // no tag if needed.
 | 
						|
    if (CacheInfo->AATags != Loc.AATags) {
 | 
						|
      if (CacheInfo->AATags) {
 | 
						|
        CacheInfo->Pair = BBSkipFirstBlockPair();
 | 
						|
        CacheInfo->AATags = AAMDNodes();
 | 
						|
        for (auto &Entry : CacheInfo->NonLocalDeps)
 | 
						|
          if (Instruction *Inst = Entry.getResult().getInst())
 | 
						|
            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
 | 
						|
        CacheInfo->NonLocalDeps.clear();
 | 
						|
        // The cache is cleared (in the above line) so we will have lost
 | 
						|
        // information about blocks we have already visited. We therefore must
 | 
						|
        // assume that the cache information is incomplete.
 | 
						|
        IsIncomplete = true;
 | 
						|
      }
 | 
						|
      if (Loc.AATags)
 | 
						|
        return getNonLocalPointerDepFromBB(
 | 
						|
            QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
 | 
						|
            Visited, SkipFirstBlock, IsIncomplete);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
 | 
						|
 | 
						|
  // If we have valid cached information for exactly the block we are
 | 
						|
  // investigating, just return it with no recomputation.
 | 
						|
  // Don't use cached information for invariant loads since it is valid for
 | 
						|
  // non-invariant loads only.
 | 
						|
  //
 | 
						|
  // Don't use cached information for invariant loads since it is valid for
 | 
						|
  // non-invariant loads only.
 | 
						|
  if (!IsIncomplete && !isInvariantLoad &&
 | 
						|
      CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
 | 
						|
    // We have a fully cached result for this query then we can just return the
 | 
						|
    // cached results and populate the visited set.  However, we have to verify
 | 
						|
    // that we don't already have conflicting results for these blocks.  Check
 | 
						|
    // to ensure that if a block in the results set is in the visited set that
 | 
						|
    // it was for the same pointer query.
 | 
						|
    if (!Visited.empty()) {
 | 
						|
      for (auto &Entry : *Cache) {
 | 
						|
        DenseMap<BasicBlock *, Value *>::iterator VI =
 | 
						|
            Visited.find(Entry.getBB());
 | 
						|
        if (VI == Visited.end() || VI->second == Pointer.getAddr())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // We have a pointer mismatch in a block.  Just return false, saying
 | 
						|
        // that something was clobbered in this result.  We could also do a
 | 
						|
        // non-fully cached query, but there is little point in doing this.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Value *Addr = Pointer.getAddr();
 | 
						|
    for (auto &Entry : *Cache) {
 | 
						|
      Visited.insert(std::make_pair(Entry.getBB(), Addr));
 | 
						|
      if (Entry.getResult().isNonLocal()) {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (DT.isReachableFromEntry(Entry.getBB())) {
 | 
						|
        Result.push_back(
 | 
						|
            NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ++NumCacheCompleteNonLocalPtr;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, either this is a new block, a block with an invalid cache
 | 
						|
  // pointer or one that we're about to invalidate by putting more info into
 | 
						|
  // it than its valid cache info.  If empty and not explicitly indicated as
 | 
						|
  // incomplete, the result will be valid cache info, otherwise it isn't.
 | 
						|
  //
 | 
						|
  // Invariant loads don't affect cache in any way thus no need to update
 | 
						|
  // CacheInfo as well.
 | 
						|
  if (!isInvariantLoad) {
 | 
						|
    if (!IsIncomplete && Cache->empty())
 | 
						|
      CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
 | 
						|
    else
 | 
						|
      CacheInfo->Pair = BBSkipFirstBlockPair();
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 32> Worklist;
 | 
						|
  Worklist.push_back(StartBB);
 | 
						|
 | 
						|
  // PredList used inside loop.
 | 
						|
  SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
 | 
						|
 | 
						|
  // Keep track of the entries that we know are sorted.  Previously cached
 | 
						|
  // entries will all be sorted.  The entries we add we only sort on demand (we
 | 
						|
  // don't insert every element into its sorted position).  We know that we
 | 
						|
  // won't get any reuse from currently inserted values, because we don't
 | 
						|
  // revisit blocks after we insert info for them.
 | 
						|
  unsigned NumSortedEntries = Cache->size();
 | 
						|
  unsigned WorklistEntries = BlockNumberLimit;
 | 
						|
  bool GotWorklistLimit = false;
 | 
						|
  LLVM_DEBUG(AssertSorted(*Cache));
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    BasicBlock *BB = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // If we do process a large number of blocks it becomes very expensive and
 | 
						|
    // likely it isn't worth worrying about
 | 
						|
    if (Result.size() > NumResultsLimit) {
 | 
						|
      Worklist.clear();
 | 
						|
      // Sort it now (if needed) so that recursive invocations of
 | 
						|
      // getNonLocalPointerDepFromBB and other routines that could reuse the
 | 
						|
      // cache value will only see properly sorted cache arrays.
 | 
						|
      if (Cache && NumSortedEntries != Cache->size()) {
 | 
						|
        SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
 | 
						|
      }
 | 
						|
      // Since we bail out, the "Cache" set won't contain all of the
 | 
						|
      // results for the query.  This is ok (we can still use it to accelerate
 | 
						|
      // specific block queries) but we can't do the fastpath "return all
 | 
						|
      // results from the set".  Clear out the indicator for this.
 | 
						|
      CacheInfo->Pair = BBSkipFirstBlockPair();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Skip the first block if we have it.
 | 
						|
    if (!SkipFirstBlock) {
 | 
						|
      // Analyze the dependency of *Pointer in FromBB.  See if we already have
 | 
						|
      // been here.
 | 
						|
      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
 | 
						|
 | 
						|
      // Get the dependency info for Pointer in BB.  If we have cached
 | 
						|
      // information, we will use it, otherwise we compute it.
 | 
						|
      LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
 | 
						|
      MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
 | 
						|
                                                 Cache, NumSortedEntries);
 | 
						|
 | 
						|
      // If we got a Def or Clobber, add this to the list of results.
 | 
						|
      if (!Dep.isNonLocal()) {
 | 
						|
        if (DT.isReachableFromEntry(BB)) {
 | 
						|
          Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If 'Pointer' is an instruction defined in this block, then we need to do
 | 
						|
    // phi translation to change it into a value live in the predecessor block.
 | 
						|
    // If not, we just add the predecessors to the worklist and scan them with
 | 
						|
    // the same Pointer.
 | 
						|
    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
 | 
						|
      SkipFirstBlock = false;
 | 
						|
      SmallVector<BasicBlock *, 16> NewBlocks;
 | 
						|
      for (BasicBlock *Pred : PredCache.get(BB)) {
 | 
						|
        // Verify that we haven't looked at this block yet.
 | 
						|
        std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
 | 
						|
            Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
 | 
						|
        if (InsertRes.second) {
 | 
						|
          // First time we've looked at *PI.
 | 
						|
          NewBlocks.push_back(Pred);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // If we have seen this block before, but it was with a different
 | 
						|
        // pointer then we have a phi translation failure and we have to treat
 | 
						|
        // this as a clobber.
 | 
						|
        if (InsertRes.first->second != Pointer.getAddr()) {
 | 
						|
          // Make sure to clean up the Visited map before continuing on to
 | 
						|
          // PredTranslationFailure.
 | 
						|
          for (unsigned i = 0; i < NewBlocks.size(); i++)
 | 
						|
            Visited.erase(NewBlocks[i]);
 | 
						|
          goto PredTranslationFailure;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (NewBlocks.size() > WorklistEntries) {
 | 
						|
        // Make sure to clean up the Visited map before continuing on to
 | 
						|
        // PredTranslationFailure.
 | 
						|
        for (unsigned i = 0; i < NewBlocks.size(); i++)
 | 
						|
          Visited.erase(NewBlocks[i]);
 | 
						|
        GotWorklistLimit = true;
 | 
						|
        goto PredTranslationFailure;
 | 
						|
      }
 | 
						|
      WorklistEntries -= NewBlocks.size();
 | 
						|
      Worklist.append(NewBlocks.begin(), NewBlocks.end());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We do need to do phi translation, if we know ahead of time we can't phi
 | 
						|
    // translate this value, don't even try.
 | 
						|
    if (!Pointer.IsPotentiallyPHITranslatable())
 | 
						|
      goto PredTranslationFailure;
 | 
						|
 | 
						|
    // We may have added values to the cache list before this PHI translation.
 | 
						|
    // If so, we haven't done anything to ensure that the cache remains sorted.
 | 
						|
    // Sort it now (if needed) so that recursive invocations of
 | 
						|
    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
 | 
						|
    // value will only see properly sorted cache arrays.
 | 
						|
    if (Cache && NumSortedEntries != Cache->size()) {
 | 
						|
      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
 | 
						|
      NumSortedEntries = Cache->size();
 | 
						|
    }
 | 
						|
    Cache = nullptr;
 | 
						|
 | 
						|
    PredList.clear();
 | 
						|
    for (BasicBlock *Pred : PredCache.get(BB)) {
 | 
						|
      PredList.push_back(std::make_pair(Pred, Pointer));
 | 
						|
 | 
						|
      // Get the PHI translated pointer in this predecessor.  This can fail if
 | 
						|
      // not translatable, in which case the getAddr() returns null.
 | 
						|
      PHITransAddr &PredPointer = PredList.back().second;
 | 
						|
      PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
 | 
						|
      Value *PredPtrVal = PredPointer.getAddr();
 | 
						|
 | 
						|
      // Check to see if we have already visited this pred block with another
 | 
						|
      // pointer.  If so, we can't do this lookup.  This failure can occur
 | 
						|
      // with PHI translation when a critical edge exists and the PHI node in
 | 
						|
      // the successor translates to a pointer value different than the
 | 
						|
      // pointer the block was first analyzed with.
 | 
						|
      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
 | 
						|
          Visited.insert(std::make_pair(Pred, PredPtrVal));
 | 
						|
 | 
						|
      if (!InsertRes.second) {
 | 
						|
        // We found the pred; take it off the list of preds to visit.
 | 
						|
        PredList.pop_back();
 | 
						|
 | 
						|
        // If the predecessor was visited with PredPtr, then we already did
 | 
						|
        // the analysis and can ignore it.
 | 
						|
        if (InsertRes.first->second == PredPtrVal)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Otherwise, the block was previously analyzed with a different
 | 
						|
        // pointer.  We can't represent the result of this case, so we just
 | 
						|
        // treat this as a phi translation failure.
 | 
						|
 | 
						|
        // Make sure to clean up the Visited map before continuing on to
 | 
						|
        // PredTranslationFailure.
 | 
						|
        for (unsigned i = 0, n = PredList.size(); i < n; ++i)
 | 
						|
          Visited.erase(PredList[i].first);
 | 
						|
 | 
						|
        goto PredTranslationFailure;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Actually process results here; this need to be a separate loop to avoid
 | 
						|
    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
 | 
						|
    // any results for.  (getNonLocalPointerDepFromBB will modify our
 | 
						|
    // datastructures in ways the code after the PredTranslationFailure label
 | 
						|
    // doesn't expect.)
 | 
						|
    for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
 | 
						|
      BasicBlock *Pred = PredList[i].first;
 | 
						|
      PHITransAddr &PredPointer = PredList[i].second;
 | 
						|
      Value *PredPtrVal = PredPointer.getAddr();
 | 
						|
 | 
						|
      bool CanTranslate = true;
 | 
						|
      // If PHI translation was unable to find an available pointer in this
 | 
						|
      // predecessor, then we have to assume that the pointer is clobbered in
 | 
						|
      // that predecessor.  We can still do PRE of the load, which would insert
 | 
						|
      // a computation of the pointer in this predecessor.
 | 
						|
      if (!PredPtrVal)
 | 
						|
        CanTranslate = false;
 | 
						|
 | 
						|
      // FIXME: it is entirely possible that PHI translating will end up with
 | 
						|
      // the same value.  Consider PHI translating something like:
 | 
						|
      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
 | 
						|
      // to recurse here, pedantically speaking.
 | 
						|
 | 
						|
      // If getNonLocalPointerDepFromBB fails here, that means the cached
 | 
						|
      // result conflicted with the Visited list; we have to conservatively
 | 
						|
      // assume it is unknown, but this also does not block PRE of the load.
 | 
						|
      if (!CanTranslate ||
 | 
						|
          !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
 | 
						|
                                      Loc.getWithNewPtr(PredPtrVal), isLoad,
 | 
						|
                                      Pred, Result, Visited)) {
 | 
						|
        // Add the entry to the Result list.
 | 
						|
        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
 | 
						|
        Result.push_back(Entry);
 | 
						|
 | 
						|
        // Since we had a phi translation failure, the cache for CacheKey won't
 | 
						|
        // include all of the entries that we need to immediately satisfy future
 | 
						|
        // queries.  Mark this in NonLocalPointerDeps by setting the
 | 
						|
        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
 | 
						|
        // cached value to do more work but not miss the phi trans failure.
 | 
						|
        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
 | 
						|
        NLPI.Pair = BBSkipFirstBlockPair();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
 | 
						|
    CacheInfo = &NonLocalPointerDeps[CacheKey];
 | 
						|
    Cache = &CacheInfo->NonLocalDeps;
 | 
						|
    NumSortedEntries = Cache->size();
 | 
						|
 | 
						|
    // Since we did phi translation, the "Cache" set won't contain all of the
 | 
						|
    // results for the query.  This is ok (we can still use it to accelerate
 | 
						|
    // specific block queries) but we can't do the fastpath "return all
 | 
						|
    // results from the set"  Clear out the indicator for this.
 | 
						|
    CacheInfo->Pair = BBSkipFirstBlockPair();
 | 
						|
    SkipFirstBlock = false;
 | 
						|
    continue;
 | 
						|
 | 
						|
  PredTranslationFailure:
 | 
						|
    // The following code is "failure"; we can't produce a sane translation
 | 
						|
    // for the given block.  It assumes that we haven't modified any of
 | 
						|
    // our datastructures while processing the current block.
 | 
						|
 | 
						|
    if (!Cache) {
 | 
						|
      // Refresh the CacheInfo/Cache pointer if it got invalidated.
 | 
						|
      CacheInfo = &NonLocalPointerDeps[CacheKey];
 | 
						|
      Cache = &CacheInfo->NonLocalDeps;
 | 
						|
      NumSortedEntries = Cache->size();
 | 
						|
    }
 | 
						|
 | 
						|
    // Since we failed phi translation, the "Cache" set won't contain all of the
 | 
						|
    // results for the query.  This is ok (we can still use it to accelerate
 | 
						|
    // specific block queries) but we can't do the fastpath "return all
 | 
						|
    // results from the set".  Clear out the indicator for this.
 | 
						|
    CacheInfo->Pair = BBSkipFirstBlockPair();
 | 
						|
 | 
						|
    // If *nothing* works, mark the pointer as unknown.
 | 
						|
    //
 | 
						|
    // If this is the magic first block, return this as a clobber of the whole
 | 
						|
    // incoming value.  Since we can't phi translate to one of the predecessors,
 | 
						|
    // we have to bail out.
 | 
						|
    if (SkipFirstBlock)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Results of invariant loads are not cached thus no need to update cached
 | 
						|
    // information.
 | 
						|
    if (!isInvariantLoad) {
 | 
						|
      for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
 | 
						|
        if (I.getBB() != BB)
 | 
						|
          continue;
 | 
						|
 | 
						|
        assert((GotWorklistLimit || I.getResult().isNonLocal() ||
 | 
						|
                !DT.isReachableFromEntry(BB)) &&
 | 
						|
               "Should only be here with transparent block");
 | 
						|
 | 
						|
        I.setResult(MemDepResult::getUnknown());
 | 
						|
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    (void)GotWorklistLimit;
 | 
						|
    // Go ahead and report unknown dependence.
 | 
						|
    Result.push_back(
 | 
						|
        NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we're done now.  If we added new values to the cache, re-sort it.
 | 
						|
  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
 | 
						|
  LLVM_DEBUG(AssertSorted(*Cache));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
 | 
						|
void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
 | 
						|
    ValueIsLoadPair P) {
 | 
						|
 | 
						|
  // Most of the time this cache is empty.
 | 
						|
  if (!NonLocalDefsCache.empty()) {
 | 
						|
    auto it = NonLocalDefsCache.find(P.getPointer());
 | 
						|
    if (it != NonLocalDefsCache.end()) {
 | 
						|
      RemoveFromReverseMap(ReverseNonLocalDefsCache,
 | 
						|
                           it->second.getResult().getInst(), P.getPointer());
 | 
						|
      NonLocalDefsCache.erase(it);
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
 | 
						|
      auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
 | 
						|
      if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
 | 
						|
        for (const auto *entry : toRemoveIt->second)
 | 
						|
          NonLocalDefsCache.erase(entry);
 | 
						|
        ReverseNonLocalDefsCache.erase(toRemoveIt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
 | 
						|
  if (It == NonLocalPointerDeps.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Remove all of the entries in the BB->val map.  This involves removing
 | 
						|
  // instructions from the reverse map.
 | 
						|
  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
 | 
						|
    Instruction *Target = PInfo[i].getResult().getInst();
 | 
						|
    if (!Target)
 | 
						|
      continue; // Ignore non-local dep results.
 | 
						|
    assert(Target->getParent() == PInfo[i].getBB());
 | 
						|
 | 
						|
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
 | 
						|
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
 | 
						|
  NonLocalPointerDeps.erase(It);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
 | 
						|
  // If Ptr isn't really a pointer, just ignore it.
 | 
						|
  if (!Ptr->getType()->isPointerTy())
 | 
						|
    return;
 | 
						|
  // Flush store info for the pointer.
 | 
						|
  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
 | 
						|
  // Flush load info for the pointer.
 | 
						|
  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
 | 
						|
  // Invalidate phis that use the pointer.
 | 
						|
  PV.invalidateValue(Ptr);
 | 
						|
}
 | 
						|
 | 
						|
void MemoryDependenceResults::invalidateCachedPredecessors() {
 | 
						|
  PredCache.clear();
 | 
						|
}
 | 
						|
 | 
						|
void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
 | 
						|
  // Walk through the Non-local dependencies, removing this one as the value
 | 
						|
  // for any cached queries.
 | 
						|
  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
 | 
						|
  if (NLDI != NonLocalDeps.end()) {
 | 
						|
    NonLocalDepInfo &BlockMap = NLDI->second.first;
 | 
						|
    for (auto &Entry : BlockMap)
 | 
						|
      if (Instruction *Inst = Entry.getResult().getInst())
 | 
						|
        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
 | 
						|
    NonLocalDeps.erase(NLDI);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a cached local dependence query for this instruction, remove it.
 | 
						|
  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
 | 
						|
  if (LocalDepEntry != LocalDeps.end()) {
 | 
						|
    // Remove us from DepInst's reverse set now that the local dep info is gone.
 | 
						|
    if (Instruction *Inst = LocalDepEntry->second.getInst())
 | 
						|
      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
 | 
						|
 | 
						|
    // Remove this local dependency info.
 | 
						|
    LocalDeps.erase(LocalDepEntry);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have any cached pointer dependencies on this instruction, remove
 | 
						|
  // them.  If the instruction has non-pointer type, then it can't be a pointer
 | 
						|
  // base.
 | 
						|
 | 
						|
  // Remove it from both the load info and the store info.  The instruction
 | 
						|
  // can't be in either of these maps if it is non-pointer.
 | 
						|
  if (RemInst->getType()->isPointerTy()) {
 | 
						|
    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
 | 
						|
    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the things that depend on the instruction we're removing.
 | 
						|
  SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
 | 
						|
 | 
						|
  // If we find RemInst as a clobber or Def in any of the maps for other values,
 | 
						|
  // we need to replace its entry with a dirty version of the instruction after
 | 
						|
  // it.  If RemInst is a terminator, we use a null dirty value.
 | 
						|
  //
 | 
						|
  // Using a dirty version of the instruction after RemInst saves having to scan
 | 
						|
  // the entire block to get to this point.
 | 
						|
  MemDepResult NewDirtyVal;
 | 
						|
  if (!RemInst->isTerminator())
 | 
						|
    NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
 | 
						|
 | 
						|
  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
 | 
						|
  if (ReverseDepIt != ReverseLocalDeps.end()) {
 | 
						|
    // RemInst can't be the terminator if it has local stuff depending on it.
 | 
						|
    assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
 | 
						|
           "Nothing can locally depend on a terminator");
 | 
						|
 | 
						|
    for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
 | 
						|
      assert(InstDependingOnRemInst != RemInst &&
 | 
						|
             "Already removed our local dep info");
 | 
						|
 | 
						|
      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
 | 
						|
 | 
						|
      // Make sure to remember that new things depend on NewDepInst.
 | 
						|
      assert(NewDirtyVal.getInst() &&
 | 
						|
             "There is no way something else can have "
 | 
						|
             "a local dep on this if it is a terminator!");
 | 
						|
      ReverseDepsToAdd.push_back(
 | 
						|
          std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
 | 
						|
    }
 | 
						|
 | 
						|
    ReverseLocalDeps.erase(ReverseDepIt);
 | 
						|
 | 
						|
    // Add new reverse deps after scanning the set, to avoid invalidating the
 | 
						|
    // 'ReverseDeps' reference.
 | 
						|
    while (!ReverseDepsToAdd.empty()) {
 | 
						|
      ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
 | 
						|
          ReverseDepsToAdd.back().second);
 | 
						|
      ReverseDepsToAdd.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
 | 
						|
  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
 | 
						|
    for (Instruction *I : ReverseDepIt->second) {
 | 
						|
      assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
 | 
						|
 | 
						|
      PerInstNLInfo &INLD = NonLocalDeps[I];
 | 
						|
      // The information is now dirty!
 | 
						|
      INLD.second = true;
 | 
						|
 | 
						|
      for (auto &Entry : INLD.first) {
 | 
						|
        if (Entry.getResult().getInst() != RemInst)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Convert to a dirty entry for the subsequent instruction.
 | 
						|
        Entry.setResult(NewDirtyVal);
 | 
						|
 | 
						|
        if (Instruction *NextI = NewDirtyVal.getInst())
 | 
						|
          ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ReverseNonLocalDeps.erase(ReverseDepIt);
 | 
						|
 | 
						|
    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
 | 
						|
    while (!ReverseDepsToAdd.empty()) {
 | 
						|
      ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
 | 
						|
          ReverseDepsToAdd.back().second);
 | 
						|
      ReverseDepsToAdd.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
 | 
						|
  // value in the NonLocalPointerDeps info.
 | 
						|
  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
 | 
						|
      ReverseNonLocalPtrDeps.find(RemInst);
 | 
						|
  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
 | 
						|
    SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
 | 
						|
        ReversePtrDepsToAdd;
 | 
						|
 | 
						|
    for (ValueIsLoadPair P : ReversePtrDepIt->second) {
 | 
						|
      assert(P.getPointer() != RemInst &&
 | 
						|
             "Already removed NonLocalPointerDeps info for RemInst");
 | 
						|
 | 
						|
      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
 | 
						|
 | 
						|
      // The cache is not valid for any specific block anymore.
 | 
						|
      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
 | 
						|
 | 
						|
      // Update any entries for RemInst to use the instruction after it.
 | 
						|
      for (auto &Entry : NLPDI) {
 | 
						|
        if (Entry.getResult().getInst() != RemInst)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Convert to a dirty entry for the subsequent instruction.
 | 
						|
        Entry.setResult(NewDirtyVal);
 | 
						|
 | 
						|
        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
 | 
						|
          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
 | 
						|
      }
 | 
						|
 | 
						|
      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
 | 
						|
      // subsequent value may invalidate the sortedness.
 | 
						|
      llvm::sort(NLPDI);
 | 
						|
    }
 | 
						|
 | 
						|
    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
 | 
						|
 | 
						|
    while (!ReversePtrDepsToAdd.empty()) {
 | 
						|
      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
 | 
						|
          ReversePtrDepsToAdd.back().second);
 | 
						|
      ReversePtrDepsToAdd.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Invalidate phis that use the removed instruction.
 | 
						|
  PV.invalidateValue(RemInst);
 | 
						|
 | 
						|
  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
 | 
						|
  LLVM_DEBUG(verifyRemoved(RemInst));
 | 
						|
}
 | 
						|
 | 
						|
/// Verify that the specified instruction does not occur in our internal data
 | 
						|
/// structures.
 | 
						|
///
 | 
						|
/// This function verifies by asserting in debug builds.
 | 
						|
void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (const auto &DepKV : LocalDeps) {
 | 
						|
    assert(DepKV.first != D && "Inst occurs in data structures");
 | 
						|
    assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &DepKV : NonLocalPointerDeps) {
 | 
						|
    assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
 | 
						|
    for (const auto &Entry : DepKV.second.NonLocalDeps)
 | 
						|
      assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &DepKV : NonLocalDeps) {
 | 
						|
    assert(DepKV.first != D && "Inst occurs in data structures");
 | 
						|
    const PerInstNLInfo &INLD = DepKV.second;
 | 
						|
    for (const auto &Entry : INLD.first)
 | 
						|
      assert(Entry.getResult().getInst() != D &&
 | 
						|
             "Inst occurs in data structures");
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &DepKV : ReverseLocalDeps) {
 | 
						|
    assert(DepKV.first != D && "Inst occurs in data structures");
 | 
						|
    for (Instruction *Inst : DepKV.second)
 | 
						|
      assert(Inst != D && "Inst occurs in data structures");
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &DepKV : ReverseNonLocalDeps) {
 | 
						|
    assert(DepKV.first != D && "Inst occurs in data structures");
 | 
						|
    for (Instruction *Inst : DepKV.second)
 | 
						|
      assert(Inst != D && "Inst occurs in data structures");
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &DepKV : ReverseNonLocalPtrDeps) {
 | 
						|
    assert(DepKV.first != D && "Inst occurs in rev NLPD map");
 | 
						|
 | 
						|
    for (ValueIsLoadPair P : DepKV.second)
 | 
						|
      assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
 | 
						|
             "Inst occurs in ReverseNonLocalPtrDeps map");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey MemoryDependenceAnalysis::Key;
 | 
						|
 | 
						|
MemoryDependenceAnalysis::MemoryDependenceAnalysis()
 | 
						|
    : DefaultBlockScanLimit(BlockScanLimit) {}
 | 
						|
 | 
						|
MemoryDependenceResults
 | 
						|
MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  auto &AA = AM.getResult<AAManager>(F);
 | 
						|
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto &PV = AM.getResult<PhiValuesAnalysis>(F);
 | 
						|
  return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
 | 
						|
}
 | 
						|
 | 
						|
char MemoryDependenceWrapperPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
 | 
						|
                      "Memory Dependence Analysis", false, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
 | 
						|
INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
 | 
						|
                    "Memory Dependence Analysis", false, true)
 | 
						|
 | 
						|
MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
 | 
						|
  initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
 | 
						|
 | 
						|
void MemoryDependenceWrapperPass::releaseMemory() {
 | 
						|
  MemDep.reset();
 | 
						|
}
 | 
						|
 | 
						|
void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<PhiValuesWrapperPass>();
 | 
						|
  AU.addRequiredTransitive<AAResultsWrapperPass>();
 | 
						|
  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
 | 
						|
                               FunctionAnalysisManager::Invalidator &Inv) {
 | 
						|
  // Check whether our analysis is preserved.
 | 
						|
  auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
 | 
						|
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
 | 
						|
    // If not, give up now.
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check whether the analyses we depend on became invalid for any reason.
 | 
						|
  if (Inv.invalidate<AAManager>(F, PA) ||
 | 
						|
      Inv.invalidate<AssumptionAnalysis>(F, PA) ||
 | 
						|
      Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
 | 
						|
      Inv.invalidate<PhiValuesAnalysis>(F, PA))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise this analysis result remains valid.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
 | 
						|
  return DefaultBlockScanLimit;
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
 | 
						|
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
 | 
						|
  MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
 | 
						|
  return false;
 | 
						|
}
 |