forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3131 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3131 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Implements C++ name mangling according to the Itanium C++ ABI,
 | 
						|
// which is used in GCC 3.2 and newer (and many compilers that are
 | 
						|
// ABI-compatible with GCC):
 | 
						|
//
 | 
						|
//   http://www.codesourcery.com/public/cxx-abi/abi.html
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "clang/AST/Mangle.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Basic/ABI.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
 | 
						|
#define MANGLE_CHECKER 0
 | 
						|
 | 
						|
#if MANGLE_CHECKER
 | 
						|
#include <cxxabi.h>
 | 
						|
#endif
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
 | 
						|
  const DeclContext *DC = dyn_cast<DeclContext>(ND);
 | 
						|
  if (!DC)
 | 
						|
    DC = ND->getDeclContext();
 | 
						|
  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
 | 
						|
    if (isa<FunctionDecl>(DC->getParent()))
 | 
						|
      return dyn_cast<CXXRecordDecl>(DC);
 | 
						|
    DC = DC->getParent();
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const FunctionDecl *getStructor(const FunctionDecl *fn) {
 | 
						|
  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
 | 
						|
    return ftd->getTemplatedDecl();
 | 
						|
 | 
						|
  return fn;
 | 
						|
}
 | 
						|
 | 
						|
static const NamedDecl *getStructor(const NamedDecl *decl) {
 | 
						|
  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
 | 
						|
  return (fn ? getStructor(fn) : decl);
 | 
						|
}
 | 
						|
 | 
						|
static const unsigned UnknownArity = ~0U;
 | 
						|
 | 
						|
class ItaniumMangleContext : public MangleContext {
 | 
						|
  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
 | 
						|
  unsigned Discriminator;
 | 
						|
  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
 | 
						|
  
 | 
						|
public:
 | 
						|
  explicit ItaniumMangleContext(ASTContext &Context,
 | 
						|
                                Diagnostic &Diags)
 | 
						|
    : MangleContext(Context, Diags) { }
 | 
						|
 | 
						|
  uint64_t getAnonymousStructId(const TagDecl *TD) {
 | 
						|
    std::pair<llvm::DenseMap<const TagDecl *,
 | 
						|
      uint64_t>::iterator, bool> Result =
 | 
						|
      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
 | 
						|
    return Result.first->second;
 | 
						|
  }
 | 
						|
 | 
						|
  void startNewFunction() {
 | 
						|
    MangleContext::startNewFunction();
 | 
						|
    mangleInitDiscriminator();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @name Mangler Entry Points
 | 
						|
  /// @{
 | 
						|
 | 
						|
  bool shouldMangleDeclName(const NamedDecl *D);
 | 
						|
  void mangleName(const NamedDecl *D, llvm::raw_ostream &);
 | 
						|
  void mangleThunk(const CXXMethodDecl *MD,
 | 
						|
                   const ThunkInfo &Thunk,
 | 
						|
                   llvm::raw_ostream &);
 | 
						|
  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
 | 
						|
                          const ThisAdjustment &ThisAdjustment,
 | 
						|
                          llvm::raw_ostream &);
 | 
						|
  void mangleReferenceTemporary(const VarDecl *D,
 | 
						|
                                llvm::raw_ostream &);
 | 
						|
  void mangleCXXVTable(const CXXRecordDecl *RD,
 | 
						|
                       llvm::raw_ostream &);
 | 
						|
  void mangleCXXVTT(const CXXRecordDecl *RD,
 | 
						|
                    llvm::raw_ostream &);
 | 
						|
  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
 | 
						|
                           const CXXRecordDecl *Type,
 | 
						|
                           llvm::raw_ostream &);
 | 
						|
  void mangleCXXRTTI(QualType T, llvm::raw_ostream &);
 | 
						|
  void mangleCXXRTTIName(QualType T, llvm::raw_ostream &);
 | 
						|
  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
 | 
						|
                     llvm::raw_ostream &);
 | 
						|
  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
 | 
						|
                     llvm::raw_ostream &);
 | 
						|
 | 
						|
  void mangleItaniumGuardVariable(const VarDecl *D, llvm::raw_ostream &);
 | 
						|
 | 
						|
  void mangleInitDiscriminator() {
 | 
						|
    Discriminator = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
 | 
						|
    unsigned &discriminator = Uniquifier[ND];
 | 
						|
    if (!discriminator)
 | 
						|
      discriminator = ++Discriminator;
 | 
						|
    if (discriminator == 1)
 | 
						|
      return false;
 | 
						|
    disc = discriminator-2;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  /// @}
 | 
						|
};
 | 
						|
 | 
						|
/// CXXNameMangler - Manage the mangling of a single name.
 | 
						|
class CXXNameMangler {
 | 
						|
  ItaniumMangleContext &Context;
 | 
						|
  llvm::raw_ostream &Out;
 | 
						|
 | 
						|
  /// The "structor" is the top-level declaration being mangled, if
 | 
						|
  /// that's not a template specialization; otherwise it's the pattern
 | 
						|
  /// for that specialization.
 | 
						|
  const NamedDecl *Structor;
 | 
						|
  unsigned StructorType;
 | 
						|
 | 
						|
  /// SeqID - The next subsitution sequence number.
 | 
						|
  unsigned SeqID;
 | 
						|
 | 
						|
  class FunctionTypeDepthState {
 | 
						|
    unsigned Bits;
 | 
						|
 | 
						|
    enum { InResultTypeMask = 1 };
 | 
						|
 | 
						|
  public:
 | 
						|
    FunctionTypeDepthState() : Bits(0) {}
 | 
						|
 | 
						|
    /// The number of function types we're inside.
 | 
						|
    unsigned getDepth() const {
 | 
						|
      return Bits >> 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /// True if we're in the return type of the innermost function type.
 | 
						|
    bool isInResultType() const {
 | 
						|
      return Bits & InResultTypeMask;
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionTypeDepthState push() {
 | 
						|
      FunctionTypeDepthState tmp = *this;
 | 
						|
      Bits = (Bits & ~InResultTypeMask) + 2;
 | 
						|
      return tmp;
 | 
						|
    }
 | 
						|
 | 
						|
    void enterResultType() {
 | 
						|
      Bits |= InResultTypeMask;
 | 
						|
    }
 | 
						|
 | 
						|
    void leaveResultType() {
 | 
						|
      Bits &= ~InResultTypeMask;
 | 
						|
    }
 | 
						|
 | 
						|
    void pop(FunctionTypeDepthState saved) {
 | 
						|
      assert(getDepth() == saved.getDepth() + 1);
 | 
						|
      Bits = saved.Bits;
 | 
						|
    }
 | 
						|
 | 
						|
  } FunctionTypeDepth;
 | 
						|
 | 
						|
  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
 | 
						|
 | 
						|
  ASTContext &getASTContext() const { return Context.getASTContext(); }
 | 
						|
 | 
						|
public:
 | 
						|
  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
 | 
						|
                 const NamedDecl *D = 0)
 | 
						|
    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
 | 
						|
      SeqID(0) {
 | 
						|
    // These can't be mangled without a ctor type or dtor type.
 | 
						|
    assert(!D || (!isa<CXXDestructorDecl>(D) &&
 | 
						|
                  !isa<CXXConstructorDecl>(D)));
 | 
						|
  }
 | 
						|
  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
 | 
						|
                 const CXXConstructorDecl *D, CXXCtorType Type)
 | 
						|
    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
 | 
						|
      SeqID(0) { }
 | 
						|
  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
 | 
						|
                 const CXXDestructorDecl *D, CXXDtorType Type)
 | 
						|
    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
 | 
						|
      SeqID(0) { }
 | 
						|
 | 
						|
#if MANGLE_CHECKER
 | 
						|
  ~CXXNameMangler() {
 | 
						|
    if (Out.str()[0] == '\01')
 | 
						|
      return;
 | 
						|
 | 
						|
    int status = 0;
 | 
						|
    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
 | 
						|
    assert(status == 0 && "Could not demangle mangled name!");
 | 
						|
    free(result);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  llvm::raw_ostream &getStream() { return Out; }
 | 
						|
 | 
						|
  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
 | 
						|
  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
 | 
						|
  void mangleNumber(const llvm::APSInt &I);
 | 
						|
  void mangleNumber(int64_t Number);
 | 
						|
  void mangleFloat(const llvm::APFloat &F);
 | 
						|
  void mangleFunctionEncoding(const FunctionDecl *FD);
 | 
						|
  void mangleName(const NamedDecl *ND);
 | 
						|
  void mangleType(QualType T);
 | 
						|
  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
 | 
						|
  
 | 
						|
private:
 | 
						|
  bool mangleSubstitution(const NamedDecl *ND);
 | 
						|
  bool mangleSubstitution(QualType T);
 | 
						|
  bool mangleSubstitution(TemplateName Template);
 | 
						|
  bool mangleSubstitution(uintptr_t Ptr);
 | 
						|
 | 
						|
  bool mangleStandardSubstitution(const NamedDecl *ND);
 | 
						|
 | 
						|
  void addSubstitution(const NamedDecl *ND) {
 | 
						|
    ND = cast<NamedDecl>(ND->getCanonicalDecl());
 | 
						|
 | 
						|
    addSubstitution(reinterpret_cast<uintptr_t>(ND));
 | 
						|
  }
 | 
						|
  void addSubstitution(QualType T);
 | 
						|
  void addSubstitution(TemplateName Template);
 | 
						|
  void addSubstitution(uintptr_t Ptr);
 | 
						|
 | 
						|
  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
 | 
						|
                              NamedDecl *firstQualifierLookup,
 | 
						|
                              bool recursive = false);
 | 
						|
  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
 | 
						|
                            NamedDecl *firstQualifierLookup,
 | 
						|
                            DeclarationName name,
 | 
						|
                            unsigned KnownArity = UnknownArity);
 | 
						|
 | 
						|
  static bool isUnresolvedType(const Type *type);
 | 
						|
  void mangleUnresolvedType(const Type *type);
 | 
						|
 | 
						|
  void mangleName(const TemplateDecl *TD,
 | 
						|
                  const TemplateArgument *TemplateArgs,
 | 
						|
                  unsigned NumTemplateArgs);
 | 
						|
  void mangleUnqualifiedName(const NamedDecl *ND) {
 | 
						|
    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
 | 
						|
  }
 | 
						|
  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
 | 
						|
                             unsigned KnownArity);
 | 
						|
  void mangleUnscopedName(const NamedDecl *ND);
 | 
						|
  void mangleUnscopedTemplateName(const TemplateDecl *ND);
 | 
						|
  void mangleUnscopedTemplateName(TemplateName);
 | 
						|
  void mangleSourceName(const IdentifierInfo *II);
 | 
						|
  void mangleLocalName(const NamedDecl *ND);
 | 
						|
  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
 | 
						|
                        bool NoFunction=false);
 | 
						|
  void mangleNestedName(const TemplateDecl *TD,
 | 
						|
                        const TemplateArgument *TemplateArgs,
 | 
						|
                        unsigned NumTemplateArgs);
 | 
						|
  void manglePrefix(NestedNameSpecifier *qualifier);
 | 
						|
  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
 | 
						|
  void manglePrefix(QualType type);
 | 
						|
  void mangleTemplatePrefix(const TemplateDecl *ND);
 | 
						|
  void mangleTemplatePrefix(TemplateName Template);
 | 
						|
  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
 | 
						|
  void mangleQualifiers(Qualifiers Quals);
 | 
						|
  void mangleRefQualifier(RefQualifierKind RefQualifier);
 | 
						|
 | 
						|
  void mangleObjCMethodName(const ObjCMethodDecl *MD);
 | 
						|
 | 
						|
  // Declare manglers for every type class.
 | 
						|
#define ABSTRACT_TYPE(CLASS, PARENT)
 | 
						|
#define NON_CANONICAL_TYPE(CLASS, PARENT)
 | 
						|
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
 | 
						|
  void mangleType(const TagType*);
 | 
						|
  void mangleType(TemplateName);
 | 
						|
  void mangleBareFunctionType(const FunctionType *T,
 | 
						|
                              bool MangleReturnType);
 | 
						|
  void mangleNeonVectorType(const VectorType *T);
 | 
						|
 | 
						|
  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
 | 
						|
  void mangleMemberExpr(const Expr *base, bool isArrow,
 | 
						|
                        NestedNameSpecifier *qualifier,
 | 
						|
                        NamedDecl *firstQualifierLookup,
 | 
						|
                        DeclarationName name,
 | 
						|
                        unsigned knownArity);
 | 
						|
  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
 | 
						|
  void mangleCXXCtorType(CXXCtorType T);
 | 
						|
  void mangleCXXDtorType(CXXDtorType T);
 | 
						|
 | 
						|
  void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
 | 
						|
  void mangleTemplateArgs(TemplateName Template,
 | 
						|
                          const TemplateArgument *TemplateArgs,
 | 
						|
                          unsigned NumTemplateArgs);  
 | 
						|
  void mangleTemplateArgs(const TemplateParameterList &PL,
 | 
						|
                          const TemplateArgument *TemplateArgs,
 | 
						|
                          unsigned NumTemplateArgs);
 | 
						|
  void mangleTemplateArgs(const TemplateParameterList &PL,
 | 
						|
                          const TemplateArgumentList &AL);
 | 
						|
  void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
 | 
						|
  void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
 | 
						|
                                    unsigned numArgs);
 | 
						|
 | 
						|
  void mangleTemplateParameter(unsigned Index);
 | 
						|
 | 
						|
  void mangleFunctionParam(const ParmVarDecl *parm);
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static bool isInCLinkageSpecification(const Decl *D) {
 | 
						|
  D = D->getCanonicalDecl();
 | 
						|
  for (const DeclContext *DC = D->getDeclContext();
 | 
						|
       !DC->isTranslationUnit(); DC = DC->getParent()) {
 | 
						|
    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
 | 
						|
      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
 | 
						|
  // In C, functions with no attributes never need to be mangled. Fastpath them.
 | 
						|
  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Any decl can be declared with __asm("foo") on it, and this takes precedence
 | 
						|
  // over all other naming in the .o file.
 | 
						|
  if (D->hasAttr<AsmLabelAttr>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
 | 
						|
  // (always) as does passing a C++ member function and a function
 | 
						|
  // whose name is not a simple identifier.
 | 
						|
  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | 
						|
  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
 | 
						|
             !FD->getDeclName().isIdentifier()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise, no mangling is done outside C++ mode.
 | 
						|
  if (!getASTContext().getLangOptions().CPlusPlus)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Variables at global scope with non-internal linkage are not mangled
 | 
						|
  if (!FD) {
 | 
						|
    const DeclContext *DC = D->getDeclContext();
 | 
						|
    // Check for extern variable declared locally.
 | 
						|
    if (DC->isFunctionOrMethod() && D->hasLinkage())
 | 
						|
      while (!DC->isNamespace() && !DC->isTranslationUnit())
 | 
						|
        DC = DC->getParent();
 | 
						|
    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Class members are always mangled.
 | 
						|
  if (D->getDeclContext()->isRecord())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C functions and "main" are not mangled.
 | 
						|
  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
 | 
						|
  // Any decl can be declared with __asm("foo") on it, and this takes precedence
 | 
						|
  // over all other naming in the .o file.
 | 
						|
  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
 | 
						|
    // If we have an asm name, then we use it as the mangling.
 | 
						|
 | 
						|
    // Adding the prefix can cause problems when one file has a "foo" and
 | 
						|
    // another has a "\01foo". That is known to happen on ELF with the
 | 
						|
    // tricks normally used for producing aliases (PR9177). Fortunately the
 | 
						|
    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
 | 
						|
    // marker.  We also avoid adding the marker if this is an alias for an
 | 
						|
    // LLVM intrinsic.
 | 
						|
    llvm::StringRef UserLabelPrefix =
 | 
						|
      getASTContext().Target.getUserLabelPrefix();
 | 
						|
    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
 | 
						|
      Out << '\01';  // LLVM IR Marker for __asm("foo")
 | 
						|
 | 
						|
    Out << ALA->getLabel();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // <mangled-name> ::= _Z <encoding>
 | 
						|
  //            ::= <data name>
 | 
						|
  //            ::= <special-name>
 | 
						|
  Out << Prefix;
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    mangleFunctionEncoding(FD);
 | 
						|
  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | 
						|
    mangleName(VD);
 | 
						|
  else
 | 
						|
    mangleName(cast<FieldDecl>(D));
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
 | 
						|
  // <encoding> ::= <function name> <bare-function-type>
 | 
						|
  mangleName(FD);
 | 
						|
 | 
						|
  // Don't mangle in the type if this isn't a decl we should typically mangle.
 | 
						|
  if (!Context.shouldMangleDeclName(FD))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Whether the mangling of a function type includes the return type depends on
 | 
						|
  // the context and the nature of the function. The rules for deciding whether
 | 
						|
  // the return type is included are:
 | 
						|
  //
 | 
						|
  //   1. Template functions (names or types) have return types encoded, with
 | 
						|
  //   the exceptions listed below.
 | 
						|
  //   2. Function types not appearing as part of a function name mangling,
 | 
						|
  //   e.g. parameters, pointer types, etc., have return type encoded, with the
 | 
						|
  //   exceptions listed below.
 | 
						|
  //   3. Non-template function names do not have return types encoded.
 | 
						|
  //
 | 
						|
  // The exceptions mentioned in (1) and (2) above, for which the return type is
 | 
						|
  // never included, are
 | 
						|
  //   1. Constructors.
 | 
						|
  //   2. Destructors.
 | 
						|
  //   3. Conversion operator functions, e.g. operator int.
 | 
						|
  bool MangleReturnType = false;
 | 
						|
  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
 | 
						|
    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
 | 
						|
          isa<CXXConversionDecl>(FD)))
 | 
						|
      MangleReturnType = true;
 | 
						|
 | 
						|
    // Mangle the type of the primary template.
 | 
						|
    FD = PrimaryTemplate->getTemplatedDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the canonicalization out here because parameter types can
 | 
						|
  // undergo additional canonicalization (e.g. array decay).
 | 
						|
  const FunctionType *FT
 | 
						|
    = cast<FunctionType>(Context.getASTContext()
 | 
						|
                                          .getCanonicalType(FD->getType()));
 | 
						|
 | 
						|
  mangleBareFunctionType(FT, MangleReturnType);
 | 
						|
}
 | 
						|
 | 
						|
static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
 | 
						|
  while (isa<LinkageSpecDecl>(DC)) {
 | 
						|
    DC = DC->getParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return DC;
 | 
						|
}
 | 
						|
 | 
						|
/// isStd - Return whether a given namespace is the 'std' namespace.
 | 
						|
static bool isStd(const NamespaceDecl *NS) {
 | 
						|
  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
 | 
						|
  return II && II->isStr("std");
 | 
						|
}
 | 
						|
 | 
						|
// isStdNamespace - Return whether a given decl context is a toplevel 'std'
 | 
						|
// namespace.
 | 
						|
static bool isStdNamespace(const DeclContext *DC) {
 | 
						|
  if (!DC->isNamespace())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return isStd(cast<NamespaceDecl>(DC));
 | 
						|
}
 | 
						|
 | 
						|
static const TemplateDecl *
 | 
						|
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
 | 
						|
  // Check if we have a function template.
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
 | 
						|
    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
 | 
						|
      TemplateArgs = FD->getTemplateSpecializationArgs();
 | 
						|
      return TD;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we have a class template.
 | 
						|
  if (const ClassTemplateSpecializationDecl *Spec =
 | 
						|
        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
 | 
						|
    TemplateArgs = &Spec->getTemplateArgs();
 | 
						|
    return Spec->getSpecializedTemplate();
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleName(const NamedDecl *ND) {
 | 
						|
  //  <name> ::= <nested-name>
 | 
						|
  //         ::= <unscoped-name>
 | 
						|
  //         ::= <unscoped-template-name> <template-args>
 | 
						|
  //         ::= <local-name>
 | 
						|
  //
 | 
						|
  const DeclContext *DC = ND->getDeclContext();
 | 
						|
 | 
						|
  // If this is an extern variable declared locally, the relevant DeclContext
 | 
						|
  // is that of the containing namespace, or the translation unit.
 | 
						|
  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
 | 
						|
    while (!DC->isNamespace() && !DC->isTranslationUnit())
 | 
						|
      DC = DC->getParent();
 | 
						|
  else if (GetLocalClassDecl(ND)) {
 | 
						|
    mangleLocalName(ND);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  while (isa<LinkageSpecDecl>(DC))
 | 
						|
    DC = DC->getParent();
 | 
						|
 | 
						|
  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
 | 
						|
    // Check if we have a template.
 | 
						|
    const TemplateArgumentList *TemplateArgs = 0;
 | 
						|
    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
 | 
						|
      mangleUnscopedTemplateName(TD);
 | 
						|
      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
 | 
						|
      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    mangleUnscopedName(ND);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
 | 
						|
    mangleLocalName(ND);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  mangleNestedName(ND, DC);
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleName(const TemplateDecl *TD,
 | 
						|
                                const TemplateArgument *TemplateArgs,
 | 
						|
                                unsigned NumTemplateArgs) {
 | 
						|
  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
 | 
						|
 | 
						|
  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
 | 
						|
    mangleUnscopedTemplateName(TD);
 | 
						|
    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
 | 
						|
    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
 | 
						|
  } else {
 | 
						|
    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
 | 
						|
  //  <unscoped-name> ::= <unqualified-name>
 | 
						|
  //                  ::= St <unqualified-name>   # ::std::
 | 
						|
  if (isStdNamespace(ND->getDeclContext()))
 | 
						|
    Out << "St";
 | 
						|
 | 
						|
  mangleUnqualifiedName(ND);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
 | 
						|
  //     <unscoped-template-name> ::= <unscoped-name>
 | 
						|
  //                              ::= <substitution>
 | 
						|
  if (mangleSubstitution(ND))
 | 
						|
    return;
 | 
						|
 | 
						|
  // <template-template-param> ::= <template-param>
 | 
						|
  if (const TemplateTemplateParmDecl *TTP
 | 
						|
                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
 | 
						|
    mangleTemplateParameter(TTP->getIndex());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  mangleUnscopedName(ND->getTemplatedDecl());
 | 
						|
  addSubstitution(ND);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
 | 
						|
  //     <unscoped-template-name> ::= <unscoped-name>
 | 
						|
  //                              ::= <substitution>
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return mangleUnscopedTemplateName(TD);
 | 
						|
  
 | 
						|
  if (mangleSubstitution(Template))
 | 
						|
    return;
 | 
						|
 | 
						|
  // FIXME: How to cope with operators here?
 | 
						|
  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
 | 
						|
  assert(Dependent && "Not a dependent template name?");
 | 
						|
  if (!Dependent->isIdentifier()) {
 | 
						|
    // FIXME: We can't possibly know the arity of the operator here!
 | 
						|
    Diagnostic &Diags = Context.getDiags();
 | 
						|
    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
 | 
						|
                                      "cannot mangle dependent operator name");
 | 
						|
    Diags.Report(DiagID);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  mangleSourceName(Dependent->getIdentifier());
 | 
						|
  addSubstitution(Template);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
 | 
						|
  // ABI:
 | 
						|
  //   Floating-point literals are encoded using a fixed-length
 | 
						|
  //   lowercase hexadecimal string corresponding to the internal
 | 
						|
  //   representation (IEEE on Itanium), high-order bytes first,
 | 
						|
  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
 | 
						|
  //   on Itanium.
 | 
						|
  // APInt::toString uses uppercase hexadecimal, and it's not really
 | 
						|
  // worth embellishing that interface for this use case, so we just
 | 
						|
  // do a second pass to lowercase things.
 | 
						|
  typedef llvm::SmallString<20> buffer_t;
 | 
						|
  buffer_t buffer;
 | 
						|
  f.bitcastToAPInt().toString(buffer, 16, false);
 | 
						|
 | 
						|
  for (buffer_t::iterator i = buffer.begin(), e = buffer.end(); i != e; ++i)
 | 
						|
    if (isupper(*i)) *i = tolower(*i);
 | 
						|
 | 
						|
  Out.write(buffer.data(), buffer.size());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
 | 
						|
  if (Value.isSigned() && Value.isNegative()) {
 | 
						|
    Out << 'n';
 | 
						|
    Value.abs().print(Out, true);
 | 
						|
  } else
 | 
						|
    Value.print(Out, Value.isSigned());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNumber(int64_t Number) {
 | 
						|
  //  <number> ::= [n] <non-negative decimal integer>
 | 
						|
  if (Number < 0) {
 | 
						|
    Out << 'n';
 | 
						|
    Number = -Number;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << Number;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
 | 
						|
  //  <call-offset>  ::= h <nv-offset> _
 | 
						|
  //                 ::= v <v-offset> _
 | 
						|
  //  <nv-offset>    ::= <offset number>        # non-virtual base override
 | 
						|
  //  <v-offset>     ::= <offset number> _ <virtual offset number>
 | 
						|
  //                      # virtual base override, with vcall offset
 | 
						|
  if (!Virtual) {
 | 
						|
    Out << 'h';
 | 
						|
    mangleNumber(NonVirtual);
 | 
						|
    Out << '_';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << 'v';
 | 
						|
  mangleNumber(NonVirtual);
 | 
						|
  Out << '_';
 | 
						|
  mangleNumber(Virtual);
 | 
						|
  Out << '_';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::manglePrefix(QualType type) {
 | 
						|
  if (const TemplateSpecializationType *TST =
 | 
						|
        type->getAs<TemplateSpecializationType>()) {
 | 
						|
    if (!mangleSubstitution(QualType(TST, 0))) {
 | 
						|
      mangleTemplatePrefix(TST->getTemplateName());
 | 
						|
        
 | 
						|
      // FIXME: GCC does not appear to mangle the template arguments when
 | 
						|
      // the template in question is a dependent template name. Should we
 | 
						|
      // emulate that badness?
 | 
						|
      mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
 | 
						|
                         TST->getNumArgs());
 | 
						|
      addSubstitution(QualType(TST, 0));
 | 
						|
    }
 | 
						|
  } else if (const DependentTemplateSpecializationType *DTST
 | 
						|
               = type->getAs<DependentTemplateSpecializationType>()) {
 | 
						|
    TemplateName Template
 | 
						|
      = getASTContext().getDependentTemplateName(DTST->getQualifier(), 
 | 
						|
                                                 DTST->getIdentifier());
 | 
						|
    mangleTemplatePrefix(Template);
 | 
						|
 | 
						|
    // FIXME: GCC does not appear to mangle the template arguments when
 | 
						|
    // the template in question is a dependent template name. Should we
 | 
						|
    // emulate that badness?
 | 
						|
    mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
 | 
						|
  } else {
 | 
						|
    // We use the QualType mangle type variant here because it handles
 | 
						|
    // substitutions.
 | 
						|
    mangleType(type);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the given type, appearing within an
 | 
						|
/// unresolved-name, should be mangled as an unresolved-type.
 | 
						|
bool CXXNameMangler::isUnresolvedType(const Type *type) {
 | 
						|
  // <unresolved-type> ::= <template-param>
 | 
						|
  //                   ::= <decltype>
 | 
						|
  //                   ::= <template-template-param> <template-args>
 | 
						|
  // (this last is not official yet)
 | 
						|
 | 
						|
  if (isa<TemplateTypeParmType>(type)) return true;
 | 
						|
  if (isa<DecltypeType>(type)) return true;
 | 
						|
  // typeof?
 | 
						|
  if (const TemplateSpecializationType *tst =
 | 
						|
        dyn_cast<TemplateSpecializationType>(type)) {
 | 
						|
    TemplateDecl *temp = tst->getTemplateName().getAsTemplateDecl();
 | 
						|
    if (temp && isa<TemplateTemplateParmDecl>(temp))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnresolvedType(const Type *type) {
 | 
						|
  // This seems to be do everything we want.
 | 
						|
  mangleType(QualType(type, 0));
 | 
						|
}
 | 
						|
 | 
						|
/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
 | 
						|
///
 | 
						|
/// \param firstQualifierLookup - the entity found by unqualified lookup
 | 
						|
///   for the first name in the qualifier, if this is for a member expression
 | 
						|
/// \param recursive - true if this is being called recursively,
 | 
						|
///   i.e. if there is more prefix "to the right".
 | 
						|
void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
 | 
						|
                                            NamedDecl *firstQualifierLookup,
 | 
						|
                                            bool recursive) {
 | 
						|
 | 
						|
  // x, ::x
 | 
						|
  // <unresolved-name> ::= [gs] <base-unresolved-name>
 | 
						|
 | 
						|
  // T::x / decltype(p)::x
 | 
						|
  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
 | 
						|
 | 
						|
  // T::N::x /decltype(p)::N::x
 | 
						|
  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
 | 
						|
  //                       <base-unresolved-name>
 | 
						|
 | 
						|
  // A::x, N::y, A<T>::z; "gs" means leading "::"
 | 
						|
  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
 | 
						|
  //                       <base-unresolved-name>
 | 
						|
 | 
						|
  switch (qualifier->getKind()) {
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
    Out << "gs";
 | 
						|
 | 
						|
    // We want an 'sr' unless this is the entire NNS.
 | 
						|
    if (recursive)
 | 
						|
      Out << "sr";
 | 
						|
 | 
						|
    // We never want an 'E' here.
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
    if (qualifier->getPrefix())
 | 
						|
      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
 | 
						|
                             /*recursive*/ true);
 | 
						|
    else
 | 
						|
      Out << "sr";
 | 
						|
    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
 | 
						|
    break;
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
    if (qualifier->getPrefix())
 | 
						|
      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
 | 
						|
                             /*recursive*/ true);
 | 
						|
    else
 | 
						|
      Out << "sr";
 | 
						|
    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
 | 
						|
    break;
 | 
						|
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate: {
 | 
						|
    const Type *type = qualifier->getAsType();
 | 
						|
 | 
						|
    // We only want to use an unresolved-type encoding if this is one of:
 | 
						|
    //   - a decltype
 | 
						|
    //   - a template type parameter
 | 
						|
    //   - a template template parameter with arguments
 | 
						|
    // In all of these cases, we should have no prefix.
 | 
						|
    if (qualifier->getPrefix()) {
 | 
						|
      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
 | 
						|
                             /*recursive*/ true);
 | 
						|
    } else {
 | 
						|
      // Otherwise, all the cases want this.
 | 
						|
      Out << "sr";
 | 
						|
 | 
						|
      if (isUnresolvedType(type)) {
 | 
						|
        // We only get here recursively if we're followed by identifiers.
 | 
						|
        if (recursive) Out << 'N';
 | 
						|
        mangleUnresolvedType(type);
 | 
						|
 | 
						|
        // We never want to print 'E' directly after an unresolved-type,
 | 
						|
        // so we return directly.
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(!isUnresolvedType(type));
 | 
						|
 | 
						|
    // Only certain other types are valid as prefixes;  enumerate them.
 | 
						|
    // FIXME: can we get ElaboratedTypes here?
 | 
						|
    // FIXME: SubstTemplateTypeParmType?
 | 
						|
    if (const TagType *t = dyn_cast<TagType>(type)) {
 | 
						|
      mangleSourceName(t->getDecl()->getIdentifier());
 | 
						|
    } else if (const TypedefType *t = dyn_cast<TypedefType>(type)) {
 | 
						|
      mangleSourceName(t->getDecl()->getIdentifier());
 | 
						|
    } else if (const UnresolvedUsingType *t
 | 
						|
                 = dyn_cast<UnresolvedUsingType>(type)) {
 | 
						|
      mangleSourceName(t->getDecl()->getIdentifier());
 | 
						|
    } else if (const DependentNameType *t
 | 
						|
                 = dyn_cast<DependentNameType>(type)) {
 | 
						|
      mangleSourceName(t->getIdentifier());
 | 
						|
    } else if (const TemplateSpecializationType *tst
 | 
						|
                 = dyn_cast<TemplateSpecializationType>(type)) {
 | 
						|
      TemplateDecl *temp = tst->getTemplateName().getAsTemplateDecl();
 | 
						|
      assert(temp && "no template for template specialization type");
 | 
						|
      mangleSourceName(temp->getIdentifier());
 | 
						|
      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
 | 
						|
    } else if (const DependentTemplateSpecializationType *tst
 | 
						|
                 = dyn_cast<DependentTemplateSpecializationType>(type)) {
 | 
						|
      mangleSourceName(tst->getIdentifier());
 | 
						|
      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("unexpected type in nested name specifier!");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
    // Member expressions can have these without prefixes.
 | 
						|
    if (qualifier->getPrefix()) {
 | 
						|
      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
 | 
						|
                             /*recursive*/ true);
 | 
						|
    } else if (firstQualifierLookup) {
 | 
						|
 | 
						|
      // Try to make a proper qualifier out of the lookup result, and
 | 
						|
      // then just recurse on that.
 | 
						|
      NestedNameSpecifier *newQualifier;
 | 
						|
      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
 | 
						|
        QualType type = getASTContext().getTypeDeclType(typeDecl);
 | 
						|
 | 
						|
        // Pretend we had a different nested name specifier.
 | 
						|
        newQualifier = NestedNameSpecifier::Create(getASTContext(),
 | 
						|
                                                   /*prefix*/ 0,
 | 
						|
                                                   /*template*/ false,
 | 
						|
                                                   type.getTypePtr());
 | 
						|
      } else if (NamespaceDecl *nspace =
 | 
						|
                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
 | 
						|
        newQualifier = NestedNameSpecifier::Create(getASTContext(),
 | 
						|
                                                   /*prefix*/ 0,
 | 
						|
                                                   nspace);
 | 
						|
      } else if (NamespaceAliasDecl *alias =
 | 
						|
                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
 | 
						|
        newQualifier = NestedNameSpecifier::Create(getASTContext(),
 | 
						|
                                                   /*prefix*/ 0,
 | 
						|
                                                   alias);
 | 
						|
      } else {
 | 
						|
        // No sensible mangling to do here.
 | 
						|
        newQualifier = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      if (newQualifier)
 | 
						|
        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
 | 
						|
 | 
						|
    } else {
 | 
						|
      Out << "sr";
 | 
						|
    }
 | 
						|
 | 
						|
    mangleSourceName(qualifier->getAsIdentifier());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this was the innermost part of the NNS, and we fell out to
 | 
						|
  // here, append an 'E'.
 | 
						|
  if (!recursive)
 | 
						|
    Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
/// Mangle an unresolved-name, which is generally used for names which
 | 
						|
/// weren't resolved to specific entities.
 | 
						|
void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
 | 
						|
                                          NamedDecl *firstQualifierLookup,
 | 
						|
                                          DeclarationName name,
 | 
						|
                                          unsigned knownArity) {
 | 
						|
  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
 | 
						|
  mangleUnqualifiedName(0, name, knownArity);
 | 
						|
}
 | 
						|
 | 
						|
static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
 | 
						|
  assert(RD->isAnonymousStructOrUnion() &&
 | 
						|
         "Expected anonymous struct or union!");
 | 
						|
  
 | 
						|
  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const FieldDecl *FD = *I;
 | 
						|
    
 | 
						|
    if (FD->getIdentifier())
 | 
						|
      return FD;
 | 
						|
    
 | 
						|
    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
 | 
						|
      if (const FieldDecl *NamedDataMember = 
 | 
						|
          FindFirstNamedDataMember(RT->getDecl()))
 | 
						|
        return NamedDataMember;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We didn't find a named data member.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
 | 
						|
                                           DeclarationName Name,
 | 
						|
                                           unsigned KnownArity) {
 | 
						|
  //  <unqualified-name> ::= <operator-name>
 | 
						|
  //                     ::= <ctor-dtor-name>
 | 
						|
  //                     ::= <source-name>
 | 
						|
  switch (Name.getNameKind()) {
 | 
						|
  case DeclarationName::Identifier: {
 | 
						|
    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
 | 
						|
      // We must avoid conflicts between internally- and externally-
 | 
						|
      // linked variable and function declaration names in the same TU:
 | 
						|
      //   void test() { extern void foo(); }
 | 
						|
      //   static void foo();
 | 
						|
      // This naming convention is the same as that followed by GCC,
 | 
						|
      // though it shouldn't actually matter.
 | 
						|
      if (ND && ND->getLinkage() == InternalLinkage &&
 | 
						|
          ND->getDeclContext()->isFileContext())
 | 
						|
        Out << 'L';
 | 
						|
 | 
						|
      mangleSourceName(II);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, an anonymous entity.  We must have a declaration.
 | 
						|
    assert(ND && "mangling empty name without declaration");
 | 
						|
 | 
						|
    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
 | 
						|
      if (NS->isAnonymousNamespace()) {
 | 
						|
        // This is how gcc mangles these names.
 | 
						|
        Out << "12_GLOBAL__N_1";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
 | 
						|
      // We must have an anonymous union or struct declaration.
 | 
						|
      const RecordDecl *RD = 
 | 
						|
        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
 | 
						|
      
 | 
						|
      // Itanium C++ ABI 5.1.2:
 | 
						|
      //
 | 
						|
      //   For the purposes of mangling, the name of an anonymous union is
 | 
						|
      //   considered to be the name of the first named data member found by a
 | 
						|
      //   pre-order, depth-first, declaration-order walk of the data members of
 | 
						|
      //   the anonymous union. If there is no such data member (i.e., if all of
 | 
						|
      //   the data members in the union are unnamed), then there is no way for
 | 
						|
      //   a program to refer to the anonymous union, and there is therefore no
 | 
						|
      //   need to mangle its name.
 | 
						|
      const FieldDecl *FD = FindFirstNamedDataMember(RD);
 | 
						|
 | 
						|
      // It's actually possible for various reasons for us to get here
 | 
						|
      // with an empty anonymous struct / union.  Fortunately, it
 | 
						|
      // doesn't really matter what name we generate.
 | 
						|
      if (!FD) break;
 | 
						|
      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
 | 
						|
      
 | 
						|
      mangleSourceName(FD->getIdentifier());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // We must have an anonymous struct.
 | 
						|
    const TagDecl *TD = cast<TagDecl>(ND);
 | 
						|
    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
 | 
						|
      assert(TD->getDeclContext() == D->getDeclContext() &&
 | 
						|
             "Typedef should not be in another decl context!");
 | 
						|
      assert(D->getDeclName().getAsIdentifierInfo() &&
 | 
						|
             "Typedef was not named!");
 | 
						|
      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get a unique id for the anonymous struct.
 | 
						|
    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
 | 
						|
 | 
						|
    // Mangle it as a source name in the form
 | 
						|
    // [n] $_<id>
 | 
						|
    // where n is the length of the string.
 | 
						|
    llvm::SmallString<8> Str;
 | 
						|
    Str += "$_";
 | 
						|
    Str += llvm::utostr(AnonStructId);
 | 
						|
 | 
						|
    Out << Str.size();
 | 
						|
    Out << Str.str();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case DeclarationName::ObjCZeroArgSelector:
 | 
						|
  case DeclarationName::ObjCOneArgSelector:
 | 
						|
  case DeclarationName::ObjCMultiArgSelector:
 | 
						|
    assert(false && "Can't mangle Objective-C selector names here!");
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXConstructorName:
 | 
						|
    if (ND == Structor)
 | 
						|
      // If the named decl is the C++ constructor we're mangling, use the type
 | 
						|
      // we were given.
 | 
						|
      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
 | 
						|
    else
 | 
						|
      // Otherwise, use the complete constructor name. This is relevant if a
 | 
						|
      // class with a constructor is declared within a constructor.
 | 
						|
      mangleCXXCtorType(Ctor_Complete);
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXDestructorName:
 | 
						|
    if (ND == Structor)
 | 
						|
      // If the named decl is the C++ destructor we're mangling, use the type we
 | 
						|
      // were given.
 | 
						|
      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
 | 
						|
    else
 | 
						|
      // Otherwise, use the complete destructor name. This is relevant if a
 | 
						|
      // class with a destructor is declared within a destructor.
 | 
						|
      mangleCXXDtorType(Dtor_Complete);
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXConversionFunctionName:
 | 
						|
    // <operator-name> ::= cv <type>    # (cast)
 | 
						|
    Out << "cv";
 | 
						|
    mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXOperatorName: {
 | 
						|
    unsigned Arity;
 | 
						|
    if (ND) {
 | 
						|
      Arity = cast<FunctionDecl>(ND)->getNumParams();
 | 
						|
 | 
						|
      // If we have a C++ member function, we need to include the 'this' pointer.
 | 
						|
      // FIXME: This does not make sense for operators that are static, but their
 | 
						|
      // names stay the same regardless of the arity (operator new for instance).
 | 
						|
      if (isa<CXXMethodDecl>(ND))
 | 
						|
        Arity++;
 | 
						|
    } else
 | 
						|
      Arity = KnownArity;
 | 
						|
 | 
						|
    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case DeclarationName::CXXLiteralOperatorName:
 | 
						|
    // FIXME: This mangling is not yet official.
 | 
						|
    Out << "li";
 | 
						|
    mangleSourceName(Name.getCXXLiteralIdentifier());
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXUsingDirective:
 | 
						|
    assert(false && "Can't mangle a using directive name!");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
 | 
						|
  // <source-name> ::= <positive length number> <identifier>
 | 
						|
  // <number> ::= [n] <non-negative decimal integer>
 | 
						|
  // <identifier> ::= <unqualified source code identifier>
 | 
						|
  Out << II->getLength() << II->getName();
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
 | 
						|
                                      const DeclContext *DC,
 | 
						|
                                      bool NoFunction) {
 | 
						|
  // <nested-name> 
 | 
						|
  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
 | 
						|
  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 
 | 
						|
  //       <template-args> E
 | 
						|
 | 
						|
  Out << 'N';
 | 
						|
  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
 | 
						|
    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
 | 
						|
    mangleRefQualifier(Method->getRefQualifier());
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check if we have a template.
 | 
						|
  const TemplateArgumentList *TemplateArgs = 0;
 | 
						|
  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
 | 
						|
    mangleTemplatePrefix(TD);
 | 
						|
    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
 | 
						|
    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    manglePrefix(DC, NoFunction);
 | 
						|
    mangleUnqualifiedName(ND);
 | 
						|
  }
 | 
						|
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
 | 
						|
                                      const TemplateArgument *TemplateArgs,
 | 
						|
                                      unsigned NumTemplateArgs) {
 | 
						|
  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
 | 
						|
 | 
						|
  Out << 'N';
 | 
						|
 | 
						|
  mangleTemplatePrefix(TD);
 | 
						|
  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
 | 
						|
  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
 | 
						|
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
 | 
						|
  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
 | 
						|
  //              := Z <function encoding> E s [<discriminator>]
 | 
						|
  // <discriminator> := _ <non-negative number>
 | 
						|
  const DeclContext *DC = ND->getDeclContext();
 | 
						|
  Out << 'Z';
 | 
						|
 | 
						|
  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
 | 
						|
   mangleObjCMethodName(MD);
 | 
						|
  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
 | 
						|
    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
 | 
						|
    Out << 'E';
 | 
						|
 | 
						|
    // Mangle the name relative to the closest enclosing function.
 | 
						|
    if (ND == RD) // equality ok because RD derived from ND above
 | 
						|
      mangleUnqualifiedName(ND);
 | 
						|
    else
 | 
						|
      mangleNestedName(ND, DC, true /*NoFunction*/);
 | 
						|
 | 
						|
    unsigned disc;
 | 
						|
    if (Context.getNextDiscriminator(RD, disc)) {
 | 
						|
      if (disc < 10)
 | 
						|
        Out << '_' << disc;
 | 
						|
      else
 | 
						|
        Out << "__" << disc << '_';
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    mangleFunctionEncoding(cast<FunctionDecl>(DC));
 | 
						|
 | 
						|
  Out << 'E';
 | 
						|
  mangleUnqualifiedName(ND);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
 | 
						|
  switch (qualifier->getKind()) {
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
    // nothing
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
    mangleName(qualifier->getAsNamespace());
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate:
 | 
						|
    manglePrefix(QualType(qualifier->getAsType(), 0));
 | 
						|
    return;
 | 
						|
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
    // Member expressions can have these without prefixes, but that
 | 
						|
    // should end up in mangleUnresolvedPrefix instead.
 | 
						|
    assert(qualifier->getPrefix());
 | 
						|
    manglePrefix(qualifier->getPrefix());
 | 
						|
 | 
						|
    mangleSourceName(qualifier->getAsIdentifier());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unexpected nested name specifier");
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
 | 
						|
  //  <prefix> ::= <prefix> <unqualified-name>
 | 
						|
  //           ::= <template-prefix> <template-args>
 | 
						|
  //           ::= <template-param>
 | 
						|
  //           ::= # empty
 | 
						|
  //           ::= <substitution>
 | 
						|
 | 
						|
  while (isa<LinkageSpecDecl>(DC))
 | 
						|
    DC = DC->getParent();
 | 
						|
 | 
						|
  if (DC->isTranslationUnit())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
 | 
						|
    manglePrefix(DC->getParent(), NoFunction);    
 | 
						|
    llvm::SmallString<64> Name;
 | 
						|
    llvm::raw_svector_ostream NameStream(Name);
 | 
						|
    Context.mangleBlock(Block, NameStream);
 | 
						|
    NameStream.flush();
 | 
						|
    Out << Name.size() << Name;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (mangleSubstitution(cast<NamedDecl>(DC)))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if we have a template.
 | 
						|
  const TemplateArgumentList *TemplateArgs = 0;
 | 
						|
  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
 | 
						|
    mangleTemplatePrefix(TD);
 | 
						|
    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
 | 
						|
    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
 | 
						|
  }
 | 
						|
  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
 | 
						|
    return;
 | 
						|
  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
 | 
						|
    mangleObjCMethodName(Method);
 | 
						|
  else {
 | 
						|
    manglePrefix(DC->getParent(), NoFunction);
 | 
						|
    mangleUnqualifiedName(cast<NamedDecl>(DC));
 | 
						|
  }
 | 
						|
 | 
						|
  addSubstitution(cast<NamedDecl>(DC));
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
 | 
						|
  // <template-prefix> ::= <prefix> <template unqualified-name>
 | 
						|
  //                   ::= <template-param>
 | 
						|
  //                   ::= <substitution>
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return mangleTemplatePrefix(TD);
 | 
						|
 | 
						|
  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
 | 
						|
    manglePrefix(Qualified->getQualifier());
 | 
						|
  
 | 
						|
  if (OverloadedTemplateStorage *Overloaded
 | 
						|
                                      = Template.getAsOverloadedTemplate()) {
 | 
						|
    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(), 
 | 
						|
                          UnknownArity);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
   
 | 
						|
  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
 | 
						|
  assert(Dependent && "Unknown template name kind?");
 | 
						|
  manglePrefix(Dependent->getQualifier());
 | 
						|
  mangleUnscopedTemplateName(Template);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
 | 
						|
  // <template-prefix> ::= <prefix> <template unqualified-name>
 | 
						|
  //                   ::= <template-param>
 | 
						|
  //                   ::= <substitution>
 | 
						|
  // <template-template-param> ::= <template-param>
 | 
						|
  //                               <substitution>
 | 
						|
 | 
						|
  if (mangleSubstitution(ND))
 | 
						|
    return;
 | 
						|
 | 
						|
  // <template-template-param> ::= <template-param>
 | 
						|
  if (const TemplateTemplateParmDecl *TTP
 | 
						|
                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
 | 
						|
    mangleTemplateParameter(TTP->getIndex());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  manglePrefix(ND->getDeclContext());
 | 
						|
  mangleUnqualifiedName(ND->getTemplatedDecl());
 | 
						|
  addSubstitution(ND);
 | 
						|
}
 | 
						|
 | 
						|
/// Mangles a template name under the production <type>.  Required for
 | 
						|
/// template template arguments.
 | 
						|
///   <type> ::= <class-enum-type>
 | 
						|
///          ::= <template-param>
 | 
						|
///          ::= <substitution>
 | 
						|
void CXXNameMangler::mangleType(TemplateName TN) {
 | 
						|
  if (mangleSubstitution(TN))
 | 
						|
    return;
 | 
						|
      
 | 
						|
  TemplateDecl *TD = 0;
 | 
						|
 | 
						|
  switch (TN.getKind()) {
 | 
						|
  case TemplateName::QualifiedTemplate:
 | 
						|
    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
 | 
						|
    goto HaveDecl;
 | 
						|
 | 
						|
  case TemplateName::Template:
 | 
						|
    TD = TN.getAsTemplateDecl();
 | 
						|
    goto HaveDecl;
 | 
						|
 | 
						|
  HaveDecl:
 | 
						|
    if (isa<TemplateTemplateParmDecl>(TD))
 | 
						|
      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
 | 
						|
    else
 | 
						|
      mangleName(TD);
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateName::OverloadedTemplate:
 | 
						|
    llvm_unreachable("can't mangle an overloaded template name as a <type>");
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateName::DependentTemplate: {
 | 
						|
    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
 | 
						|
    assert(Dependent->isIdentifier());
 | 
						|
 | 
						|
    // <class-enum-type> ::= <name>
 | 
						|
    // <name> ::= <nested-name>
 | 
						|
    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
 | 
						|
    mangleSourceName(Dependent->getIdentifier());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case TemplateName::SubstTemplateTemplateParmPack: {
 | 
						|
    SubstTemplateTemplateParmPackStorage *SubstPack
 | 
						|
      = TN.getAsSubstTemplateTemplateParmPack();
 | 
						|
    mangleTemplateParameter(SubstPack->getParameterPack()->getIndex());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  addSubstitution(TN);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
 | 
						|
  switch (OO) {
 | 
						|
  // <operator-name> ::= nw     # new
 | 
						|
  case OO_New: Out << "nw"; break;
 | 
						|
  //              ::= na        # new[]
 | 
						|
  case OO_Array_New: Out << "na"; break;
 | 
						|
  //              ::= dl        # delete
 | 
						|
  case OO_Delete: Out << "dl"; break;
 | 
						|
  //              ::= da        # delete[]
 | 
						|
  case OO_Array_Delete: Out << "da"; break;
 | 
						|
  //              ::= ps        # + (unary)
 | 
						|
  //              ::= pl        # + (binary or unknown)
 | 
						|
  case OO_Plus:
 | 
						|
    Out << (Arity == 1? "ps" : "pl"); break;
 | 
						|
  //              ::= ng        # - (unary)
 | 
						|
  //              ::= mi        # - (binary or unknown)
 | 
						|
  case OO_Minus:
 | 
						|
    Out << (Arity == 1? "ng" : "mi"); break;
 | 
						|
  //              ::= ad        # & (unary)
 | 
						|
  //              ::= an        # & (binary or unknown)
 | 
						|
  case OO_Amp:
 | 
						|
    Out << (Arity == 1? "ad" : "an"); break;
 | 
						|
  //              ::= de        # * (unary)
 | 
						|
  //              ::= ml        # * (binary or unknown)
 | 
						|
  case OO_Star:
 | 
						|
    // Use binary when unknown.
 | 
						|
    Out << (Arity == 1? "de" : "ml"); break;
 | 
						|
  //              ::= co        # ~
 | 
						|
  case OO_Tilde: Out << "co"; break;
 | 
						|
  //              ::= dv        # /
 | 
						|
  case OO_Slash: Out << "dv"; break;
 | 
						|
  //              ::= rm        # %
 | 
						|
  case OO_Percent: Out << "rm"; break;
 | 
						|
  //              ::= or        # |
 | 
						|
  case OO_Pipe: Out << "or"; break;
 | 
						|
  //              ::= eo        # ^
 | 
						|
  case OO_Caret: Out << "eo"; break;
 | 
						|
  //              ::= aS        # =
 | 
						|
  case OO_Equal: Out << "aS"; break;
 | 
						|
  //              ::= pL        # +=
 | 
						|
  case OO_PlusEqual: Out << "pL"; break;
 | 
						|
  //              ::= mI        # -=
 | 
						|
  case OO_MinusEqual: Out << "mI"; break;
 | 
						|
  //              ::= mL        # *=
 | 
						|
  case OO_StarEqual: Out << "mL"; break;
 | 
						|
  //              ::= dV        # /=
 | 
						|
  case OO_SlashEqual: Out << "dV"; break;
 | 
						|
  //              ::= rM        # %=
 | 
						|
  case OO_PercentEqual: Out << "rM"; break;
 | 
						|
  //              ::= aN        # &=
 | 
						|
  case OO_AmpEqual: Out << "aN"; break;
 | 
						|
  //              ::= oR        # |=
 | 
						|
  case OO_PipeEqual: Out << "oR"; break;
 | 
						|
  //              ::= eO        # ^=
 | 
						|
  case OO_CaretEqual: Out << "eO"; break;
 | 
						|
  //              ::= ls        # <<
 | 
						|
  case OO_LessLess: Out << "ls"; break;
 | 
						|
  //              ::= rs        # >>
 | 
						|
  case OO_GreaterGreater: Out << "rs"; break;
 | 
						|
  //              ::= lS        # <<=
 | 
						|
  case OO_LessLessEqual: Out << "lS"; break;
 | 
						|
  //              ::= rS        # >>=
 | 
						|
  case OO_GreaterGreaterEqual: Out << "rS"; break;
 | 
						|
  //              ::= eq        # ==
 | 
						|
  case OO_EqualEqual: Out << "eq"; break;
 | 
						|
  //              ::= ne        # !=
 | 
						|
  case OO_ExclaimEqual: Out << "ne"; break;
 | 
						|
  //              ::= lt        # <
 | 
						|
  case OO_Less: Out << "lt"; break;
 | 
						|
  //              ::= gt        # >
 | 
						|
  case OO_Greater: Out << "gt"; break;
 | 
						|
  //              ::= le        # <=
 | 
						|
  case OO_LessEqual: Out << "le"; break;
 | 
						|
  //              ::= ge        # >=
 | 
						|
  case OO_GreaterEqual: Out << "ge"; break;
 | 
						|
  //              ::= nt        # !
 | 
						|
  case OO_Exclaim: Out << "nt"; break;
 | 
						|
  //              ::= aa        # &&
 | 
						|
  case OO_AmpAmp: Out << "aa"; break;
 | 
						|
  //              ::= oo        # ||
 | 
						|
  case OO_PipePipe: Out << "oo"; break;
 | 
						|
  //              ::= pp        # ++
 | 
						|
  case OO_PlusPlus: Out << "pp"; break;
 | 
						|
  //              ::= mm        # --
 | 
						|
  case OO_MinusMinus: Out << "mm"; break;
 | 
						|
  //              ::= cm        # ,
 | 
						|
  case OO_Comma: Out << "cm"; break;
 | 
						|
  //              ::= pm        # ->*
 | 
						|
  case OO_ArrowStar: Out << "pm"; break;
 | 
						|
  //              ::= pt        # ->
 | 
						|
  case OO_Arrow: Out << "pt"; break;
 | 
						|
  //              ::= cl        # ()
 | 
						|
  case OO_Call: Out << "cl"; break;
 | 
						|
  //              ::= ix        # []
 | 
						|
  case OO_Subscript: Out << "ix"; break;
 | 
						|
 | 
						|
  //              ::= qu        # ?
 | 
						|
  // The conditional operator can't be overloaded, but we still handle it when
 | 
						|
  // mangling expressions.
 | 
						|
  case OO_Conditional: Out << "qu"; break;
 | 
						|
 | 
						|
  case OO_None:
 | 
						|
  case NUM_OVERLOADED_OPERATORS:
 | 
						|
    assert(false && "Not an overloaded operator");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
 | 
						|
  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
 | 
						|
  if (Quals.hasRestrict())
 | 
						|
    Out << 'r';
 | 
						|
  if (Quals.hasVolatile())
 | 
						|
    Out << 'V';
 | 
						|
  if (Quals.hasConst())
 | 
						|
    Out << 'K';
 | 
						|
 | 
						|
  if (Quals.hasAddressSpace()) {
 | 
						|
    // Extension:
 | 
						|
    //
 | 
						|
    //   <type> ::= U <address-space-number>
 | 
						|
    // 
 | 
						|
    // where <address-space-number> is a source name consisting of 'AS' 
 | 
						|
    // followed by the address space <number>.
 | 
						|
    llvm::SmallString<64> ASString;
 | 
						|
    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
 | 
						|
    Out << 'U' << ASString.size() << ASString;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: For now, just drop all extension qualifiers on the floor.
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
 | 
						|
  // <ref-qualifier> ::= R                # lvalue reference
 | 
						|
  //                 ::= O                # rvalue-reference
 | 
						|
  // Proposal to Itanium C++ ABI list on 1/26/11
 | 
						|
  switch (RefQualifier) {
 | 
						|
  case RQ_None:
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case RQ_LValue:
 | 
						|
    Out << 'R';
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case RQ_RValue:
 | 
						|
    Out << 'O';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
 | 
						|
  Context.mangleObjCMethodName(MD, Out);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(QualType nonCanon) {
 | 
						|
  // Only operate on the canonical type!
 | 
						|
  QualType canon = nonCanon.getCanonicalType();
 | 
						|
 | 
						|
  SplitQualType split = canon.split();
 | 
						|
  Qualifiers quals = split.second;
 | 
						|
  const Type *ty = split.first;
 | 
						|
 | 
						|
  bool isSubstitutable = quals || !isa<BuiltinType>(ty);
 | 
						|
  if (isSubstitutable && mangleSubstitution(canon))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we're mangling a qualified array type, push the qualifiers to
 | 
						|
  // the element type.
 | 
						|
  if (quals && isa<ArrayType>(ty)) {
 | 
						|
    ty = Context.getASTContext().getAsArrayType(canon);
 | 
						|
    quals = Qualifiers();
 | 
						|
 | 
						|
    // Note that we don't update canon: we want to add the
 | 
						|
    // substitution at the canonical type.
 | 
						|
  }
 | 
						|
 | 
						|
  if (quals) {
 | 
						|
    mangleQualifiers(quals);
 | 
						|
    // Recurse:  even if the qualified type isn't yet substitutable,
 | 
						|
    // the unqualified type might be.
 | 
						|
    mangleType(QualType(ty, 0));
 | 
						|
  } else {
 | 
						|
    switch (ty->getTypeClass()) {
 | 
						|
#define ABSTRACT_TYPE(CLASS, PARENT)
 | 
						|
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
 | 
						|
    case Type::CLASS: \
 | 
						|
      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
 | 
						|
      return;
 | 
						|
#define TYPE(CLASS, PARENT) \
 | 
						|
    case Type::CLASS: \
 | 
						|
      mangleType(static_cast<const CLASS##Type*>(ty)); \
 | 
						|
      break;
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the substitution.
 | 
						|
  if (isSubstitutable)
 | 
						|
    addSubstitution(canon);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
 | 
						|
  if (!mangleStandardSubstitution(ND))
 | 
						|
    mangleName(ND);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const BuiltinType *T) {
 | 
						|
  //  <type>         ::= <builtin-type>
 | 
						|
  //  <builtin-type> ::= v  # void
 | 
						|
  //                 ::= w  # wchar_t
 | 
						|
  //                 ::= b  # bool
 | 
						|
  //                 ::= c  # char
 | 
						|
  //                 ::= a  # signed char
 | 
						|
  //                 ::= h  # unsigned char
 | 
						|
  //                 ::= s  # short
 | 
						|
  //                 ::= t  # unsigned short
 | 
						|
  //                 ::= i  # int
 | 
						|
  //                 ::= j  # unsigned int
 | 
						|
  //                 ::= l  # long
 | 
						|
  //                 ::= m  # unsigned long
 | 
						|
  //                 ::= x  # long long, __int64
 | 
						|
  //                 ::= y  # unsigned long long, __int64
 | 
						|
  //                 ::= n  # __int128
 | 
						|
  // UNSUPPORTED:    ::= o  # unsigned __int128
 | 
						|
  //                 ::= f  # float
 | 
						|
  //                 ::= d  # double
 | 
						|
  //                 ::= e  # long double, __float80
 | 
						|
  // UNSUPPORTED:    ::= g  # __float128
 | 
						|
  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
 | 
						|
  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
 | 
						|
  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
 | 
						|
  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
 | 
						|
  //                 ::= Di # char32_t
 | 
						|
  //                 ::= Ds # char16_t
 | 
						|
  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
 | 
						|
  //                 ::= u <source-name>    # vendor extended type
 | 
						|
  switch (T->getKind()) {
 | 
						|
  case BuiltinType::Void: Out << 'v'; break;
 | 
						|
  case BuiltinType::Bool: Out << 'b'; break;
 | 
						|
  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
 | 
						|
  case BuiltinType::UChar: Out << 'h'; break;
 | 
						|
  case BuiltinType::UShort: Out << 't'; break;
 | 
						|
  case BuiltinType::UInt: Out << 'j'; break;
 | 
						|
  case BuiltinType::ULong: Out << 'm'; break;
 | 
						|
  case BuiltinType::ULongLong: Out << 'y'; break;
 | 
						|
  case BuiltinType::UInt128: Out << 'o'; break;
 | 
						|
  case BuiltinType::SChar: Out << 'a'; break;
 | 
						|
  case BuiltinType::WChar_S:
 | 
						|
  case BuiltinType::WChar_U: Out << 'w'; break;
 | 
						|
  case BuiltinType::Char16: Out << "Ds"; break;
 | 
						|
  case BuiltinType::Char32: Out << "Di"; break;
 | 
						|
  case BuiltinType::Short: Out << 's'; break;
 | 
						|
  case BuiltinType::Int: Out << 'i'; break;
 | 
						|
  case BuiltinType::Long: Out << 'l'; break;
 | 
						|
  case BuiltinType::LongLong: Out << 'x'; break;
 | 
						|
  case BuiltinType::Int128: Out << 'n'; break;
 | 
						|
  case BuiltinType::Float: Out << 'f'; break;
 | 
						|
  case BuiltinType::Double: Out << 'd'; break;
 | 
						|
  case BuiltinType::LongDouble: Out << 'e'; break;
 | 
						|
  case BuiltinType::NullPtr: Out << "Dn"; break;
 | 
						|
 | 
						|
  case BuiltinType::Overload:
 | 
						|
  case BuiltinType::Dependent:
 | 
						|
  case BuiltinType::BoundMember:
 | 
						|
  case BuiltinType::UnknownAny:
 | 
						|
    llvm_unreachable("mangling a placeholder type");
 | 
						|
    break;
 | 
						|
  case BuiltinType::ObjCId: Out << "11objc_object"; break;
 | 
						|
  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
 | 
						|
  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// <type>          ::= <function-type>
 | 
						|
// <function-type> ::= F [Y] <bare-function-type> E
 | 
						|
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
 | 
						|
  Out << 'F';
 | 
						|
  // FIXME: We don't have enough information in the AST to produce the 'Y'
 | 
						|
  // encoding for extern "C" function types.
 | 
						|
  mangleBareFunctionType(T, /*MangleReturnType=*/true);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
 | 
						|
  llvm_unreachable("Can't mangle K&R function prototypes");
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
 | 
						|
                                            bool MangleReturnType) {
 | 
						|
  // We should never be mangling something without a prototype.
 | 
						|
  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
 | 
						|
 | 
						|
  // Record that we're in a function type.  See mangleFunctionParam
 | 
						|
  // for details on what we're trying to achieve here.
 | 
						|
  FunctionTypeDepthState saved = FunctionTypeDepth.push();
 | 
						|
 | 
						|
  // <bare-function-type> ::= <signature type>+
 | 
						|
  if (MangleReturnType) {
 | 
						|
    FunctionTypeDepth.enterResultType();
 | 
						|
    mangleType(Proto->getResultType());
 | 
						|
    FunctionTypeDepth.leaveResultType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
 | 
						|
    //   <builtin-type> ::= v   # void
 | 
						|
    Out << 'v';
 | 
						|
 | 
						|
    FunctionTypeDepth.pop(saved);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
 | 
						|
                                         ArgEnd = Proto->arg_type_end();
 | 
						|
       Arg != ArgEnd; ++Arg)
 | 
						|
    mangleType(*Arg);
 | 
						|
 | 
						|
  FunctionTypeDepth.pop(saved);
 | 
						|
 | 
						|
  // <builtin-type>      ::= z  # ellipsis
 | 
						|
  if (Proto->isVariadic())
 | 
						|
    Out << 'z';
 | 
						|
}
 | 
						|
 | 
						|
// <type>            ::= <class-enum-type>
 | 
						|
// <class-enum-type> ::= <name>
 | 
						|
void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
 | 
						|
  mangleName(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
// <type>            ::= <class-enum-type>
 | 
						|
// <class-enum-type> ::= <name>
 | 
						|
void CXXNameMangler::mangleType(const EnumType *T) {
 | 
						|
  mangleType(static_cast<const TagType*>(T));
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const RecordType *T) {
 | 
						|
  mangleType(static_cast<const TagType*>(T));
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const TagType *T) {
 | 
						|
  mangleName(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
// <type>       ::= <array-type>
 | 
						|
// <array-type> ::= A <positive dimension number> _ <element type>
 | 
						|
//              ::= A [<dimension expression>] _ <element type>
 | 
						|
void CXXNameMangler::mangleType(const ConstantArrayType *T) {
 | 
						|
  Out << 'A' << T->getSize() << '_';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const VariableArrayType *T) {
 | 
						|
  Out << 'A';
 | 
						|
  // decayed vla types (size 0) will just be skipped.
 | 
						|
  if (T->getSizeExpr())
 | 
						|
    mangleExpression(T->getSizeExpr());
 | 
						|
  Out << '_';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
 | 
						|
  Out << 'A';
 | 
						|
  mangleExpression(T->getSizeExpr());
 | 
						|
  Out << '_';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
 | 
						|
  Out << "A_";
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
// <type>                   ::= <pointer-to-member-type>
 | 
						|
// <pointer-to-member-type> ::= M <class type> <member type>
 | 
						|
void CXXNameMangler::mangleType(const MemberPointerType *T) {
 | 
						|
  Out << 'M';
 | 
						|
  mangleType(QualType(T->getClass(), 0));
 | 
						|
  QualType PointeeType = T->getPointeeType();
 | 
						|
  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
 | 
						|
    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
 | 
						|
    mangleRefQualifier(FPT->getRefQualifier());
 | 
						|
    mangleType(FPT);
 | 
						|
    
 | 
						|
    // Itanium C++ ABI 5.1.8:
 | 
						|
    //
 | 
						|
    //   The type of a non-static member function is considered to be different,
 | 
						|
    //   for the purposes of substitution, from the type of a namespace-scope or
 | 
						|
    //   static member function whose type appears similar. The types of two
 | 
						|
    //   non-static member functions are considered to be different, for the
 | 
						|
    //   purposes of substitution, if the functions are members of different
 | 
						|
    //   classes. In other words, for the purposes of substitution, the class of 
 | 
						|
    //   which the function is a member is considered part of the type of 
 | 
						|
    //   function.
 | 
						|
 | 
						|
    // We increment the SeqID here to emulate adding an entry to the
 | 
						|
    // substitution table. We can't actually add it because we don't want this
 | 
						|
    // particular function type to be substituted.
 | 
						|
    ++SeqID;
 | 
						|
  } else
 | 
						|
    mangleType(PointeeType);
 | 
						|
}
 | 
						|
 | 
						|
// <type>           ::= <template-param>
 | 
						|
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
 | 
						|
  mangleTemplateParameter(T->getIndex());
 | 
						|
}
 | 
						|
 | 
						|
// <type>           ::= <template-param>
 | 
						|
void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
 | 
						|
  mangleTemplateParameter(T->getReplacedParameter()->getIndex());
 | 
						|
}
 | 
						|
 | 
						|
// <type> ::= P <type>   # pointer-to
 | 
						|
void CXXNameMangler::mangleType(const PointerType *T) {
 | 
						|
  Out << 'P';
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
 | 
						|
  Out << 'P';
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
// <type> ::= R <type>   # reference-to
 | 
						|
void CXXNameMangler::mangleType(const LValueReferenceType *T) {
 | 
						|
  Out << 'R';
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
// <type> ::= O <type>   # rvalue reference-to (C++0x)
 | 
						|
void CXXNameMangler::mangleType(const RValueReferenceType *T) {
 | 
						|
  Out << 'O';
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
// <type> ::= C <type>   # complex pair (C 2000)
 | 
						|
void CXXNameMangler::mangleType(const ComplexType *T) {
 | 
						|
  Out << 'C';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
// ARM's ABI for Neon vector types specifies that they should be mangled as
 | 
						|
// if they are structs (to match ARM's initial implementation).  The
 | 
						|
// vector type must be one of the special types predefined by ARM.
 | 
						|
void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
 | 
						|
  QualType EltType = T->getElementType();
 | 
						|
  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
 | 
						|
  const char *EltName = 0;
 | 
						|
  if (T->getVectorKind() == VectorType::NeonPolyVector) {
 | 
						|
    switch (cast<BuiltinType>(EltType)->getKind()) {
 | 
						|
    case BuiltinType::SChar:     EltName = "poly8_t"; break;
 | 
						|
    case BuiltinType::Short:     EltName = "poly16_t"; break;
 | 
						|
    default: llvm_unreachable("unexpected Neon polynomial vector element type");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    switch (cast<BuiltinType>(EltType)->getKind()) {
 | 
						|
    case BuiltinType::SChar:     EltName = "int8_t"; break;
 | 
						|
    case BuiltinType::UChar:     EltName = "uint8_t"; break;
 | 
						|
    case BuiltinType::Short:     EltName = "int16_t"; break;
 | 
						|
    case BuiltinType::UShort:    EltName = "uint16_t"; break;
 | 
						|
    case BuiltinType::Int:       EltName = "int32_t"; break;
 | 
						|
    case BuiltinType::UInt:      EltName = "uint32_t"; break;
 | 
						|
    case BuiltinType::LongLong:  EltName = "int64_t"; break;
 | 
						|
    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
 | 
						|
    case BuiltinType::Float:     EltName = "float32_t"; break;
 | 
						|
    default: llvm_unreachable("unexpected Neon vector element type");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  const char *BaseName = 0;
 | 
						|
  unsigned BitSize = (T->getNumElements() *
 | 
						|
                      getASTContext().getTypeSize(EltType));
 | 
						|
  if (BitSize == 64)
 | 
						|
    BaseName = "__simd64_";
 | 
						|
  else {
 | 
						|
    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
 | 
						|
    BaseName = "__simd128_";
 | 
						|
  }
 | 
						|
  Out << strlen(BaseName) + strlen(EltName);
 | 
						|
  Out << BaseName << EltName;
 | 
						|
}
 | 
						|
 | 
						|
// GNU extension: vector types
 | 
						|
// <type>                  ::= <vector-type>
 | 
						|
// <vector-type>           ::= Dv <positive dimension number> _
 | 
						|
//                                    <extended element type>
 | 
						|
//                         ::= Dv [<dimension expression>] _ <element type>
 | 
						|
// <extended element type> ::= <element type>
 | 
						|
//                         ::= p # AltiVec vector pixel
 | 
						|
void CXXNameMangler::mangleType(const VectorType *T) {
 | 
						|
  if ((T->getVectorKind() == VectorType::NeonVector ||
 | 
						|
       T->getVectorKind() == VectorType::NeonPolyVector)) {
 | 
						|
    mangleNeonVectorType(T);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  Out << "Dv" << T->getNumElements() << '_';
 | 
						|
  if (T->getVectorKind() == VectorType::AltiVecPixel)
 | 
						|
    Out << 'p';
 | 
						|
  else if (T->getVectorKind() == VectorType::AltiVecBool)
 | 
						|
    Out << 'b';
 | 
						|
  else
 | 
						|
    mangleType(T->getElementType());
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const ExtVectorType *T) {
 | 
						|
  mangleType(static_cast<const VectorType*>(T));
 | 
						|
}
 | 
						|
void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
 | 
						|
  Out << "Dv";
 | 
						|
  mangleExpression(T->getSizeExpr());
 | 
						|
  Out << '_';
 | 
						|
  mangleType(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const PackExpansionType *T) {
 | 
						|
  // <type>  ::= Dp <type>          # pack expansion (C++0x)
 | 
						|
  Out << "Dp";
 | 
						|
  mangleType(T->getPattern());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
 | 
						|
  mangleSourceName(T->getDecl()->getIdentifier());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const ObjCObjectType *T) {
 | 
						|
  // We don't allow overloading by different protocol qualification,
 | 
						|
  // so mangling them isn't necessary.
 | 
						|
  mangleType(T->getBaseType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const BlockPointerType *T) {
 | 
						|
  Out << "U13block_pointer";
 | 
						|
  mangleType(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
 | 
						|
  // Mangle injected class name types as if the user had written the
 | 
						|
  // specialization out fully.  It may not actually be possible to see
 | 
						|
  // this mangling, though.
 | 
						|
  mangleType(T->getInjectedSpecializationType());
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
 | 
						|
  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
 | 
						|
    mangleName(TD, T->getArgs(), T->getNumArgs());
 | 
						|
  } else {
 | 
						|
    if (mangleSubstitution(QualType(T, 0)))
 | 
						|
      return;
 | 
						|
    
 | 
						|
    mangleTemplatePrefix(T->getTemplateName());
 | 
						|
    
 | 
						|
    // FIXME: GCC does not appear to mangle the template arguments when
 | 
						|
    // the template in question is a dependent template name. Should we
 | 
						|
    // emulate that badness?
 | 
						|
    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
 | 
						|
    addSubstitution(QualType(T, 0));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DependentNameType *T) {
 | 
						|
  // Typename types are always nested
 | 
						|
  Out << 'N';
 | 
						|
  manglePrefix(T->getQualifier());
 | 
						|
  mangleSourceName(T->getIdentifier());    
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
 | 
						|
  // Dependently-scoped template types are nested if they have a prefix.
 | 
						|
  Out << 'N';
 | 
						|
 | 
						|
  // TODO: avoid making this TemplateName.
 | 
						|
  TemplateName Prefix =
 | 
						|
    getASTContext().getDependentTemplateName(T->getQualifier(),
 | 
						|
                                             T->getIdentifier());
 | 
						|
  mangleTemplatePrefix(Prefix);
 | 
						|
 | 
						|
  // FIXME: GCC does not appear to mangle the template arguments when
 | 
						|
  // the template in question is a dependent template name. Should we
 | 
						|
  // emulate that badness?
 | 
						|
  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());    
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const TypeOfType *T) {
 | 
						|
  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
 | 
						|
  // "extension with parameters" mangling.
 | 
						|
  Out << "u6typeof";
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const TypeOfExprType *T) {
 | 
						|
  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
 | 
						|
  // "extension with parameters" mangling.
 | 
						|
  Out << "u6typeof";
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const DecltypeType *T) {
 | 
						|
  Expr *E = T->getUnderlyingExpr();
 | 
						|
 | 
						|
  // type ::= Dt <expression> E  # decltype of an id-expression
 | 
						|
  //                             #   or class member access
 | 
						|
  //      ::= DT <expression> E  # decltype of an expression
 | 
						|
 | 
						|
  // This purports to be an exhaustive list of id-expressions and
 | 
						|
  // class member accesses.  Note that we do not ignore parentheses;
 | 
						|
  // parentheses change the semantics of decltype for these
 | 
						|
  // expressions (and cause the mangler to use the other form).
 | 
						|
  if (isa<DeclRefExpr>(E) ||
 | 
						|
      isa<MemberExpr>(E) ||
 | 
						|
      isa<UnresolvedLookupExpr>(E) ||
 | 
						|
      isa<DependentScopeDeclRefExpr>(E) ||
 | 
						|
      isa<CXXDependentScopeMemberExpr>(E) ||
 | 
						|
      isa<UnresolvedMemberExpr>(E))
 | 
						|
    Out << "Dt";
 | 
						|
  else
 | 
						|
    Out << "DT";
 | 
						|
  mangleExpression(E);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleType(const AutoType *T) {
 | 
						|
  QualType D = T->getDeducedType();
 | 
						|
  // <builtin-type> ::= Da  # dependent auto
 | 
						|
  if (D.isNull())
 | 
						|
    Out << "Da";
 | 
						|
  else
 | 
						|
    mangleType(D);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleIntegerLiteral(QualType T,
 | 
						|
                                          const llvm::APSInt &Value) {
 | 
						|
  //  <expr-primary> ::= L <type> <value number> E # integer literal
 | 
						|
  Out << 'L';
 | 
						|
 | 
						|
  mangleType(T);
 | 
						|
  if (T->isBooleanType()) {
 | 
						|
    // Boolean values are encoded as 0/1.
 | 
						|
    Out << (Value.getBoolValue() ? '1' : '0');
 | 
						|
  } else {
 | 
						|
    mangleNumber(Value);
 | 
						|
  }
 | 
						|
  Out << 'E';
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// Mangles a member expression.  Implicit accesses are not handled,
 | 
						|
/// but that should be okay, because you shouldn't be able to
 | 
						|
/// make an implicit access in a function template declaration.
 | 
						|
void CXXNameMangler::mangleMemberExpr(const Expr *base,
 | 
						|
                                      bool isArrow,
 | 
						|
                                      NestedNameSpecifier *qualifier,
 | 
						|
                                      NamedDecl *firstQualifierLookup,
 | 
						|
                                      DeclarationName member,
 | 
						|
                                      unsigned arity) {
 | 
						|
  // <expression> ::= dt <expression> <unresolved-name>
 | 
						|
  //              ::= pt <expression> <unresolved-name>
 | 
						|
  Out << (isArrow ? "pt" : "dt");
 | 
						|
  mangleExpression(base);
 | 
						|
  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
 | 
						|
}
 | 
						|
 | 
						|
/// Look at the callee of the given call expression and determine if
 | 
						|
/// it's a parenthesized id-expression which would have triggered ADL
 | 
						|
/// otherwise.
 | 
						|
static bool isParenthesizedADLCallee(const CallExpr *call) {
 | 
						|
  const Expr *callee = call->getCallee();
 | 
						|
  const Expr *fn = callee->IgnoreParens();
 | 
						|
 | 
						|
  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
 | 
						|
  // too, but for those to appear in the callee, it would have to be
 | 
						|
  // parenthesized.
 | 
						|
  if (callee == fn) return false;
 | 
						|
 | 
						|
  // Must be an unresolved lookup.
 | 
						|
  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
 | 
						|
  if (!lookup) return false;
 | 
						|
 | 
						|
  assert(!lookup->requiresADL());
 | 
						|
 | 
						|
  // Must be an unqualified lookup.
 | 
						|
  if (lookup->getQualifier()) return false;
 | 
						|
 | 
						|
  // Must not have found a class member.  Note that if one is a class
 | 
						|
  // member, they're all class members.
 | 
						|
  if (lookup->getNumDecls() > 0 &&
 | 
						|
      (*lookup->decls_begin())->isCXXClassMember())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, ADL would have been triggered.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
 | 
						|
  // <expression> ::= <unary operator-name> <expression>
 | 
						|
  //              ::= <binary operator-name> <expression> <expression>
 | 
						|
  //              ::= <trinary operator-name> <expression> <expression> <expression>
 | 
						|
  //              ::= cv <type> expression           # conversion with one argument
 | 
						|
  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
 | 
						|
  //              ::= st <type>                      # sizeof (a type)
 | 
						|
  //              ::= at <type>                      # alignof (a type)
 | 
						|
  //              ::= <template-param>
 | 
						|
  //              ::= <function-param>
 | 
						|
  //              ::= sr <type> <unqualified-name>                   # dependent name
 | 
						|
  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
 | 
						|
  //              ::= sZ <template-param>                            # size of a parameter pack
 | 
						|
  //              ::= sZ <function-param>    # size of a function parameter pack
 | 
						|
  //              ::= <expr-primary>
 | 
						|
  // <expr-primary> ::= L <type> <value number> E    # integer literal
 | 
						|
  //                ::= L <type <value float> E      # floating literal
 | 
						|
  //                ::= L <mangled-name> E           # external name
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  case Expr::NoStmtClass:
 | 
						|
#define ABSTRACT_STMT(Type)
 | 
						|
#define EXPR(Type, Base)
 | 
						|
#define STMT(Type, Base) \
 | 
						|
  case Expr::Type##Class:
 | 
						|
#include "clang/AST/StmtNodes.inc"
 | 
						|
    // fallthrough
 | 
						|
 | 
						|
  // These all can only appear in local or variable-initialization
 | 
						|
  // contexts and so should never appear in a mangling.
 | 
						|
  case Expr::AddrLabelExprClass:
 | 
						|
  case Expr::BlockDeclRefExprClass:
 | 
						|
  case Expr::CXXThisExprClass:
 | 
						|
  case Expr::DesignatedInitExprClass:
 | 
						|
  case Expr::ImplicitValueInitExprClass:
 | 
						|
  case Expr::InitListExprClass:
 | 
						|
  case Expr::ParenListExprClass:
 | 
						|
  case Expr::CXXScalarValueInitExprClass:
 | 
						|
    llvm_unreachable("unexpected statement kind");
 | 
						|
    break;
 | 
						|
 | 
						|
  // FIXME: invent manglings for all these.
 | 
						|
  case Expr::BlockExprClass:
 | 
						|
  case Expr::CXXPseudoDestructorExprClass:
 | 
						|
  case Expr::ChooseExprClass:
 | 
						|
  case Expr::CompoundLiteralExprClass:
 | 
						|
  case Expr::ExtVectorElementExprClass:
 | 
						|
  case Expr::GenericSelectionExprClass:
 | 
						|
  case Expr::ObjCEncodeExprClass:
 | 
						|
  case Expr::ObjCIsaExprClass:
 | 
						|
  case Expr::ObjCIvarRefExprClass:
 | 
						|
  case Expr::ObjCMessageExprClass:
 | 
						|
  case Expr::ObjCPropertyRefExprClass:
 | 
						|
  case Expr::ObjCProtocolExprClass:
 | 
						|
  case Expr::ObjCSelectorExprClass:
 | 
						|
  case Expr::ObjCStringLiteralClass:
 | 
						|
  case Expr::OffsetOfExprClass:
 | 
						|
  case Expr::PredefinedExprClass:
 | 
						|
  case Expr::ShuffleVectorExprClass:
 | 
						|
  case Expr::StmtExprClass:
 | 
						|
  case Expr::UnaryTypeTraitExprClass:
 | 
						|
  case Expr::BinaryTypeTraitExprClass:
 | 
						|
  case Expr::ArrayTypeTraitExprClass:
 | 
						|
  case Expr::ExpressionTraitExprClass:
 | 
						|
  case Expr::VAArgExprClass:
 | 
						|
  case Expr::CXXUuidofExprClass:
 | 
						|
  case Expr::CXXNoexceptExprClass:
 | 
						|
  case Expr::CUDAKernelCallExprClass: {
 | 
						|
    // As bad as this diagnostic is, it's better than crashing.
 | 
						|
    Diagnostic &Diags = Context.getDiags();
 | 
						|
    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
 | 
						|
                                     "cannot yet mangle expression type %0");
 | 
						|
    Diags.Report(E->getExprLoc(), DiagID)
 | 
						|
      << E->getStmtClassName() << E->getSourceRange();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Even gcc-4.5 doesn't mangle this.
 | 
						|
  case Expr::BinaryConditionalOperatorClass: {
 | 
						|
    Diagnostic &Diags = Context.getDiags();
 | 
						|
    unsigned DiagID =
 | 
						|
      Diags.getCustomDiagID(Diagnostic::Error,
 | 
						|
                "?: operator with omitted middle operand cannot be mangled");
 | 
						|
    Diags.Report(E->getExprLoc(), DiagID)
 | 
						|
      << E->getStmtClassName() << E->getSourceRange();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // These are used for internal purposes and cannot be meaningfully mangled.
 | 
						|
  case Expr::OpaqueValueExprClass:
 | 
						|
    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
 | 
						|
 | 
						|
  case Expr::CXXDefaultArgExprClass:
 | 
						|
    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXMemberCallExprClass: // fallthrough
 | 
						|
  case Expr::CallExprClass: {
 | 
						|
    const CallExpr *CE = cast<CallExpr>(E);
 | 
						|
 | 
						|
    // <expression> ::= cp <simple-id> <expression>* E
 | 
						|
    // We use this mangling only when the call would use ADL except
 | 
						|
    // for being parenthesized.  Per discussion with David
 | 
						|
    // Vandervoorde, 2011.04.25.
 | 
						|
    if (isParenthesizedADLCallee(CE)) {
 | 
						|
      Out << "cp";
 | 
						|
      // The callee here is a parenthesized UnresolvedLookupExpr with
 | 
						|
      // no qualifier and should always get mangled as a <simple-id>
 | 
						|
      // anyway.
 | 
						|
 | 
						|
    // <expression> ::= cl <expression>* E
 | 
						|
    } else {
 | 
						|
      Out << "cl";
 | 
						|
    }
 | 
						|
 | 
						|
    mangleExpression(CE->getCallee(), CE->getNumArgs());
 | 
						|
    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
 | 
						|
      mangleExpression(CE->getArg(I));
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXNewExprClass: {
 | 
						|
    // Proposal from David Vandervoorde, 2010.06.30
 | 
						|
    const CXXNewExpr *New = cast<CXXNewExpr>(E);
 | 
						|
    if (New->isGlobalNew()) Out << "gs";
 | 
						|
    Out << (New->isArray() ? "na" : "nw");
 | 
						|
    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
 | 
						|
           E = New->placement_arg_end(); I != E; ++I)
 | 
						|
      mangleExpression(*I);
 | 
						|
    Out << '_';
 | 
						|
    mangleType(New->getAllocatedType());
 | 
						|
    if (New->hasInitializer()) {
 | 
						|
      Out << "pi";
 | 
						|
      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
 | 
						|
             E = New->constructor_arg_end(); I != E; ++I)
 | 
						|
        mangleExpression(*I);
 | 
						|
    }
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::MemberExprClass: {
 | 
						|
    const MemberExpr *ME = cast<MemberExpr>(E);
 | 
						|
    mangleMemberExpr(ME->getBase(), ME->isArrow(),
 | 
						|
                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
 | 
						|
                     Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::UnresolvedMemberExprClass: {
 | 
						|
    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
 | 
						|
    mangleMemberExpr(ME->getBase(), ME->isArrow(),
 | 
						|
                     ME->getQualifier(), 0, ME->getMemberName(),
 | 
						|
                     Arity);
 | 
						|
    if (ME->hasExplicitTemplateArgs())
 | 
						|
      mangleTemplateArgs(ME->getExplicitTemplateArgs());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXDependentScopeMemberExprClass: {
 | 
						|
    const CXXDependentScopeMemberExpr *ME
 | 
						|
      = cast<CXXDependentScopeMemberExpr>(E);
 | 
						|
    mangleMemberExpr(ME->getBase(), ME->isArrow(),
 | 
						|
                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
 | 
						|
                     ME->getMember(), Arity);
 | 
						|
    if (ME->hasExplicitTemplateArgs())
 | 
						|
      mangleTemplateArgs(ME->getExplicitTemplateArgs());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::UnresolvedLookupExprClass: {
 | 
						|
    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
 | 
						|
    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
 | 
						|
    if (ULE->hasExplicitTemplateArgs())
 | 
						|
      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXUnresolvedConstructExprClass: {
 | 
						|
    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
 | 
						|
    unsigned N = CE->arg_size();
 | 
						|
 | 
						|
    Out << "cv";
 | 
						|
    mangleType(CE->getType());
 | 
						|
    if (N != 1) Out << '_';
 | 
						|
    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
 | 
						|
    if (N != 1) Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXTemporaryObjectExprClass:
 | 
						|
  case Expr::CXXConstructExprClass: {
 | 
						|
    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
 | 
						|
    unsigned N = CE->getNumArgs();
 | 
						|
 | 
						|
    Out << "cv";
 | 
						|
    mangleType(CE->getType());
 | 
						|
    if (N != 1) Out << '_';
 | 
						|
    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
 | 
						|
    if (N != 1) Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::UnaryExprOrTypeTraitExprClass: {
 | 
						|
    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
 | 
						|
    switch(SAE->getKind()) {
 | 
						|
    case UETT_SizeOf:
 | 
						|
      Out << 's';
 | 
						|
      break;
 | 
						|
    case UETT_AlignOf:
 | 
						|
      Out << 'a';
 | 
						|
      break;
 | 
						|
    case UETT_VecStep:
 | 
						|
      Diagnostic &Diags = Context.getDiags();
 | 
						|
      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
 | 
						|
                                     "cannot yet mangle vec_step expression");
 | 
						|
      Diags.Report(DiagID);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (SAE->isArgumentType()) {
 | 
						|
      Out << 't';
 | 
						|
      mangleType(SAE->getArgumentType());
 | 
						|
    } else {
 | 
						|
      Out << 'z';
 | 
						|
      mangleExpression(SAE->getArgumentExpr());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXThrowExprClass: {
 | 
						|
    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
 | 
						|
 | 
						|
    // Proposal from David Vandervoorde, 2010.06.30
 | 
						|
    if (TE->getSubExpr()) {
 | 
						|
      Out << "tw";
 | 
						|
      mangleExpression(TE->getSubExpr());
 | 
						|
    } else {
 | 
						|
      Out << "tr";
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXTypeidExprClass: {
 | 
						|
    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
 | 
						|
 | 
						|
    // Proposal from David Vandervoorde, 2010.06.30
 | 
						|
    if (TIE->isTypeOperand()) {
 | 
						|
      Out << "ti";
 | 
						|
      mangleType(TIE->getTypeOperand());
 | 
						|
    } else {
 | 
						|
      Out << "te";
 | 
						|
      mangleExpression(TIE->getExprOperand());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXDeleteExprClass: {
 | 
						|
    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
 | 
						|
 | 
						|
    // Proposal from David Vandervoorde, 2010.06.30
 | 
						|
    if (DE->isGlobalDelete()) Out << "gs";
 | 
						|
    Out << (DE->isArrayForm() ? "da" : "dl");
 | 
						|
    mangleExpression(DE->getArgument());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::UnaryOperatorClass: {
 | 
						|
    const UnaryOperator *UO = cast<UnaryOperator>(E);
 | 
						|
    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
 | 
						|
                       /*Arity=*/1);
 | 
						|
    mangleExpression(UO->getSubExpr());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ArraySubscriptExprClass: {
 | 
						|
    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
 | 
						|
 | 
						|
    // Array subscript is treated as a syntactically weird form of
 | 
						|
    // binary operator.
 | 
						|
    Out << "ix";
 | 
						|
    mangleExpression(AE->getLHS());
 | 
						|
    mangleExpression(AE->getRHS());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CompoundAssignOperatorClass: // fallthrough
 | 
						|
  case Expr::BinaryOperatorClass: {
 | 
						|
    const BinaryOperator *BO = cast<BinaryOperator>(E);
 | 
						|
    mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
 | 
						|
                       /*Arity=*/2);
 | 
						|
    mangleExpression(BO->getLHS());
 | 
						|
    mangleExpression(BO->getRHS());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ConditionalOperatorClass: {
 | 
						|
    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
 | 
						|
    mangleOperatorName(OO_Conditional, /*Arity=*/3);
 | 
						|
    mangleExpression(CO->getCond());
 | 
						|
    mangleExpression(CO->getLHS(), Arity);
 | 
						|
    mangleExpression(CO->getRHS(), Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ImplicitCastExprClass: {
 | 
						|
    mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CStyleCastExprClass:
 | 
						|
  case Expr::CXXStaticCastExprClass:
 | 
						|
  case Expr::CXXDynamicCastExprClass:
 | 
						|
  case Expr::CXXReinterpretCastExprClass:
 | 
						|
  case Expr::CXXConstCastExprClass:
 | 
						|
  case Expr::CXXFunctionalCastExprClass: {
 | 
						|
    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
 | 
						|
    Out << "cv";
 | 
						|
    mangleType(ECE->getType());
 | 
						|
    mangleExpression(ECE->getSubExpr());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXOperatorCallExprClass: {
 | 
						|
    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
 | 
						|
    unsigned NumArgs = CE->getNumArgs();
 | 
						|
    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
 | 
						|
    // Mangle the arguments.
 | 
						|
    for (unsigned i = 0; i != NumArgs; ++i)
 | 
						|
      mangleExpression(CE->getArg(i));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ParenExprClass:
 | 
						|
    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::DeclRefExprClass: {
 | 
						|
    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
 | 
						|
 | 
						|
    switch (D->getKind()) {
 | 
						|
    default:
 | 
						|
      //  <expr-primary> ::= L <mangled-name> E # external name
 | 
						|
      Out << 'L';
 | 
						|
      mangle(D, "_Z");
 | 
						|
      Out << 'E';
 | 
						|
      break;
 | 
						|
 | 
						|
    case Decl::ParmVar:
 | 
						|
      mangleFunctionParam(cast<ParmVarDecl>(D));
 | 
						|
      break;
 | 
						|
 | 
						|
    case Decl::EnumConstant: {
 | 
						|
      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
 | 
						|
      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Decl::NonTypeTemplateParm: {
 | 
						|
      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
 | 
						|
      mangleTemplateParameter(PD->getIndex());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::SubstNonTypeTemplateParmPackExprClass:
 | 
						|
    mangleTemplateParameter(
 | 
						|
     cast<SubstNonTypeTemplateParmPackExpr>(E)->getParameterPack()->getIndex());
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case Expr::DependentScopeDeclRefExprClass: {
 | 
						|
    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
 | 
						|
    NestedNameSpecifier *NNS = DRE->getQualifier();
 | 
						|
    const Type *QTy = NNS->getAsType();
 | 
						|
 | 
						|
    // When we're dealing with a nested-name-specifier that has just a
 | 
						|
    // dependent identifier in it, mangle that as a typename.  FIXME:
 | 
						|
    // It isn't clear that we ever actually want to have such a
 | 
						|
    // nested-name-specifier; why not just represent it as a typename type?
 | 
						|
    if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
 | 
						|
      QTy = getASTContext().getDependentNameType(ETK_Typename,
 | 
						|
                                                 NNS->getPrefix(),
 | 
						|
                                                 NNS->getAsIdentifier())
 | 
						|
              .getTypePtr();
 | 
						|
    }
 | 
						|
    assert(QTy && "Qualifier was not type!");
 | 
						|
 | 
						|
    // ::= sr <type> <unqualified-name>                  # dependent name
 | 
						|
    // ::= sr <type> <unqualified-name> <template-args>  # dependent template-id
 | 
						|
    Out << "sr";
 | 
						|
    mangleType(QualType(QTy, 0));
 | 
						|
    mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
 | 
						|
    if (DRE->hasExplicitTemplateArgs())
 | 
						|
      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CXXBindTemporaryExprClass:
 | 
						|
    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::ExprWithCleanupsClass:
 | 
						|
    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::FloatingLiteralClass: {
 | 
						|
    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
 | 
						|
    Out << 'L';
 | 
						|
    mangleType(FL->getType());
 | 
						|
    mangleFloat(FL->getValue());
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::CharacterLiteralClass:
 | 
						|
    Out << 'L';
 | 
						|
    mangleType(E->getType());
 | 
						|
    Out << cast<CharacterLiteral>(E)->getValue();
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::CXXBoolLiteralExprClass:
 | 
						|
    Out << "Lb";
 | 
						|
    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
 | 
						|
  case Expr::IntegerLiteralClass: {
 | 
						|
    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
 | 
						|
    if (E->getType()->isSignedIntegerType())
 | 
						|
      Value.setIsSigned(true);
 | 
						|
    mangleIntegerLiteral(E->getType(), Value);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::ImaginaryLiteralClass: {
 | 
						|
    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
 | 
						|
    // Mangle as if a complex literal.
 | 
						|
    // Proposal from David Vandevoorde, 2010.06.30.
 | 
						|
    Out << 'L';
 | 
						|
    mangleType(E->getType());
 | 
						|
    if (const FloatingLiteral *Imag =
 | 
						|
          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
 | 
						|
      // Mangle a floating-point zero of the appropriate type.
 | 
						|
      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
 | 
						|
      Out << '_';
 | 
						|
      mangleFloat(Imag->getValue());
 | 
						|
    } else {
 | 
						|
      Out << "0_";
 | 
						|
      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
 | 
						|
      if (IE->getSubExpr()->getType()->isSignedIntegerType())
 | 
						|
        Value.setIsSigned(true);
 | 
						|
      mangleNumber(Value);
 | 
						|
    }
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::StringLiteralClass: {
 | 
						|
    // Revised proposal from David Vandervoorde, 2010.07.15.
 | 
						|
    Out << 'L';
 | 
						|
    assert(isa<ConstantArrayType>(E->getType()));
 | 
						|
    mangleType(E->getType());
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Expr::GNUNullExprClass:
 | 
						|
    // FIXME: should this really be mangled the same as nullptr?
 | 
						|
    // fallthrough
 | 
						|
 | 
						|
  case Expr::CXXNullPtrLiteralExprClass: {
 | 
						|
    // Proposal from David Vandervoorde, 2010.06.30, as
 | 
						|
    // modified by ABI list discussion.
 | 
						|
    Out << "LDnE";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
      
 | 
						|
  case Expr::PackExpansionExprClass:
 | 
						|
    Out << "sp";
 | 
						|
    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case Expr::SizeOfPackExprClass: {
 | 
						|
    Out << "sZ";
 | 
						|
    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
 | 
						|
    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
 | 
						|
      mangleTemplateParameter(TTP->getIndex());
 | 
						|
    else if (const NonTypeTemplateParmDecl *NTTP
 | 
						|
                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
 | 
						|
      mangleTemplateParameter(NTTP->getIndex());
 | 
						|
    else if (const TemplateTemplateParmDecl *TempTP
 | 
						|
                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
 | 
						|
      mangleTemplateParameter(TempTP->getIndex());
 | 
						|
    else {
 | 
						|
      // Note: proposed by Mike Herrick on 11/30/10
 | 
						|
      // <expression> ::= sZ <function-param>  # size of function parameter pack
 | 
						|
      Diagnostic &Diags = Context.getDiags();
 | 
						|
      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
 | 
						|
                            "cannot mangle sizeof...(function parameter pack)");
 | 
						|
      Diags.Report(DiagID);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Mangle an expression which refers to a parameter variable.
 | 
						|
///
 | 
						|
/// <expression>     ::= <function-param>
 | 
						|
/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
 | 
						|
/// <function-param> ::= fp <top-level CV-qualifiers>
 | 
						|
///                      <parameter-2 non-negative number> _ # L == 0, I > 0
 | 
						|
/// <function-param> ::= fL <L-1 non-negative number>
 | 
						|
///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
 | 
						|
/// <function-param> ::= fL <L-1 non-negative number>
 | 
						|
///                      p <top-level CV-qualifiers>
 | 
						|
///                      <I-1 non-negative number> _         # L > 0, I > 0
 | 
						|
///
 | 
						|
/// L is the nesting depth of the parameter, defined as 1 if the
 | 
						|
/// parameter comes from the innermost function prototype scope
 | 
						|
/// enclosing the current context, 2 if from the next enclosing
 | 
						|
/// function prototype scope, and so on, with one special case: if
 | 
						|
/// we've processed the full parameter clause for the innermost
 | 
						|
/// function type, then L is one less.  This definition conveniently
 | 
						|
/// makes it irrelevant whether a function's result type was written
 | 
						|
/// trailing or leading, but is otherwise overly complicated; the
 | 
						|
/// numbering was first designed without considering references to
 | 
						|
/// parameter in locations other than return types, and then the
 | 
						|
/// mangling had to be generalized without changing the existing
 | 
						|
/// manglings.
 | 
						|
///
 | 
						|
/// I is the zero-based index of the parameter within its parameter
 | 
						|
/// declaration clause.  Note that the original ABI document describes
 | 
						|
/// this using 1-based ordinals.
 | 
						|
void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
 | 
						|
  unsigned parmDepth = parm->getFunctionScopeDepth();
 | 
						|
  unsigned parmIndex = parm->getFunctionScopeIndex();
 | 
						|
 | 
						|
  // Compute 'L'.
 | 
						|
  // parmDepth does not include the declaring function prototype.
 | 
						|
  // FunctionTypeDepth does account for that.
 | 
						|
  assert(parmDepth < FunctionTypeDepth.getDepth());
 | 
						|
  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
 | 
						|
  if (FunctionTypeDepth.isInResultType())
 | 
						|
    nestingDepth--;
 | 
						|
 | 
						|
  if (nestingDepth == 0) {
 | 
						|
    Out << "fp";
 | 
						|
  } else {
 | 
						|
    Out << "fL" << (nestingDepth - 1) << 'p';
 | 
						|
  }
 | 
						|
 | 
						|
  // Top-level qualifiers.  We don't have to worry about arrays here,
 | 
						|
  // because parameters declared as arrays should already have been
 | 
						|
  // tranformed to have pointer type. FIXME: apparently these don't
 | 
						|
  // get mangled if used as an rvalue of a known non-class type?
 | 
						|
  assert(!parm->getType()->isArrayType()
 | 
						|
         && "parameter's type is still an array type?");
 | 
						|
  mangleQualifiers(parm->getType().getQualifiers());
 | 
						|
 | 
						|
  // Parameter index.
 | 
						|
  if (parmIndex != 0) {
 | 
						|
    Out << (parmIndex - 1);
 | 
						|
  }
 | 
						|
  Out << '_';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
 | 
						|
  // <ctor-dtor-name> ::= C1  # complete object constructor
 | 
						|
  //                  ::= C2  # base object constructor
 | 
						|
  //                  ::= C3  # complete object allocating constructor
 | 
						|
  //
 | 
						|
  switch (T) {
 | 
						|
  case Ctor_Complete:
 | 
						|
    Out << "C1";
 | 
						|
    break;
 | 
						|
  case Ctor_Base:
 | 
						|
    Out << "C2";
 | 
						|
    break;
 | 
						|
  case Ctor_CompleteAllocating:
 | 
						|
    Out << "C3";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
 | 
						|
  // <ctor-dtor-name> ::= D0  # deleting destructor
 | 
						|
  //                  ::= D1  # complete object destructor
 | 
						|
  //                  ::= D2  # base object destructor
 | 
						|
  //
 | 
						|
  switch (T) {
 | 
						|
  case Dtor_Deleting:
 | 
						|
    Out << "D0";
 | 
						|
    break;
 | 
						|
  case Dtor_Complete:
 | 
						|
    Out << "D1";
 | 
						|
    break;
 | 
						|
  case Dtor_Base:
 | 
						|
    Out << "D2";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArgs(
 | 
						|
                          const ExplicitTemplateArgumentList &TemplateArgs) {
 | 
						|
  // <template-args> ::= I <template-arg>+ E
 | 
						|
  Out << 'I';
 | 
						|
  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
 | 
						|
    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
 | 
						|
                                        const TemplateArgument *TemplateArgs,
 | 
						|
                                        unsigned NumTemplateArgs) {
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
 | 
						|
                              NumTemplateArgs);
 | 
						|
  
 | 
						|
  mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
 | 
						|
                                                  unsigned numArgs) {
 | 
						|
  // <template-args> ::= I <template-arg>+ E
 | 
						|
  Out << 'I';
 | 
						|
  for (unsigned i = 0; i != numArgs; ++i)
 | 
						|
    mangleTemplateArg(0, args[i]);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
 | 
						|
                                        const TemplateArgumentList &AL) {
 | 
						|
  // <template-args> ::= I <template-arg>+ E
 | 
						|
  Out << 'I';
 | 
						|
  for (unsigned i = 0, e = AL.size(); i != e; ++i)
 | 
						|
    mangleTemplateArg(PL.getParam(i), AL[i]);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
 | 
						|
                                        const TemplateArgument *TemplateArgs,
 | 
						|
                                        unsigned NumTemplateArgs) {
 | 
						|
  // <template-args> ::= I <template-arg>+ E
 | 
						|
  Out << 'I';
 | 
						|
  for (unsigned i = 0; i != NumTemplateArgs; ++i)
 | 
						|
    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
 | 
						|
  Out << 'E';
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
 | 
						|
                                       const TemplateArgument &A) {
 | 
						|
  // <template-arg> ::= <type>              # type or template
 | 
						|
  //                ::= X <expression> E    # expression
 | 
						|
  //                ::= <expr-primary>      # simple expressions
 | 
						|
  //                ::= J <template-arg>* E # argument pack
 | 
						|
  //                ::= sp <expression>     # pack expansion of (C++0x)
 | 
						|
  switch (A.getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
    llvm_unreachable("Cannot mangle NULL template argument");
 | 
						|
      
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    mangleType(A.getAsType());
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Template:
 | 
						|
    // This is mangled as <type>.
 | 
						|
    mangleType(A.getAsTemplate());
 | 
						|
    break;
 | 
						|
  case TemplateArgument::TemplateExpansion:
 | 
						|
    // <type>  ::= Dp <type>          # pack expansion (C++0x)
 | 
						|
    Out << "Dp";
 | 
						|
    mangleType(A.getAsTemplateOrTemplatePattern());
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Expression:
 | 
						|
    Out << 'X';
 | 
						|
    mangleExpression(A.getAsExpr());
 | 
						|
    Out << 'E';
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Declaration: {
 | 
						|
    assert(P && "Missing template parameter for declaration argument");
 | 
						|
    //  <expr-primary> ::= L <mangled-name> E # external name
 | 
						|
 | 
						|
    // Clang produces AST's where pointer-to-member-function expressions
 | 
						|
    // and pointer-to-function expressions are represented as a declaration not
 | 
						|
    // an expression. We compensate for it here to produce the correct mangling.
 | 
						|
    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
 | 
						|
    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
 | 
						|
    bool compensateMangling = !Parameter->getType()->isReferenceType();
 | 
						|
    if (compensateMangling) {
 | 
						|
      Out << 'X';
 | 
						|
      mangleOperatorName(OO_Amp, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << 'L';
 | 
						|
    // References to external entities use the mangled name; if the name would
 | 
						|
    // not normally be manged then mangle it as unqualified.
 | 
						|
    //
 | 
						|
    // FIXME: The ABI specifies that external names here should have _Z, but
 | 
						|
    // gcc leaves this off.
 | 
						|
    if (compensateMangling)
 | 
						|
      mangle(D, "_Z");
 | 
						|
    else
 | 
						|
      mangle(D, "Z");
 | 
						|
    Out << 'E';
 | 
						|
 | 
						|
    if (compensateMangling)
 | 
						|
      Out << 'E';
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
      
 | 
						|
  case TemplateArgument::Pack: {
 | 
						|
    // Note: proposal by Mike Herrick on 12/20/10
 | 
						|
    Out << 'J';
 | 
						|
    for (TemplateArgument::pack_iterator PA = A.pack_begin(), 
 | 
						|
                                      PAEnd = A.pack_end();
 | 
						|
         PA != PAEnd; ++PA)
 | 
						|
      mangleTemplateArg(P, *PA);
 | 
						|
    Out << 'E';
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
 | 
						|
  // <template-param> ::= T_    # first template parameter
 | 
						|
  //                  ::= T <parameter-2 non-negative number> _
 | 
						|
  if (Index == 0)
 | 
						|
    Out << "T_";
 | 
						|
  else
 | 
						|
    Out << 'T' << (Index - 1) << '_';
 | 
						|
}
 | 
						|
 | 
						|
// <substitution> ::= S <seq-id> _
 | 
						|
//                ::= S_
 | 
						|
bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
 | 
						|
  // Try one of the standard substitutions first.
 | 
						|
  if (mangleStandardSubstitution(ND))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ND = cast<NamedDecl>(ND->getCanonicalDecl());
 | 
						|
  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleSubstitution(QualType T) {
 | 
						|
  if (!T.getCVRQualifiers()) {
 | 
						|
    if (const RecordType *RT = T->getAs<RecordType>())
 | 
						|
      return mangleSubstitution(RT->getDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
 | 
						|
 | 
						|
  return mangleSubstitution(TypePtr);
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return mangleSubstitution(TD);
 | 
						|
  
 | 
						|
  Template = Context.getASTContext().getCanonicalTemplateName(Template);
 | 
						|
  return mangleSubstitution(
 | 
						|
                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
 | 
						|
  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
 | 
						|
  if (I == Substitutions.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned SeqID = I->second;
 | 
						|
  if (SeqID == 0)
 | 
						|
    Out << "S_";
 | 
						|
  else {
 | 
						|
    SeqID--;
 | 
						|
 | 
						|
    // <seq-id> is encoded in base-36, using digits and upper case letters.
 | 
						|
    char Buffer[10];
 | 
						|
    char *BufferPtr = llvm::array_endof(Buffer);
 | 
						|
 | 
						|
    if (SeqID == 0) *--BufferPtr = '0';
 | 
						|
 | 
						|
    while (SeqID) {
 | 
						|
      assert(BufferPtr > Buffer && "Buffer overflow!");
 | 
						|
 | 
						|
      char c = static_cast<char>(SeqID % 36);
 | 
						|
 | 
						|
      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
 | 
						|
      SeqID /= 36;
 | 
						|
    }
 | 
						|
 | 
						|
    Out << 'S'
 | 
						|
        << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
 | 
						|
        << '_';
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCharType(QualType T) {
 | 
						|
  if (T.isNull())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
 | 
						|
    T->isSpecificBuiltinType(BuiltinType::Char_U);
 | 
						|
}
 | 
						|
 | 
						|
/// isCharSpecialization - Returns whether a given type is a template
 | 
						|
/// specialization of a given name with a single argument of type char.
 | 
						|
static bool isCharSpecialization(QualType T, const char *Name) {
 | 
						|
  if (T.isNull())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const RecordType *RT = T->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ClassTemplateSpecializationDecl *SD =
 | 
						|
    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
 | 
						|
  if (!SD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isStdNamespace(SD->getDeclContext()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | 
						|
  if (TemplateArgs.size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isCharType(TemplateArgs[0].getAsType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return SD->getIdentifier()->getName() == Name;
 | 
						|
}
 | 
						|
 | 
						|
template <std::size_t StrLen>
 | 
						|
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
 | 
						|
                                       const char (&Str)[StrLen]) {
 | 
						|
  if (!SD->getIdentifier()->isStr(Str))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | 
						|
  if (TemplateArgs.size() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isCharType(TemplateArgs[0].getAsType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
 | 
						|
  // <substitution> ::= St # ::std::
 | 
						|
  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
 | 
						|
    if (isStd(NS)) {
 | 
						|
      Out << "St";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
 | 
						|
    if (!isStdNamespace(TD->getDeclContext()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // <substitution> ::= Sa # ::std::allocator
 | 
						|
    if (TD->getIdentifier()->isStr("allocator")) {
 | 
						|
      Out << "Sa";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // <<substitution> ::= Sb # ::std::basic_string
 | 
						|
    if (TD->getIdentifier()->isStr("basic_string")) {
 | 
						|
      Out << "Sb";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ClassTemplateSpecializationDecl *SD =
 | 
						|
        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
 | 
						|
    if (!isStdNamespace(SD->getDeclContext()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    //    <substitution> ::= Ss # ::std::basic_string<char,
 | 
						|
    //                            ::std::char_traits<char>,
 | 
						|
    //                            ::std::allocator<char> >
 | 
						|
    if (SD->getIdentifier()->isStr("basic_string")) {
 | 
						|
      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
 | 
						|
 | 
						|
      if (TemplateArgs.size() != 3)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!isCharType(TemplateArgs[0].getAsType()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
 | 
						|
        return false;
 | 
						|
 | 
						|
      Out << "Ss";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //    <substitution> ::= Si # ::std::basic_istream<char,
 | 
						|
    //                            ::std::char_traits<char> >
 | 
						|
    if (isStreamCharSpecialization(SD, "basic_istream")) {
 | 
						|
      Out << "Si";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //    <substitution> ::= So # ::std::basic_ostream<char,
 | 
						|
    //                            ::std::char_traits<char> >
 | 
						|
    if (isStreamCharSpecialization(SD, "basic_ostream")) {
 | 
						|
      Out << "So";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    //    <substitution> ::= Sd # ::std::basic_iostream<char,
 | 
						|
    //                            ::std::char_traits<char> >
 | 
						|
    if (isStreamCharSpecialization(SD, "basic_iostream")) {
 | 
						|
      Out << "Sd";
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::addSubstitution(QualType T) {
 | 
						|
  if (!T.getCVRQualifiers()) {
 | 
						|
    if (const RecordType *RT = T->getAs<RecordType>()) {
 | 
						|
      addSubstitution(RT->getDecl());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
 | 
						|
  addSubstitution(TypePtr);
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::addSubstitution(TemplateName Template) {
 | 
						|
  if (TemplateDecl *TD = Template.getAsTemplateDecl())
 | 
						|
    return addSubstitution(TD);
 | 
						|
  
 | 
						|
  Template = Context.getASTContext().getCanonicalTemplateName(Template);
 | 
						|
  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
 | 
						|
}
 | 
						|
 | 
						|
void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
 | 
						|
  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
 | 
						|
  Substitutions[Ptr] = SeqID++;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
 | 
						|
/// \brief Mangles the name of the declaration D and emits that name to the
 | 
						|
/// given output stream.
 | 
						|
///
 | 
						|
/// If the declaration D requires a mangled name, this routine will emit that
 | 
						|
/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
 | 
						|
/// and this routine will return false. In this case, the caller should just
 | 
						|
/// emit the identifier of the declaration (\c D->getIdentifier()) as its
 | 
						|
/// name.
 | 
						|
void ItaniumMangleContext::mangleName(const NamedDecl *D,
 | 
						|
                                      llvm::raw_ostream &Out) {
 | 
						|
  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
 | 
						|
          "Invalid mangleName() call, argument is not a variable or function!");
 | 
						|
  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
 | 
						|
         "Invalid mangleName() call on 'structor decl!");
 | 
						|
 | 
						|
  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
 | 
						|
                                 getASTContext().getSourceManager(),
 | 
						|
                                 "Mangling declaration");
 | 
						|
 | 
						|
  CXXNameMangler Mangler(*this, Out, D);
 | 
						|
  return Mangler.mangle(D);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
 | 
						|
                                         CXXCtorType Type,
 | 
						|
                                         llvm::raw_ostream &Out) {
 | 
						|
  CXXNameMangler Mangler(*this, Out, D, Type);
 | 
						|
  Mangler.mangle(D);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
 | 
						|
                                         CXXDtorType Type,
 | 
						|
                                         llvm::raw_ostream &Out) {
 | 
						|
  CXXNameMangler Mangler(*this, Out, D, Type);
 | 
						|
  Mangler.mangle(D);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
 | 
						|
                                       const ThunkInfo &Thunk,
 | 
						|
                                       llvm::raw_ostream &Out) {
 | 
						|
  //  <special-name> ::= T <call-offset> <base encoding>
 | 
						|
  //                      # base is the nominal target function of thunk
 | 
						|
  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
 | 
						|
  //                      # base is the nominal target function of thunk
 | 
						|
  //                      # first call-offset is 'this' adjustment
 | 
						|
  //                      # second call-offset is result adjustment
 | 
						|
  
 | 
						|
  assert(!isa<CXXDestructorDecl>(MD) &&
 | 
						|
         "Use mangleCXXDtor for destructor decls!");
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZT";
 | 
						|
  if (!Thunk.Return.isEmpty())
 | 
						|
    Mangler.getStream() << 'c';
 | 
						|
  
 | 
						|
  // Mangle the 'this' pointer adjustment.
 | 
						|
  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
 | 
						|
  
 | 
						|
  // Mangle the return pointer adjustment if there is one.
 | 
						|
  if (!Thunk.Return.isEmpty())
 | 
						|
    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
 | 
						|
                             Thunk.Return.VBaseOffsetOffset);
 | 
						|
  
 | 
						|
  Mangler.mangleFunctionEncoding(MD);
 | 
						|
}
 | 
						|
 | 
						|
void 
 | 
						|
ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
 | 
						|
                                         CXXDtorType Type,
 | 
						|
                                         const ThisAdjustment &ThisAdjustment,
 | 
						|
                                         llvm::raw_ostream &Out) {
 | 
						|
  //  <special-name> ::= T <call-offset> <base encoding>
 | 
						|
  //                      # base is the nominal target function of thunk
 | 
						|
  CXXNameMangler Mangler(*this, Out, DD, Type);
 | 
						|
  Mangler.getStream() << "_ZT";
 | 
						|
 | 
						|
  // Mangle the 'this' pointer adjustment.
 | 
						|
  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 
 | 
						|
                           ThisAdjustment.VCallOffsetOffset);
 | 
						|
 | 
						|
  Mangler.mangleFunctionEncoding(DD);
 | 
						|
}
 | 
						|
 | 
						|
/// mangleGuardVariable - Returns the mangled name for a guard variable
 | 
						|
/// for the passed in VarDecl.
 | 
						|
void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
 | 
						|
                                                      llvm::raw_ostream &Out) {
 | 
						|
  //  <special-name> ::= GV <object name>       # Guard variable for one-time
 | 
						|
  //                                            # initialization
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZGV";
 | 
						|
  Mangler.mangleName(D);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
 | 
						|
                                                    llvm::raw_ostream &Out) {
 | 
						|
  // We match the GCC mangling here.
 | 
						|
  //  <special-name> ::= GR <object name>
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZGR";
 | 
						|
  Mangler.mangleName(D);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
 | 
						|
                                           llvm::raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TV <type>  # virtual table
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTV";
 | 
						|
  Mangler.mangleNameOrStandardSubstitution(RD);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
 | 
						|
                                        llvm::raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TT <type>  # VTT structure
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTT";
 | 
						|
  Mangler.mangleNameOrStandardSubstitution(RD);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
 | 
						|
                                               int64_t Offset,
 | 
						|
                                               const CXXRecordDecl *Type,
 | 
						|
                                               llvm::raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TC <type> <offset number> _ <base type>
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTC";
 | 
						|
  Mangler.mangleNameOrStandardSubstitution(RD);
 | 
						|
  Mangler.getStream() << Offset;
 | 
						|
  Mangler.getStream() << '_';
 | 
						|
  Mangler.mangleNameOrStandardSubstitution(Type);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
 | 
						|
                                         llvm::raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TI <type>  # typeinfo structure
 | 
						|
  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTI";
 | 
						|
  Mangler.mangleType(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
 | 
						|
                                             llvm::raw_ostream &Out) {
 | 
						|
  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
 | 
						|
  CXXNameMangler Mangler(*this, Out);
 | 
						|
  Mangler.getStream() << "_ZTS";
 | 
						|
  Mangler.mangleType(Ty);
 | 
						|
}
 | 
						|
 | 
						|
MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
 | 
						|
                                                 Diagnostic &Diags) {
 | 
						|
  return new ItaniumMangleContext(Context, Diags);
 | 
						|
}
 |