forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4336 lines
		
	
	
		
			169 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4336 lines
		
	
	
		
			169 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for C++ expressions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/ParsedTemplate.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/TemplateDeduction.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
 | 
						|
                                   IdentifierInfo &II,
 | 
						|
                                   SourceLocation NameLoc,
 | 
						|
                                   Scope *S, CXXScopeSpec &SS,
 | 
						|
                                   ParsedType ObjectTypePtr,
 | 
						|
                                   bool EnteringContext) {
 | 
						|
  // Determine where to perform name lookup.
 | 
						|
 | 
						|
  // FIXME: This area of the standard is very messy, and the current
 | 
						|
  // wording is rather unclear about which scopes we search for the
 | 
						|
  // destructor name; see core issues 399 and 555. Issue 399 in
 | 
						|
  // particular shows where the current description of destructor name
 | 
						|
  // lookup is completely out of line with existing practice, e.g.,
 | 
						|
  // this appears to be ill-formed:
 | 
						|
  //
 | 
						|
  //   namespace N {
 | 
						|
  //     template <typename T> struct S {
 | 
						|
  //       ~S();
 | 
						|
  //     };
 | 
						|
  //   }
 | 
						|
  //
 | 
						|
  //   void f(N::S<int>* s) {
 | 
						|
  //     s->N::S<int>::~S();
 | 
						|
  //   }
 | 
						|
  //
 | 
						|
  // See also PR6358 and PR6359.
 | 
						|
  // For this reason, we're currently only doing the C++03 version of this
 | 
						|
  // code; the C++0x version has to wait until we get a proper spec.
 | 
						|
  QualType SearchType;
 | 
						|
  DeclContext *LookupCtx = 0;
 | 
						|
  bool isDependent = false;
 | 
						|
  bool LookInScope = false;
 | 
						|
 | 
						|
  // If we have an object type, it's because we are in a
 | 
						|
  // pseudo-destructor-expression or a member access expression, and
 | 
						|
  // we know what type we're looking for.
 | 
						|
  if (ObjectTypePtr)
 | 
						|
    SearchType = GetTypeFromParser(ObjectTypePtr);
 | 
						|
 | 
						|
  if (SS.isSet()) {
 | 
						|
    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
 | 
						|
 | 
						|
    bool AlreadySearched = false;
 | 
						|
    bool LookAtPrefix = true;
 | 
						|
    // C++ [basic.lookup.qual]p6:
 | 
						|
    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
 | 
						|
    //   the type-names are looked up as types in the scope designated by the
 | 
						|
    //   nested-name-specifier. In a qualified-id of the form:
 | 
						|
    //
 | 
						|
    //     ::[opt] nested-name-specifier  ~ class-name
 | 
						|
    //
 | 
						|
    //   where the nested-name-specifier designates a namespace scope, and in
 | 
						|
    //   a qualified-id of the form:
 | 
						|
    //
 | 
						|
    //     ::opt nested-name-specifier class-name ::  ~ class-name
 | 
						|
    //
 | 
						|
    //   the class-names are looked up as types in the scope designated by
 | 
						|
    //   the nested-name-specifier.
 | 
						|
    //
 | 
						|
    // Here, we check the first case (completely) and determine whether the
 | 
						|
    // code below is permitted to look at the prefix of the
 | 
						|
    // nested-name-specifier.
 | 
						|
    DeclContext *DC = computeDeclContext(SS, EnteringContext);
 | 
						|
    if (DC && DC->isFileContext()) {
 | 
						|
      AlreadySearched = true;
 | 
						|
      LookupCtx = DC;
 | 
						|
      isDependent = false;
 | 
						|
    } else if (DC && isa<CXXRecordDecl>(DC))
 | 
						|
      LookAtPrefix = false;
 | 
						|
 | 
						|
    // The second case from the C++03 rules quoted further above.
 | 
						|
    NestedNameSpecifier *Prefix = 0;
 | 
						|
    if (AlreadySearched) {
 | 
						|
      // Nothing left to do.
 | 
						|
    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
 | 
						|
      CXXScopeSpec PrefixSS;
 | 
						|
      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
 | 
						|
      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
 | 
						|
      isDependent = isDependentScopeSpecifier(PrefixSS);
 | 
						|
    } else if (ObjectTypePtr) {
 | 
						|
      LookupCtx = computeDeclContext(SearchType);
 | 
						|
      isDependent = SearchType->isDependentType();
 | 
						|
    } else {
 | 
						|
      LookupCtx = computeDeclContext(SS, EnteringContext);
 | 
						|
      isDependent = LookupCtx && LookupCtx->isDependentContext();
 | 
						|
    }
 | 
						|
 | 
						|
    LookInScope = false;
 | 
						|
  } else if (ObjectTypePtr) {
 | 
						|
    // C++ [basic.lookup.classref]p3:
 | 
						|
    //   If the unqualified-id is ~type-name, the type-name is looked up
 | 
						|
    //   in the context of the entire postfix-expression. If the type T
 | 
						|
    //   of the object expression is of a class type C, the type-name is
 | 
						|
    //   also looked up in the scope of class C. At least one of the
 | 
						|
    //   lookups shall find a name that refers to (possibly
 | 
						|
    //   cv-qualified) T.
 | 
						|
    LookupCtx = computeDeclContext(SearchType);
 | 
						|
    isDependent = SearchType->isDependentType();
 | 
						|
    assert((isDependent || !SearchType->isIncompleteType()) &&
 | 
						|
           "Caller should have completed object type");
 | 
						|
 | 
						|
    LookInScope = true;
 | 
						|
  } else {
 | 
						|
    // Perform lookup into the current scope (only).
 | 
						|
    LookInScope = true;
 | 
						|
  }
 | 
						|
 | 
						|
  TypeDecl *NonMatchingTypeDecl = 0;
 | 
						|
  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
 | 
						|
  for (unsigned Step = 0; Step != 2; ++Step) {
 | 
						|
    // Look for the name first in the computed lookup context (if we
 | 
						|
    // have one) and, if that fails to find a match, in the scope (if
 | 
						|
    // we're allowed to look there).
 | 
						|
    Found.clear();
 | 
						|
    if (Step == 0 && LookupCtx)
 | 
						|
      LookupQualifiedName(Found, LookupCtx);
 | 
						|
    else if (Step == 1 && LookInScope && S)
 | 
						|
      LookupName(Found, S);
 | 
						|
    else
 | 
						|
      continue;
 | 
						|
 | 
						|
    // FIXME: Should we be suppressing ambiguities here?
 | 
						|
    if (Found.isAmbiguous())
 | 
						|
      return ParsedType();
 | 
						|
 | 
						|
    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
 | 
						|
      QualType T = Context.getTypeDeclType(Type);
 | 
						|
 | 
						|
      if (SearchType.isNull() || SearchType->isDependentType() ||
 | 
						|
          Context.hasSameUnqualifiedType(T, SearchType)) {
 | 
						|
        // We found our type!
 | 
						|
 | 
						|
        return ParsedType::make(T);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!SearchType.isNull())
 | 
						|
        NonMatchingTypeDecl = Type;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the name that we found is a class template name, and it is
 | 
						|
    // the same name as the template name in the last part of the
 | 
						|
    // nested-name-specifier (if present) or the object type, then
 | 
						|
    // this is the destructor for that class.
 | 
						|
    // FIXME: This is a workaround until we get real drafting for core
 | 
						|
    // issue 399, for which there isn't even an obvious direction.
 | 
						|
    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
 | 
						|
      QualType MemberOfType;
 | 
						|
      if (SS.isSet()) {
 | 
						|
        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
 | 
						|
          // Figure out the type of the context, if it has one.
 | 
						|
          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
 | 
						|
            MemberOfType = Context.getTypeDeclType(Record);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (MemberOfType.isNull())
 | 
						|
        MemberOfType = SearchType;
 | 
						|
 | 
						|
      if (MemberOfType.isNull())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We're referring into a class template specialization. If the
 | 
						|
      // class template we found is the same as the template being
 | 
						|
      // specialized, we found what we are looking for.
 | 
						|
      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
 | 
						|
        if (ClassTemplateSpecializationDecl *Spec
 | 
						|
              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
 | 
						|
          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
 | 
						|
                Template->getCanonicalDecl())
 | 
						|
            return ParsedType::make(MemberOfType);
 | 
						|
        }
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // We're referring to an unresolved class template
 | 
						|
      // specialization. Determine whether we class template we found
 | 
						|
      // is the same as the template being specialized or, if we don't
 | 
						|
      // know which template is being specialized, that it at least
 | 
						|
      // has the same name.
 | 
						|
      if (const TemplateSpecializationType *SpecType
 | 
						|
            = MemberOfType->getAs<TemplateSpecializationType>()) {
 | 
						|
        TemplateName SpecName = SpecType->getTemplateName();
 | 
						|
 | 
						|
        // The class template we found is the same template being
 | 
						|
        // specialized.
 | 
						|
        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
 | 
						|
          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
 | 
						|
            return ParsedType::make(MemberOfType);
 | 
						|
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // The class template we found has the same name as the
 | 
						|
        // (dependent) template name being specialized.
 | 
						|
        if (DependentTemplateName *DepTemplate
 | 
						|
                                    = SpecName.getAsDependentTemplateName()) {
 | 
						|
          if (DepTemplate->isIdentifier() &&
 | 
						|
              DepTemplate->getIdentifier() == Template->getIdentifier())
 | 
						|
            return ParsedType::make(MemberOfType);
 | 
						|
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isDependent) {
 | 
						|
    // We didn't find our type, but that's okay: it's dependent
 | 
						|
    // anyway.
 | 
						|
    
 | 
						|
    // FIXME: What if we have no nested-name-specifier?
 | 
						|
    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
 | 
						|
                                   SS.getWithLocInContext(Context),
 | 
						|
                                   II, NameLoc);
 | 
						|
    return ParsedType::make(T);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NonMatchingTypeDecl) {
 | 
						|
    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
 | 
						|
    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
 | 
						|
      << T << SearchType;
 | 
						|
    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
 | 
						|
      << T;
 | 
						|
  } else if (ObjectTypePtr)
 | 
						|
    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
 | 
						|
      << &II;
 | 
						|
  else
 | 
						|
    Diag(NameLoc, diag::err_destructor_class_name);
 | 
						|
 | 
						|
  return ParsedType();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a C++ typeid expression with a type operand.
 | 
						|
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
 | 
						|
                                SourceLocation TypeidLoc,
 | 
						|
                                TypeSourceInfo *Operand,
 | 
						|
                                SourceLocation RParenLoc) {
 | 
						|
  // C++ [expr.typeid]p4:
 | 
						|
  //   The top-level cv-qualifiers of the lvalue expression or the type-id
 | 
						|
  //   that is the operand of typeid are always ignored.
 | 
						|
  //   If the type of the type-id is a class type or a reference to a class
 | 
						|
  //   type, the class shall be completely-defined.
 | 
						|
  Qualifiers Quals;
 | 
						|
  QualType T
 | 
						|
    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
 | 
						|
                                      Quals);
 | 
						|
  if (T->getAs<RecordType>() &&
 | 
						|
      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
 | 
						|
                                           Operand,
 | 
						|
                                           SourceRange(TypeidLoc, RParenLoc)));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a C++ typeid expression with an expression operand.
 | 
						|
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
 | 
						|
                                SourceLocation TypeidLoc,
 | 
						|
                                Expr *E,
 | 
						|
                                SourceLocation RParenLoc) {
 | 
						|
  bool isUnevaluatedOperand = true;
 | 
						|
  if (E && !E->isTypeDependent()) {
 | 
						|
    QualType T = E->getType();
 | 
						|
    if (const RecordType *RecordT = T->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
 | 
						|
      // C++ [expr.typeid]p3:
 | 
						|
      //   [...] If the type of the expression is a class type, the class
 | 
						|
      //   shall be completely-defined.
 | 
						|
      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // C++ [expr.typeid]p3:
 | 
						|
      //   When typeid is applied to an expression other than an glvalue of a
 | 
						|
      //   polymorphic class type [...] [the] expression is an unevaluated
 | 
						|
      //   operand. [...]
 | 
						|
      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
 | 
						|
        isUnevaluatedOperand = false;
 | 
						|
 | 
						|
        // We require a vtable to query the type at run time.
 | 
						|
        MarkVTableUsed(TypeidLoc, RecordD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [expr.typeid]p4:
 | 
						|
    //   [...] If the type of the type-id is a reference to a possibly
 | 
						|
    //   cv-qualified type, the result of the typeid expression refers to a
 | 
						|
    //   std::type_info object representing the cv-unqualified referenced
 | 
						|
    //   type.
 | 
						|
    Qualifiers Quals;
 | 
						|
    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
 | 
						|
    if (!Context.hasSameType(T, UnqualT)) {
 | 
						|
      T = UnqualT;
 | 
						|
      E = ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)).take();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is an unevaluated operand, clear out the set of
 | 
						|
  // declaration references we have been computing and eliminate any
 | 
						|
  // temporaries introduced in its computation.
 | 
						|
  if (isUnevaluatedOperand)
 | 
						|
    ExprEvalContexts.back().Context = Unevaluated;
 | 
						|
 | 
						|
  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
 | 
						|
                                           E,
 | 
						|
                                           SourceRange(TypeidLoc, RParenLoc)));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
 | 
						|
                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
 | 
						|
  // Find the std::type_info type.
 | 
						|
  if (!getStdNamespace())
 | 
						|
    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
 | 
						|
 | 
						|
  if (!CXXTypeInfoDecl) {
 | 
						|
    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
 | 
						|
    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
 | 
						|
    LookupQualifiedName(R, getStdNamespace());
 | 
						|
    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
 | 
						|
    if (!CXXTypeInfoDecl)
 | 
						|
      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
 | 
						|
  }
 | 
						|
 | 
						|
  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
 | 
						|
 | 
						|
  if (isType) {
 | 
						|
    // The operand is a type; handle it as such.
 | 
						|
    TypeSourceInfo *TInfo = 0;
 | 
						|
    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
 | 
						|
                                   &TInfo);
 | 
						|
    if (T.isNull())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (!TInfo)
 | 
						|
      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
 | 
						|
 | 
						|
    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // The operand is an expression.
 | 
						|
  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
/// Retrieve the UuidAttr associated with QT.
 | 
						|
static UuidAttr *GetUuidAttrOfType(QualType QT) {
 | 
						|
  // Optionally remove one level of pointer, reference or array indirection.
 | 
						|
  const Type *Ty = QT.getTypePtr();;
 | 
						|
  if (QT->isPointerType() || QT->isReferenceType())
 | 
						|
    Ty = QT->getPointeeType().getTypePtr();
 | 
						|
  else if (QT->isArrayType())
 | 
						|
    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
 | 
						|
 | 
						|
  // Loop all record redeclaration looking for an uuid attribute.
 | 
						|
  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | 
						|
  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
 | 
						|
       E = RD->redecls_end(); I != E; ++I) {
 | 
						|
    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
 | 
						|
      return Uuid;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a Microsoft __uuidof expression with a type operand.
 | 
						|
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
 | 
						|
                                SourceLocation TypeidLoc,
 | 
						|
                                TypeSourceInfo *Operand,
 | 
						|
                                SourceLocation RParenLoc) {
 | 
						|
  if (!Operand->getType()->isDependentType()) {
 | 
						|
    if (!GetUuidAttrOfType(Operand->getType()))
 | 
						|
      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: add __uuidof semantic analysis for type operand.
 | 
						|
  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
 | 
						|
                                           Operand,
 | 
						|
                                           SourceRange(TypeidLoc, RParenLoc)));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a Microsoft __uuidof expression with an expression operand.
 | 
						|
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
 | 
						|
                                SourceLocation TypeidLoc,
 | 
						|
                                Expr *E,
 | 
						|
                                SourceLocation RParenLoc) {
 | 
						|
  if (!E->getType()->isDependentType()) {
 | 
						|
    if (!GetUuidAttrOfType(E->getType()) &&
 | 
						|
        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
 | 
						|
      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
 | 
						|
  }
 | 
						|
  // FIXME: add __uuidof semantic analysis for type operand.
 | 
						|
  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
 | 
						|
                                           E,
 | 
						|
                                           SourceRange(TypeidLoc, RParenLoc)));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
 | 
						|
                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
 | 
						|
  // If MSVCGuidDecl has not been cached, do the lookup.
 | 
						|
  if (!MSVCGuidDecl) {
 | 
						|
    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
 | 
						|
    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
 | 
						|
    LookupQualifiedName(R, Context.getTranslationUnitDecl());
 | 
						|
    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
 | 
						|
    if (!MSVCGuidDecl)
 | 
						|
      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
 | 
						|
  }
 | 
						|
 | 
						|
  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
 | 
						|
 | 
						|
  if (isType) {
 | 
						|
    // The operand is a type; handle it as such.
 | 
						|
    TypeSourceInfo *TInfo = 0;
 | 
						|
    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
 | 
						|
                                   &TInfo);
 | 
						|
    if (T.isNull())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (!TInfo)
 | 
						|
      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
 | 
						|
 | 
						|
    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // The operand is an expression.
 | 
						|
  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
 | 
						|
  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
 | 
						|
         "Unknown C++ Boolean value!");
 | 
						|
  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
 | 
						|
                                                Context.BoolTy, OpLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
 | 
						|
  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXThrow - Parse throw expressions.
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
 | 
						|
  // Don't report an error if 'throw' is used in system headers.
 | 
						|
  if (!getLangOptions().CXXExceptions &&
 | 
						|
      !getSourceManager().isInSystemHeader(OpLoc))
 | 
						|
    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
 | 
						|
 | 
						|
  if (Ex && !Ex->isTypeDependent()) {
 | 
						|
    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex);
 | 
						|
    if (ExRes.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    Ex = ExRes.take();
 | 
						|
  }
 | 
						|
  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// CheckCXXThrowOperand - Validate the operand of a throw.
 | 
						|
ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E) {
 | 
						|
  // C++ [except.throw]p3:
 | 
						|
  //   A throw-expression initializes a temporary object, called the exception
 | 
						|
  //   object, the type of which is determined by removing any top-level
 | 
						|
  //   cv-qualifiers from the static type of the operand of throw and adjusting
 | 
						|
  //   the type from "array of T" or "function returning T" to "pointer to T"
 | 
						|
  //   or "pointer to function returning T", [...]
 | 
						|
  if (E->getType().hasQualifiers())
 | 
						|
    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
 | 
						|
                      CastCategory(E)).take();
 | 
						|
 | 
						|
  ExprResult Res = DefaultFunctionArrayConversion(E);
 | 
						|
  if (Res.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  E = Res.take();
 | 
						|
 | 
						|
  //   If the type of the exception would be an incomplete type or a pointer
 | 
						|
  //   to an incomplete type other than (cv) void the program is ill-formed.
 | 
						|
  QualType Ty = E->getType();
 | 
						|
  bool isPointer = false;
 | 
						|
  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
 | 
						|
    Ty = Ptr->getPointeeType();
 | 
						|
    isPointer = true;
 | 
						|
  }
 | 
						|
  if (!isPointer || !Ty->isVoidType()) {
 | 
						|
    if (RequireCompleteType(ThrowLoc, Ty,
 | 
						|
                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
 | 
						|
                                            : diag::err_throw_incomplete)
 | 
						|
                              << E->getSourceRange()))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (RequireNonAbstractType(ThrowLoc, E->getType(),
 | 
						|
                               PDiag(diag::err_throw_abstract_type)
 | 
						|
                                 << E->getSourceRange()))
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize the exception result.  This implicitly weeds out
 | 
						|
  // abstract types or types with inaccessible copy constructors.
 | 
						|
  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
 | 
						|
 | 
						|
  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
 | 
						|
  InitializedEntity Entity =
 | 
						|
      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
 | 
						|
                                             /*NRVO=*/false);
 | 
						|
  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
 | 
						|
                                        QualType(), E);
 | 
						|
  if (Res.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  E = Res.take();
 | 
						|
 | 
						|
  // If the exception has class type, we need additional handling.
 | 
						|
  const RecordType *RecordTy = Ty->getAs<RecordType>();
 | 
						|
  if (!RecordTy)
 | 
						|
    return Owned(E);
 | 
						|
  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
 | 
						|
 | 
						|
  // If we are throwing a polymorphic class type or pointer thereof,
 | 
						|
  // exception handling will make use of the vtable.
 | 
						|
  MarkVTableUsed(ThrowLoc, RD);
 | 
						|
 | 
						|
  // If a pointer is thrown, the referenced object will not be destroyed.
 | 
						|
  if (isPointer)
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  // If the class has a non-trivial destructor, we must be able to call it.
 | 
						|
  if (RD->hasTrivialDestructor())
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  CXXDestructorDecl *Destructor
 | 
						|
    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
 | 
						|
  if (!Destructor)
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
 | 
						|
  CheckDestructorAccess(E->getExprLoc(), Destructor,
 | 
						|
                        PDiag(diag::err_access_dtor_exception) << Ty);
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
CXXMethodDecl *Sema::tryCaptureCXXThis() {
 | 
						|
  // Ignore block scopes: we can capture through them.
 | 
						|
  // Ignore nested enum scopes: we'll diagnose non-constant expressions
 | 
						|
  // where they're invalid, and other uses are legitimate.
 | 
						|
  // Don't ignore nested class scopes: you can't use 'this' in a local class.
 | 
						|
  DeclContext *DC = CurContext;
 | 
						|
  while (true) {
 | 
						|
    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
 | 
						|
    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
 | 
						|
    else break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're not in an instance method, error out.
 | 
						|
  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
 | 
						|
  if (!method || !method->isInstance())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Mark that we're closing on 'this' in all the block scopes, if applicable.
 | 
						|
  for (unsigned idx = FunctionScopes.size() - 1;
 | 
						|
       isa<BlockScopeInfo>(FunctionScopes[idx]);
 | 
						|
       --idx)
 | 
						|
    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
 | 
						|
 | 
						|
  return method;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
 | 
						|
  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
 | 
						|
  /// is a non-lvalue expression whose value is the address of the object for
 | 
						|
  /// which the function is called.
 | 
						|
 | 
						|
  CXXMethodDecl *method = tryCaptureCXXThis();
 | 
						|
  if (!method) return Diag(loc, diag::err_invalid_this_use);
 | 
						|
 | 
						|
  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
 | 
						|
                                         /*isImplicit=*/false));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
 | 
						|
                                SourceLocation LParenLoc,
 | 
						|
                                MultiExprArg exprs,
 | 
						|
                                SourceLocation RParenLoc) {
 | 
						|
  if (!TypeRep)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo;
 | 
						|
  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
 | 
						|
  if (!TInfo)
 | 
						|
    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
 | 
						|
 | 
						|
  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
 | 
						|
/// Can be interpreted either as function-style casting ("int(x)")
 | 
						|
/// or class type construction ("ClassType(x,y,z)")
 | 
						|
/// or creation of a value-initialized type ("int()").
 | 
						|
ExprResult
 | 
						|
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
 | 
						|
                                SourceLocation LParenLoc,
 | 
						|
                                MultiExprArg exprs,
 | 
						|
                                SourceLocation RParenLoc) {
 | 
						|
  QualType Ty = TInfo->getType();
 | 
						|
  unsigned NumExprs = exprs.size();
 | 
						|
  Expr **Exprs = (Expr**)exprs.get();
 | 
						|
  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
 | 
						|
  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
 | 
						|
 | 
						|
  if (Ty->isDependentType() ||
 | 
						|
      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
 | 
						|
    exprs.release();
 | 
						|
 | 
						|
    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
 | 
						|
                                                    LParenLoc,
 | 
						|
                                                    Exprs, NumExprs,
 | 
						|
                                                    RParenLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty->isArrayType())
 | 
						|
    return ExprError(Diag(TyBeginLoc,
 | 
						|
                          diag::err_value_init_for_array_type) << FullRange);
 | 
						|
  if (!Ty->isVoidType() &&
 | 
						|
      RequireCompleteType(TyBeginLoc, Ty,
 | 
						|
                          PDiag(diag::err_invalid_incomplete_type_use)
 | 
						|
                            << FullRange))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (RequireNonAbstractType(TyBeginLoc, Ty,
 | 
						|
                             diag::err_allocation_of_abstract_type))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
 | 
						|
  // C++ [expr.type.conv]p1:
 | 
						|
  // If the expression list is a single expression, the type conversion
 | 
						|
  // expression is equivalent (in definedness, and if defined in meaning) to the
 | 
						|
  // corresponding cast expression.
 | 
						|
  //
 | 
						|
  if (NumExprs == 1) {
 | 
						|
    CastKind Kind = CK_Invalid;
 | 
						|
    ExprValueKind VK = VK_RValue;
 | 
						|
    CXXCastPath BasePath;
 | 
						|
    ExprResult CastExpr =
 | 
						|
      CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
 | 
						|
                     Kind, VK, BasePath,
 | 
						|
                     /*FunctionalStyle=*/true);
 | 
						|
    if (CastExpr.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    Exprs[0] = CastExpr.take();
 | 
						|
 | 
						|
    exprs.release();
 | 
						|
 | 
						|
    return Owned(CXXFunctionalCastExpr::Create(Context,
 | 
						|
                                               Ty.getNonLValueExprType(Context),
 | 
						|
                                               VK, TInfo, TyBeginLoc, Kind,
 | 
						|
                                               Exprs[0], &BasePath,
 | 
						|
                                               RParenLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
 | 
						|
  InitializationKind Kind
 | 
						|
    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
 | 
						|
                                                  LParenLoc, RParenLoc)
 | 
						|
               : InitializationKind::CreateValue(TyBeginLoc,
 | 
						|
                                                 LParenLoc, RParenLoc);
 | 
						|
  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
 | 
						|
  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
 | 
						|
 | 
						|
  // FIXME: Improve AST representation?
 | 
						|
  return move(Result);
 | 
						|
}
 | 
						|
 | 
						|
/// doesUsualArrayDeleteWantSize - Answers whether the usual
 | 
						|
/// operator delete[] for the given type has a size_t parameter.
 | 
						|
static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
 | 
						|
                                         QualType allocType) {
 | 
						|
  const RecordType *record =
 | 
						|
    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
 | 
						|
  if (!record) return false;
 | 
						|
 | 
						|
  // Try to find an operator delete[] in class scope.
 | 
						|
 | 
						|
  DeclarationName deleteName =
 | 
						|
    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
 | 
						|
  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
 | 
						|
  S.LookupQualifiedName(ops, record->getDecl());
 | 
						|
 | 
						|
  // We're just doing this for information.
 | 
						|
  ops.suppressDiagnostics();
 | 
						|
 | 
						|
  // Very likely: there's no operator delete[].
 | 
						|
  if (ops.empty()) return false;
 | 
						|
 | 
						|
  // If it's ambiguous, it should be illegal to call operator delete[]
 | 
						|
  // on this thing, so it doesn't matter if we allocate extra space or not.
 | 
						|
  if (ops.isAmbiguous()) return false;
 | 
						|
 | 
						|
  LookupResult::Filter filter = ops.makeFilter();
 | 
						|
  while (filter.hasNext()) {
 | 
						|
    NamedDecl *del = filter.next()->getUnderlyingDecl();
 | 
						|
 | 
						|
    // C++0x [basic.stc.dynamic.deallocation]p2:
 | 
						|
    //   A template instance is never a usual deallocation function,
 | 
						|
    //   regardless of its signature.
 | 
						|
    if (isa<FunctionTemplateDecl>(del)) {
 | 
						|
      filter.erase();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [basic.stc.dynamic.deallocation]p2:
 | 
						|
    //   If class T does not declare [an operator delete[] with one
 | 
						|
    //   parameter] but does declare a member deallocation function
 | 
						|
    //   named operator delete[] with exactly two parameters, the
 | 
						|
    //   second of which has type std::size_t, then this function
 | 
						|
    //   is a usual deallocation function.
 | 
						|
    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
 | 
						|
      filter.erase();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  filter.done();
 | 
						|
 | 
						|
  if (!ops.isSingleResult()) return false;
 | 
						|
 | 
						|
  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
 | 
						|
  return (del->getNumParams() == 2);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
 | 
						|
/// @code new (memory) int[size][4] @endcode
 | 
						|
/// or
 | 
						|
/// @code ::new Foo(23, "hello") @endcode
 | 
						|
/// For the interpretation of this heap of arguments, consult the base version.
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
 | 
						|
                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
 | 
						|
                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
 | 
						|
                  Declarator &D, SourceLocation ConstructorLParen,
 | 
						|
                  MultiExprArg ConstructorArgs,
 | 
						|
                  SourceLocation ConstructorRParen) {
 | 
						|
  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
 | 
						|
 | 
						|
  Expr *ArraySize = 0;
 | 
						|
  // If the specified type is an array, unwrap it and save the expression.
 | 
						|
  if (D.getNumTypeObjects() > 0 &&
 | 
						|
      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
 | 
						|
    DeclaratorChunk &Chunk = D.getTypeObject(0);
 | 
						|
    if (TypeContainsAuto)
 | 
						|
      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
 | 
						|
        << D.getSourceRange());
 | 
						|
    if (Chunk.Arr.hasStatic)
 | 
						|
      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
 | 
						|
        << D.getSourceRange());
 | 
						|
    if (!Chunk.Arr.NumElts)
 | 
						|
      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
 | 
						|
        << D.getSourceRange());
 | 
						|
 | 
						|
    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
 | 
						|
    D.DropFirstTypeObject();
 | 
						|
  }
 | 
						|
 | 
						|
  // Every dimension shall be of constant size.
 | 
						|
  if (ArraySize) {
 | 
						|
    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
 | 
						|
      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
 | 
						|
        break;
 | 
						|
 | 
						|
      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
 | 
						|
      if (Expr *NumElts = (Expr *)Array.NumElts) {
 | 
						|
        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
 | 
						|
            !NumElts->isIntegerConstantExpr(Context)) {
 | 
						|
          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
 | 
						|
            << NumElts->getSourceRange();
 | 
						|
          return ExprError();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
 | 
						|
                                               /*AllowAuto=*/true);
 | 
						|
  QualType AllocType = TInfo->getType();
 | 
						|
  if (D.isInvalidType())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  return BuildCXXNew(StartLoc, UseGlobal,
 | 
						|
                     PlacementLParen,
 | 
						|
                     move(PlacementArgs),
 | 
						|
                     PlacementRParen,
 | 
						|
                     TypeIdParens,
 | 
						|
                     AllocType,
 | 
						|
                     TInfo,
 | 
						|
                     ArraySize,
 | 
						|
                     ConstructorLParen,
 | 
						|
                     move(ConstructorArgs),
 | 
						|
                     ConstructorRParen,
 | 
						|
                     TypeContainsAuto);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
 | 
						|
                  SourceLocation PlacementLParen,
 | 
						|
                  MultiExprArg PlacementArgs,
 | 
						|
                  SourceLocation PlacementRParen,
 | 
						|
                  SourceRange TypeIdParens,
 | 
						|
                  QualType AllocType,
 | 
						|
                  TypeSourceInfo *AllocTypeInfo,
 | 
						|
                  Expr *ArraySize,
 | 
						|
                  SourceLocation ConstructorLParen,
 | 
						|
                  MultiExprArg ConstructorArgs,
 | 
						|
                  SourceLocation ConstructorRParen,
 | 
						|
                  bool TypeMayContainAuto) {
 | 
						|
  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
 | 
						|
 | 
						|
  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
 | 
						|
  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
 | 
						|
    if (ConstructorArgs.size() == 0)
 | 
						|
      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
 | 
						|
                       << AllocType << TypeRange);
 | 
						|
    if (ConstructorArgs.size() != 1) {
 | 
						|
      Expr *FirstBad = ConstructorArgs.get()[1];
 | 
						|
      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
 | 
						|
                            diag::err_auto_new_ctor_multiple_expressions)
 | 
						|
                       << AllocType << TypeRange);
 | 
						|
    }
 | 
						|
    TypeSourceInfo *DeducedType = 0;
 | 
						|
    if (!DeduceAutoType(AllocTypeInfo, ConstructorArgs.get()[0], DeducedType))
 | 
						|
      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
 | 
						|
                       << AllocType
 | 
						|
                       << ConstructorArgs.get()[0]->getType()
 | 
						|
                       << TypeRange
 | 
						|
                       << ConstructorArgs.get()[0]->getSourceRange());
 | 
						|
    if (!DeducedType)
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    AllocTypeInfo = DeducedType;
 | 
						|
    AllocType = AllocTypeInfo->getType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Per C++0x [expr.new]p5, the type being constructed may be a
 | 
						|
  // typedef of an array type.
 | 
						|
  if (!ArraySize) {
 | 
						|
    if (const ConstantArrayType *Array
 | 
						|
                              = Context.getAsConstantArrayType(AllocType)) {
 | 
						|
      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
 | 
						|
                                         Context.getSizeType(),
 | 
						|
                                         TypeRange.getEnd());
 | 
						|
      AllocType = Array->getElementType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  QualType ResultType = Context.getPointerType(AllocType);
 | 
						|
 | 
						|
  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
 | 
						|
  //   or enumeration type with a non-negative value."
 | 
						|
  if (ArraySize && !ArraySize->isTypeDependent()) {
 | 
						|
 | 
						|
    QualType SizeType = ArraySize->getType();
 | 
						|
 | 
						|
    ExprResult ConvertedSize
 | 
						|
      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
 | 
						|
                                       PDiag(diag::err_array_size_not_integral),
 | 
						|
                                     PDiag(diag::err_array_size_incomplete_type)
 | 
						|
                                       << ArraySize->getSourceRange(),
 | 
						|
                               PDiag(diag::err_array_size_explicit_conversion),
 | 
						|
                                       PDiag(diag::note_array_size_conversion),
 | 
						|
                               PDiag(diag::err_array_size_ambiguous_conversion),
 | 
						|
                                       PDiag(diag::note_array_size_conversion),
 | 
						|
                          PDiag(getLangOptions().CPlusPlus0x? 0
 | 
						|
                                            : diag::ext_array_size_conversion));
 | 
						|
    if (ConvertedSize.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    ArraySize = ConvertedSize.take();
 | 
						|
    SizeType = ArraySize->getType();
 | 
						|
    if (!SizeType->isIntegralOrUnscopedEnumerationType())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // Let's see if this is a constant < 0. If so, we reject it out of hand.
 | 
						|
    // We don't care about special rules, so we tell the machinery it's not
 | 
						|
    // evaluated - it gives us a result in more cases.
 | 
						|
    if (!ArraySize->isValueDependent()) {
 | 
						|
      llvm::APSInt Value;
 | 
						|
      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
 | 
						|
        if (Value < llvm::APSInt(
 | 
						|
                        llvm::APInt::getNullValue(Value.getBitWidth()),
 | 
						|
                                 Value.isUnsigned()))
 | 
						|
          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
 | 
						|
                                diag::err_typecheck_negative_array_size)
 | 
						|
            << ArraySize->getSourceRange());
 | 
						|
 | 
						|
        if (!AllocType->isDependentType()) {
 | 
						|
          unsigned ActiveSizeBits
 | 
						|
            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
 | 
						|
          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
 | 
						|
            Diag(ArraySize->getSourceRange().getBegin(),
 | 
						|
                 diag::err_array_too_large)
 | 
						|
              << Value.toString(10)
 | 
						|
              << ArraySize->getSourceRange();
 | 
						|
            return ExprError();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (TypeIdParens.isValid()) {
 | 
						|
        // Can't have dynamic array size when the type-id is in parentheses.
 | 
						|
        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
 | 
						|
          << ArraySize->getSourceRange()
 | 
						|
          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
 | 
						|
          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
 | 
						|
 | 
						|
        TypeIdParens = SourceRange();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Note that we do *not* convert the argument in any way.  It can
 | 
						|
    // be signed, larger than size_t, whatever.
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *OperatorNew = 0;
 | 
						|
  FunctionDecl *OperatorDelete = 0;
 | 
						|
  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
 | 
						|
  unsigned NumPlaceArgs = PlacementArgs.size();
 | 
						|
 | 
						|
  if (!AllocType->isDependentType() &&
 | 
						|
      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
 | 
						|
      FindAllocationFunctions(StartLoc,
 | 
						|
                              SourceRange(PlacementLParen, PlacementRParen),
 | 
						|
                              UseGlobal, AllocType, ArraySize, PlaceArgs,
 | 
						|
                              NumPlaceArgs, OperatorNew, OperatorDelete))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // If this is an array allocation, compute whether the usual array
 | 
						|
  // deallocation function for the type has a size_t parameter.
 | 
						|
  bool UsualArrayDeleteWantsSize = false;
 | 
						|
  if (ArraySize && !AllocType->isDependentType())
 | 
						|
    UsualArrayDeleteWantsSize
 | 
						|
      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
 | 
						|
 | 
						|
  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
 | 
						|
  if (OperatorNew) {
 | 
						|
    // Add default arguments, if any.
 | 
						|
    const FunctionProtoType *Proto =
 | 
						|
      OperatorNew->getType()->getAs<FunctionProtoType>();
 | 
						|
    VariadicCallType CallType =
 | 
						|
      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
 | 
						|
 | 
						|
    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
 | 
						|
                               Proto, 1, PlaceArgs, NumPlaceArgs,
 | 
						|
                               AllPlaceArgs, CallType))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    NumPlaceArgs = AllPlaceArgs.size();
 | 
						|
    if (NumPlaceArgs > 0)
 | 
						|
      PlaceArgs = &AllPlaceArgs[0];
 | 
						|
  }
 | 
						|
 | 
						|
  bool Init = ConstructorLParen.isValid();
 | 
						|
  // --- Choosing a constructor ---
 | 
						|
  CXXConstructorDecl *Constructor = 0;
 | 
						|
  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
 | 
						|
  unsigned NumConsArgs = ConstructorArgs.size();
 | 
						|
  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
 | 
						|
 | 
						|
  // Array 'new' can't have any initializers.
 | 
						|
  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
 | 
						|
    SourceRange InitRange(ConsArgs[0]->getLocStart(),
 | 
						|
                          ConsArgs[NumConsArgs - 1]->getLocEnd());
 | 
						|
 | 
						|
    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AllocType->isDependentType() &&
 | 
						|
      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
 | 
						|
    // C++0x [expr.new]p15:
 | 
						|
    //   A new-expression that creates an object of type T initializes that
 | 
						|
    //   object as follows:
 | 
						|
    InitializationKind Kind
 | 
						|
    //     - If the new-initializer is omitted, the object is default-
 | 
						|
    //       initialized (8.5); if no initialization is performed,
 | 
						|
    //       the object has indeterminate value
 | 
						|
      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
 | 
						|
    //     - Otherwise, the new-initializer is interpreted according to the
 | 
						|
    //       initialization rules of 8.5 for direct-initialization.
 | 
						|
             : InitializationKind::CreateDirect(TypeRange.getBegin(),
 | 
						|
                                                ConstructorLParen,
 | 
						|
                                                ConstructorRParen);
 | 
						|
 | 
						|
    InitializedEntity Entity
 | 
						|
      = InitializedEntity::InitializeNew(StartLoc, AllocType);
 | 
						|
    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
 | 
						|
    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
 | 
						|
                                                move(ConstructorArgs));
 | 
						|
    if (FullInit.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // FullInit is our initializer; walk through it to determine if it's a
 | 
						|
    // constructor call, which CXXNewExpr handles directly.
 | 
						|
    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
 | 
						|
      if (CXXBindTemporaryExpr *Binder
 | 
						|
            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
 | 
						|
        FullInitExpr = Binder->getSubExpr();
 | 
						|
      if (CXXConstructExpr *Construct
 | 
						|
                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
 | 
						|
        Constructor = Construct->getConstructor();
 | 
						|
        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
 | 
						|
                                         AEnd = Construct->arg_end();
 | 
						|
             A != AEnd; ++A)
 | 
						|
          ConvertedConstructorArgs.push_back(*A);
 | 
						|
      } else {
 | 
						|
        // Take the converted initializer.
 | 
						|
        ConvertedConstructorArgs.push_back(FullInit.release());
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // No initialization required.
 | 
						|
    }
 | 
						|
 | 
						|
    // Take the converted arguments and use them for the new expression.
 | 
						|
    NumConsArgs = ConvertedConstructorArgs.size();
 | 
						|
    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark the new and delete operators as referenced.
 | 
						|
  if (OperatorNew)
 | 
						|
    MarkDeclarationReferenced(StartLoc, OperatorNew);
 | 
						|
  if (OperatorDelete)
 | 
						|
    MarkDeclarationReferenced(StartLoc, OperatorDelete);
 | 
						|
 | 
						|
  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
 | 
						|
 | 
						|
  PlacementArgs.release();
 | 
						|
  ConstructorArgs.release();
 | 
						|
 | 
						|
  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
 | 
						|
                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
 | 
						|
                                        ArraySize, Constructor, Init,
 | 
						|
                                        ConsArgs, NumConsArgs, OperatorDelete,
 | 
						|
                                        UsualArrayDeleteWantsSize,
 | 
						|
                                        ResultType, AllocTypeInfo,
 | 
						|
                                        StartLoc,
 | 
						|
                                        Init ? ConstructorRParen :
 | 
						|
                                               TypeRange.getEnd(),
 | 
						|
                                        ConstructorLParen, ConstructorRParen));
 | 
						|
}
 | 
						|
 | 
						|
/// CheckAllocatedType - Checks that a type is suitable as the allocated type
 | 
						|
/// in a new-expression.
 | 
						|
/// dimension off and stores the size expression in ArraySize.
 | 
						|
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
 | 
						|
                              SourceRange R) {
 | 
						|
  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
 | 
						|
  //   abstract class type or array thereof.
 | 
						|
  if (AllocType->isFunctionType())
 | 
						|
    return Diag(Loc, diag::err_bad_new_type)
 | 
						|
      << AllocType << 0 << R;
 | 
						|
  else if (AllocType->isReferenceType())
 | 
						|
    return Diag(Loc, diag::err_bad_new_type)
 | 
						|
      << AllocType << 1 << R;
 | 
						|
  else if (!AllocType->isDependentType() &&
 | 
						|
           RequireCompleteType(Loc, AllocType,
 | 
						|
                               PDiag(diag::err_new_incomplete_type)
 | 
						|
                                 << R))
 | 
						|
    return true;
 | 
						|
  else if (RequireNonAbstractType(Loc, AllocType,
 | 
						|
                                  diag::err_allocation_of_abstract_type))
 | 
						|
    return true;
 | 
						|
  else if (AllocType->isVariablyModifiedType())
 | 
						|
    return Diag(Loc, diag::err_variably_modified_new_type)
 | 
						|
             << AllocType;
 | 
						|
  else if (unsigned AddressSpace = AllocType.getAddressSpace())
 | 
						|
    return Diag(Loc, diag::err_address_space_qualified_new)
 | 
						|
      << AllocType.getUnqualifiedType() << AddressSpace;
 | 
						|
           
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given function is a non-placement
 | 
						|
/// deallocation function.
 | 
						|
static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
 | 
						|
  if (FD->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
 | 
						|
    return Method->isUsualDeallocationFunction();
 | 
						|
 | 
						|
  return ((FD->getOverloadedOperator() == OO_Delete ||
 | 
						|
           FD->getOverloadedOperator() == OO_Array_Delete) &&
 | 
						|
          FD->getNumParams() == 1);
 | 
						|
}
 | 
						|
 | 
						|
/// FindAllocationFunctions - Finds the overloads of operator new and delete
 | 
						|
/// that are appropriate for the allocation.
 | 
						|
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
 | 
						|
                                   bool UseGlobal, QualType AllocType,
 | 
						|
                                   bool IsArray, Expr **PlaceArgs,
 | 
						|
                                   unsigned NumPlaceArgs,
 | 
						|
                                   FunctionDecl *&OperatorNew,
 | 
						|
                                   FunctionDecl *&OperatorDelete) {
 | 
						|
  // --- Choosing an allocation function ---
 | 
						|
  // C++ 5.3.4p8 - 14 & 18
 | 
						|
  // 1) If UseGlobal is true, only look in the global scope. Else, also look
 | 
						|
  //   in the scope of the allocated class.
 | 
						|
  // 2) If an array size is given, look for operator new[], else look for
 | 
						|
  //   operator new.
 | 
						|
  // 3) The first argument is always size_t. Append the arguments from the
 | 
						|
  //   placement form.
 | 
						|
 | 
						|
  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
 | 
						|
  // We don't care about the actual value of this argument.
 | 
						|
  // FIXME: Should the Sema create the expression and embed it in the syntax
 | 
						|
  // tree? Or should the consumer just recalculate the value?
 | 
						|
  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
 | 
						|
                      Context.Target.getPointerWidth(0)),
 | 
						|
                      Context.getSizeType(),
 | 
						|
                      SourceLocation());
 | 
						|
  AllocArgs[0] = &Size;
 | 
						|
  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
 | 
						|
 | 
						|
  // C++ [expr.new]p8:
 | 
						|
  //   If the allocated type is a non-array type, the allocation
 | 
						|
  //   function's name is operator new and the deallocation function's
 | 
						|
  //   name is operator delete. If the allocated type is an array
 | 
						|
  //   type, the allocation function's name is operator new[] and the
 | 
						|
  //   deallocation function's name is operator delete[].
 | 
						|
  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                        IsArray ? OO_Array_New : OO_New);
 | 
						|
  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                        IsArray ? OO_Array_Delete : OO_Delete);
 | 
						|
 | 
						|
  QualType AllocElemType = Context.getBaseElementType(AllocType);
 | 
						|
 | 
						|
  if (AllocElemType->isRecordType() && !UseGlobal) {
 | 
						|
    CXXRecordDecl *Record
 | 
						|
      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
 | 
						|
    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
 | 
						|
                          AllocArgs.size(), Record, /*AllowMissing=*/true,
 | 
						|
                          OperatorNew))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  if (!OperatorNew) {
 | 
						|
    // Didn't find a member overload. Look for a global one.
 | 
						|
    DeclareGlobalNewDelete();
 | 
						|
    DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | 
						|
    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
 | 
						|
                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
 | 
						|
                          OperatorNew))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't need an operator delete if we're running under
 | 
						|
  // -fno-exceptions.
 | 
						|
  if (!getLangOptions().Exceptions) {
 | 
						|
    OperatorDelete = 0;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // FindAllocationOverload can change the passed in arguments, so we need to
 | 
						|
  // copy them back.
 | 
						|
  if (NumPlaceArgs > 0)
 | 
						|
    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
 | 
						|
 | 
						|
  // C++ [expr.new]p19:
 | 
						|
  //
 | 
						|
  //   If the new-expression begins with a unary :: operator, the
 | 
						|
  //   deallocation function's name is looked up in the global
 | 
						|
  //   scope. Otherwise, if the allocated type is a class type T or an
 | 
						|
  //   array thereof, the deallocation function's name is looked up in
 | 
						|
  //   the scope of T. If this lookup fails to find the name, or if
 | 
						|
  //   the allocated type is not a class type or array thereof, the
 | 
						|
  //   deallocation function's name is looked up in the global scope.
 | 
						|
  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
 | 
						|
  if (AllocElemType->isRecordType() && !UseGlobal) {
 | 
						|
    CXXRecordDecl *RD
 | 
						|
      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
 | 
						|
    LookupQualifiedName(FoundDelete, RD);
 | 
						|
  }
 | 
						|
  if (FoundDelete.isAmbiguous())
 | 
						|
    return true; // FIXME: clean up expressions?
 | 
						|
 | 
						|
  if (FoundDelete.empty()) {
 | 
						|
    DeclareGlobalNewDelete();
 | 
						|
    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  FoundDelete.suppressDiagnostics();
 | 
						|
 | 
						|
  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
 | 
						|
 | 
						|
  // Whether we're looking for a placement operator delete is dictated
 | 
						|
  // by whether we selected a placement operator new, not by whether
 | 
						|
  // we had explicit placement arguments.  This matters for things like
 | 
						|
  //   struct A { void *operator new(size_t, int = 0); ... };
 | 
						|
  //   A *a = new A()
 | 
						|
  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
 | 
						|
 | 
						|
  if (isPlacementNew) {
 | 
						|
    // C++ [expr.new]p20:
 | 
						|
    //   A declaration of a placement deallocation function matches the
 | 
						|
    //   declaration of a placement allocation function if it has the
 | 
						|
    //   same number of parameters and, after parameter transformations
 | 
						|
    //   (8.3.5), all parameter types except the first are
 | 
						|
    //   identical. [...]
 | 
						|
    //
 | 
						|
    // To perform this comparison, we compute the function type that
 | 
						|
    // the deallocation function should have, and use that type both
 | 
						|
    // for template argument deduction and for comparison purposes.
 | 
						|
    //
 | 
						|
    // FIXME: this comparison should ignore CC and the like.
 | 
						|
    QualType ExpectedFunctionType;
 | 
						|
    {
 | 
						|
      const FunctionProtoType *Proto
 | 
						|
        = OperatorNew->getType()->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
      llvm::SmallVector<QualType, 4> ArgTypes;
 | 
						|
      ArgTypes.push_back(Context.VoidPtrTy);
 | 
						|
      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
 | 
						|
        ArgTypes.push_back(Proto->getArgType(I));
 | 
						|
 | 
						|
      FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
      EPI.Variadic = Proto->isVariadic();
 | 
						|
 | 
						|
      ExpectedFunctionType
 | 
						|
        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
 | 
						|
                                  ArgTypes.size(), EPI);
 | 
						|
    }
 | 
						|
 | 
						|
    for (LookupResult::iterator D = FoundDelete.begin(),
 | 
						|
                             DEnd = FoundDelete.end();
 | 
						|
         D != DEnd; ++D) {
 | 
						|
      FunctionDecl *Fn = 0;
 | 
						|
      if (FunctionTemplateDecl *FnTmpl
 | 
						|
            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
 | 
						|
        // Perform template argument deduction to try to match the
 | 
						|
        // expected function type.
 | 
						|
        TemplateDeductionInfo Info(Context, StartLoc);
 | 
						|
        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
 | 
						|
          continue;
 | 
						|
      } else
 | 
						|
        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
 | 
						|
 | 
						|
      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
 | 
						|
        Matches.push_back(std::make_pair(D.getPair(), Fn));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // C++ [expr.new]p20:
 | 
						|
    //   [...] Any non-placement deallocation function matches a
 | 
						|
    //   non-placement allocation function. [...]
 | 
						|
    for (LookupResult::iterator D = FoundDelete.begin(),
 | 
						|
                             DEnd = FoundDelete.end();
 | 
						|
         D != DEnd; ++D) {
 | 
						|
      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
 | 
						|
        if (isNonPlacementDeallocationFunction(Fn))
 | 
						|
          Matches.push_back(std::make_pair(D.getPair(), Fn));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [expr.new]p20:
 | 
						|
  //   [...] If the lookup finds a single matching deallocation
 | 
						|
  //   function, that function will be called; otherwise, no
 | 
						|
  //   deallocation function will be called.
 | 
						|
  if (Matches.size() == 1) {
 | 
						|
    OperatorDelete = Matches[0].second;
 | 
						|
 | 
						|
    // C++0x [expr.new]p20:
 | 
						|
    //   If the lookup finds the two-parameter form of a usual
 | 
						|
    //   deallocation function (3.7.4.2) and that function, considered
 | 
						|
    //   as a placement deallocation function, would have been
 | 
						|
    //   selected as a match for the allocation function, the program
 | 
						|
    //   is ill-formed.
 | 
						|
    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
 | 
						|
        isNonPlacementDeallocationFunction(OperatorDelete)) {
 | 
						|
      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
 | 
						|
        << SourceRange(PlaceArgs[0]->getLocStart(),
 | 
						|
                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
 | 
						|
      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
 | 
						|
        << DeleteName;
 | 
						|
    } else {
 | 
						|
      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
 | 
						|
                            Matches[0].first);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FindAllocationOverload - Find an fitting overload for the allocation
 | 
						|
/// function in the specified scope.
 | 
						|
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
 | 
						|
                                  DeclarationName Name, Expr** Args,
 | 
						|
                                  unsigned NumArgs, DeclContext *Ctx,
 | 
						|
                                  bool AllowMissing, FunctionDecl *&Operator,
 | 
						|
                                  bool Diagnose) {
 | 
						|
  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(R, Ctx);
 | 
						|
  if (R.empty()) {
 | 
						|
    if (AllowMissing || !Diagnose)
 | 
						|
      return false;
 | 
						|
    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
 | 
						|
      << Name << Range;
 | 
						|
  }
 | 
						|
 | 
						|
  if (R.isAmbiguous())
 | 
						|
    return true;
 | 
						|
 | 
						|
  R.suppressDiagnostics();
 | 
						|
 | 
						|
  OverloadCandidateSet Candidates(StartLoc);
 | 
						|
  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
 | 
						|
       Alloc != AllocEnd; ++Alloc) {
 | 
						|
    // Even member operator new/delete are implicitly treated as
 | 
						|
    // static, so don't use AddMemberCandidate.
 | 
						|
    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
 | 
						|
 | 
						|
    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
 | 
						|
      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
 | 
						|
                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
 | 
						|
                                   Candidates,
 | 
						|
                                   /*SuppressUserConversions=*/false);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionDecl *Fn = cast<FunctionDecl>(D);
 | 
						|
    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
 | 
						|
                         /*SuppressUserConversions=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
 | 
						|
  case OR_Success: {
 | 
						|
    // Got one!
 | 
						|
    FunctionDecl *FnDecl = Best->Function;
 | 
						|
    MarkDeclarationReferenced(StartLoc, FnDecl);
 | 
						|
    // The first argument is size_t, and the first parameter must be size_t,
 | 
						|
    // too. This is checked on declaration and can be assumed. (It can't be
 | 
						|
    // asserted on, though, since invalid decls are left in there.)
 | 
						|
    // Watch out for variadic allocator function.
 | 
						|
    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
 | 
						|
    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
 | 
						|
      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
 | 
						|
                                                       FnDecl->getParamDecl(i));
 | 
						|
 | 
						|
      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
 | 
						|
        return true;
 | 
						|
 | 
						|
      ExprResult Result
 | 
						|
        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
 | 
						|
      if (Result.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Args[i] = Result.takeAs<Expr>();
 | 
						|
    }
 | 
						|
    Operator = FnDecl;
 | 
						|
    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl,
 | 
						|
                          Diagnose);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    if (Diagnose)
 | 
						|
      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
 | 
						|
        << Name << Range;
 | 
						|
    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    if (Diagnose)
 | 
						|
      Diag(StartLoc, diag::err_ovl_ambiguous_call)
 | 
						|
        << Name << Range;
 | 
						|
    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case OR_Deleted: {
 | 
						|
    if (Diagnose)
 | 
						|
      Diag(StartLoc, diag::err_ovl_deleted_call)
 | 
						|
        << Best->Function->isDeleted()
 | 
						|
        << Name 
 | 
						|
        << getDeletedOrUnavailableSuffix(Best->Function)
 | 
						|
        << Range;
 | 
						|
    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  assert(false && "Unreachable, bad result from BestViableFunction");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
 | 
						|
/// delete. These are:
 | 
						|
/// @code
 | 
						|
///   // C++03:
 | 
						|
///   void* operator new(std::size_t) throw(std::bad_alloc);
 | 
						|
///   void* operator new[](std::size_t) throw(std::bad_alloc);
 | 
						|
///   void operator delete(void *) throw();
 | 
						|
///   void operator delete[](void *) throw();
 | 
						|
///   // C++0x:
 | 
						|
///   void* operator new(std::size_t);
 | 
						|
///   void* operator new[](std::size_t);
 | 
						|
///   void operator delete(void *);
 | 
						|
///   void operator delete[](void *);
 | 
						|
/// @endcode
 | 
						|
/// C++0x operator delete is implicitly noexcept.
 | 
						|
/// Note that the placement and nothrow forms of new are *not* implicitly
 | 
						|
/// declared. Their use requires including \<new\>.
 | 
						|
void Sema::DeclareGlobalNewDelete() {
 | 
						|
  if (GlobalNewDeleteDeclared)
 | 
						|
    return;
 | 
						|
 | 
						|
  // C++ [basic.std.dynamic]p2:
 | 
						|
  //   [...] The following allocation and deallocation functions (18.4) are
 | 
						|
  //   implicitly declared in global scope in each translation unit of a
 | 
						|
  //   program
 | 
						|
  //
 | 
						|
  //     C++03:
 | 
						|
  //     void* operator new(std::size_t) throw(std::bad_alloc);
 | 
						|
  //     void* operator new[](std::size_t) throw(std::bad_alloc);
 | 
						|
  //     void  operator delete(void*) throw();
 | 
						|
  //     void  operator delete[](void*) throw();
 | 
						|
  //     C++0x:
 | 
						|
  //     void* operator new(std::size_t);
 | 
						|
  //     void* operator new[](std::size_t);
 | 
						|
  //     void  operator delete(void*);
 | 
						|
  //     void  operator delete[](void*);
 | 
						|
  //
 | 
						|
  //   These implicit declarations introduce only the function names operator
 | 
						|
  //   new, operator new[], operator delete, operator delete[].
 | 
						|
  //
 | 
						|
  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
 | 
						|
  // "std" or "bad_alloc" as necessary to form the exception specification.
 | 
						|
  // However, we do not make these implicit declarations visible to name
 | 
						|
  // lookup.
 | 
						|
  // Note that the C++0x versions of operator delete are deallocation functions,
 | 
						|
  // and thus are implicitly noexcept.
 | 
						|
  if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
 | 
						|
    // The "std::bad_alloc" class has not yet been declared, so build it
 | 
						|
    // implicitly.
 | 
						|
    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
 | 
						|
                                        getOrCreateStdNamespace(),
 | 
						|
                                        SourceLocation(), SourceLocation(),
 | 
						|
                                      &PP.getIdentifierTable().get("bad_alloc"),
 | 
						|
                                        0);
 | 
						|
    getStdBadAlloc()->setImplicit(true);
 | 
						|
  }
 | 
						|
 | 
						|
  GlobalNewDeleteDeclared = true;
 | 
						|
 | 
						|
  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
 | 
						|
  QualType SizeT = Context.getSizeType();
 | 
						|
  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
 | 
						|
 | 
						|
  DeclareGlobalAllocationFunction(
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_New),
 | 
						|
      VoidPtr, SizeT, AssumeSaneOperatorNew);
 | 
						|
  DeclareGlobalAllocationFunction(
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
 | 
						|
      VoidPtr, SizeT, AssumeSaneOperatorNew);
 | 
						|
  DeclareGlobalAllocationFunction(
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
 | 
						|
      Context.VoidTy, VoidPtr);
 | 
						|
  DeclareGlobalAllocationFunction(
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
 | 
						|
      Context.VoidTy, VoidPtr);
 | 
						|
}
 | 
						|
 | 
						|
/// DeclareGlobalAllocationFunction - Declares a single implicit global
 | 
						|
/// allocation function if it doesn't already exist.
 | 
						|
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
 | 
						|
                                           QualType Return, QualType Argument,
 | 
						|
                                           bool AddMallocAttr) {
 | 
						|
  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
 | 
						|
 | 
						|
  // Check if this function is already declared.
 | 
						|
  {
 | 
						|
    DeclContext::lookup_iterator Alloc, AllocEnd;
 | 
						|
    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
 | 
						|
         Alloc != AllocEnd; ++Alloc) {
 | 
						|
      // Only look at non-template functions, as it is the predefined,
 | 
						|
      // non-templated allocation function we are trying to declare here.
 | 
						|
      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
 | 
						|
        QualType InitialParamType =
 | 
						|
          Context.getCanonicalType(
 | 
						|
            Func->getParamDecl(0)->getType().getUnqualifiedType());
 | 
						|
        // FIXME: Do we need to check for default arguments here?
 | 
						|
        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
 | 
						|
          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
 | 
						|
            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  QualType BadAllocType;
 | 
						|
  bool HasBadAllocExceptionSpec
 | 
						|
    = (Name.getCXXOverloadedOperator() == OO_New ||
 | 
						|
       Name.getCXXOverloadedOperator() == OO_Array_New);
 | 
						|
  if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
 | 
						|
    assert(StdBadAlloc && "Must have std::bad_alloc declared");
 | 
						|
    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
  if (HasBadAllocExceptionSpec) {
 | 
						|
    if (!getLangOptions().CPlusPlus0x) {
 | 
						|
      EPI.ExceptionSpecType = EST_Dynamic;
 | 
						|
      EPI.NumExceptions = 1;
 | 
						|
      EPI.Exceptions = &BadAllocType;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
 | 
						|
                                EST_BasicNoexcept : EST_DynamicNone;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
 | 
						|
  FunctionDecl *Alloc =
 | 
						|
    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
 | 
						|
                         SourceLocation(), Name,
 | 
						|
                         FnType, /*TInfo=*/0, SC_None,
 | 
						|
                         SC_None, false, true);
 | 
						|
  Alloc->setImplicit();
 | 
						|
 | 
						|
  if (AddMallocAttr)
 | 
						|
    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
 | 
						|
 | 
						|
  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
 | 
						|
                                           SourceLocation(), 0,
 | 
						|
                                           Argument, /*TInfo=*/0,
 | 
						|
                                           SC_None, SC_None, 0);
 | 
						|
  Alloc->setParams(&Param, 1);
 | 
						|
 | 
						|
  // FIXME: Also add this declaration to the IdentifierResolver, but
 | 
						|
  // make sure it is at the end of the chain to coincide with the
 | 
						|
  // global scope.
 | 
						|
  Context.getTranslationUnitDecl()->addDecl(Alloc);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
 | 
						|
                                    DeclarationName Name,
 | 
						|
                                    FunctionDecl* &Operator, bool Diagnose) {
 | 
						|
  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
 | 
						|
  // Try to find operator delete/operator delete[] in class scope.
 | 
						|
  LookupQualifiedName(Found, RD);
 | 
						|
 | 
						|
  if (Found.isAmbiguous())
 | 
						|
    return true;
 | 
						|
 | 
						|
  Found.suppressDiagnostics();
 | 
						|
 | 
						|
  llvm::SmallVector<DeclAccessPair,4> Matches;
 | 
						|
  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
 | 
						|
       F != FEnd; ++F) {
 | 
						|
    NamedDecl *ND = (*F)->getUnderlyingDecl();
 | 
						|
 | 
						|
    // Ignore template operator delete members from the check for a usual
 | 
						|
    // deallocation function.
 | 
						|
    if (isa<FunctionTemplateDecl>(ND))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
 | 
						|
      Matches.push_back(F.getPair());
 | 
						|
  }
 | 
						|
 | 
						|
  // There's exactly one suitable operator;  pick it.
 | 
						|
  if (Matches.size() == 1) {
 | 
						|
    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
 | 
						|
 | 
						|
    if (Operator->isDeleted()) {
 | 
						|
      if (Diagnose) {
 | 
						|
        Diag(StartLoc, diag::err_deleted_function_use);
 | 
						|
        Diag(Operator->getLocation(), diag::note_unavailable_here) << true;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
 | 
						|
                          Matches[0], Diagnose);
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We found multiple suitable operators;  complain about the ambiguity.
 | 
						|
  } else if (!Matches.empty()) {
 | 
						|
    if (Diagnose) {
 | 
						|
      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
 | 
						|
        << Name << RD;
 | 
						|
 | 
						|
      for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
 | 
						|
             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
 | 
						|
        Diag((*F)->getUnderlyingDecl()->getLocation(),
 | 
						|
             diag::note_member_declared_here) << Name;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We did find operator delete/operator delete[] declarations, but
 | 
						|
  // none of them were suitable.
 | 
						|
  if (!Found.empty()) {
 | 
						|
    if (Diagnose) {
 | 
						|
      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
 | 
						|
        << Name << RD;
 | 
						|
 | 
						|
      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
 | 
						|
           F != FEnd; ++F)
 | 
						|
        Diag((*F)->getUnderlyingDecl()->getLocation(),
 | 
						|
             diag::note_member_declared_here) << Name;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for a global declaration.
 | 
						|
  DeclareGlobalNewDelete();
 | 
						|
  DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | 
						|
 | 
						|
  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
 | 
						|
  Expr* DeallocArgs[1];
 | 
						|
  DeallocArgs[0] = &Null;
 | 
						|
  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
 | 
						|
                             DeallocArgs, 1, TUDecl, !Diagnose,
 | 
						|
                             Operator, Diagnose))
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(Operator && "Did not find a deallocation function!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
 | 
						|
/// @code ::delete ptr; @endcode
 | 
						|
/// or
 | 
						|
/// @code delete [] ptr; @endcode
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
 | 
						|
                     bool ArrayForm, Expr *ExE) {
 | 
						|
  // C++ [expr.delete]p1:
 | 
						|
  //   The operand shall have a pointer type, or a class type having a single
 | 
						|
  //   conversion function to a pointer type. The result has type void.
 | 
						|
  //
 | 
						|
  // DR599 amends "pointer type" to "pointer to object type" in both cases.
 | 
						|
 | 
						|
  ExprResult Ex = Owned(ExE);
 | 
						|
  FunctionDecl *OperatorDelete = 0;
 | 
						|
  bool ArrayFormAsWritten = ArrayForm;
 | 
						|
  bool UsualArrayDeleteWantsSize = false;
 | 
						|
 | 
						|
  if (!Ex.get()->isTypeDependent()) {
 | 
						|
    QualType Type = Ex.get()->getType();
 | 
						|
 | 
						|
    if (const RecordType *Record = Type->getAs<RecordType>()) {
 | 
						|
      if (RequireCompleteType(StartLoc, Type,
 | 
						|
                              PDiag(diag::err_delete_incomplete_class_type)))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
 | 
						|
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
 | 
						|
      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
 | 
						|
      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
 | 
						|
             E = Conversions->end(); I != E; ++I) {
 | 
						|
        NamedDecl *D = I.getDecl();
 | 
						|
        if (isa<UsingShadowDecl>(D))
 | 
						|
          D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
        // Skip over templated conversion functions; they aren't considered.
 | 
						|
        if (isa<FunctionTemplateDecl>(D))
 | 
						|
          continue;
 | 
						|
 | 
						|
        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
 | 
						|
 | 
						|
        QualType ConvType = Conv->getConversionType().getNonReferenceType();
 | 
						|
        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | 
						|
          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
 | 
						|
            ObjectPtrConversions.push_back(Conv);
 | 
						|
      }
 | 
						|
      if (ObjectPtrConversions.size() == 1) {
 | 
						|
        // We have a single conversion to a pointer-to-object type. Perform
 | 
						|
        // that conversion.
 | 
						|
        // TODO: don't redo the conversion calculation.
 | 
						|
        ExprResult Res =
 | 
						|
          PerformImplicitConversion(Ex.get(),
 | 
						|
                            ObjectPtrConversions.front()->getConversionType(),
 | 
						|
                                    AA_Converting);
 | 
						|
        if (Res.isUsable()) {
 | 
						|
          Ex = move(Res);
 | 
						|
          Type = Ex.get()->getType();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else if (ObjectPtrConversions.size() > 1) {
 | 
						|
        Diag(StartLoc, diag::err_ambiguous_delete_operand)
 | 
						|
              << Type << Ex.get()->getSourceRange();
 | 
						|
        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
 | 
						|
          NoteOverloadCandidate(ObjectPtrConversions[i]);
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Type->isPointerType())
 | 
						|
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
 | 
						|
        << Type << Ex.get()->getSourceRange());
 | 
						|
 | 
						|
    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
 | 
						|
    if (Pointee->isVoidType() && !isSFINAEContext()) {
 | 
						|
      // The C++ standard bans deleting a pointer to a non-object type, which
 | 
						|
      // effectively bans deletion of "void*". However, most compilers support
 | 
						|
      // this, so we treat it as a warning unless we're in a SFINAE context.
 | 
						|
      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
 | 
						|
        << Type << Ex.get()->getSourceRange();
 | 
						|
    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
 | 
						|
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
 | 
						|
        << Type << Ex.get()->getSourceRange());
 | 
						|
    else if (!Pointee->isDependentType() &&
 | 
						|
             RequireCompleteType(StartLoc, Pointee,
 | 
						|
                                 PDiag(diag::warn_delete_incomplete)
 | 
						|
                                   << Ex.get()->getSourceRange()))
 | 
						|
      return ExprError();
 | 
						|
    else if (unsigned AddressSpace = Pointee.getAddressSpace())
 | 
						|
      return Diag(Ex.get()->getLocStart(), 
 | 
						|
                  diag::err_address_space_qualified_delete)
 | 
						|
               << Pointee.getUnqualifiedType() << AddressSpace;
 | 
						|
    // C++ [expr.delete]p2:
 | 
						|
    //   [Note: a pointer to a const type can be the operand of a
 | 
						|
    //   delete-expression; it is not necessary to cast away the constness
 | 
						|
    //   (5.2.11) of the pointer expression before it is used as the operand
 | 
						|
    //   of the delete-expression. ]
 | 
						|
    Ex = ImpCastExprToType(Ex.take(), Context.getPointerType(Context.VoidTy),
 | 
						|
                      CK_NoOp);
 | 
						|
 | 
						|
    if (Pointee->isArrayType() && !ArrayForm) {
 | 
						|
      Diag(StartLoc, diag::warn_delete_array_type)
 | 
						|
          << Type << Ex.get()->getSourceRange()
 | 
						|
          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
 | 
						|
      ArrayForm = true;
 | 
						|
    }
 | 
						|
 | 
						|
    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                      ArrayForm ? OO_Array_Delete : OO_Delete);
 | 
						|
 | 
						|
    QualType PointeeElem = Context.getBaseElementType(Pointee);
 | 
						|
    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
 | 
						|
      if (!UseGlobal &&
 | 
						|
          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // If we're allocating an array of records, check whether the
 | 
						|
      // usual operator delete[] has a size_t parameter.
 | 
						|
      if (ArrayForm) {
 | 
						|
        // If the user specifically asked to use the global allocator,
 | 
						|
        // we'll need to do the lookup into the class.
 | 
						|
        if (UseGlobal)
 | 
						|
          UsualArrayDeleteWantsSize =
 | 
						|
            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
 | 
						|
 | 
						|
        // Otherwise, the usual operator delete[] should be the
 | 
						|
        // function we just found.
 | 
						|
        else if (isa<CXXMethodDecl>(OperatorDelete))
 | 
						|
          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!RD->hasTrivialDestructor())
 | 
						|
        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
 | 
						|
          MarkDeclarationReferenced(StartLoc,
 | 
						|
                                    const_cast<CXXDestructorDecl*>(Dtor));
 | 
						|
          DiagnoseUseOfDecl(Dtor, StartLoc);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!OperatorDelete) {
 | 
						|
      // Look for a global declaration.
 | 
						|
      DeclareGlobalNewDelete();
 | 
						|
      DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | 
						|
      Expr *Arg = Ex.get();
 | 
						|
      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
 | 
						|
                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
 | 
						|
                                 OperatorDelete))
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    MarkDeclarationReferenced(StartLoc, OperatorDelete);
 | 
						|
    
 | 
						|
    // Check access and ambiguity of operator delete and destructor.
 | 
						|
    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
 | 
						|
          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 
 | 
						|
                      PDiag(diag::err_access_dtor) << PointeeElem);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
 | 
						|
                                           ArrayFormAsWritten,
 | 
						|
                                           UsualArrayDeleteWantsSize,
 | 
						|
                                           OperatorDelete, Ex.take(), StartLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the use of the given variable as a C++ condition in an if,
 | 
						|
/// while, do-while, or switch statement.
 | 
						|
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
 | 
						|
                                        SourceLocation StmtLoc,
 | 
						|
                                        bool ConvertToBoolean) {
 | 
						|
  QualType T = ConditionVar->getType();
 | 
						|
 | 
						|
  // C++ [stmt.select]p2:
 | 
						|
  //   The declarator shall not specify a function or an array.
 | 
						|
  if (T->isFunctionType())
 | 
						|
    return ExprError(Diag(ConditionVar->getLocation(),
 | 
						|
                          diag::err_invalid_use_of_function_type)
 | 
						|
                       << ConditionVar->getSourceRange());
 | 
						|
  else if (T->isArrayType())
 | 
						|
    return ExprError(Diag(ConditionVar->getLocation(),
 | 
						|
                          diag::err_invalid_use_of_array_type)
 | 
						|
                     << ConditionVar->getSourceRange());
 | 
						|
 | 
						|
  ExprResult Condition =
 | 
						|
    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(), 
 | 
						|
                                        ConditionVar,
 | 
						|
                                        ConditionVar->getLocation(),
 | 
						|
                            ConditionVar->getType().getNonReferenceType(),
 | 
						|
                              VK_LValue));
 | 
						|
  if (ConvertToBoolean) {
 | 
						|
    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
 | 
						|
    if (Condition.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return move(Condition);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
 | 
						|
ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
 | 
						|
  // C++ 6.4p4:
 | 
						|
  // The value of a condition that is an initialized declaration in a statement
 | 
						|
  // other than a switch statement is the value of the declared variable
 | 
						|
  // implicitly converted to type bool. If that conversion is ill-formed, the
 | 
						|
  // program is ill-formed.
 | 
						|
  // The value of a condition that is an expression is the value of the
 | 
						|
  // expression, implicitly converted to bool.
 | 
						|
  //
 | 
						|
  return PerformContextuallyConvertToBool(CondExpr);
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to determine whether this is the (deprecated) C++
 | 
						|
/// conversion from a string literal to a pointer to non-const char or
 | 
						|
/// non-const wchar_t (for narrow and wide string literals,
 | 
						|
/// respectively).
 | 
						|
bool
 | 
						|
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
 | 
						|
  // Look inside the implicit cast, if it exists.
 | 
						|
  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
 | 
						|
    From = Cast->getSubExpr();
 | 
						|
 | 
						|
  // A string literal (2.13.4) that is not a wide string literal can
 | 
						|
  // be converted to an rvalue of type "pointer to char"; a wide
 | 
						|
  // string literal can be converted to an rvalue of type "pointer
 | 
						|
  // to wchar_t" (C++ 4.2p2).
 | 
						|
  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
 | 
						|
    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
 | 
						|
      if (const BuiltinType *ToPointeeType
 | 
						|
          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
 | 
						|
        // This conversion is considered only when there is an
 | 
						|
        // explicit appropriate pointer target type (C++ 4.2p2).
 | 
						|
        if (!ToPtrType->getPointeeType().hasQualifiers() &&
 | 
						|
            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
 | 
						|
             (!StrLit->isWide() &&
 | 
						|
              (ToPointeeType->getKind() == BuiltinType::Char_U ||
 | 
						|
               ToPointeeType->getKind() == BuiltinType::Char_S))))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static ExprResult BuildCXXCastArgument(Sema &S,
 | 
						|
                                       SourceLocation CastLoc,
 | 
						|
                                       QualType Ty,
 | 
						|
                                       CastKind Kind,
 | 
						|
                                       CXXMethodDecl *Method,
 | 
						|
                                       NamedDecl *FoundDecl,
 | 
						|
                                       Expr *From) {
 | 
						|
  switch (Kind) {
 | 
						|
  default: assert(0 && "Unhandled cast kind!");
 | 
						|
  case CK_ConstructorConversion: {
 | 
						|
    ASTOwningVector<Expr*> ConstructorArgs(S);
 | 
						|
 | 
						|
    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
 | 
						|
                                  MultiExprArg(&From, 1),
 | 
						|
                                  CastLoc, ConstructorArgs))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    ExprResult Result =
 | 
						|
    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
 | 
						|
                            move_arg(ConstructorArgs),
 | 
						|
                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
 | 
						|
                            SourceRange());
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
 | 
						|
  }
 | 
						|
 | 
						|
  case CK_UserDefinedConversion: {
 | 
						|
    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
 | 
						|
 | 
						|
    // Create an implicit call expr that calls it.
 | 
						|
    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    return S.MaybeBindToTemporary(Result.get());
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// PerformImplicitConversion - Perform an implicit conversion of the
 | 
						|
/// expression From to the type ToType using the pre-computed implicit
 | 
						|
/// conversion sequence ICS. Returns the converted
 | 
						|
/// expression. Action is the kind of conversion we're performing,
 | 
						|
/// used in the error message.
 | 
						|
ExprResult
 | 
						|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | 
						|
                                const ImplicitConversionSequence &ICS,
 | 
						|
                                AssignmentAction Action, bool CStyle) {
 | 
						|
  switch (ICS.getKind()) {
 | 
						|
  case ImplicitConversionSequence::StandardConversion: {
 | 
						|
    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
 | 
						|
                                               Action, CStyle);
 | 
						|
    if (Res.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    From = Res.take();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ImplicitConversionSequence::UserDefinedConversion: {
 | 
						|
 | 
						|
      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
 | 
						|
      CastKind CastKind;
 | 
						|
      QualType BeforeToType;
 | 
						|
      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
 | 
						|
        CastKind = CK_UserDefinedConversion;
 | 
						|
 | 
						|
        // If the user-defined conversion is specified by a conversion function,
 | 
						|
        // the initial standard conversion sequence converts the source type to
 | 
						|
        // the implicit object parameter of the conversion function.
 | 
						|
        BeforeToType = Context.getTagDeclType(Conv->getParent());
 | 
						|
      } else {
 | 
						|
        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
 | 
						|
        CastKind = CK_ConstructorConversion;
 | 
						|
        // Do no conversion if dealing with ... for the first conversion.
 | 
						|
        if (!ICS.UserDefined.EllipsisConversion) {
 | 
						|
          // If the user-defined conversion is specified by a constructor, the
 | 
						|
          // initial standard conversion sequence converts the source type to the
 | 
						|
          // type required by the argument of the constructor
 | 
						|
          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Watch out for elipsis conversion.
 | 
						|
      if (!ICS.UserDefined.EllipsisConversion) {
 | 
						|
        ExprResult Res =
 | 
						|
          PerformImplicitConversion(From, BeforeToType,
 | 
						|
                                    ICS.UserDefined.Before, AA_Converting,
 | 
						|
                                    CStyle);
 | 
						|
        if (Res.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        From = Res.take();
 | 
						|
      }
 | 
						|
 | 
						|
      ExprResult CastArg
 | 
						|
        = BuildCXXCastArgument(*this,
 | 
						|
                               From->getLocStart(),
 | 
						|
                               ToType.getNonReferenceType(),
 | 
						|
                               CastKind, cast<CXXMethodDecl>(FD),
 | 
						|
                               ICS.UserDefined.FoundConversionFunction,
 | 
						|
                               From);
 | 
						|
 | 
						|
      if (CastArg.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      From = CastArg.take();
 | 
						|
 | 
						|
      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
 | 
						|
                                       AA_Converting, CStyle);
 | 
						|
  }
 | 
						|
 | 
						|
  case ImplicitConversionSequence::AmbiguousConversion:
 | 
						|
    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
 | 
						|
                          PDiag(diag::err_typecheck_ambiguous_condition)
 | 
						|
                            << From->getSourceRange());
 | 
						|
     return ExprError();
 | 
						|
 | 
						|
  case ImplicitConversionSequence::EllipsisConversion:
 | 
						|
    assert(false && "Cannot perform an ellipsis conversion");
 | 
						|
    return Owned(From);
 | 
						|
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything went well.
 | 
						|
  return Owned(From);
 | 
						|
}
 | 
						|
 | 
						|
/// PerformImplicitConversion - Perform an implicit conversion of the
 | 
						|
/// expression From to the type ToType by following the standard
 | 
						|
/// conversion sequence SCS. Returns the converted
 | 
						|
/// expression. Flavor is the context in which we're performing this
 | 
						|
/// conversion, for use in error messages.
 | 
						|
ExprResult
 | 
						|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | 
						|
                                const StandardConversionSequence& SCS,
 | 
						|
                                AssignmentAction Action, bool CStyle) {
 | 
						|
  // Overall FIXME: we are recomputing too many types here and doing far too
 | 
						|
  // much extra work. What this means is that we need to keep track of more
 | 
						|
  // information that is computed when we try the implicit conversion initially,
 | 
						|
  // so that we don't need to recompute anything here.
 | 
						|
  QualType FromType = From->getType();
 | 
						|
 | 
						|
  if (SCS.CopyConstructor) {
 | 
						|
    // FIXME: When can ToType be a reference type?
 | 
						|
    assert(!ToType->isReferenceType());
 | 
						|
    if (SCS.Second == ICK_Derived_To_Base) {
 | 
						|
      ASTOwningVector<Expr*> ConstructorArgs(*this);
 | 
						|
      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
 | 
						|
                                  MultiExprArg(*this, &From, 1),
 | 
						|
                                  /*FIXME:ConstructLoc*/SourceLocation(),
 | 
						|
                                  ConstructorArgs))
 | 
						|
        return ExprError();
 | 
						|
      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
 | 
						|
                                   ToType, SCS.CopyConstructor,
 | 
						|
                                   move_arg(ConstructorArgs),
 | 
						|
                                   /*ZeroInit*/ false,
 | 
						|
                                   CXXConstructExpr::CK_Complete,
 | 
						|
                                   SourceRange());
 | 
						|
    }
 | 
						|
    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
 | 
						|
                                 ToType, SCS.CopyConstructor,
 | 
						|
                                 MultiExprArg(*this, &From, 1),
 | 
						|
                                 /*ZeroInit*/ false,
 | 
						|
                                 CXXConstructExpr::CK_Complete,
 | 
						|
                                 SourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  // Resolve overloaded function references.
 | 
						|
  if (Context.hasSameType(FromType, Context.OverloadTy)) {
 | 
						|
    DeclAccessPair Found;
 | 
						|
    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
 | 
						|
                                                          true, Found);
 | 
						|
    if (!Fn)
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    From = FixOverloadedFunctionReference(From, Found, Fn);
 | 
						|
    FromType = From->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform the first implicit conversion.
 | 
						|
  switch (SCS.First) {
 | 
						|
  case ICK_Identity:
 | 
						|
    // Nothing to do.
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Lvalue_To_Rvalue:
 | 
						|
    // Should this get its own ICK?
 | 
						|
    if (From->getObjectKind() == OK_ObjCProperty) {
 | 
						|
      ExprResult FromRes = ConvertPropertyForRValue(From);
 | 
						|
      if (FromRes.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      From = FromRes.take();
 | 
						|
      if (!From->isGLValue()) break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for trivial buffer overflows.
 | 
						|
    CheckArrayAccess(From);
 | 
						|
 | 
						|
    FromType = FromType.getUnqualifiedType();
 | 
						|
    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
 | 
						|
                                    From, 0, VK_RValue);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Array_To_Pointer:
 | 
						|
    FromType = Context.getArrayDecayedType(FromType);
 | 
						|
    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Function_To_Pointer:
 | 
						|
    FromType = Context.getPointerType(FromType);
 | 
						|
    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(false && "Improper first standard conversion");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform the second implicit conversion
 | 
						|
  switch (SCS.Second) {
 | 
						|
  case ICK_Identity:
 | 
						|
    // If both sides are functions (or pointers/references to them), there could
 | 
						|
    // be incompatible exception declarations.
 | 
						|
    if (CheckExceptionSpecCompatibility(From, ToType))
 | 
						|
      return ExprError();
 | 
						|
    // Nothing else to do.
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_NoReturn_Adjustment:
 | 
						|
    // If both sides are functions (or pointers/references to them), there could
 | 
						|
    // be incompatible exception declarations.
 | 
						|
    if (CheckExceptionSpecCompatibility(From, ToType))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    From = ImpCastExprToType(From, ToType, CK_NoOp).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Integral_Promotion:
 | 
						|
  case ICK_Integral_Conversion:
 | 
						|
    From = ImpCastExprToType(From, ToType, CK_IntegralCast).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Floating_Promotion:
 | 
						|
  case ICK_Floating_Conversion:
 | 
						|
    From = ImpCastExprToType(From, ToType, CK_FloatingCast).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Complex_Promotion:
 | 
						|
  case ICK_Complex_Conversion: {
 | 
						|
    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
 | 
						|
    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
 | 
						|
    CastKind CK;
 | 
						|
    if (FromEl->isRealFloatingType()) {
 | 
						|
      if (ToEl->isRealFloatingType())
 | 
						|
        CK = CK_FloatingComplexCast;
 | 
						|
      else
 | 
						|
        CK = CK_FloatingComplexToIntegralComplex;
 | 
						|
    } else if (ToEl->isRealFloatingType()) {
 | 
						|
      CK = CK_IntegralComplexToFloatingComplex;
 | 
						|
    } else {
 | 
						|
      CK = CK_IntegralComplexCast;
 | 
						|
    }
 | 
						|
    From = ImpCastExprToType(From, ToType, CK).take();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ICK_Floating_Integral:
 | 
						|
    if (ToType->isRealFloatingType())
 | 
						|
      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating).take();
 | 
						|
    else
 | 
						|
      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Compatible_Conversion:
 | 
						|
    From = ImpCastExprToType(From, ToType, CK_NoOp).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Pointer_Conversion: {
 | 
						|
    if (SCS.IncompatibleObjC && Action != AA_Casting) {
 | 
						|
      // Diagnose incompatible Objective-C conversions
 | 
						|
      if (Action == AA_Initializing)
 | 
						|
        Diag(From->getSourceRange().getBegin(),
 | 
						|
             diag::ext_typecheck_convert_incompatible_pointer)
 | 
						|
          << ToType << From->getType() << Action
 | 
						|
          << From->getSourceRange();
 | 
						|
      else
 | 
						|
        Diag(From->getSourceRange().getBegin(),
 | 
						|
             diag::ext_typecheck_convert_incompatible_pointer)
 | 
						|
          << From->getType() << ToType << Action
 | 
						|
          << From->getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    CastKind Kind = CK_Invalid;
 | 
						|
    CXXCastPath BasePath;
 | 
						|
    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
 | 
						|
      return ExprError();
 | 
						|
    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath).take();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ICK_Pointer_Member: {
 | 
						|
    CastKind Kind = CK_Invalid;
 | 
						|
    CXXCastPath BasePath;
 | 
						|
    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
 | 
						|
      return ExprError();
 | 
						|
    if (CheckExceptionSpecCompatibility(From, ToType))
 | 
						|
      return ExprError();
 | 
						|
    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath).take();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ICK_Boolean_Conversion:
 | 
						|
    From = ImpCastExprToType(From, Context.BoolTy,
 | 
						|
                             ScalarTypeToBooleanCastKind(FromType)).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Derived_To_Base: {
 | 
						|
    CXXCastPath BasePath;
 | 
						|
    if (CheckDerivedToBaseConversion(From->getType(),
 | 
						|
                                     ToType.getNonReferenceType(),
 | 
						|
                                     From->getLocStart(),
 | 
						|
                                     From->getSourceRange(),
 | 
						|
                                     &BasePath,
 | 
						|
                                     CStyle))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
 | 
						|
                      CK_DerivedToBase, CastCategory(From),
 | 
						|
                      &BasePath).take();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ICK_Vector_Conversion:
 | 
						|
    From = ImpCastExprToType(From, ToType, CK_BitCast).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Vector_Splat:
 | 
						|
    From = ImpCastExprToType(From, ToType, CK_VectorSplat).take();
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Complex_Real:
 | 
						|
    // Case 1.  x -> _Complex y
 | 
						|
    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
 | 
						|
      QualType ElType = ToComplex->getElementType();
 | 
						|
      bool isFloatingComplex = ElType->isRealFloatingType();
 | 
						|
 | 
						|
      // x -> y
 | 
						|
      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
 | 
						|
        // do nothing
 | 
						|
      } else if (From->getType()->isRealFloatingType()) {
 | 
						|
        From = ImpCastExprToType(From, ElType,
 | 
						|
                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
 | 
						|
      } else {
 | 
						|
        assert(From->getType()->isIntegerType());
 | 
						|
        From = ImpCastExprToType(From, ElType,
 | 
						|
                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
 | 
						|
      }
 | 
						|
      // y -> _Complex y
 | 
						|
      From = ImpCastExprToType(From, ToType,
 | 
						|
                   isFloatingComplex ? CK_FloatingRealToComplex
 | 
						|
                                     : CK_IntegralRealToComplex).take();
 | 
						|
 | 
						|
    // Case 2.  _Complex x -> y
 | 
						|
    } else {
 | 
						|
      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
 | 
						|
      assert(FromComplex);
 | 
						|
 | 
						|
      QualType ElType = FromComplex->getElementType();
 | 
						|
      bool isFloatingComplex = ElType->isRealFloatingType();
 | 
						|
 | 
						|
      // _Complex x -> x
 | 
						|
      From = ImpCastExprToType(From, ElType,
 | 
						|
                   isFloatingComplex ? CK_FloatingComplexToReal
 | 
						|
                                     : CK_IntegralComplexToReal).take();
 | 
						|
 | 
						|
      // x -> y
 | 
						|
      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
 | 
						|
        // do nothing
 | 
						|
      } else if (ToType->isRealFloatingType()) {
 | 
						|
        From = ImpCastExprToType(From, ToType,
 | 
						|
                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating).take();
 | 
						|
      } else {
 | 
						|
        assert(ToType->isIntegerType());
 | 
						|
        From = ImpCastExprToType(From, ToType,
 | 
						|
                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast).take();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  
 | 
						|
  case ICK_Block_Pointer_Conversion: {
 | 
						|
      From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
 | 
						|
                               VK_RValue).take();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
  case ICK_TransparentUnionConversion: {
 | 
						|
    ExprResult FromRes = Owned(From);
 | 
						|
    Sema::AssignConvertType ConvTy =
 | 
						|
      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
 | 
						|
    if (FromRes.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    From = FromRes.take();
 | 
						|
    assert ((ConvTy == Sema::Compatible) &&
 | 
						|
            "Improper transparent union conversion");
 | 
						|
    (void)ConvTy;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ICK_Lvalue_To_Rvalue:
 | 
						|
  case ICK_Array_To_Pointer:
 | 
						|
  case ICK_Function_To_Pointer:
 | 
						|
  case ICK_Qualification:
 | 
						|
  case ICK_Num_Conversion_Kinds:
 | 
						|
    assert(false && "Improper second standard conversion");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (SCS.Third) {
 | 
						|
  case ICK_Identity:
 | 
						|
    // Nothing to do.
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Qualification: {
 | 
						|
    // The qualification keeps the category of the inner expression, unless the
 | 
						|
    // target type isn't a reference.
 | 
						|
    ExprValueKind VK = ToType->isReferenceType() ?
 | 
						|
                                  CastCategory(From) : VK_RValue;
 | 
						|
    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
 | 
						|
                             CK_NoOp, VK).take();
 | 
						|
 | 
						|
    if (SCS.DeprecatedStringLiteralToCharPtr &&
 | 
						|
        !getLangOptions().WritableStrings)
 | 
						|
      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
 | 
						|
        << ToType.getNonReferenceType();
 | 
						|
 | 
						|
    break;
 | 
						|
    }
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(false && "Improper third standard conversion");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(From);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
 | 
						|
                                     SourceLocation KWLoc,
 | 
						|
                                     ParsedType Ty,
 | 
						|
                                     SourceLocation RParen) {
 | 
						|
  TypeSourceInfo *TSInfo;
 | 
						|
  QualType T = GetTypeFromParser(Ty, &TSInfo);
 | 
						|
 | 
						|
  if (!TSInfo)
 | 
						|
    TSInfo = Context.getTrivialTypeSourceInfo(T);
 | 
						|
  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the completeness of a type in a unary type trait.
 | 
						|
///
 | 
						|
/// If the particular type trait requires a complete type, tries to complete
 | 
						|
/// it. If completing the type fails, a diagnostic is emitted and false
 | 
						|
/// returned. If completing the type succeeds or no completion was required,
 | 
						|
/// returns true.
 | 
						|
static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
 | 
						|
                                                UnaryTypeTrait UTT,
 | 
						|
                                                SourceLocation Loc,
 | 
						|
                                                QualType ArgTy) {
 | 
						|
  // C++0x [meta.unary.prop]p3:
 | 
						|
  //   For all of the class templates X declared in this Clause, instantiating
 | 
						|
  //   that template with a template argument that is a class template
 | 
						|
  //   specialization may result in the implicit instantiation of the template
 | 
						|
  //   argument if and only if the semantics of X require that the argument
 | 
						|
  //   must be a complete type.
 | 
						|
  // We apply this rule to all the type trait expressions used to implement
 | 
						|
  // these class templates. We also try to follow any GCC documented behavior
 | 
						|
  // in these expressions to ensure portability of standard libraries.
 | 
						|
  switch (UTT) {
 | 
						|
    // is_complete_type somewhat obviously cannot require a complete type.
 | 
						|
  case UTT_IsCompleteType:
 | 
						|
    // Fall-through
 | 
						|
 | 
						|
    // These traits are modeled on the type predicates in C++0x
 | 
						|
    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
 | 
						|
    // requiring a complete type, as whether or not they return true cannot be
 | 
						|
    // impacted by the completeness of the type.
 | 
						|
  case UTT_IsVoid:
 | 
						|
  case UTT_IsIntegral:
 | 
						|
  case UTT_IsFloatingPoint:
 | 
						|
  case UTT_IsArray:
 | 
						|
  case UTT_IsPointer:
 | 
						|
  case UTT_IsLvalueReference:
 | 
						|
  case UTT_IsRvalueReference:
 | 
						|
  case UTT_IsMemberFunctionPointer:
 | 
						|
  case UTT_IsMemberObjectPointer:
 | 
						|
  case UTT_IsEnum:
 | 
						|
  case UTT_IsUnion:
 | 
						|
  case UTT_IsClass:
 | 
						|
  case UTT_IsFunction:
 | 
						|
  case UTT_IsReference:
 | 
						|
  case UTT_IsArithmetic:
 | 
						|
  case UTT_IsFundamental:
 | 
						|
  case UTT_IsObject:
 | 
						|
  case UTT_IsScalar:
 | 
						|
  case UTT_IsCompound:
 | 
						|
  case UTT_IsMemberPointer:
 | 
						|
    // Fall-through
 | 
						|
 | 
						|
    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
 | 
						|
    // which requires some of its traits to have the complete type. However,
 | 
						|
    // the completeness of the type cannot impact these traits' semantics, and
 | 
						|
    // so they don't require it. This matches the comments on these traits in
 | 
						|
    // Table 49.
 | 
						|
  case UTT_IsConst:
 | 
						|
  case UTT_IsVolatile:
 | 
						|
  case UTT_IsSigned:
 | 
						|
  case UTT_IsUnsigned:
 | 
						|
    return true;
 | 
						|
 | 
						|
    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
 | 
						|
    // applied to a complete type.
 | 
						|
  case UTT_IsTrivial:
 | 
						|
  case UTT_IsTriviallyCopyable:
 | 
						|
  case UTT_IsStandardLayout:
 | 
						|
  case UTT_IsPOD:
 | 
						|
  case UTT_IsLiteral:
 | 
						|
  case UTT_IsEmpty:
 | 
						|
  case UTT_IsPolymorphic:
 | 
						|
  case UTT_IsAbstract:
 | 
						|
    // Fall-through
 | 
						|
 | 
						|
    // These trait expressions are designed to help implement predicates in
 | 
						|
    // [meta.unary.prop] despite not being named the same. They are specified
 | 
						|
    // by both GCC and the Embarcadero C++ compiler, and require the complete
 | 
						|
    // type due to the overarching C++0x type predicates being implemented
 | 
						|
    // requiring the complete type.
 | 
						|
  case UTT_HasNothrowAssign:
 | 
						|
  case UTT_HasNothrowConstructor:
 | 
						|
  case UTT_HasNothrowCopy:
 | 
						|
  case UTT_HasTrivialAssign:
 | 
						|
  case UTT_HasTrivialDefaultConstructor:
 | 
						|
  case UTT_HasTrivialCopy:
 | 
						|
  case UTT_HasTrivialDestructor:
 | 
						|
  case UTT_HasVirtualDestructor:
 | 
						|
    // Arrays of unknown bound are expressly allowed.
 | 
						|
    QualType ElTy = ArgTy;
 | 
						|
    if (ArgTy->isIncompleteArrayType())
 | 
						|
      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
 | 
						|
 | 
						|
    // The void type is expressly allowed.
 | 
						|
    if (ElTy->isVoidType())
 | 
						|
      return true;
 | 
						|
 | 
						|
    return !S.RequireCompleteType(
 | 
						|
      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
 | 
						|
  }
 | 
						|
  llvm_unreachable("Type trait not handled by switch");
 | 
						|
}
 | 
						|
 | 
						|
static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
 | 
						|
                                   SourceLocation KeyLoc, QualType T) {
 | 
						|
  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
 | 
						|
 | 
						|
  ASTContext &C = Self.Context;
 | 
						|
  switch(UTT) {
 | 
						|
    // Type trait expressions corresponding to the primary type category
 | 
						|
    // predicates in C++0x [meta.unary.cat].
 | 
						|
  case UTT_IsVoid:
 | 
						|
    return T->isVoidType();
 | 
						|
  case UTT_IsIntegral:
 | 
						|
    return T->isIntegralType(C);
 | 
						|
  case UTT_IsFloatingPoint:
 | 
						|
    return T->isFloatingType();
 | 
						|
  case UTT_IsArray:
 | 
						|
    return T->isArrayType();
 | 
						|
  case UTT_IsPointer:
 | 
						|
    return T->isPointerType();
 | 
						|
  case UTT_IsLvalueReference:
 | 
						|
    return T->isLValueReferenceType();
 | 
						|
  case UTT_IsRvalueReference:
 | 
						|
    return T->isRValueReferenceType();
 | 
						|
  case UTT_IsMemberFunctionPointer:
 | 
						|
    return T->isMemberFunctionPointerType();
 | 
						|
  case UTT_IsMemberObjectPointer:
 | 
						|
    return T->isMemberDataPointerType();
 | 
						|
  case UTT_IsEnum:
 | 
						|
    return T->isEnumeralType();
 | 
						|
  case UTT_IsUnion:
 | 
						|
    return T->isUnionType();
 | 
						|
  case UTT_IsClass:
 | 
						|
    return T->isClassType() || T->isStructureType();
 | 
						|
  case UTT_IsFunction:
 | 
						|
    return T->isFunctionType();
 | 
						|
 | 
						|
    // Type trait expressions which correspond to the convenient composition
 | 
						|
    // predicates in C++0x [meta.unary.comp].
 | 
						|
  case UTT_IsReference:
 | 
						|
    return T->isReferenceType();
 | 
						|
  case UTT_IsArithmetic:
 | 
						|
    return T->isArithmeticType() && !T->isEnumeralType();
 | 
						|
  case UTT_IsFundamental:
 | 
						|
    return T->isFundamentalType();
 | 
						|
  case UTT_IsObject:
 | 
						|
    return T->isObjectType();
 | 
						|
  case UTT_IsScalar:
 | 
						|
    return T->isScalarType();
 | 
						|
  case UTT_IsCompound:
 | 
						|
    return T->isCompoundType();
 | 
						|
  case UTT_IsMemberPointer:
 | 
						|
    return T->isMemberPointerType();
 | 
						|
 | 
						|
    // Type trait expressions which correspond to the type property predicates
 | 
						|
    // in C++0x [meta.unary.prop].
 | 
						|
  case UTT_IsConst:
 | 
						|
    return T.isConstQualified();
 | 
						|
  case UTT_IsVolatile:
 | 
						|
    return T.isVolatileQualified();
 | 
						|
  case UTT_IsTrivial:
 | 
						|
    return T->isTrivialType();
 | 
						|
  case UTT_IsTriviallyCopyable:
 | 
						|
    return T->isTriviallyCopyableType();
 | 
						|
  case UTT_IsStandardLayout:
 | 
						|
    return T->isStandardLayoutType();
 | 
						|
  case UTT_IsPOD:
 | 
						|
    return T->isPODType();
 | 
						|
  case UTT_IsLiteral:
 | 
						|
    return T->isLiteralType();
 | 
						|
  case UTT_IsEmpty:
 | 
						|
    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | 
						|
      return !RD->isUnion() && RD->isEmpty();
 | 
						|
    return false;
 | 
						|
  case UTT_IsPolymorphic:
 | 
						|
    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | 
						|
      return RD->isPolymorphic();
 | 
						|
    return false;
 | 
						|
  case UTT_IsAbstract:
 | 
						|
    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | 
						|
      return RD->isAbstract();
 | 
						|
    return false;
 | 
						|
  case UTT_IsSigned:
 | 
						|
    return T->isSignedIntegerType();
 | 
						|
  case UTT_IsUnsigned:
 | 
						|
    return T->isUnsignedIntegerType();
 | 
						|
 | 
						|
    // Type trait expressions which query classes regarding their construction,
 | 
						|
    // destruction, and copying. Rather than being based directly on the
 | 
						|
    // related type predicates in the standard, they are specified by both
 | 
						|
    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
 | 
						|
    // specifications.
 | 
						|
    //
 | 
						|
    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
 | 
						|
    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
 | 
						|
  case UTT_HasTrivialDefaultConstructor:
 | 
						|
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | 
						|
    //   If __is_pod (type) is true then the trait is true, else if type is
 | 
						|
    //   a cv class or union type (or array thereof) with a trivial default
 | 
						|
    //   constructor ([class.ctor]) then the trait is true, else it is false.
 | 
						|
    if (T->isPODType())
 | 
						|
      return true;
 | 
						|
    if (const RecordType *RT =
 | 
						|
          C.getBaseElementType(T)->getAs<RecordType>())
 | 
						|
      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
 | 
						|
    return false;
 | 
						|
  case UTT_HasTrivialCopy:
 | 
						|
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | 
						|
    //   If __is_pod (type) is true or type is a reference type then
 | 
						|
    //   the trait is true, else if type is a cv class or union type
 | 
						|
    //   with a trivial copy constructor ([class.copy]) then the trait
 | 
						|
    //   is true, else it is false.
 | 
						|
    if (T->isPODType() || T->isReferenceType())
 | 
						|
      return true;
 | 
						|
    if (const RecordType *RT = T->getAs<RecordType>())
 | 
						|
      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
 | 
						|
    return false;
 | 
						|
  case UTT_HasTrivialAssign:
 | 
						|
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | 
						|
    //   If type is const qualified or is a reference type then the
 | 
						|
    //   trait is false. Otherwise if __is_pod (type) is true then the
 | 
						|
    //   trait is true, else if type is a cv class or union type with
 | 
						|
    //   a trivial copy assignment ([class.copy]) then the trait is
 | 
						|
    //   true, else it is false.
 | 
						|
    // Note: the const and reference restrictions are interesting,
 | 
						|
    // given that const and reference members don't prevent a class
 | 
						|
    // from having a trivial copy assignment operator (but do cause
 | 
						|
    // errors if the copy assignment operator is actually used, q.v.
 | 
						|
    // [class.copy]p12).
 | 
						|
 | 
						|
    if (C.getBaseElementType(T).isConstQualified())
 | 
						|
      return false;
 | 
						|
    if (T->isPODType())
 | 
						|
      return true;
 | 
						|
    if (const RecordType *RT = T->getAs<RecordType>())
 | 
						|
      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
 | 
						|
    return false;
 | 
						|
  case UTT_HasTrivialDestructor:
 | 
						|
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | 
						|
    //   If __is_pod (type) is true or type is a reference type
 | 
						|
    //   then the trait is true, else if type is a cv class or union
 | 
						|
    //   type (or array thereof) with a trivial destructor
 | 
						|
    //   ([class.dtor]) then the trait is true, else it is
 | 
						|
    //   false.
 | 
						|
    if (T->isPODType() || T->isReferenceType())
 | 
						|
      return true;
 | 
						|
    if (const RecordType *RT =
 | 
						|
          C.getBaseElementType(T)->getAs<RecordType>())
 | 
						|
      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
 | 
						|
    return false;
 | 
						|
  // TODO: Propagate nothrowness for implicitly declared special members.
 | 
						|
  case UTT_HasNothrowAssign:
 | 
						|
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | 
						|
    //   If type is const qualified or is a reference type then the
 | 
						|
    //   trait is false. Otherwise if __has_trivial_assign (type)
 | 
						|
    //   is true then the trait is true, else if type is a cv class
 | 
						|
    //   or union type with copy assignment operators that are known
 | 
						|
    //   not to throw an exception then the trait is true, else it is
 | 
						|
    //   false.
 | 
						|
    if (C.getBaseElementType(T).isConstQualified())
 | 
						|
      return false;
 | 
						|
    if (T->isReferenceType())
 | 
						|
      return false;
 | 
						|
    if (T->isPODType())
 | 
						|
      return true;
 | 
						|
    if (const RecordType *RT = T->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
      if (RD->hasTrivialCopyAssignment())
 | 
						|
        return true;
 | 
						|
 | 
						|
      bool FoundAssign = false;
 | 
						|
      bool AllNoThrow = true;
 | 
						|
      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
 | 
						|
      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
 | 
						|
                       Sema::LookupOrdinaryName);
 | 
						|
      if (Self.LookupQualifiedName(Res, RD)) {
 | 
						|
        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
 | 
						|
             Op != OpEnd; ++Op) {
 | 
						|
          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
 | 
						|
          if (Operator->isCopyAssignmentOperator()) {
 | 
						|
            FoundAssign = true;
 | 
						|
            const FunctionProtoType *CPT
 | 
						|
                = Operator->getType()->getAs<FunctionProtoType>();
 | 
						|
            if (!CPT->isNothrow(Self.Context)) {
 | 
						|
              AllNoThrow = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return FoundAssign && AllNoThrow;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  case UTT_HasNothrowCopy:
 | 
						|
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | 
						|
    //   If __has_trivial_copy (type) is true then the trait is true, else
 | 
						|
    //   if type is a cv class or union type with copy constructors that are
 | 
						|
    //   known not to throw an exception then the trait is true, else it is
 | 
						|
    //   false.
 | 
						|
    if (T->isPODType() || T->isReferenceType())
 | 
						|
      return true;
 | 
						|
    if (const RecordType *RT = T->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
      if (RD->hasTrivialCopyConstructor())
 | 
						|
        return true;
 | 
						|
 | 
						|
      bool FoundConstructor = false;
 | 
						|
      bool AllNoThrow = true;
 | 
						|
      unsigned FoundTQs;
 | 
						|
      DeclContext::lookup_const_iterator Con, ConEnd;
 | 
						|
      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
 | 
						|
           Con != ConEnd; ++Con) {
 | 
						|
        // A template constructor is never a copy constructor.
 | 
						|
        // FIXME: However, it may actually be selected at the actual overload
 | 
						|
        // resolution point.
 | 
						|
        if (isa<FunctionTemplateDecl>(*Con))
 | 
						|
          continue;
 | 
						|
        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
 | 
						|
        if (Constructor->isCopyConstructor(FoundTQs)) {
 | 
						|
          FoundConstructor = true;
 | 
						|
          const FunctionProtoType *CPT
 | 
						|
              = Constructor->getType()->getAs<FunctionProtoType>();
 | 
						|
          // FIXME: check whether evaluating default arguments can throw.
 | 
						|
          // For now, we'll be conservative and assume that they can throw.
 | 
						|
          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1) {
 | 
						|
            AllNoThrow = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return FoundConstructor && AllNoThrow;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  case UTT_HasNothrowConstructor:
 | 
						|
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | 
						|
    //   If __has_trivial_constructor (type) is true then the trait is
 | 
						|
    //   true, else if type is a cv class or union type (or array
 | 
						|
    //   thereof) with a default constructor that is known not to
 | 
						|
    //   throw an exception then the trait is true, else it is false.
 | 
						|
    if (T->isPODType())
 | 
						|
      return true;
 | 
						|
    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
      if (RD->hasTrivialDefaultConstructor())
 | 
						|
        return true;
 | 
						|
 | 
						|
      DeclContext::lookup_const_iterator Con, ConEnd;
 | 
						|
      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
 | 
						|
           Con != ConEnd; ++Con) {
 | 
						|
        // FIXME: In C++0x, a constructor template can be a default constructor.
 | 
						|
        if (isa<FunctionTemplateDecl>(*Con))
 | 
						|
          continue;
 | 
						|
        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
 | 
						|
        if (Constructor->isDefaultConstructor()) {
 | 
						|
          const FunctionProtoType *CPT
 | 
						|
              = Constructor->getType()->getAs<FunctionProtoType>();
 | 
						|
          // TODO: check whether evaluating default arguments can throw.
 | 
						|
          // For now, we'll be conservative and assume that they can throw.
 | 
						|
          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  case UTT_HasVirtualDestructor:
 | 
						|
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | 
						|
    //   If type is a class type with a virtual destructor ([class.dtor])
 | 
						|
    //   then the trait is true, else it is false.
 | 
						|
    if (const RecordType *Record = T->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
 | 
						|
      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
 | 
						|
        return Destructor->isVirtual();
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
 | 
						|
    // These type trait expressions are modeled on the specifications for the
 | 
						|
    // Embarcadero C++0x type trait functions:
 | 
						|
    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
 | 
						|
  case UTT_IsCompleteType:
 | 
						|
    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
 | 
						|
    //   Returns True if and only if T is a complete type at the point of the
 | 
						|
    //   function call.
 | 
						|
    return !T->isIncompleteType();
 | 
						|
  }
 | 
						|
  llvm_unreachable("Type trait not covered by switch");
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
 | 
						|
                                     SourceLocation KWLoc,
 | 
						|
                                     TypeSourceInfo *TSInfo,
 | 
						|
                                     SourceLocation RParen) {
 | 
						|
  QualType T = TSInfo->getType();
 | 
						|
  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  bool Value = false;
 | 
						|
  if (!T->isDependentType())
 | 
						|
    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
 | 
						|
 | 
						|
  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
 | 
						|
                                                RParen, Context.BoolTy));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
 | 
						|
                                      SourceLocation KWLoc,
 | 
						|
                                      ParsedType LhsTy,
 | 
						|
                                      ParsedType RhsTy,
 | 
						|
                                      SourceLocation RParen) {
 | 
						|
  TypeSourceInfo *LhsTSInfo;
 | 
						|
  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
 | 
						|
  if (!LhsTSInfo)
 | 
						|
    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
 | 
						|
 | 
						|
  TypeSourceInfo *RhsTSInfo;
 | 
						|
  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
 | 
						|
  if (!RhsTSInfo)
 | 
						|
    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
 | 
						|
 | 
						|
  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
 | 
						|
}
 | 
						|
 | 
						|
static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
 | 
						|
                                    QualType LhsT, QualType RhsT,
 | 
						|
                                    SourceLocation KeyLoc) {
 | 
						|
  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
 | 
						|
         "Cannot evaluate traits of dependent types");
 | 
						|
 | 
						|
  switch(BTT) {
 | 
						|
  case BTT_IsBaseOf: {
 | 
						|
    // C++0x [meta.rel]p2
 | 
						|
    // Base is a base class of Derived without regard to cv-qualifiers or
 | 
						|
    // Base and Derived are not unions and name the same class type without
 | 
						|
    // regard to cv-qualifiers.
 | 
						|
 | 
						|
    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
 | 
						|
    if (!lhsRecord) return false;
 | 
						|
 | 
						|
    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
 | 
						|
    if (!rhsRecord) return false;
 | 
						|
 | 
						|
    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
 | 
						|
             == (lhsRecord == rhsRecord));
 | 
						|
 | 
						|
    if (lhsRecord == rhsRecord)
 | 
						|
      return !lhsRecord->getDecl()->isUnion();
 | 
						|
 | 
						|
    // C++0x [meta.rel]p2:
 | 
						|
    //   If Base and Derived are class types and are different types
 | 
						|
    //   (ignoring possible cv-qualifiers) then Derived shall be a
 | 
						|
    //   complete type.
 | 
						|
    if (Self.RequireCompleteType(KeyLoc, RhsT, 
 | 
						|
                          diag::err_incomplete_type_used_in_type_trait_expr))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return cast<CXXRecordDecl>(rhsRecord->getDecl())
 | 
						|
      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
 | 
						|
  }
 | 
						|
  case BTT_IsSame:
 | 
						|
    return Self.Context.hasSameType(LhsT, RhsT);
 | 
						|
  case BTT_TypeCompatible:
 | 
						|
    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
 | 
						|
                                           RhsT.getUnqualifiedType());
 | 
						|
  case BTT_IsConvertible:
 | 
						|
  case BTT_IsConvertibleTo: {
 | 
						|
    // C++0x [meta.rel]p4:
 | 
						|
    //   Given the following function prototype:
 | 
						|
    //
 | 
						|
    //     template <class T> 
 | 
						|
    //       typename add_rvalue_reference<T>::type create();
 | 
						|
    //
 | 
						|
    //   the predicate condition for a template specialization 
 | 
						|
    //   is_convertible<From, To> shall be satisfied if and only if 
 | 
						|
    //   the return expression in the following code would be 
 | 
						|
    //   well-formed, including any implicit conversions to the return
 | 
						|
    //   type of the function:
 | 
						|
    //
 | 
						|
    //     To test() { 
 | 
						|
    //       return create<From>();
 | 
						|
    //     }
 | 
						|
    //
 | 
						|
    //   Access checking is performed as if in a context unrelated to To and 
 | 
						|
    //   From. Only the validity of the immediate context of the expression 
 | 
						|
    //   of the return-statement (including conversions to the return type)
 | 
						|
    //   is considered.
 | 
						|
    //
 | 
						|
    // We model the initialization as a copy-initialization of a temporary
 | 
						|
    // of the appropriate type, which for this expression is identical to the
 | 
						|
    // return statement (since NRVO doesn't apply).
 | 
						|
    if (LhsT->isObjectType() || LhsT->isFunctionType())
 | 
						|
      LhsT = Self.Context.getRValueReferenceType(LhsT);
 | 
						|
    
 | 
						|
    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
 | 
						|
    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
 | 
						|
                         Expr::getValueKindForType(LhsT));
 | 
						|
    Expr *FromPtr = &From;
 | 
						|
    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 
 | 
						|
                                                           SourceLocation()));
 | 
						|
    
 | 
						|
    // Perform the initialization within a SFINAE trap at translation unit 
 | 
						|
    // scope.
 | 
						|
    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
 | 
						|
    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
 | 
						|
    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
 | 
						|
    if (Init.getKind() == InitializationSequence::FailedSequence)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
 | 
						|
    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown type trait or not implemented");
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
 | 
						|
                                      SourceLocation KWLoc,
 | 
						|
                                      TypeSourceInfo *LhsTSInfo,
 | 
						|
                                      TypeSourceInfo *RhsTSInfo,
 | 
						|
                                      SourceLocation RParen) {
 | 
						|
  QualType LhsT = LhsTSInfo->getType();
 | 
						|
  QualType RhsT = RhsTSInfo->getType();
 | 
						|
 | 
						|
  if (BTT == BTT_TypeCompatible) {
 | 
						|
    if (getLangOptions().CPlusPlus) {
 | 
						|
      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
 | 
						|
        << SourceRange(KWLoc, RParen);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Value = false;
 | 
						|
  if (!LhsT->isDependentType() && !RhsT->isDependentType())
 | 
						|
    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
 | 
						|
 | 
						|
  // Select trait result type.
 | 
						|
  QualType ResultType;
 | 
						|
  switch (BTT) {
 | 
						|
  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
 | 
						|
  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
 | 
						|
  case BTT_IsSame:         ResultType = Context.BoolTy; break;
 | 
						|
  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
 | 
						|
  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
 | 
						|
                                                 RhsTSInfo, Value, RParen,
 | 
						|
                                                 ResultType));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
 | 
						|
                                     SourceLocation KWLoc,
 | 
						|
                                     ParsedType Ty,
 | 
						|
                                     Expr* DimExpr,
 | 
						|
                                     SourceLocation RParen) {
 | 
						|
  TypeSourceInfo *TSInfo;
 | 
						|
  QualType T = GetTypeFromParser(Ty, &TSInfo);
 | 
						|
  if (!TSInfo)
 | 
						|
    TSInfo = Context.getTrivialTypeSourceInfo(T);
 | 
						|
 | 
						|
  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
 | 
						|
                                           QualType T, Expr *DimExpr,
 | 
						|
                                           SourceLocation KeyLoc) {
 | 
						|
  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
 | 
						|
 | 
						|
  switch(ATT) {
 | 
						|
  case ATT_ArrayRank:
 | 
						|
    if (T->isArrayType()) {
 | 
						|
      unsigned Dim = 0;
 | 
						|
      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
 | 
						|
        ++Dim;
 | 
						|
        T = AT->getElementType();
 | 
						|
      }
 | 
						|
      return Dim;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case ATT_ArrayExtent: {
 | 
						|
    llvm::APSInt Value;
 | 
						|
    uint64_t Dim;
 | 
						|
    if (DimExpr->isIntegerConstantExpr(Value, Self.Context, 0, false)) {
 | 
						|
      if (Value < llvm::APSInt(Value.getBitWidth(), Value.isUnsigned())) {
 | 
						|
        Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
 | 
						|
          DimExpr->getSourceRange();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      Dim = Value.getLimitedValue();
 | 
						|
    } else {
 | 
						|
      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
 | 
						|
        DimExpr->getSourceRange();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (T->isArrayType()) {
 | 
						|
      unsigned D = 0;
 | 
						|
      bool Matched = false;
 | 
						|
      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
 | 
						|
        if (Dim == D) {
 | 
						|
          Matched = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        ++D;
 | 
						|
        T = AT->getElementType();
 | 
						|
      }
 | 
						|
 | 
						|
      if (Matched && T->isArrayType()) {
 | 
						|
        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
 | 
						|
          return CAT->getSize().getLimitedValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown type trait or not implemented");
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
 | 
						|
                                     SourceLocation KWLoc,
 | 
						|
                                     TypeSourceInfo *TSInfo,
 | 
						|
                                     Expr* DimExpr,
 | 
						|
                                     SourceLocation RParen) {
 | 
						|
  QualType T = TSInfo->getType();
 | 
						|
 | 
						|
  // FIXME: This should likely be tracked as an APInt to remove any host
 | 
						|
  // assumptions about the width of size_t on the target.
 | 
						|
  uint64_t Value = 0;
 | 
						|
  if (!T->isDependentType())
 | 
						|
    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
 | 
						|
 | 
						|
  // While the specification for these traits from the Embarcadero C++
 | 
						|
  // compiler's documentation says the return type is 'unsigned int', Clang
 | 
						|
  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
 | 
						|
  // compiler, there is no difference. On several other platforms this is an
 | 
						|
  // important distinction.
 | 
						|
  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
 | 
						|
                                                DimExpr, RParen,
 | 
						|
                                                Context.getSizeType()));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
 | 
						|
                                      SourceLocation KWLoc,
 | 
						|
                                      Expr *Queried,
 | 
						|
                                      SourceLocation RParen) {
 | 
						|
  // If error parsing the expression, ignore.
 | 
						|
  if (!Queried)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
 | 
						|
 | 
						|
  return move(Result);
 | 
						|
}
 | 
						|
 | 
						|
static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
 | 
						|
  switch (ET) {
 | 
						|
  case ET_IsLValueExpr: return E->isLValue();
 | 
						|
  case ET_IsRValueExpr: return E->isRValue();
 | 
						|
  }
 | 
						|
  llvm_unreachable("Expression trait not covered by switch");
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
 | 
						|
                                      SourceLocation KWLoc,
 | 
						|
                                      Expr *Queried,
 | 
						|
                                      SourceLocation RParen) {
 | 
						|
  if (Queried->isTypeDependent()) {
 | 
						|
    // Delay type-checking for type-dependent expressions.
 | 
						|
  } else if (Queried->getType()->isPlaceholderType()) {
 | 
						|
    ExprResult PE = CheckPlaceholderExpr(Queried);
 | 
						|
    if (PE.isInvalid()) return ExprError();
 | 
						|
    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Value = EvaluateExpressionTrait(ET, Queried);
 | 
						|
 | 
						|
  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
 | 
						|
                                                 RParen, Context.BoolTy));
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckPointerToMemberOperands(ExprResult &lex, ExprResult &rex,
 | 
						|
                                            ExprValueKind &VK,
 | 
						|
                                            SourceLocation Loc,
 | 
						|
                                            bool isIndirect) {
 | 
						|
  const char *OpSpelling = isIndirect ? "->*" : ".*";
 | 
						|
  // C++ 5.5p2
 | 
						|
  //   The binary operator .* [p3: ->*] binds its second operand, which shall
 | 
						|
  //   be of type "pointer to member of T" (where T is a completely-defined
 | 
						|
  //   class type) [...]
 | 
						|
  QualType RType = rex.get()->getType();
 | 
						|
  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
 | 
						|
  if (!MemPtr) {
 | 
						|
    Diag(Loc, diag::err_bad_memptr_rhs)
 | 
						|
      << OpSpelling << RType << rex.get()->getSourceRange();
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Class(MemPtr->getClass(), 0);
 | 
						|
 | 
						|
  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
 | 
						|
  // member pointer points must be completely-defined. However, there is no
 | 
						|
  // reason for this semantic distinction, and the rule is not enforced by
 | 
						|
  // other compilers. Therefore, we do not check this property, as it is
 | 
						|
  // likely to be considered a defect.
 | 
						|
 | 
						|
  // C++ 5.5p2
 | 
						|
  //   [...] to its first operand, which shall be of class T or of a class of
 | 
						|
  //   which T is an unambiguous and accessible base class. [p3: a pointer to
 | 
						|
  //   such a class]
 | 
						|
  QualType LType = lex.get()->getType();
 | 
						|
  if (isIndirect) {
 | 
						|
    if (const PointerType *Ptr = LType->getAs<PointerType>())
 | 
						|
      LType = Ptr->getPointeeType();
 | 
						|
    else {
 | 
						|
      Diag(Loc, diag::err_bad_memptr_lhs)
 | 
						|
        << OpSpelling << 1 << LType
 | 
						|
        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Context.hasSameUnqualifiedType(Class, LType)) {
 | 
						|
    // If we want to check the hierarchy, we need a complete type.
 | 
						|
    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
 | 
						|
        << OpSpelling << (int)isIndirect)) {
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | 
						|
                       /*DetectVirtual=*/false);
 | 
						|
    // FIXME: Would it be useful to print full ambiguity paths, or is that
 | 
						|
    // overkill?
 | 
						|
    if (!IsDerivedFrom(LType, Class, Paths) ||
 | 
						|
        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
 | 
						|
      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
 | 
						|
        << (int)isIndirect << lex.get()->getType();
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    // Cast LHS to type of use.
 | 
						|
    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
 | 
						|
    ExprValueKind VK =
 | 
						|
        isIndirect ? VK_RValue : CastCategory(lex.get());
 | 
						|
 | 
						|
    CXXCastPath BasePath;
 | 
						|
    BuildBasePathArray(Paths, BasePath);
 | 
						|
    lex = ImpCastExprToType(lex.take(), UseType, CK_DerivedToBase, VK, &BasePath);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CXXScalarValueInitExpr>(rex.get()->IgnoreParens())) {
 | 
						|
    // Diagnose use of pointer-to-member type which when used as
 | 
						|
    // the functional cast in a pointer-to-member expression.
 | 
						|
    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
 | 
						|
     return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ 5.5p2
 | 
						|
  //   The result is an object or a function of the type specified by the
 | 
						|
  //   second operand.
 | 
						|
  // The cv qualifiers are the union of those in the pointer and the left side,
 | 
						|
  // in accordance with 5.5p5 and 5.2.5.
 | 
						|
  QualType Result = MemPtr->getPointeeType();
 | 
						|
  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
 | 
						|
 | 
						|
  // C++0x [expr.mptr.oper]p6:
 | 
						|
  //   In a .* expression whose object expression is an rvalue, the program is
 | 
						|
  //   ill-formed if the second operand is a pointer to member function with
 | 
						|
  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
 | 
						|
  //   expression is an lvalue, the program is ill-formed if the second operand
 | 
						|
  //   is a pointer to member function with ref-qualifier &&.
 | 
						|
  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
 | 
						|
    switch (Proto->getRefQualifier()) {
 | 
						|
    case RQ_None:
 | 
						|
      // Do nothing
 | 
						|
      break;
 | 
						|
 | 
						|
    case RQ_LValue:
 | 
						|
      if (!isIndirect && !lex.get()->Classify(Context).isLValue())
 | 
						|
        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
 | 
						|
          << RType << 1 << lex.get()->getSourceRange();
 | 
						|
      break;
 | 
						|
 | 
						|
    case RQ_RValue:
 | 
						|
      if (isIndirect || !lex.get()->Classify(Context).isRValue())
 | 
						|
        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
 | 
						|
          << RType << 0 << lex.get()->getSourceRange();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [expr.mptr.oper]p6:
 | 
						|
  //   The result of a .* expression whose second operand is a pointer
 | 
						|
  //   to a data member is of the same value category as its
 | 
						|
  //   first operand. The result of a .* expression whose second
 | 
						|
  //   operand is a pointer to a member function is a prvalue. The
 | 
						|
  //   result of an ->* expression is an lvalue if its second operand
 | 
						|
  //   is a pointer to data member and a prvalue otherwise.
 | 
						|
  if (Result->isFunctionType()) {
 | 
						|
    VK = VK_RValue;
 | 
						|
    return Context.BoundMemberTy;
 | 
						|
  } else if (isIndirect) {
 | 
						|
    VK = VK_LValue;
 | 
						|
  } else {
 | 
						|
    VK = lex.get()->getValueKind();
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to convert a type to another according to C++0x 5.16p3.
 | 
						|
///
 | 
						|
/// This is part of the parameter validation for the ? operator. If either
 | 
						|
/// value operand is a class type, the two operands are attempted to be
 | 
						|
/// converted to each other. This function does the conversion in one direction.
 | 
						|
/// It returns true if the program is ill-formed and has already been diagnosed
 | 
						|
/// as such.
 | 
						|
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
 | 
						|
                                SourceLocation QuestionLoc,
 | 
						|
                                bool &HaveConversion,
 | 
						|
                                QualType &ToType) {
 | 
						|
  HaveConversion = false;
 | 
						|
  ToType = To->getType();
 | 
						|
 | 
						|
  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
 | 
						|
                                                           SourceLocation());
 | 
						|
  // C++0x 5.16p3
 | 
						|
  //   The process for determining whether an operand expression E1 of type T1
 | 
						|
  //   can be converted to match an operand expression E2 of type T2 is defined
 | 
						|
  //   as follows:
 | 
						|
  //   -- If E2 is an lvalue:
 | 
						|
  bool ToIsLvalue = To->isLValue();
 | 
						|
  if (ToIsLvalue) {
 | 
						|
    //   E1 can be converted to match E2 if E1 can be implicitly converted to
 | 
						|
    //   type "lvalue reference to T2", subject to the constraint that in the
 | 
						|
    //   conversion the reference must bind directly to E1.
 | 
						|
    QualType T = Self.Context.getLValueReferenceType(ToType);
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
 | 
						|
 | 
						|
    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
 | 
						|
    if (InitSeq.isDirectReferenceBinding()) {
 | 
						|
      ToType = T;
 | 
						|
      HaveConversion = true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (InitSeq.isAmbiguous())
 | 
						|
      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
 | 
						|
  //      -- if E1 and E2 have class type, and the underlying class types are
 | 
						|
  //         the same or one is a base class of the other:
 | 
						|
  QualType FTy = From->getType();
 | 
						|
  QualType TTy = To->getType();
 | 
						|
  const RecordType *FRec = FTy->getAs<RecordType>();
 | 
						|
  const RecordType *TRec = TTy->getAs<RecordType>();
 | 
						|
  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
 | 
						|
                       Self.IsDerivedFrom(FTy, TTy);
 | 
						|
  if (FRec && TRec &&
 | 
						|
      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
 | 
						|
    //         E1 can be converted to match E2 if the class of T2 is the
 | 
						|
    //         same type as, or a base class of, the class of T1, and
 | 
						|
    //         [cv2 > cv1].
 | 
						|
    if (FRec == TRec || FDerivedFromT) {
 | 
						|
      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
 | 
						|
        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
 | 
						|
        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
 | 
						|
        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
 | 
						|
          HaveConversion = true;
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        if (InitSeq.isAmbiguous())
 | 
						|
          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
 | 
						|
  //        implicitly converted to the type that expression E2 would have
 | 
						|
  //        if E2 were converted to an rvalue (or the type it has, if E2 is
 | 
						|
  //        an rvalue).
 | 
						|
  //
 | 
						|
  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
 | 
						|
  // to the array-to-pointer or function-to-pointer conversions.
 | 
						|
  if (!TTy->getAs<TagType>())
 | 
						|
    TTy = TTy.getUnqualifiedType();
 | 
						|
 | 
						|
  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
 | 
						|
  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
 | 
						|
  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
 | 
						|
  ToType = TTy;
 | 
						|
  if (InitSeq.isAmbiguous())
 | 
						|
    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to find a common type for two according to C++0x 5.16p5.
 | 
						|
///
 | 
						|
/// This is part of the parameter validation for the ? operator. If either
 | 
						|
/// value operand is a class type, overload resolution is used to find a
 | 
						|
/// conversion to a common type.
 | 
						|
static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
 | 
						|
                                    SourceLocation QuestionLoc) {
 | 
						|
  Expr *Args[2] = { LHS.get(), RHS.get() };
 | 
						|
  OverloadCandidateSet CandidateSet(QuestionLoc);
 | 
						|
  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
 | 
						|
                                    CandidateSet);
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
 | 
						|
    case OR_Success: {
 | 
						|
      // We found a match. Perform the conversions on the arguments and move on.
 | 
						|
      ExprResult LHSRes =
 | 
						|
        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
 | 
						|
                                       Best->Conversions[0], Sema::AA_Converting);
 | 
						|
      if (LHSRes.isInvalid())
 | 
						|
        break;
 | 
						|
      LHS = move(LHSRes);
 | 
						|
 | 
						|
      ExprResult RHSRes =
 | 
						|
        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
 | 
						|
                                       Best->Conversions[1], Sema::AA_Converting);
 | 
						|
      if (RHSRes.isInvalid())
 | 
						|
        break;
 | 
						|
      RHS = move(RHSRes);
 | 
						|
      if (Best->Function)
 | 
						|
        Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
 | 
						|
      // Emit a better diagnostic if one of the expressions is a null pointer
 | 
						|
      // constant and the other is a pointer type. In this case, the user most
 | 
						|
      // likely forgot to take the address of the other expression.
 | 
						|
      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
 | 
						|
        return true;
 | 
						|
 | 
						|
      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | 
						|
        << LHS.get()->getType() << RHS.get()->getType()
 | 
						|
        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | 
						|
      return true;
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
 | 
						|
        << LHS.get()->getType() << RHS.get()->getType()
 | 
						|
        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | 
						|
      // FIXME: Print the possible common types by printing the return types of
 | 
						|
      // the viable candidates.
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      assert(false && "Conditional operator has only built-in overloads");
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform an "extended" implicit conversion as returned by
 | 
						|
/// TryClassUnification.
 | 
						|
static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
 | 
						|
  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
 | 
						|
  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
 | 
						|
                                                           SourceLocation());
 | 
						|
  Expr *Arg = E.take();
 | 
						|
  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
 | 
						|
  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
 | 
						|
  if (Result.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  E = Result;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the operands of ?: under C++ semantics.
 | 
						|
///
 | 
						|
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
 | 
						|
/// extension. In this case, LHS == Cond. (But they're not aliases.)
 | 
						|
QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
 | 
						|
                                           ExprValueKind &VK, ExprObjectKind &OK,
 | 
						|
                                           SourceLocation QuestionLoc) {
 | 
						|
  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
 | 
						|
  // interface pointers.
 | 
						|
 | 
						|
  // C++0x 5.16p1
 | 
						|
  //   The first expression is contextually converted to bool.
 | 
						|
  if (!Cond.get()->isTypeDependent()) {
 | 
						|
    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
 | 
						|
    if (CondRes.isInvalid())
 | 
						|
      return QualType();
 | 
						|
    Cond = move(CondRes);
 | 
						|
  }
 | 
						|
 | 
						|
  // Assume r-value.
 | 
						|
  VK = VK_RValue;
 | 
						|
  OK = OK_Ordinary;
 | 
						|
 | 
						|
  // Either of the arguments dependent?
 | 
						|
  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
 | 
						|
    return Context.DependentTy;
 | 
						|
 | 
						|
  // C++0x 5.16p2
 | 
						|
  //   If either the second or the third operand has type (cv) void, ...
 | 
						|
  QualType LTy = LHS.get()->getType();
 | 
						|
  QualType RTy = RHS.get()->getType();
 | 
						|
  bool LVoid = LTy->isVoidType();
 | 
						|
  bool RVoid = RTy->isVoidType();
 | 
						|
  if (LVoid || RVoid) {
 | 
						|
    //   ... then the [l2r] conversions are performed on the second and third
 | 
						|
    //   operands ...
 | 
						|
    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
 | 
						|
    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
 | 
						|
    if (LHS.isInvalid() || RHS.isInvalid())
 | 
						|
      return QualType();
 | 
						|
    LTy = LHS.get()->getType();
 | 
						|
    RTy = RHS.get()->getType();
 | 
						|
 | 
						|
    //   ... and one of the following shall hold:
 | 
						|
    //   -- The second or the third operand (but not both) is a throw-
 | 
						|
    //      expression; the result is of the type of the other and is an rvalue.
 | 
						|
    bool LThrow = isa<CXXThrowExpr>(LHS.get());
 | 
						|
    bool RThrow = isa<CXXThrowExpr>(RHS.get());
 | 
						|
    if (LThrow && !RThrow)
 | 
						|
      return RTy;
 | 
						|
    if (RThrow && !LThrow)
 | 
						|
      return LTy;
 | 
						|
 | 
						|
    //   -- Both the second and third operands have type void; the result is of
 | 
						|
    //      type void and is an rvalue.
 | 
						|
    if (LVoid && RVoid)
 | 
						|
      return Context.VoidTy;
 | 
						|
 | 
						|
    // Neither holds, error.
 | 
						|
    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
 | 
						|
      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
 | 
						|
      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Neither is void.
 | 
						|
 | 
						|
  // C++0x 5.16p3
 | 
						|
  //   Otherwise, if the second and third operand have different types, and
 | 
						|
  //   either has (cv) class type, and attempt is made to convert each of those
 | 
						|
  //   operands to the other.
 | 
						|
  if (!Context.hasSameType(LTy, RTy) &&
 | 
						|
      (LTy->isRecordType() || RTy->isRecordType())) {
 | 
						|
    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
 | 
						|
    // These return true if a single direction is already ambiguous.
 | 
						|
    QualType L2RType, R2LType;
 | 
						|
    bool HaveL2R, HaveR2L;
 | 
						|
    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
 | 
						|
      return QualType();
 | 
						|
    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    //   If both can be converted, [...] the program is ill-formed.
 | 
						|
    if (HaveL2R && HaveR2L) {
 | 
						|
      Diag(QuestionLoc, diag::err_conditional_ambiguous)
 | 
						|
        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    //   If exactly one conversion is possible, that conversion is applied to
 | 
						|
    //   the chosen operand and the converted operands are used in place of the
 | 
						|
    //   original operands for the remainder of this section.
 | 
						|
    if (HaveL2R) {
 | 
						|
      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
 | 
						|
        return QualType();
 | 
						|
      LTy = LHS.get()->getType();
 | 
						|
    } else if (HaveR2L) {
 | 
						|
      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
 | 
						|
        return QualType();
 | 
						|
      RTy = RHS.get()->getType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x 5.16p4
 | 
						|
  //   If the second and third operands are glvalues of the same value
 | 
						|
  //   category and have the same type, the result is of that type and
 | 
						|
  //   value category and it is a bit-field if the second or the third
 | 
						|
  //   operand is a bit-field, or if both are bit-fields.
 | 
						|
  // We only extend this to bitfields, not to the crazy other kinds of
 | 
						|
  // l-values.
 | 
						|
  bool Same = Context.hasSameType(LTy, RTy);
 | 
						|
  if (Same &&
 | 
						|
      LHS.get()->isGLValue() &&
 | 
						|
      LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
 | 
						|
      LHS.get()->isOrdinaryOrBitFieldObject() &&
 | 
						|
      RHS.get()->isOrdinaryOrBitFieldObject()) {
 | 
						|
    VK = LHS.get()->getValueKind();
 | 
						|
    if (LHS.get()->getObjectKind() == OK_BitField ||
 | 
						|
        RHS.get()->getObjectKind() == OK_BitField)
 | 
						|
      OK = OK_BitField;
 | 
						|
    return LTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x 5.16p5
 | 
						|
  //   Otherwise, the result is an rvalue. If the second and third operands
 | 
						|
  //   do not have the same type, and either has (cv) class type, ...
 | 
						|
  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
 | 
						|
    //   ... overload resolution is used to determine the conversions (if any)
 | 
						|
    //   to be applied to the operands. If the overload resolution fails, the
 | 
						|
    //   program is ill-formed.
 | 
						|
    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
 | 
						|
      return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x 5.16p6
 | 
						|
  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
 | 
						|
  //   conversions are performed on the second and third operands.
 | 
						|
  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
 | 
						|
  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
 | 
						|
  if (LHS.isInvalid() || RHS.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  LTy = LHS.get()->getType();
 | 
						|
  RTy = RHS.get()->getType();
 | 
						|
 | 
						|
  //   After those conversions, one of the following shall hold:
 | 
						|
  //   -- The second and third operands have the same type; the result
 | 
						|
  //      is of that type. If the operands have class type, the result
 | 
						|
  //      is a prvalue temporary of the result type, which is
 | 
						|
  //      copy-initialized from either the second operand or the third
 | 
						|
  //      operand depending on the value of the first operand.
 | 
						|
  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
 | 
						|
    if (LTy->isRecordType()) {
 | 
						|
      // The operands have class type. Make a temporary copy.
 | 
						|
      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
 | 
						|
      ExprResult LHSCopy = PerformCopyInitialization(Entity,
 | 
						|
                                                     SourceLocation(),
 | 
						|
                                                     LHS);
 | 
						|
      if (LHSCopy.isInvalid())
 | 
						|
        return QualType();
 | 
						|
 | 
						|
      ExprResult RHSCopy = PerformCopyInitialization(Entity,
 | 
						|
                                                     SourceLocation(),
 | 
						|
                                                     RHS);
 | 
						|
      if (RHSCopy.isInvalid())
 | 
						|
        return QualType();
 | 
						|
 | 
						|
      LHS = LHSCopy;
 | 
						|
      RHS = RHSCopy;
 | 
						|
    }
 | 
						|
 | 
						|
    return LTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Extension: conditional operator involving vector types.
 | 
						|
  if (LTy->isVectorType() || RTy->isVectorType())
 | 
						|
    return CheckVectorOperands(QuestionLoc, LHS, RHS);
 | 
						|
 | 
						|
  //   -- The second and third operands have arithmetic or enumeration type;
 | 
						|
  //      the usual arithmetic conversions are performed to bring them to a
 | 
						|
  //      common type, and the result is of that type.
 | 
						|
  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
 | 
						|
    UsualArithmeticConversions(LHS, RHS);
 | 
						|
    if (LHS.isInvalid() || RHS.isInvalid())
 | 
						|
      return QualType();
 | 
						|
    return LHS.get()->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  //   -- The second and third operands have pointer type, or one has pointer
 | 
						|
  //      type and the other is a null pointer constant; pointer conversions
 | 
						|
  //      and qualification conversions are performed to bring them to their
 | 
						|
  //      composite pointer type. The result is of the composite pointer type.
 | 
						|
  //   -- The second and third operands have pointer to member type, or one has
 | 
						|
  //      pointer to member type and the other is a null pointer constant;
 | 
						|
  //      pointer to member conversions and qualification conversions are
 | 
						|
  //      performed to bring them to a common type, whose cv-qualification
 | 
						|
  //      shall match the cv-qualification of either the second or the third
 | 
						|
  //      operand. The result is of the common type.
 | 
						|
  bool NonStandardCompositeType = false;
 | 
						|
  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
 | 
						|
                              isSFINAEContext()? 0 : &NonStandardCompositeType);
 | 
						|
  if (!Composite.isNull()) {
 | 
						|
    if (NonStandardCompositeType)
 | 
						|
      Diag(QuestionLoc,
 | 
						|
           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
 | 
						|
        << LTy << RTy << Composite
 | 
						|
        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | 
						|
 | 
						|
    return Composite;
 | 
						|
  }
 | 
						|
 | 
						|
  // Similarly, attempt to find composite type of two objective-c pointers.
 | 
						|
  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
 | 
						|
  if (!Composite.isNull())
 | 
						|
    return Composite;
 | 
						|
 | 
						|
  // Check if we are using a null with a non-pointer type.
 | 
						|
  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | 
						|
    << LHS.get()->getType() << RHS.get()->getType()
 | 
						|
    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find a merged pointer type and convert the two expressions to it.
 | 
						|
///
 | 
						|
/// This finds the composite pointer type (or member pointer type) for @p E1
 | 
						|
/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
 | 
						|
/// type and returns it.
 | 
						|
/// It does not emit diagnostics.
 | 
						|
///
 | 
						|
/// \param Loc The location of the operator requiring these two expressions to
 | 
						|
/// be converted to the composite pointer type.
 | 
						|
///
 | 
						|
/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
 | 
						|
/// a non-standard (but still sane) composite type to which both expressions
 | 
						|
/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
 | 
						|
/// will be set true.
 | 
						|
QualType Sema::FindCompositePointerType(SourceLocation Loc,
 | 
						|
                                        Expr *&E1, Expr *&E2,
 | 
						|
                                        bool *NonStandardCompositeType) {
 | 
						|
  if (NonStandardCompositeType)
 | 
						|
    *NonStandardCompositeType = false;
 | 
						|
 | 
						|
  assert(getLangOptions().CPlusPlus && "This function assumes C++");
 | 
						|
  QualType T1 = E1->getType(), T2 = E2->getType();
 | 
						|
 | 
						|
  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
 | 
						|
      !T2->isAnyPointerType() && !T2->isMemberPointerType())
 | 
						|
   return QualType();
 | 
						|
 | 
						|
  // C++0x 5.9p2
 | 
						|
  //   Pointer conversions and qualification conversions are performed on
 | 
						|
  //   pointer operands to bring them to their composite pointer type. If
 | 
						|
  //   one operand is a null pointer constant, the composite pointer type is
 | 
						|
  //   the type of the other operand.
 | 
						|
  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | 
						|
    if (T2->isMemberPointerType())
 | 
						|
      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
 | 
						|
    else
 | 
						|
      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
 | 
						|
    return T2;
 | 
						|
  }
 | 
						|
  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | 
						|
    if (T1->isMemberPointerType())
 | 
						|
      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
 | 
						|
    else
 | 
						|
      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
 | 
						|
    return T1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now both have to be pointers or member pointers.
 | 
						|
  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
 | 
						|
      (!T2->isPointerType() && !T2->isMemberPointerType()))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
 | 
						|
  //   the other has type "pointer to cv2 T" and the composite pointer type is
 | 
						|
  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
 | 
						|
  //   Otherwise, the composite pointer type is a pointer type similar to the
 | 
						|
  //   type of one of the operands, with a cv-qualification signature that is
 | 
						|
  //   the union of the cv-qualification signatures of the operand types.
 | 
						|
  // In practice, the first part here is redundant; it's subsumed by the second.
 | 
						|
  // What we do here is, we build the two possible composite types, and try the
 | 
						|
  // conversions in both directions. If only one works, or if the two composite
 | 
						|
  // types are the same, we have succeeded.
 | 
						|
  // FIXME: extended qualifiers?
 | 
						|
  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
 | 
						|
  QualifierVector QualifierUnion;
 | 
						|
  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
 | 
						|
      ContainingClassVector;
 | 
						|
  ContainingClassVector MemberOfClass;
 | 
						|
  QualType Composite1 = Context.getCanonicalType(T1),
 | 
						|
           Composite2 = Context.getCanonicalType(T2);
 | 
						|
  unsigned NeedConstBefore = 0;
 | 
						|
  do {
 | 
						|
    const PointerType *Ptr1, *Ptr2;
 | 
						|
    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
 | 
						|
        (Ptr2 = Composite2->getAs<PointerType>())) {
 | 
						|
      Composite1 = Ptr1->getPointeeType();
 | 
						|
      Composite2 = Ptr2->getPointeeType();
 | 
						|
 | 
						|
      // If we're allowed to create a non-standard composite type, keep track
 | 
						|
      // of where we need to fill in additional 'const' qualifiers.
 | 
						|
      if (NonStandardCompositeType &&
 | 
						|
          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
 | 
						|
        NeedConstBefore = QualifierUnion.size();
 | 
						|
 | 
						|
      QualifierUnion.push_back(
 | 
						|
                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
 | 
						|
      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const MemberPointerType *MemPtr1, *MemPtr2;
 | 
						|
    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
 | 
						|
        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
 | 
						|
      Composite1 = MemPtr1->getPointeeType();
 | 
						|
      Composite2 = MemPtr2->getPointeeType();
 | 
						|
 | 
						|
      // If we're allowed to create a non-standard composite type, keep track
 | 
						|
      // of where we need to fill in additional 'const' qualifiers.
 | 
						|
      if (NonStandardCompositeType &&
 | 
						|
          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
 | 
						|
        NeedConstBefore = QualifierUnion.size();
 | 
						|
 | 
						|
      QualifierUnion.push_back(
 | 
						|
                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
 | 
						|
      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
 | 
						|
                                             MemPtr2->getClass()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: block pointer types?
 | 
						|
 | 
						|
    // Cannot unwrap any more types.
 | 
						|
    break;
 | 
						|
  } while (true);
 | 
						|
 | 
						|
  if (NeedConstBefore && NonStandardCompositeType) {
 | 
						|
    // Extension: Add 'const' to qualifiers that come before the first qualifier
 | 
						|
    // mismatch, so that our (non-standard!) composite type meets the
 | 
						|
    // requirements of C++ [conv.qual]p4 bullet 3.
 | 
						|
    for (unsigned I = 0; I != NeedConstBefore; ++I) {
 | 
						|
      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
 | 
						|
        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
 | 
						|
        *NonStandardCompositeType = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrap the composites as pointers or member pointers with the union CVRs.
 | 
						|
  ContainingClassVector::reverse_iterator MOC
 | 
						|
    = MemberOfClass.rbegin();
 | 
						|
  for (QualifierVector::reverse_iterator
 | 
						|
         I = QualifierUnion.rbegin(),
 | 
						|
         E = QualifierUnion.rend();
 | 
						|
       I != E; (void)++I, ++MOC) {
 | 
						|
    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
 | 
						|
    if (MOC->first && MOC->second) {
 | 
						|
      // Rebuild member pointer type
 | 
						|
      Composite1 = Context.getMemberPointerType(
 | 
						|
                                    Context.getQualifiedType(Composite1, Quals),
 | 
						|
                                    MOC->first);
 | 
						|
      Composite2 = Context.getMemberPointerType(
 | 
						|
                                    Context.getQualifiedType(Composite2, Quals),
 | 
						|
                                    MOC->second);
 | 
						|
    } else {
 | 
						|
      // Rebuild pointer type
 | 
						|
      Composite1
 | 
						|
        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
 | 
						|
      Composite2
 | 
						|
        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to convert to the first composite pointer type.
 | 
						|
  InitializedEntity Entity1
 | 
						|
    = InitializedEntity::InitializeTemporary(Composite1);
 | 
						|
  InitializationKind Kind
 | 
						|
    = InitializationKind::CreateCopy(Loc, SourceLocation());
 | 
						|
  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
 | 
						|
  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
 | 
						|
 | 
						|
  if (E1ToC1 && E2ToC1) {
 | 
						|
    // Conversion to Composite1 is viable.
 | 
						|
    if (!Context.hasSameType(Composite1, Composite2)) {
 | 
						|
      // Composite2 is a different type from Composite1. Check whether
 | 
						|
      // Composite2 is also viable.
 | 
						|
      InitializedEntity Entity2
 | 
						|
        = InitializedEntity::InitializeTemporary(Composite2);
 | 
						|
      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
 | 
						|
      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
 | 
						|
      if (E1ToC2 && E2ToC2) {
 | 
						|
        // Both Composite1 and Composite2 are viable and are different;
 | 
						|
        // this is an ambiguity.
 | 
						|
        return QualType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Convert E1 to Composite1
 | 
						|
    ExprResult E1Result
 | 
						|
      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
 | 
						|
    if (E1Result.isInvalid())
 | 
						|
      return QualType();
 | 
						|
    E1 = E1Result.takeAs<Expr>();
 | 
						|
 | 
						|
    // Convert E2 to Composite1
 | 
						|
    ExprResult E2Result
 | 
						|
      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
 | 
						|
    if (E2Result.isInvalid())
 | 
						|
      return QualType();
 | 
						|
    E2 = E2Result.takeAs<Expr>();
 | 
						|
 | 
						|
    return Composite1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether Composite2 is viable.
 | 
						|
  InitializedEntity Entity2
 | 
						|
    = InitializedEntity::InitializeTemporary(Composite2);
 | 
						|
  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
 | 
						|
  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
 | 
						|
  if (!E1ToC2 || !E2ToC2)
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // Convert E1 to Composite2
 | 
						|
  ExprResult E1Result
 | 
						|
    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
 | 
						|
  if (E1Result.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  E1 = E1Result.takeAs<Expr>();
 | 
						|
 | 
						|
  // Convert E2 to Composite2
 | 
						|
  ExprResult E2Result
 | 
						|
    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
 | 
						|
  if (E2Result.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  E2 = E2Result.takeAs<Expr>();
 | 
						|
 | 
						|
  return Composite2;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::MaybeBindToTemporary(Expr *E) {
 | 
						|
  if (!E)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (!Context.getLangOptions().CPlusPlus)
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
 | 
						|
 | 
						|
  const RecordType *RT = E->getType()->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  // If the result is a glvalue, we shouldn't bind it.
 | 
						|
  if (E->Classify(Context).isGLValue())
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  // That should be enough to guarantee that this type is complete.
 | 
						|
  // If it has a trivial destructor, we can avoid the extra copy.
 | 
						|
  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
 | 
						|
  ExprTemporaries.push_back(Temp);
 | 
						|
  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
 | 
						|
    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
 | 
						|
    CheckDestructorAccess(E->getExprLoc(), Destructor,
 | 
						|
                          PDiag(diag::err_access_dtor_temp)
 | 
						|
                            << E->getType());
 | 
						|
  }
 | 
						|
  // FIXME: Add the temporary to the temporaries vector.
 | 
						|
  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
 | 
						|
}
 | 
						|
 | 
						|
Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
 | 
						|
  assert(SubExpr && "sub expression can't be null!");
 | 
						|
 | 
						|
  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
 | 
						|
  assert(ExprTemporaries.size() >= FirstTemporary);
 | 
						|
  if (ExprTemporaries.size() == FirstTemporary)
 | 
						|
    return SubExpr;
 | 
						|
 | 
						|
  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
 | 
						|
                                     &ExprTemporaries[FirstTemporary],
 | 
						|
                                     ExprTemporaries.size() - FirstTemporary);
 | 
						|
  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
 | 
						|
                        ExprTemporaries.end());
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
 | 
						|
  if (SubExpr.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
 | 
						|
}
 | 
						|
 | 
						|
Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
 | 
						|
  assert(SubStmt && "sub statement can't be null!");
 | 
						|
 | 
						|
  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
 | 
						|
  assert(ExprTemporaries.size() >= FirstTemporary);
 | 
						|
  if (ExprTemporaries.size() == FirstTemporary)
 | 
						|
    return SubStmt;
 | 
						|
 | 
						|
  // FIXME: In order to attach the temporaries, wrap the statement into
 | 
						|
  // a StmtExpr; currently this is only used for asm statements.
 | 
						|
  // This is hacky, either create a new CXXStmtWithTemporaries statement or
 | 
						|
  // a new AsmStmtWithTemporaries.
 | 
						|
  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
 | 
						|
                                                      SourceLocation(),
 | 
						|
                                                      SourceLocation());
 | 
						|
  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
 | 
						|
                                   SourceLocation());
 | 
						|
  return MaybeCreateExprWithCleanups(E);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
 | 
						|
                                   tok::TokenKind OpKind, ParsedType &ObjectType,
 | 
						|
                                   bool &MayBePseudoDestructor) {
 | 
						|
  // Since this might be a postfix expression, get rid of ParenListExprs.
 | 
						|
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
 | 
						|
  if (Result.isInvalid()) return ExprError();
 | 
						|
  Base = Result.get();
 | 
						|
 | 
						|
  QualType BaseType = Base->getType();
 | 
						|
  MayBePseudoDestructor = false;
 | 
						|
  if (BaseType->isDependentType()) {
 | 
						|
    // If we have a pointer to a dependent type and are using the -> operator,
 | 
						|
    // the object type is the type that the pointer points to. We might still
 | 
						|
    // have enough information about that type to do something useful.
 | 
						|
    if (OpKind == tok::arrow)
 | 
						|
      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
 | 
						|
        BaseType = Ptr->getPointeeType();
 | 
						|
 | 
						|
    ObjectType = ParsedType::make(BaseType);
 | 
						|
    MayBePseudoDestructor = true;
 | 
						|
    return Owned(Base);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.match.oper]p8:
 | 
						|
  //   [...] When operator->returns, the operator-> is applied  to the value
 | 
						|
  //   returned, with the original second operand.
 | 
						|
  if (OpKind == tok::arrow) {
 | 
						|
    // The set of types we've considered so far.
 | 
						|
    llvm::SmallPtrSet<CanQualType,8> CTypes;
 | 
						|
    llvm::SmallVector<SourceLocation, 8> Locations;
 | 
						|
    CTypes.insert(Context.getCanonicalType(BaseType));
 | 
						|
 | 
						|
    while (BaseType->isRecordType()) {
 | 
						|
      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
 | 
						|
      if (Result.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      Base = Result.get();
 | 
						|
      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
 | 
						|
        Locations.push_back(OpCall->getDirectCallee()->getLocation());
 | 
						|
      BaseType = Base->getType();
 | 
						|
      CanQualType CBaseType = Context.getCanonicalType(BaseType);
 | 
						|
      if (!CTypes.insert(CBaseType)) {
 | 
						|
        Diag(OpLoc, diag::err_operator_arrow_circular);
 | 
						|
        for (unsigned i = 0; i < Locations.size(); i++)
 | 
						|
          Diag(Locations[i], diag::note_declared_at);
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (BaseType->isPointerType())
 | 
						|
      BaseType = BaseType->getPointeeType();
 | 
						|
  }
 | 
						|
 | 
						|
  // We could end up with various non-record types here, such as extended
 | 
						|
  // vector types or Objective-C interfaces. Just return early and let
 | 
						|
  // ActOnMemberReferenceExpr do the work.
 | 
						|
  if (!BaseType->isRecordType()) {
 | 
						|
    // C++ [basic.lookup.classref]p2:
 | 
						|
    //   [...] If the type of the object expression is of pointer to scalar
 | 
						|
    //   type, the unqualified-id is looked up in the context of the complete
 | 
						|
    //   postfix-expression.
 | 
						|
    //
 | 
						|
    // This also indicates that we should be parsing a
 | 
						|
    // pseudo-destructor-name.
 | 
						|
    ObjectType = ParsedType();
 | 
						|
    MayBePseudoDestructor = true;
 | 
						|
    return Owned(Base);
 | 
						|
  }
 | 
						|
 | 
						|
  // The object type must be complete (or dependent).
 | 
						|
  if (!BaseType->isDependentType() &&
 | 
						|
      RequireCompleteType(OpLoc, BaseType,
 | 
						|
                          PDiag(diag::err_incomplete_member_access)))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // C++ [basic.lookup.classref]p2:
 | 
						|
  //   If the id-expression in a class member access (5.2.5) is an
 | 
						|
  //   unqualified-id, and the type of the object expression is of a class
 | 
						|
  //   type C (or of pointer to a class type C), the unqualified-id is looked
 | 
						|
  //   up in the scope of class C. [...]
 | 
						|
  ObjectType = ParsedType::make(BaseType);
 | 
						|
  return move(Base);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
 | 
						|
                                                   Expr *MemExpr) {
 | 
						|
  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
 | 
						|
  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
 | 
						|
    << isa<CXXPseudoDestructorExpr>(MemExpr)
 | 
						|
    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
 | 
						|
 | 
						|
  return ActOnCallExpr(/*Scope*/ 0,
 | 
						|
                       MemExpr,
 | 
						|
                       /*LPLoc*/ ExpectedLParenLoc,
 | 
						|
                       MultiExprArg(),
 | 
						|
                       /*RPLoc*/ ExpectedLParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
 | 
						|
                                           SourceLocation OpLoc,
 | 
						|
                                           tok::TokenKind OpKind,
 | 
						|
                                           const CXXScopeSpec &SS,
 | 
						|
                                           TypeSourceInfo *ScopeTypeInfo,
 | 
						|
                                           SourceLocation CCLoc,
 | 
						|
                                           SourceLocation TildeLoc,
 | 
						|
                                         PseudoDestructorTypeStorage Destructed,
 | 
						|
                                           bool HasTrailingLParen) {
 | 
						|
  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
 | 
						|
 | 
						|
  // C++ [expr.pseudo]p2:
 | 
						|
  //   The left-hand side of the dot operator shall be of scalar type. The
 | 
						|
  //   left-hand side of the arrow operator shall be of pointer to scalar type.
 | 
						|
  //   This scalar type is the object type.
 | 
						|
  QualType ObjectType = Base->getType();
 | 
						|
  if (OpKind == tok::arrow) {
 | 
						|
    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
 | 
						|
      ObjectType = Ptr->getPointeeType();
 | 
						|
    } else if (!Base->isTypeDependent()) {
 | 
						|
      // The user wrote "p->" when she probably meant "p."; fix it.
 | 
						|
      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | 
						|
        << ObjectType << true
 | 
						|
        << FixItHint::CreateReplacement(OpLoc, ".");
 | 
						|
      if (isSFINAEContext())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      OpKind = tok::period;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
 | 
						|
    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
 | 
						|
      << ObjectType << Base->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [expr.pseudo]p2:
 | 
						|
  //   [...] The cv-unqualified versions of the object type and of the type
 | 
						|
  //   designated by the pseudo-destructor-name shall be the same type.
 | 
						|
  if (DestructedTypeInfo) {
 | 
						|
    QualType DestructedType = DestructedTypeInfo->getType();
 | 
						|
    SourceLocation DestructedTypeStart
 | 
						|
      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | 
						|
    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
 | 
						|
        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
 | 
						|
      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
 | 
						|
        << ObjectType << DestructedType << Base->getSourceRange()
 | 
						|
        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
 | 
						|
 | 
						|
      // Recover by setting the destructed type to the object type.
 | 
						|
      DestructedType = ObjectType;
 | 
						|
      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
 | 
						|
                                                           DestructedTypeStart);
 | 
						|
      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [expr.pseudo]p2:
 | 
						|
  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
 | 
						|
  //   form
 | 
						|
  //
 | 
						|
  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
 | 
						|
  //
 | 
						|
  //   shall designate the same scalar type.
 | 
						|
  if (ScopeTypeInfo) {
 | 
						|
    QualType ScopeType = ScopeTypeInfo->getType();
 | 
						|
    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
 | 
						|
        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
 | 
						|
 | 
						|
      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
 | 
						|
           diag::err_pseudo_dtor_type_mismatch)
 | 
						|
        << ObjectType << ScopeType << Base->getSourceRange()
 | 
						|
        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
 | 
						|
 | 
						|
      ScopeType = QualType();
 | 
						|
      ScopeTypeInfo = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *Result
 | 
						|
    = new (Context) CXXPseudoDestructorExpr(Context, Base,
 | 
						|
                                            OpKind == tok::arrow, OpLoc,
 | 
						|
                                            SS.getWithLocInContext(Context),
 | 
						|
                                            ScopeTypeInfo,
 | 
						|
                                            CCLoc,
 | 
						|
                                            TildeLoc,
 | 
						|
                                            Destructed);
 | 
						|
 | 
						|
  if (HasTrailingLParen)
 | 
						|
    return Owned(Result);
 | 
						|
 | 
						|
  return DiagnoseDtorReference(Destructed.getLocation(), Result);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
 | 
						|
                                           SourceLocation OpLoc,
 | 
						|
                                           tok::TokenKind OpKind,
 | 
						|
                                           CXXScopeSpec &SS,
 | 
						|
                                           UnqualifiedId &FirstTypeName,
 | 
						|
                                           SourceLocation CCLoc,
 | 
						|
                                           SourceLocation TildeLoc,
 | 
						|
                                           UnqualifiedId &SecondTypeName,
 | 
						|
                                           bool HasTrailingLParen) {
 | 
						|
  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | 
						|
          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
 | 
						|
         "Invalid first type name in pseudo-destructor");
 | 
						|
  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | 
						|
          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
 | 
						|
         "Invalid second type name in pseudo-destructor");
 | 
						|
 | 
						|
  // C++ [expr.pseudo]p2:
 | 
						|
  //   The left-hand side of the dot operator shall be of scalar type. The
 | 
						|
  //   left-hand side of the arrow operator shall be of pointer to scalar type.
 | 
						|
  //   This scalar type is the object type.
 | 
						|
  QualType ObjectType = Base->getType();
 | 
						|
  if (OpKind == tok::arrow) {
 | 
						|
    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
 | 
						|
      ObjectType = Ptr->getPointeeType();
 | 
						|
    } else if (!ObjectType->isDependentType()) {
 | 
						|
      // The user wrote "p->" when she probably meant "p."; fix it.
 | 
						|
      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | 
						|
        << ObjectType << true
 | 
						|
        << FixItHint::CreateReplacement(OpLoc, ".");
 | 
						|
      if (isSFINAEContext())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      OpKind = tok::period;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the object type that we should use for name lookup purposes. Only
 | 
						|
  // record types and dependent types matter.
 | 
						|
  ParsedType ObjectTypePtrForLookup;
 | 
						|
  if (!SS.isSet()) {
 | 
						|
    if (ObjectType->isRecordType())
 | 
						|
      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
 | 
						|
    else if (ObjectType->isDependentType())
 | 
						|
      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the name of the type being destructed (following the ~) into a
 | 
						|
  // type (with source-location information).
 | 
						|
  QualType DestructedType;
 | 
						|
  TypeSourceInfo *DestructedTypeInfo = 0;
 | 
						|
  PseudoDestructorTypeStorage Destructed;
 | 
						|
  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
 | 
						|
    ParsedType T = getTypeName(*SecondTypeName.Identifier,
 | 
						|
                               SecondTypeName.StartLocation,
 | 
						|
                               S, &SS, true, false, ObjectTypePtrForLookup);
 | 
						|
    if (!T &&
 | 
						|
        ((SS.isSet() && !computeDeclContext(SS, false)) ||
 | 
						|
         (!SS.isSet() && ObjectType->isDependentType()))) {
 | 
						|
      // The name of the type being destroyed is a dependent name, and we
 | 
						|
      // couldn't find anything useful in scope. Just store the identifier and
 | 
						|
      // it's location, and we'll perform (qualified) name lookup again at
 | 
						|
      // template instantiation time.
 | 
						|
      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
 | 
						|
                                               SecondTypeName.StartLocation);
 | 
						|
    } else if (!T) {
 | 
						|
      Diag(SecondTypeName.StartLocation,
 | 
						|
           diag::err_pseudo_dtor_destructor_non_type)
 | 
						|
        << SecondTypeName.Identifier << ObjectType;
 | 
						|
      if (isSFINAEContext())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // Recover by assuming we had the right type all along.
 | 
						|
      DestructedType = ObjectType;
 | 
						|
    } else
 | 
						|
      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
 | 
						|
  } else {
 | 
						|
    // Resolve the template-id to a type.
 | 
						|
    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
 | 
						|
    ASTTemplateArgsPtr TemplateArgsPtr(*this,
 | 
						|
                                       TemplateId->getTemplateArgs(),
 | 
						|
                                       TemplateId->NumArgs);
 | 
						|
    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
 | 
						|
                                       TemplateId->Template,
 | 
						|
                                       TemplateId->TemplateNameLoc,
 | 
						|
                                       TemplateId->LAngleLoc,
 | 
						|
                                       TemplateArgsPtr,
 | 
						|
                                       TemplateId->RAngleLoc);
 | 
						|
    if (T.isInvalid() || !T.get()) {
 | 
						|
      // Recover by assuming we had the right type all along.
 | 
						|
      DestructedType = ObjectType;
 | 
						|
    } else
 | 
						|
      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we've performed some kind of recovery, (re-)build the type source
 | 
						|
  // information.
 | 
						|
  if (!DestructedType.isNull()) {
 | 
						|
    if (!DestructedTypeInfo)
 | 
						|
      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
 | 
						|
                                                  SecondTypeName.StartLocation);
 | 
						|
    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the name of the scope type (the type prior to '::') into a type.
 | 
						|
  TypeSourceInfo *ScopeTypeInfo = 0;
 | 
						|
  QualType ScopeType;
 | 
						|
  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | 
						|
      FirstTypeName.Identifier) {
 | 
						|
    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
 | 
						|
      ParsedType T = getTypeName(*FirstTypeName.Identifier,
 | 
						|
                                 FirstTypeName.StartLocation,
 | 
						|
                                 S, &SS, true, false, ObjectTypePtrForLookup);
 | 
						|
      if (!T) {
 | 
						|
        Diag(FirstTypeName.StartLocation,
 | 
						|
             diag::err_pseudo_dtor_destructor_non_type)
 | 
						|
          << FirstTypeName.Identifier << ObjectType;
 | 
						|
 | 
						|
        if (isSFINAEContext())
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        // Just drop this type. It's unnecessary anyway.
 | 
						|
        ScopeType = QualType();
 | 
						|
      } else
 | 
						|
        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
 | 
						|
    } else {
 | 
						|
      // Resolve the template-id to a type.
 | 
						|
      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
 | 
						|
      ASTTemplateArgsPtr TemplateArgsPtr(*this,
 | 
						|
                                         TemplateId->getTemplateArgs(),
 | 
						|
                                         TemplateId->NumArgs);
 | 
						|
      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
 | 
						|
                                         TemplateId->Template,
 | 
						|
                                         TemplateId->TemplateNameLoc,
 | 
						|
                                         TemplateId->LAngleLoc,
 | 
						|
                                         TemplateArgsPtr,
 | 
						|
                                         TemplateId->RAngleLoc);
 | 
						|
      if (T.isInvalid() || !T.get()) {
 | 
						|
        // Recover by dropping this type.
 | 
						|
        ScopeType = QualType();
 | 
						|
      } else
 | 
						|
        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ScopeType.isNull() && !ScopeTypeInfo)
 | 
						|
    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
 | 
						|
                                                  FirstTypeName.StartLocation);
 | 
						|
 | 
						|
 | 
						|
  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
 | 
						|
                                   ScopeTypeInfo, CCLoc, TildeLoc,
 | 
						|
                                   Destructed, HasTrailingLParen);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
 | 
						|
                                        CXXMethodDecl *Method) {
 | 
						|
  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
 | 
						|
                                          FoundDecl, Method);
 | 
						|
  if (Exp.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  MemberExpr *ME =
 | 
						|
      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
 | 
						|
                               SourceLocation(), Method->getType(),
 | 
						|
                               VK_RValue, OK_Ordinary);
 | 
						|
  QualType ResultType = Method->getResultType();
 | 
						|
  ExprValueKind VK = Expr::getValueKindForType(ResultType);
 | 
						|
  ResultType = ResultType.getNonLValueExprType(Context);
 | 
						|
 | 
						|
  MarkDeclarationReferenced(Exp.get()->getLocStart(), Method);
 | 
						|
  CXXMemberCallExpr *CE =
 | 
						|
    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
 | 
						|
                                    Exp.get()->getLocEnd());
 | 
						|
  return CE;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
 | 
						|
                                      SourceLocation RParen) {
 | 
						|
  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
 | 
						|
                                             Operand->CanThrow(Context),
 | 
						|
                                             KeyLoc, RParen));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
 | 
						|
                                   Expr *Operand, SourceLocation RParen) {
 | 
						|
  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
 | 
						|
}
 | 
						|
 | 
						|
/// Perform the conversions required for an expression used in a
 | 
						|
/// context that ignores the result.
 | 
						|
ExprResult Sema::IgnoredValueConversions(Expr *E) {
 | 
						|
  // C99 6.3.2.1:
 | 
						|
  //   [Except in specific positions,] an lvalue that does not have
 | 
						|
  //   array type is converted to the value stored in the
 | 
						|
  //   designated object (and is no longer an lvalue).
 | 
						|
  if (E->isRValue()) return Owned(E);
 | 
						|
 | 
						|
  // We always want to do this on ObjC property references.
 | 
						|
  if (E->getObjectKind() == OK_ObjCProperty) {
 | 
						|
    ExprResult Res = ConvertPropertyForRValue(E);
 | 
						|
    if (Res.isInvalid()) return Owned(E);
 | 
						|
    E = Res.take();
 | 
						|
    if (E->isRValue()) return Owned(E);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this rule does not apply in C++, at least not for the moment.
 | 
						|
  if (getLangOptions().CPlusPlus) return Owned(E);
 | 
						|
 | 
						|
  // GCC seems to also exclude expressions of incomplete enum type.
 | 
						|
  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
 | 
						|
    if (!T->getDecl()->isComplete()) {
 | 
						|
      // FIXME: stupid workaround for a codegen bug!
 | 
						|
      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
 | 
						|
      return Owned(E);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
 | 
						|
  if (Res.isInvalid())
 | 
						|
    return Owned(E);
 | 
						|
  E = Res.take();
 | 
						|
 | 
						|
  if (!E->getType()->isVoidType())
 | 
						|
    RequireCompleteType(E->getExprLoc(), E->getType(),
 | 
						|
                        diag::err_incomplete_type);
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
 | 
						|
  ExprResult FullExpr = Owned(FE);
 | 
						|
 | 
						|
  if (!FullExpr.get())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  FullExpr = CheckPlaceholderExpr(FullExpr.take());
 | 
						|
  if (FullExpr.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  FullExpr = IgnoredValueConversions(FullExpr.take());
 | 
						|
  if (FullExpr.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  CheckImplicitConversions(FullExpr.get());
 | 
						|
  return MaybeCreateExprWithCleanups(FullExpr);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
 | 
						|
  if (!FullStmt) return StmtError();
 | 
						|
 | 
						|
  return MaybeCreateStmtWithCleanups(FullStmt);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckMicrosoftIfExistsSymbol(CXXScopeSpec &SS,
 | 
						|
                                        UnqualifiedId &Name) {
 | 
						|
  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
 | 
						|
  DeclarationName TargetName = TargetNameInfo.getName();
 | 
						|
  if (!TargetName)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do the redeclaration lookup in the current scope.
 | 
						|
  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
 | 
						|
                 Sema::NotForRedeclaration);
 | 
						|
  R.suppressDiagnostics();
 | 
						|
  LookupParsedName(R, getCurScope(), &SS);
 | 
						|
  return !R.empty(); 
 | 
						|
}
 |