forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			920 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			920 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
namespace {
 | 
						|
class SimpleSValBuilder : public SValBuilder {
 | 
						|
protected:
 | 
						|
  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
 | 
						|
  virtual SVal evalCastFromLoc(Loc val, QualType castTy);
 | 
						|
 | 
						|
public:
 | 
						|
  SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
 | 
						|
                    GRStateManager &stateMgr)
 | 
						|
                    : SValBuilder(alloc, context, stateMgr) {}
 | 
						|
  virtual ~SimpleSValBuilder() {}
 | 
						|
 | 
						|
  virtual SVal evalMinus(NonLoc val);
 | 
						|
  virtual SVal evalComplement(NonLoc val);
 | 
						|
  virtual SVal evalBinOpNN(const GRState *state, BinaryOperator::Opcode op,
 | 
						|
                           NonLoc lhs, NonLoc rhs, QualType resultTy);
 | 
						|
  virtual SVal evalBinOpLL(const GRState *state, BinaryOperator::Opcode op,
 | 
						|
                           Loc lhs, Loc rhs, QualType resultTy);
 | 
						|
  virtual SVal evalBinOpLN(const GRState *state, BinaryOperator::Opcode op,
 | 
						|
                           Loc lhs, NonLoc rhs, QualType resultTy);
 | 
						|
 | 
						|
  /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
 | 
						|
  ///  (integer) value, that value is returned. Otherwise, returns NULL.
 | 
						|
  virtual const llvm::APSInt *getKnownValue(const GRState *state, SVal V);
 | 
						|
  
 | 
						|
  SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
 | 
						|
                     const llvm::APSInt &RHS, QualType resultTy);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
 | 
						|
                                           ASTContext &context,
 | 
						|
                                           GRStateManager &stateMgr) {
 | 
						|
  return new SimpleSValBuilder(alloc, context, stateMgr);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function for Casts.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
 | 
						|
 | 
						|
  bool isLocType = Loc::isLocType(castTy);
 | 
						|
 | 
						|
  if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
 | 
						|
    if (isLocType)
 | 
						|
      return LI->getLoc();
 | 
						|
 | 
						|
    // FIXME: Correctly support promotions/truncations.
 | 
						|
    unsigned castSize = Context.getTypeSize(castTy);
 | 
						|
    if (castSize == LI->getNumBits())
 | 
						|
      return val;
 | 
						|
    return makeLocAsInteger(LI->getLoc(), castSize);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SymExpr *se = val.getAsSymbolicExpression()) {
 | 
						|
    QualType T = Context.getCanonicalType(se->getType(Context));
 | 
						|
    if (T == Context.getCanonicalType(castTy))
 | 
						|
      return val;
 | 
						|
    
 | 
						|
    // FIXME: Remove this hack when we support symbolic truncation/extension.
 | 
						|
    // HACK: If both castTy and T are integers, ignore the cast.  This is
 | 
						|
    // not a permanent solution.  Eventually we want to precisely handle
 | 
						|
    // extension/truncation of symbolic integers.  This prevents us from losing
 | 
						|
    // precision when we assign 'x = y' and 'y' is symbolic and x and y are
 | 
						|
    // different integer types.
 | 
						|
    if (T->isIntegerType() && castTy->isIntegerType())
 | 
						|
      return val;
 | 
						|
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isa<nonloc::ConcreteInt>(val))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // Only handle casts from integers to integers.
 | 
						|
  if (!isLocType && !castTy->isIntegerType())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
 | 
						|
  i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::isLocType(castTy));
 | 
						|
  i = i.extOrTrunc(Context.getTypeSize(castTy));
 | 
						|
 | 
						|
  if (isLocType)
 | 
						|
    return makeIntLocVal(i);
 | 
						|
  else
 | 
						|
    return makeIntVal(i);
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
 | 
						|
 | 
						|
  // Casts from pointers -> pointers, just return the lval.
 | 
						|
  //
 | 
						|
  // Casts from pointers -> references, just return the lval.  These
 | 
						|
  //   can be introduced by the frontend for corner cases, e.g
 | 
						|
  //   casting from va_list* to __builtin_va_list&.
 | 
						|
  //
 | 
						|
  if (Loc::isLocType(castTy) || castTy->isReferenceType())
 | 
						|
    return val;
 | 
						|
 | 
						|
  // FIXME: Handle transparent unions where a value can be "transparently"
 | 
						|
  //  lifted into a union type.
 | 
						|
  if (castTy->isUnionType())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  if (castTy->isIntegerType()) {
 | 
						|
    unsigned BitWidth = Context.getTypeSize(castTy);
 | 
						|
 | 
						|
    if (!isa<loc::ConcreteInt>(val))
 | 
						|
      return makeLocAsInteger(val, BitWidth);
 | 
						|
 | 
						|
    llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
 | 
						|
    i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::isLocType(castTy));
 | 
						|
    i = i.extOrTrunc(BitWidth);
 | 
						|
    return makeIntVal(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // All other cases: return 'UnknownVal'.  This includes casting pointers
 | 
						|
  // to floats, which is probably badness it itself, but this is a good
 | 
						|
  // intermediate solution until we do something better.
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function for unary operators.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalMinus(NonLoc val) {
 | 
						|
  switch (val.getSubKind()) {
 | 
						|
  case nonloc::ConcreteIntKind:
 | 
						|
    return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
 | 
						|
  default:
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalComplement(NonLoc X) {
 | 
						|
  switch (X.getSubKind()) {
 | 
						|
  case nonloc::ConcreteIntKind:
 | 
						|
    return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
 | 
						|
  default:
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function for binary operators.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
 | 
						|
  switch (op) {
 | 
						|
  default:
 | 
						|
    assert(false && "Invalid opcode.");
 | 
						|
  case BO_LT: return BO_GE;
 | 
						|
  case BO_GT: return BO_LE;
 | 
						|
  case BO_LE: return BO_GT;
 | 
						|
  case BO_GE: return BO_LT;
 | 
						|
  case BO_EQ: return BO_NE;
 | 
						|
  case BO_NE: return BO_EQ;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
 | 
						|
  switch (op) {
 | 
						|
  default:
 | 
						|
    assert(false && "Invalid opcode.");
 | 
						|
  case BO_LT: return BO_GT;
 | 
						|
  case BO_GT: return BO_LT;
 | 
						|
  case BO_LE: return BO_GE;
 | 
						|
  case BO_GE: return BO_LE;
 | 
						|
  case BO_EQ:
 | 
						|
  case BO_NE:
 | 
						|
    return op;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
 | 
						|
                                    BinaryOperator::Opcode op,
 | 
						|
                                    const llvm::APSInt &RHS,
 | 
						|
                                    QualType resultTy) {
 | 
						|
  bool isIdempotent = false;
 | 
						|
 | 
						|
  // Check for a few special cases with known reductions first.
 | 
						|
  switch (op) {
 | 
						|
  default:
 | 
						|
    // We can't reduce this case; just treat it normally.
 | 
						|
    break;
 | 
						|
  case BO_Mul:
 | 
						|
    // a*0 and a*1
 | 
						|
    if (RHS == 0)
 | 
						|
      return makeIntVal(0, resultTy);
 | 
						|
    else if (RHS == 1)
 | 
						|
      isIdempotent = true;
 | 
						|
    break;
 | 
						|
  case BO_Div:
 | 
						|
    // a/0 and a/1
 | 
						|
    if (RHS == 0)
 | 
						|
      // This is also handled elsewhere.
 | 
						|
      return UndefinedVal();
 | 
						|
    else if (RHS == 1)
 | 
						|
      isIdempotent = true;
 | 
						|
    break;
 | 
						|
  case BO_Rem:
 | 
						|
    // a%0 and a%1
 | 
						|
    if (RHS == 0)
 | 
						|
      // This is also handled elsewhere.
 | 
						|
      return UndefinedVal();
 | 
						|
    else if (RHS == 1)
 | 
						|
      return makeIntVal(0, resultTy);
 | 
						|
    break;
 | 
						|
  case BO_Add:
 | 
						|
  case BO_Sub:
 | 
						|
  case BO_Shl:
 | 
						|
  case BO_Shr:
 | 
						|
  case BO_Xor:
 | 
						|
    // a+0, a-0, a<<0, a>>0, a^0
 | 
						|
    if (RHS == 0)
 | 
						|
      isIdempotent = true;
 | 
						|
    break;
 | 
						|
  case BO_And:
 | 
						|
    // a&0 and a&(~0)
 | 
						|
    if (RHS == 0)
 | 
						|
      return makeIntVal(0, resultTy);
 | 
						|
    else if (RHS.isAllOnesValue())
 | 
						|
      isIdempotent = true;
 | 
						|
    break;
 | 
						|
  case BO_Or:
 | 
						|
    // a|0 and a|(~0)
 | 
						|
    if (RHS == 0)
 | 
						|
      isIdempotent = true;
 | 
						|
    else if (RHS.isAllOnesValue()) {
 | 
						|
      const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
 | 
						|
      return nonloc::ConcreteInt(Result);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Idempotent ops (like a*1) can still change the type of an expression.
 | 
						|
  // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
 | 
						|
  // dirty work.
 | 
						|
  if (isIdempotent) {
 | 
						|
    if (SymbolRef LHSSym = dyn_cast<SymbolData>(LHS))
 | 
						|
      return evalCastFromNonLoc(nonloc::SymbolVal(LHSSym), resultTy);
 | 
						|
    return evalCastFromNonLoc(nonloc::SymExprVal(LHS), resultTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reach this point, the expression cannot be simplified.
 | 
						|
  // Make a SymExprVal for the entire thing.
 | 
						|
  return makeNonLoc(LHS, op, RHS, resultTy);
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalBinOpNN(const GRState *state,
 | 
						|
                                  BinaryOperator::Opcode op,
 | 
						|
                                  NonLoc lhs, NonLoc rhs,
 | 
						|
                                  QualType resultTy)  {
 | 
						|
  // Handle trivial case where left-side and right-side are the same.
 | 
						|
  if (lhs == rhs)
 | 
						|
    switch (op) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case BO_EQ:
 | 
						|
      case BO_LE:
 | 
						|
      case BO_GE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      case BO_LT:
 | 
						|
      case BO_GT:
 | 
						|
      case BO_NE:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_Xor:
 | 
						|
      case BO_Sub:
 | 
						|
        return makeIntVal(0, resultTy);
 | 
						|
      case BO_Or:
 | 
						|
      case BO_And:
 | 
						|
        return evalCastFromNonLoc(lhs, resultTy);
 | 
						|
    }
 | 
						|
 | 
						|
  while (1) {
 | 
						|
    switch (lhs.getSubKind()) {
 | 
						|
    default:
 | 
						|
      return UnknownVal();
 | 
						|
    case nonloc::LocAsIntegerKind: {
 | 
						|
      Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
 | 
						|
      switch (rhs.getSubKind()) {
 | 
						|
        case nonloc::LocAsIntegerKind:
 | 
						|
          return evalBinOpLL(state, op, lhsL,
 | 
						|
                             cast<nonloc::LocAsInteger>(rhs).getLoc(),
 | 
						|
                             resultTy);
 | 
						|
        case nonloc::ConcreteIntKind: {
 | 
						|
          // Transform the integer into a location and compare.
 | 
						|
          llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
 | 
						|
          i.setIsUnsigned(true);
 | 
						|
          i = i.extOrTrunc(Context.getTypeSize(Context.VoidPtrTy));
 | 
						|
          return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
 | 
						|
        }
 | 
						|
        default:
 | 
						|
          switch (op) {
 | 
						|
            case BO_EQ:
 | 
						|
              return makeTruthVal(false, resultTy);
 | 
						|
            case BO_NE:
 | 
						|
              return makeTruthVal(true, resultTy);
 | 
						|
            default:
 | 
						|
              // This case also handles pointer arithmetic.
 | 
						|
              return UnknownVal();
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    case nonloc::SymExprValKind: {
 | 
						|
      nonloc::SymExprVal *selhs = cast<nonloc::SymExprVal>(&lhs);
 | 
						|
 | 
						|
      // Only handle LHS of the form "$sym op constant", at least for now.
 | 
						|
      const SymIntExpr *symIntExpr =
 | 
						|
        dyn_cast<SymIntExpr>(selhs->getSymbolicExpression());
 | 
						|
 | 
						|
      if (!symIntExpr)
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // Is this a logical not? (!x is represented as x == 0.)
 | 
						|
      if (op == BO_EQ && rhs.isZeroConstant()) {
 | 
						|
        // We know how to negate certain expressions. Simplify them here.
 | 
						|
 | 
						|
        BinaryOperator::Opcode opc = symIntExpr->getOpcode();
 | 
						|
        switch (opc) {
 | 
						|
        default:
 | 
						|
          // We don't know how to negate this operation.
 | 
						|
          // Just handle it as if it were a normal comparison to 0.
 | 
						|
          break;
 | 
						|
        case BO_LAnd:
 | 
						|
        case BO_LOr:
 | 
						|
          assert(false && "Logical operators handled by branching logic.");
 | 
						|
          return UnknownVal();
 | 
						|
        case BO_Assign:
 | 
						|
        case BO_MulAssign:
 | 
						|
        case BO_DivAssign:
 | 
						|
        case BO_RemAssign:
 | 
						|
        case BO_AddAssign:
 | 
						|
        case BO_SubAssign:
 | 
						|
        case BO_ShlAssign:
 | 
						|
        case BO_ShrAssign:
 | 
						|
        case BO_AndAssign:
 | 
						|
        case BO_XorAssign:
 | 
						|
        case BO_OrAssign:
 | 
						|
        case BO_Comma:
 | 
						|
          assert(false && "'=' and ',' operators handled by ExprEngine.");
 | 
						|
          return UnknownVal();
 | 
						|
        case BO_PtrMemD:
 | 
						|
        case BO_PtrMemI:
 | 
						|
          assert(false && "Pointer arithmetic not handled here.");
 | 
						|
          return UnknownVal();
 | 
						|
        case BO_LT:
 | 
						|
        case BO_GT:
 | 
						|
        case BO_LE:
 | 
						|
        case BO_GE:
 | 
						|
        case BO_EQ:
 | 
						|
        case BO_NE:
 | 
						|
          // Negate the comparison and make a value.
 | 
						|
          opc = NegateComparison(opc);
 | 
						|
          assert(symIntExpr->getType(Context) == resultTy);
 | 
						|
          return makeNonLoc(symIntExpr->getLHS(), opc,
 | 
						|
                                   symIntExpr->getRHS(), resultTy);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // For now, only handle expressions whose RHS is a constant.
 | 
						|
      const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
 | 
						|
      if (!rhsInt)
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // If both the LHS and the current expression are additive,
 | 
						|
      // fold their constants.
 | 
						|
      if (BinaryOperator::isAdditiveOp(op)) {
 | 
						|
        BinaryOperator::Opcode lop = symIntExpr->getOpcode();
 | 
						|
        if (BinaryOperator::isAdditiveOp(lop)) {
 | 
						|
          // resultTy may not be the best type to convert to, but it's
 | 
						|
          // probably the best choice in expressions with mixed type
 | 
						|
          // (such as x+1U+2LL). The rules for implicit conversions should
 | 
						|
          // choose a reasonable type to preserve the expression, and will
 | 
						|
          // at least match how the value is going to be used.
 | 
						|
          const llvm::APSInt &first =
 | 
						|
            BasicVals.Convert(resultTy, symIntExpr->getRHS());
 | 
						|
          const llvm::APSInt &second =
 | 
						|
            BasicVals.Convert(resultTy, rhsInt->getValue());
 | 
						|
          const llvm::APSInt *newRHS;
 | 
						|
          if (lop == op)
 | 
						|
            newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
 | 
						|
          else
 | 
						|
            newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
 | 
						|
          return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, make a SymExprVal out of the expression.
 | 
						|
      return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
 | 
						|
    }
 | 
						|
    case nonloc::ConcreteIntKind: {
 | 
						|
      const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
 | 
						|
 | 
						|
      if (isa<nonloc::ConcreteInt>(rhs)) {
 | 
						|
        return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs));
 | 
						|
      } else {
 | 
						|
        const llvm::APSInt& lhsValue = lhsInt.getValue();
 | 
						|
        
 | 
						|
        // Swap the left and right sides and flip the operator if doing so
 | 
						|
        // allows us to better reason about the expression (this is a form
 | 
						|
        // of expression canonicalization).
 | 
						|
        // While we're at it, catch some special cases for non-commutative ops.
 | 
						|
        NonLoc tmp = rhs;
 | 
						|
        rhs = lhs;
 | 
						|
        lhs = tmp;
 | 
						|
 | 
						|
        switch (op) {
 | 
						|
          case BO_LT:
 | 
						|
          case BO_GT:
 | 
						|
          case BO_LE:
 | 
						|
          case BO_GE:
 | 
						|
            op = ReverseComparison(op);
 | 
						|
            continue;
 | 
						|
          case BO_EQ:
 | 
						|
          case BO_NE:
 | 
						|
          case BO_Add:
 | 
						|
          case BO_Mul:
 | 
						|
          case BO_And:
 | 
						|
          case BO_Xor:
 | 
						|
          case BO_Or:
 | 
						|
            continue;
 | 
						|
          case BO_Shr:
 | 
						|
            if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
 | 
						|
              // At this point lhs and rhs have been swapped.
 | 
						|
              return rhs;
 | 
						|
            // FALL-THROUGH
 | 
						|
          case BO_Shl:
 | 
						|
            if (lhsValue == 0)
 | 
						|
              // At this point lhs and rhs have been swapped.
 | 
						|
              return rhs;
 | 
						|
            return UnknownVal();
 | 
						|
          default:
 | 
						|
            return UnknownVal();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    case nonloc::SymbolValKind: {
 | 
						|
      nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
 | 
						|
      SymbolRef Sym = slhs->getSymbol();
 | 
						|
      // Does the symbol simplify to a constant?  If so, "fold" the constant
 | 
						|
      // by setting 'lhs' to a ConcreteInt and try again.
 | 
						|
      if (Sym->getType(Context)->isIntegerType())
 | 
						|
        if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
 | 
						|
          // The symbol evaluates to a constant. If necessary, promote the
 | 
						|
          // folded constant (LHS) to the result type.
 | 
						|
          const llvm::APSInt &lhs_I = BasicVals.Convert(resultTy, *Constant);
 | 
						|
          lhs = nonloc::ConcreteInt(lhs_I);
 | 
						|
          
 | 
						|
          // Also promote the RHS (if necessary).
 | 
						|
 | 
						|
          // For shifts, it is not necessary to promote the RHS.
 | 
						|
          if (BinaryOperator::isShiftOp(op))
 | 
						|
            continue;
 | 
						|
          
 | 
						|
          // Other operators: do an implicit conversion.  This shouldn't be
 | 
						|
          // necessary once we support truncation/extension of symbolic values.
 | 
						|
          if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
 | 
						|
            rhs = nonloc::ConcreteInt(BasicVals.Convert(resultTy,
 | 
						|
                                                        rhs_I->getValue()));
 | 
						|
          }
 | 
						|
          
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
      // Is the RHS a symbol we can simplify?
 | 
						|
      if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
 | 
						|
        SymbolRef RSym = srhs->getSymbol();
 | 
						|
        if (RSym->getType(Context)->isIntegerType()) {
 | 
						|
          if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
 | 
						|
            // The symbol evaluates to a constant.
 | 
						|
            const llvm::APSInt &rhs_I = BasicVals.Convert(resultTy, *Constant);
 | 
						|
            rhs = nonloc::ConcreteInt(rhs_I);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<nonloc::ConcreteInt>(rhs)) {
 | 
						|
        return MakeSymIntVal(slhs->getSymbol(), op,
 | 
						|
                             cast<nonloc::ConcreteInt>(rhs).getValue(),
 | 
						|
                             resultTy);
 | 
						|
      }
 | 
						|
 | 
						|
      return UnknownVal();
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: all this logic will change if/when we have MemRegion::getLocation().
 | 
						|
SVal SimpleSValBuilder::evalBinOpLL(const GRState *state,
 | 
						|
                                  BinaryOperator::Opcode op,
 | 
						|
                                  Loc lhs, Loc rhs,
 | 
						|
                                  QualType resultTy) {
 | 
						|
  // Only comparisons and subtractions are valid operations on two pointers.
 | 
						|
  // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
 | 
						|
  // However, if a pointer is casted to an integer, evalBinOpNN may end up
 | 
						|
  // calling this function with another operation (PR7527). We don't attempt to
 | 
						|
  // model this for now, but it could be useful, particularly when the
 | 
						|
  // "location" is actually an integer value that's been passed through a void*.
 | 
						|
  if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // Special cases for when both sides are identical.
 | 
						|
  if (lhs == rhs) {
 | 
						|
    switch (op) {
 | 
						|
    default:
 | 
						|
      assert(false && "Unimplemented operation for two identical values");
 | 
						|
      return UnknownVal();
 | 
						|
    case BO_Sub:
 | 
						|
      return makeZeroVal(resultTy);
 | 
						|
    case BO_EQ:
 | 
						|
    case BO_LE:
 | 
						|
    case BO_GE:
 | 
						|
      return makeTruthVal(true, resultTy);
 | 
						|
    case BO_NE:
 | 
						|
    case BO_LT:
 | 
						|
    case BO_GT:
 | 
						|
      return makeTruthVal(false, resultTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (lhs.getSubKind()) {
 | 
						|
  default:
 | 
						|
    assert(false && "Ordering not implemented for this Loc.");
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  case loc::GotoLabelKind:
 | 
						|
    // The only thing we know about labels is that they're non-null.
 | 
						|
    if (rhs.isZeroConstant()) {
 | 
						|
      switch (op) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case BO_Sub:
 | 
						|
        return evalCastFromLoc(lhs, resultTy);
 | 
						|
      case BO_EQ:
 | 
						|
      case BO_LE:
 | 
						|
      case BO_LT:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_NE:
 | 
						|
      case BO_GT:
 | 
						|
      case BO_GE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // There may be two labels for the same location, and a function region may
 | 
						|
    // have the same address as a label at the start of the function (depending
 | 
						|
    // on the ABI).
 | 
						|
    // FIXME: we can probably do a comparison against other MemRegions, though.
 | 
						|
    // FIXME: is there a way to tell if two labels refer to the same location?
 | 
						|
    return UnknownVal(); 
 | 
						|
 | 
						|
  case loc::ConcreteIntKind: {
 | 
						|
    // If one of the operands is a symbol and the other is a constant,
 | 
						|
    // build an expression for use by the constraint manager.
 | 
						|
    if (SymbolRef rSym = rhs.getAsLocSymbol()) {
 | 
						|
      // We can only build expressions with symbols on the left,
 | 
						|
      // so we need a reversible operator.
 | 
						|
      if (!BinaryOperator::isComparisonOp(op))
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
 | 
						|
      return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
 | 
						|
    }
 | 
						|
 | 
						|
    // If both operands are constants, just perform the operation.
 | 
						|
    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
 | 
						|
      SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
 | 
						|
                                                             *rInt);
 | 
						|
      if (Loc *Result = dyn_cast<Loc>(&ResultVal))
 | 
						|
        return evalCastFromLoc(*Result, resultTy);
 | 
						|
      else
 | 
						|
        return UnknownVal();
 | 
						|
    }
 | 
						|
 | 
						|
    // Special case comparisons against NULL.
 | 
						|
    // This must come after the test if the RHS is a symbol, which is used to
 | 
						|
    // build constraints. The address of any non-symbolic region is guaranteed
 | 
						|
    // to be non-NULL, as is any label.
 | 
						|
    assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
 | 
						|
    if (lhs.isZeroConstant()) {
 | 
						|
      switch (op) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case BO_EQ:
 | 
						|
      case BO_GT:
 | 
						|
      case BO_GE:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_NE:
 | 
						|
      case BO_LT:
 | 
						|
      case BO_LE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Comparing an arbitrary integer to a region or label address is
 | 
						|
    // completely unknowable.
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
  case loc::MemRegionKind: {
 | 
						|
    if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
 | 
						|
      // If one of the operands is a symbol and the other is a constant,
 | 
						|
      // build an expression for use by the constraint manager.
 | 
						|
      if (SymbolRef lSym = lhs.getAsLocSymbol())
 | 
						|
        return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
 | 
						|
 | 
						|
      // Special case comparisons to NULL.
 | 
						|
      // This must come after the test if the LHS is a symbol, which is used to
 | 
						|
      // build constraints. The address of any non-symbolic region is guaranteed
 | 
						|
      // to be non-NULL.
 | 
						|
      if (rInt->isZeroConstant()) {
 | 
						|
        switch (op) {
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        case BO_Sub:
 | 
						|
          return evalCastFromLoc(lhs, resultTy);
 | 
						|
        case BO_EQ:
 | 
						|
        case BO_LT:
 | 
						|
        case BO_LE:
 | 
						|
          return makeTruthVal(false, resultTy);
 | 
						|
        case BO_NE:
 | 
						|
        case BO_GT:
 | 
						|
        case BO_GE:
 | 
						|
          return makeTruthVal(true, resultTy);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Comparing a region to an arbitrary integer is completely unknowable.
 | 
						|
      return UnknownVal();
 | 
						|
    }
 | 
						|
 | 
						|
    // Get both values as regions, if possible.
 | 
						|
    const MemRegion *LeftMR = lhs.getAsRegion();
 | 
						|
    assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
 | 
						|
 | 
						|
    const MemRegion *RightMR = rhs.getAsRegion();
 | 
						|
    if (!RightMR)
 | 
						|
      // The RHS is probably a label, which in theory could address a region.
 | 
						|
      // FIXME: we can probably make a more useful statement about non-code
 | 
						|
      // regions, though.
 | 
						|
      return UnknownVal();
 | 
						|
 | 
						|
    // If both values wrap regions, see if they're from different base regions.
 | 
						|
    const MemRegion *LeftBase = LeftMR->getBaseRegion();
 | 
						|
    const MemRegion *RightBase = RightMR->getBaseRegion();
 | 
						|
    if (LeftBase != RightBase &&
 | 
						|
        !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
 | 
						|
      switch (op) {
 | 
						|
      default:
 | 
						|
        return UnknownVal();
 | 
						|
      case BO_EQ:
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      case BO_NE:
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The two regions are from the same base region. See if they're both a
 | 
						|
    // type of region we know how to compare.
 | 
						|
 | 
						|
    // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
 | 
						|
    // ElementRegion path and the FieldRegion path below should be unified.
 | 
						|
    if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
 | 
						|
      // First see if the right region is also an ElementRegion.
 | 
						|
      const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
 | 
						|
      if (!RightER)
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // Next, see if the two ERs have the same super-region and matching types.
 | 
						|
      // FIXME: This should do something useful even if the types don't match,
 | 
						|
      // though if both indexes are constant the RegionRawOffset path will
 | 
						|
      // give the correct answer.
 | 
						|
      if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
 | 
						|
          LeftER->getElementType() == RightER->getElementType()) {
 | 
						|
        // Get the left index and cast it to the correct type.
 | 
						|
        // If the index is unknown or undefined, bail out here.
 | 
						|
        SVal LeftIndexVal = LeftER->getIndex();
 | 
						|
        NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
 | 
						|
        if (!LeftIndex)
 | 
						|
          return UnknownVal();
 | 
						|
        LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
 | 
						|
        LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
 | 
						|
        if (!LeftIndex)
 | 
						|
          return UnknownVal();
 | 
						|
 | 
						|
        // Do the same for the right index.
 | 
						|
        SVal RightIndexVal = RightER->getIndex();
 | 
						|
        NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
 | 
						|
        if (!RightIndex)
 | 
						|
          return UnknownVal();
 | 
						|
        RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
 | 
						|
        RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
 | 
						|
        if (!RightIndex)
 | 
						|
          return UnknownVal();
 | 
						|
 | 
						|
        // Actually perform the operation.
 | 
						|
        // evalBinOpNN expects the two indexes to already be the right type.
 | 
						|
        return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // If the element indexes aren't comparable, see if the raw offsets are.
 | 
						|
      RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
 | 
						|
      RegionRawOffset RightOffset = RightER->getAsArrayOffset();
 | 
						|
 | 
						|
      if (LeftOffset.getRegion() != NULL &&
 | 
						|
          LeftOffset.getRegion() == RightOffset.getRegion()) {
 | 
						|
        CharUnits left = LeftOffset.getOffset();
 | 
						|
        CharUnits right = RightOffset.getOffset();
 | 
						|
 | 
						|
        switch (op) {
 | 
						|
        default:
 | 
						|
          return UnknownVal();
 | 
						|
        case BO_LT:
 | 
						|
          return makeTruthVal(left < right, resultTy);
 | 
						|
        case BO_GT:
 | 
						|
          return makeTruthVal(left > right, resultTy);
 | 
						|
        case BO_LE:
 | 
						|
          return makeTruthVal(left <= right, resultTy);
 | 
						|
        case BO_GE:
 | 
						|
          return makeTruthVal(left >= right, resultTy);
 | 
						|
        case BO_EQ:
 | 
						|
          return makeTruthVal(left == right, resultTy);
 | 
						|
        case BO_NE:
 | 
						|
          return makeTruthVal(left != right, resultTy);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we get here, we have no way of comparing the ElementRegions.
 | 
						|
      return UnknownVal();
 | 
						|
    }
 | 
						|
 | 
						|
    // See if both regions are fields of the same structure.
 | 
						|
    // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
 | 
						|
    if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
 | 
						|
      // Only comparisons are meaningful here!
 | 
						|
      if (!BinaryOperator::isComparisonOp(op))
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // First see if the right region is also a FieldRegion.
 | 
						|
      const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
 | 
						|
      if (!RightFR)
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // Next, see if the two FRs have the same super-region.
 | 
						|
      // FIXME: This doesn't handle casts yet, and simply stripping the casts
 | 
						|
      // doesn't help.
 | 
						|
      if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      const FieldDecl *LeftFD = LeftFR->getDecl();
 | 
						|
      const FieldDecl *RightFD = RightFR->getDecl();
 | 
						|
      const RecordDecl *RD = LeftFD->getParent();
 | 
						|
 | 
						|
      // Make sure the two FRs are from the same kind of record. Just in case!
 | 
						|
      // FIXME: This is probably where inheritance would be a problem.
 | 
						|
      if (RD != RightFD->getParent())
 | 
						|
        return UnknownVal();
 | 
						|
 | 
						|
      // We know for sure that the two fields are not the same, since that
 | 
						|
      // would have given us the same SVal.
 | 
						|
      if (op == BO_EQ)
 | 
						|
        return makeTruthVal(false, resultTy);
 | 
						|
      if (op == BO_NE)
 | 
						|
        return makeTruthVal(true, resultTy);
 | 
						|
 | 
						|
      // Iterate through the fields and see which one comes first.
 | 
						|
      // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
 | 
						|
      // members and the units in which bit-fields reside have addresses that
 | 
						|
      // increase in the order in which they are declared."
 | 
						|
      bool leftFirst = (op == BO_LT || op == BO_LE);
 | 
						|
      for (RecordDecl::field_iterator I = RD->field_begin(),
 | 
						|
           E = RD->field_end(); I!=E; ++I) {
 | 
						|
        if (*I == LeftFD)
 | 
						|
          return makeTruthVal(leftFirst, resultTy);
 | 
						|
        if (*I == RightFD)
 | 
						|
          return makeTruthVal(!leftFirst, resultTy);
 | 
						|
      }
 | 
						|
 | 
						|
      assert(false && "Fields not found in parent record's definition");
 | 
						|
    }
 | 
						|
 | 
						|
    // If we get here, we have no way of comparing the regions.
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SVal SimpleSValBuilder::evalBinOpLN(const GRState *state,
 | 
						|
                                  BinaryOperator::Opcode op,
 | 
						|
                                  Loc lhs, NonLoc rhs, QualType resultTy) {
 | 
						|
  
 | 
						|
  // Special case: rhs is a zero constant.
 | 
						|
  if (rhs.isZeroConstant())
 | 
						|
    return lhs;
 | 
						|
  
 | 
						|
  // Special case: 'rhs' is an integer that has the same width as a pointer and
 | 
						|
  // we are using the integer location in a comparison.  Normally this cannot be
 | 
						|
  // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
 | 
						|
  // can generate comparisons that trigger this code.
 | 
						|
  // FIXME: Are all locations guaranteed to have pointer width?
 | 
						|
  if (BinaryOperator::isComparisonOp(op)) {
 | 
						|
    if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
 | 
						|
      const llvm::APSInt *x = &rhsInt->getValue();
 | 
						|
      ASTContext &ctx = Context;
 | 
						|
      if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
 | 
						|
        // Convert the signedness of the integer (if necessary).
 | 
						|
        if (x->isSigned())
 | 
						|
          x = &getBasicValueFactory().getValue(*x, true);
 | 
						|
 | 
						|
        return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We are dealing with pointer arithmetic.
 | 
						|
 | 
						|
  // Handle pointer arithmetic on constant values.
 | 
						|
  if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
 | 
						|
    if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
 | 
						|
      const llvm::APSInt &leftI = lhsInt->getValue();
 | 
						|
      assert(leftI.isUnsigned());
 | 
						|
      llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
 | 
						|
 | 
						|
      // Convert the bitwidth of rightI.  This should deal with overflow
 | 
						|
      // since we are dealing with concrete values.
 | 
						|
      rightI = rightI.extOrTrunc(leftI.getBitWidth());
 | 
						|
 | 
						|
      // Offset the increment by the pointer size.
 | 
						|
      llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
 | 
						|
      rightI *= Multiplicand;
 | 
						|
      
 | 
						|
      // Compute the adjusted pointer.
 | 
						|
      switch (op) {
 | 
						|
        case BO_Add:
 | 
						|
          rightI = leftI + rightI;
 | 
						|
          break;
 | 
						|
        case BO_Sub:
 | 
						|
          rightI = leftI - rightI;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          llvm_unreachable("Invalid pointer arithmetic operation");
 | 
						|
      }
 | 
						|
      return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle cases where 'lhs' is a region.
 | 
						|
  if (const MemRegion *region = lhs.getAsRegion()) {
 | 
						|
    rhs = cast<NonLoc>(convertToArrayIndex(rhs));
 | 
						|
    SVal index = UnknownVal();
 | 
						|
    const MemRegion *superR = 0;
 | 
						|
    QualType elementType;
 | 
						|
 | 
						|
    if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
 | 
						|
      assert(op == BO_Add || op == BO_Sub);
 | 
						|
      index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
 | 
						|
                          getArrayIndexType());
 | 
						|
      superR = elemReg->getSuperRegion();
 | 
						|
      elementType = elemReg->getElementType();
 | 
						|
    }
 | 
						|
    else if (isa<SubRegion>(region)) {
 | 
						|
      superR = region;
 | 
						|
      index = rhs;
 | 
						|
      if (const PointerType *PT = resultTy->getAs<PointerType>()) {
 | 
						|
        elementType = PT->getPointeeType();
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        const ObjCObjectPointerType *OT =
 | 
						|
          resultTy->getAs<ObjCObjectPointerType>();
 | 
						|
        elementType = OT->getPointeeType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
 | 
						|
      return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
 | 
						|
                                                       superR, getContext()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return UnknownVal();  
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt *SimpleSValBuilder::getKnownValue(const GRState *state,
 | 
						|
                                                   SVal V) {
 | 
						|
  if (V.isUnknownOrUndef())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
 | 
						|
    return &X->getValue();
 | 
						|
 | 
						|
  if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
 | 
						|
    return &X->getValue();
 | 
						|
 | 
						|
  if (SymbolRef Sym = V.getAsSymbol())
 | 
						|
    return state->getSymVal(Sym);
 | 
						|
 | 
						|
  // FIXME: Add support for SymExprs.
 | 
						|
  return NULL;
 | 
						|
}
 |