forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			588 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			588 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ScopHelper.cpp - Some Helper Functions for Scop.  ------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Small functions that help with Scop and LLVM-IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "polly/Support/ScopHelper.h"
 | 
						|
#include "polly/Options.h"
 | 
						|
#include "polly/ScopInfo.h"
 | 
						|
#include "polly/Support/SCEVValidator.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/RegionInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace polly;
 | 
						|
 | 
						|
#define DEBUG_TYPE "polly-scop-helper"
 | 
						|
 | 
						|
static cl::opt<bool> PollyAllowErrorBlocks(
 | 
						|
    "polly-allow-error-blocks",
 | 
						|
    cl::desc("Allow to speculate on the execution of 'error blocks'."),
 | 
						|
    cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
 | 
						|
 | 
						|
bool polly::hasInvokeEdge(const PHINode *PN) {
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)))
 | 
						|
      if (II->getParent() == PN->getIncomingBlock(i))
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Ensures that there is just one predecessor to the entry node from outside the
 | 
						|
// region.
 | 
						|
// The identity of the region entry node is preserved.
 | 
						|
static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                                RegionInfo *RI) {
 | 
						|
  BasicBlock *EnteringBB = R->getEnteringBlock();
 | 
						|
  BasicBlock *Entry = R->getEntry();
 | 
						|
 | 
						|
  // Before (one of):
 | 
						|
  //
 | 
						|
  //                       \    /            //
 | 
						|
  //                      EnteringBB         //
 | 
						|
  //                        |    \------>    //
 | 
						|
  //   \   /                |                //
 | 
						|
  //   Entry <--\         Entry <--\         //
 | 
						|
  //   /   \    /         /   \    /         //
 | 
						|
  //        ....               ....          //
 | 
						|
 | 
						|
  // Create single entry edge if the region has multiple entry edges.
 | 
						|
  if (!EnteringBB) {
 | 
						|
    SmallVector<BasicBlock *, 4> Preds;
 | 
						|
    for (BasicBlock *P : predecessors(Entry))
 | 
						|
      if (!R->contains(P))
 | 
						|
        Preds.push_back(P);
 | 
						|
 | 
						|
    BasicBlock *NewEntering =
 | 
						|
        SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);
 | 
						|
 | 
						|
    if (RI) {
 | 
						|
      // The exit block of predecessing regions must be changed to NewEntering
 | 
						|
      for (BasicBlock *ExitPred : predecessors(NewEntering)) {
 | 
						|
        Region *RegionOfPred = RI->getRegionFor(ExitPred);
 | 
						|
        if (RegionOfPred->getExit() != Entry)
 | 
						|
          continue;
 | 
						|
 | 
						|
        while (!RegionOfPred->isTopLevelRegion() &&
 | 
						|
               RegionOfPred->getExit() == Entry) {
 | 
						|
          RegionOfPred->replaceExit(NewEntering);
 | 
						|
          RegionOfPred = RegionOfPred->getParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Make all ancestors use EnteringBB as entry; there might be edges to it
 | 
						|
      Region *AncestorR = R->getParent();
 | 
						|
      RI->setRegionFor(NewEntering, AncestorR);
 | 
						|
      while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
 | 
						|
        AncestorR->replaceEntry(NewEntering);
 | 
						|
        AncestorR = AncestorR->getParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    EnteringBB = NewEntering;
 | 
						|
  }
 | 
						|
  assert(R->getEnteringBlock() == EnteringBB);
 | 
						|
 | 
						|
  // After:
 | 
						|
  //
 | 
						|
  //    \    /       //
 | 
						|
  //  EnteringBB     //
 | 
						|
  //      |          //
 | 
						|
  //      |          //
 | 
						|
  //    Entry <--\   //
 | 
						|
  //    /   \    /   //
 | 
						|
  //         ....    //
 | 
						|
}
 | 
						|
 | 
						|
// Ensure that the region has a single block that branches to the exit node.
 | 
						|
static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                               RegionInfo *RI) {
 | 
						|
  BasicBlock *ExitBB = R->getExit();
 | 
						|
  BasicBlock *ExitingBB = R->getExitingBlock();
 | 
						|
 | 
						|
  // Before:
 | 
						|
  //
 | 
						|
  //   (Region)   ______/  //
 | 
						|
  //      \  |   /         //
 | 
						|
  //       ExitBB          //
 | 
						|
  //       /    \          //
 | 
						|
 | 
						|
  if (!ExitingBB) {
 | 
						|
    SmallVector<BasicBlock *, 4> Preds;
 | 
						|
    for (BasicBlock *P : predecessors(ExitBB))
 | 
						|
      if (R->contains(P))
 | 
						|
        Preds.push_back(P);
 | 
						|
 | 
						|
    //  Preds[0] Preds[1]      otherBB //
 | 
						|
    //         \  |  ________/         //
 | 
						|
    //          \ | /                  //
 | 
						|
    //           BB                    //
 | 
						|
    ExitingBB =
 | 
						|
        SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
 | 
						|
    // Preds[0] Preds[1]      otherBB  //
 | 
						|
    //        \  /           /         //
 | 
						|
    // BB.region_exiting    /          //
 | 
						|
    //                  \  /           //
 | 
						|
    //                   BB            //
 | 
						|
 | 
						|
    if (RI)
 | 
						|
      RI->setRegionFor(ExitingBB, R);
 | 
						|
 | 
						|
    // Change the exit of nested regions, but not the region itself,
 | 
						|
    R->replaceExitRecursive(ExitingBB);
 | 
						|
    R->replaceExit(ExitBB);
 | 
						|
  }
 | 
						|
  assert(ExitingBB == R->getExitingBlock());
 | 
						|
 | 
						|
  // After:
 | 
						|
  //
 | 
						|
  //     \   /                //
 | 
						|
  //    ExitingBB     _____/  //
 | 
						|
  //          \      /        //
 | 
						|
  //           ExitBB         //
 | 
						|
  //           /    \         //
 | 
						|
}
 | 
						|
 | 
						|
void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                           RegionInfo *RI) {
 | 
						|
  assert(R && !R->isTopLevelRegion());
 | 
						|
  assert(!RI || RI == R->getRegionInfo());
 | 
						|
  assert((!RI || DT) &&
 | 
						|
         "RegionInfo requires DominatorTree to be updated as well");
 | 
						|
 | 
						|
  simplifyRegionEntry(R, DT, LI, RI);
 | 
						|
  simplifyRegionExit(R, DT, LI, RI);
 | 
						|
  assert(R->isSimple());
 | 
						|
}
 | 
						|
 | 
						|
// Split the block into two successive blocks.
 | 
						|
//
 | 
						|
// Like llvm::SplitBlock, but also preserves RegionInfo
 | 
						|
static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
 | 
						|
                              DominatorTree *DT, llvm::LoopInfo *LI,
 | 
						|
                              RegionInfo *RI) {
 | 
						|
  assert(Old && SplitPt);
 | 
						|
 | 
						|
  // Before:
 | 
						|
  //
 | 
						|
  //  \   /  //
 | 
						|
  //   Old   //
 | 
						|
  //  /   \  //
 | 
						|
 | 
						|
  BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);
 | 
						|
 | 
						|
  if (RI) {
 | 
						|
    Region *R = RI->getRegionFor(Old);
 | 
						|
    RI->setRegionFor(NewBlock, R);
 | 
						|
  }
 | 
						|
 | 
						|
  // After:
 | 
						|
  //
 | 
						|
  //   \   /    //
 | 
						|
  //    Old     //
 | 
						|
  //     |      //
 | 
						|
  //  NewBlock  //
 | 
						|
  //   /   \    //
 | 
						|
 | 
						|
  return NewBlock;
 | 
						|
}
 | 
						|
 | 
						|
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
 | 
						|
  // Find first non-alloca instruction. Every basic block has a non-alloc
 | 
						|
  // instruction, as every well formed basic block has a terminator.
 | 
						|
  BasicBlock::iterator I = EntryBlock->begin();
 | 
						|
  while (isa<AllocaInst>(I))
 | 
						|
    ++I;
 | 
						|
 | 
						|
  auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
  auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
  auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | 
						|
  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 | 
						|
  RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
 | 
						|
  RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;
 | 
						|
 | 
						|
  // splitBlock updates DT, LI and RI.
 | 
						|
  splitBlock(EntryBlock, &*I, DT, LI, RI);
 | 
						|
}
 | 
						|
 | 
						|
/// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
 | 
						|
/// instruction but just use it, if it is referenced as a SCEVUnknown. We want
 | 
						|
/// however to generate new code if the instruction is in the analyzed region
 | 
						|
/// and we generate code outside/in front of that region. Hence, we generate the
 | 
						|
/// code for the SDiv/SRem operands in front of the analyzed region and then
 | 
						|
/// create a new SDiv/SRem operation there too.
 | 
						|
struct ScopExpander : SCEVVisitor<ScopExpander, const SCEV *> {
 | 
						|
  friend struct SCEVVisitor<ScopExpander, const SCEV *>;
 | 
						|
 | 
						|
  explicit ScopExpander(const Region &R, ScalarEvolution &SE,
 | 
						|
                        const DataLayout &DL, const char *Name, ValueMapT *VMap,
 | 
						|
                        BasicBlock *RTCBB)
 | 
						|
      : Expander(SCEVExpander(SE, DL, Name)), SE(SE), Name(Name), R(R),
 | 
						|
        VMap(VMap), RTCBB(RTCBB) {}
 | 
						|
 | 
						|
  Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
 | 
						|
    // If we generate code in the region we will immediately fall back to the
 | 
						|
    // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
 | 
						|
    // needed replace them by copies computed in the entering block.
 | 
						|
    if (!R.contains(I))
 | 
						|
      E = visit(E);
 | 
						|
    return Expander.expandCodeFor(E, Ty, I);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  SCEVExpander Expander;
 | 
						|
  ScalarEvolution &SE;
 | 
						|
  const char *Name;
 | 
						|
  const Region &R;
 | 
						|
  ValueMapT *VMap;
 | 
						|
  BasicBlock *RTCBB;
 | 
						|
 | 
						|
  const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
 | 
						|
                               Instruction *IP) {
 | 
						|
    if (!Inst || !R.contains(Inst))
 | 
						|
      return E;
 | 
						|
 | 
						|
    assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
 | 
						|
           !isa<PHINode>(Inst));
 | 
						|
 | 
						|
    auto *InstClone = Inst->clone();
 | 
						|
    for (auto &Op : Inst->operands()) {
 | 
						|
      assert(SE.isSCEVable(Op->getType()));
 | 
						|
      auto *OpSCEV = SE.getSCEV(Op);
 | 
						|
      auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
 | 
						|
      InstClone->replaceUsesOfWith(Op, OpClone);
 | 
						|
    }
 | 
						|
 | 
						|
    InstClone->setName(Name + Inst->getName());
 | 
						|
    InstClone->insertBefore(IP);
 | 
						|
    return SE.getSCEV(InstClone);
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *visitUnknown(const SCEVUnknown *E) {
 | 
						|
 | 
						|
    // If a value mapping was given try if the underlying value is remapped.
 | 
						|
    Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
 | 
						|
    if (NewVal) {
 | 
						|
      auto *NewE = SE.getSCEV(NewVal);
 | 
						|
 | 
						|
      // While the mapped value might be different the SCEV representation might
 | 
						|
      // not be. To this end we will check before we go into recursion here.
 | 
						|
      if (E != NewE)
 | 
						|
        return visit(NewE);
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *Inst = dyn_cast<Instruction>(E->getValue());
 | 
						|
    Instruction *IP;
 | 
						|
    if (Inst && !R.contains(Inst))
 | 
						|
      IP = Inst;
 | 
						|
    else if (Inst && RTCBB->getParent() == Inst->getFunction())
 | 
						|
      IP = RTCBB->getTerminator();
 | 
						|
    else
 | 
						|
      IP = RTCBB->getParent()->getEntryBlock().getTerminator();
 | 
						|
 | 
						|
    if (!Inst ||
 | 
						|
        (Inst->getOpcode() != Instruction::SRem &&
 | 
						|
         Inst->getOpcode() != Instruction::SDiv))
 | 
						|
      return visitGenericInst(E, Inst, IP);
 | 
						|
 | 
						|
    const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0));
 | 
						|
    const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1));
 | 
						|
 | 
						|
    if (!SE.isKnownNonZero(RHSScev))
 | 
						|
      RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
 | 
						|
 | 
						|
    Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
 | 
						|
    Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);
 | 
						|
 | 
						|
    Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(),
 | 
						|
                                  LHS, RHS, Inst->getName() + Name, IP);
 | 
						|
    return SE.getSCEV(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  /// The following functions will just traverse the SCEV and rebuild it with
 | 
						|
  /// the new operands returned by the traversal.
 | 
						|
  ///
 | 
						|
  ///{
 | 
						|
  const SCEV *visitConstant(const SCEVConstant *E) { return E; }
 | 
						|
  const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
 | 
						|
    return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
 | 
						|
  }
 | 
						|
  const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
 | 
						|
    return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
 | 
						|
  }
 | 
						|
  const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
 | 
						|
    return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
 | 
						|
  }
 | 
						|
  const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
 | 
						|
    auto *RHSScev = visit(E->getRHS());
 | 
						|
    if (!SE.isKnownNonZero(RHSScev))
 | 
						|
      RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
 | 
						|
    return SE.getUDivExpr(visit(E->getLHS()), RHSScev);
 | 
						|
  }
 | 
						|
  const SCEV *visitAddExpr(const SCEVAddExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getAddExpr(NewOps);
 | 
						|
  }
 | 
						|
  const SCEV *visitMulExpr(const SCEVMulExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getMulExpr(NewOps);
 | 
						|
  }
 | 
						|
  const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getUMaxExpr(NewOps);
 | 
						|
  }
 | 
						|
  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getSMaxExpr(NewOps);
 | 
						|
  }
 | 
						|
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
 | 
						|
    SmallVector<const SCEV *, 4> NewOps;
 | 
						|
    for (const SCEV *Op : E->operands())
 | 
						|
      NewOps.push_back(visit(Op));
 | 
						|
    return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
 | 
						|
  }
 | 
						|
  ///}
 | 
						|
};
 | 
						|
 | 
						|
Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
 | 
						|
                            const char *Name, const SCEV *E, Type *Ty,
 | 
						|
                            Instruction *IP, ValueMapT *VMap,
 | 
						|
                            BasicBlock *RTCBB) {
 | 
						|
  ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB);
 | 
						|
  return Expander.expandCodeFor(E, Ty, IP);
 | 
						|
}
 | 
						|
 | 
						|
bool polly::isErrorBlock(BasicBlock &BB, const Region &R, LoopInfo &LI,
 | 
						|
                         const DominatorTree &DT) {
 | 
						|
  if (!PollyAllowErrorBlocks)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<UnreachableInst>(BB.getTerminator()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (LI.isLoopHeader(&BB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Basic blocks that are always executed are not considered error blocks,
 | 
						|
  // as their execution can not be a rare event.
 | 
						|
  bool DominatesAllPredecessors = true;
 | 
						|
  for (auto Pred : predecessors(R.getExit()))
 | 
						|
    if (R.contains(Pred) && !DT.dominates(&BB, Pred))
 | 
						|
      DominatesAllPredecessors = false;
 | 
						|
 | 
						|
  if (DominatesAllPredecessors)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: This is a simple heuristic to determine if the load is executed
 | 
						|
  //        in a conditional. However, we actually would need the control
 | 
						|
  //        condition, i.e., the post dominance frontier. Alternatively we
 | 
						|
  //        could walk up the dominance tree until we find a block that is
 | 
						|
  //        not post dominated by the load and check if it is a conditional
 | 
						|
  //        or a loop header.
 | 
						|
  auto *DTNode = DT.getNode(&BB);
 | 
						|
  auto *IDomBB = DTNode->getIDom()->getBlock();
 | 
						|
  if (LI.isLoopHeader(IDomBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (Instruction &Inst : BB)
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
 | 
						|
      if (isIgnoredIntrinsic(CI))
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!CI->doesNotAccessMemory())
 | 
						|
        return true;
 | 
						|
      if (CI->doesNotReturn())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *polly::getConditionFromTerminator(TerminatorInst *TI) {
 | 
						|
  if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
 | 
						|
    if (BR->isUnconditional())
 | 
						|
      return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));
 | 
						|
 | 
						|
    return BR->getCondition();
 | 
						|
  }
 | 
						|
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
 | 
						|
    return SI->getCondition();
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
 | 
						|
                            ScalarEvolution &SE, const DominatorTree &DT) {
 | 
						|
  Loop *L = LI.getLoopFor(LInst->getParent());
 | 
						|
  auto *Ptr = LInst->getPointerOperand();
 | 
						|
  const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L);
 | 
						|
  while (L && R.contains(L)) {
 | 
						|
    if (!SE.isLoopInvariant(PtrSCEV, L))
 | 
						|
      return false;
 | 
						|
    L = L->getParentLoop();
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *User : Ptr->users()) {
 | 
						|
    auto *UserI = dyn_cast<Instruction>(User);
 | 
						|
    if (!UserI || !R.contains(UserI))
 | 
						|
      continue;
 | 
						|
    if (!UserI->mayWriteToMemory())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto &BB = *UserI->getParent();
 | 
						|
    if (DT.dominates(&BB, LInst->getParent()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool DominatesAllPredecessors = true;
 | 
						|
    for (auto Pred : predecessors(R.getExit()))
 | 
						|
      if (R.contains(Pred) && !DT.dominates(&BB, Pred))
 | 
						|
        DominatesAllPredecessors = false;
 | 
						|
 | 
						|
    if (!DominatesAllPredecessors)
 | 
						|
      continue;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool polly::isIgnoredIntrinsic(const Value *V) {
 | 
						|
  if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
 | 
						|
    switch (IT->getIntrinsicID()) {
 | 
						|
    // Lifetime markers are supported/ignored.
 | 
						|
    case llvm::Intrinsic::lifetime_start:
 | 
						|
    case llvm::Intrinsic::lifetime_end:
 | 
						|
    // Invariant markers are supported/ignored.
 | 
						|
    case llvm::Intrinsic::invariant_start:
 | 
						|
    case llvm::Intrinsic::invariant_end:
 | 
						|
    // Some misc annotations are supported/ignored.
 | 
						|
    case llvm::Intrinsic::var_annotation:
 | 
						|
    case llvm::Intrinsic::ptr_annotation:
 | 
						|
    case llvm::Intrinsic::annotation:
 | 
						|
    case llvm::Intrinsic::donothing:
 | 
						|
    case llvm::Intrinsic::assume:
 | 
						|
    case llvm::Intrinsic::expect:
 | 
						|
    // Some debug info intrisics are supported/ignored.
 | 
						|
    case llvm::Intrinsic::dbg_value:
 | 
						|
    case llvm::Intrinsic::dbg_declare:
 | 
						|
      return true;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE,
 | 
						|
                          Loop *Scope) {
 | 
						|
  if (!V || !SE->isSCEVable(V->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
 | 
						|
    if (!isa<SCEVCouldNotCompute>(Scev))
 | 
						|
      if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false))
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
llvm::BasicBlock *polly::getUseBlock(llvm::Use &U) {
 | 
						|
  Instruction *UI = dyn_cast<Instruction>(U.getUser());
 | 
						|
  if (!UI)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (PHINode *PHI = dyn_cast<PHINode>(UI))
 | 
						|
    return PHI->getIncomingBlock(U);
 | 
						|
 | 
						|
  return UI->getParent();
 | 
						|
}
 | 
						|
 | 
						|
std::tuple<std::vector<const SCEV *>, std::vector<int>>
 | 
						|
polly::getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) {
 | 
						|
  std::vector<const SCEV *> Subscripts;
 | 
						|
  std::vector<int> Sizes;
 | 
						|
 | 
						|
  Type *Ty = GEP->getPointerOperandType();
 | 
						|
 | 
						|
  bool DroppedFirstDim = false;
 | 
						|
 | 
						|
  for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
 | 
						|
 | 
						|
    const SCEV *Expr = SE.getSCEV(GEP->getOperand(i));
 | 
						|
 | 
						|
    if (i == 1) {
 | 
						|
      if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
 | 
						|
        Ty = PtrTy->getElementType();
 | 
						|
      } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
        Ty = ArrayTy->getElementType();
 | 
						|
      } else {
 | 
						|
        Subscripts.clear();
 | 
						|
        Sizes.clear();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (auto *Const = dyn_cast<SCEVConstant>(Expr))
 | 
						|
        if (Const->getValue()->isZero()) {
 | 
						|
          DroppedFirstDim = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      Subscripts.push_back(Expr);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *ArrayTy = dyn_cast<ArrayType>(Ty);
 | 
						|
    if (!ArrayTy) {
 | 
						|
      Subscripts.clear();
 | 
						|
      Sizes.clear();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Subscripts.push_back(Expr);
 | 
						|
    if (!(DroppedFirstDim && i == 2))
 | 
						|
      Sizes.push_back(ArrayTy->getNumElements());
 | 
						|
 | 
						|
    Ty = ArrayTy->getElementType();
 | 
						|
  }
 | 
						|
 | 
						|
  return std::make_tuple(Subscripts, Sizes);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
 | 
						|
                                           const BoxedLoopsSetTy &BoxedLoops) {
 | 
						|
  while (BoxedLoops.count(L))
 | 
						|
    L = L->getParentLoop();
 | 
						|
  return L;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB,
 | 
						|
                                           llvm::LoopInfo &LI,
 | 
						|
                                           const BoxedLoopsSetTy &BoxedLoops) {
 | 
						|
  Loop *L = LI.getLoopFor(BB);
 | 
						|
  return getFirstNonBoxedLoopFor(L, LI, BoxedLoops);
 | 
						|
}
 |