forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			371 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			OCaml
		
	
	
	
			
		
		
	
	
			371 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			OCaml
		
	
	
	
(*===----------------------------------------------------------------------===
 | 
						|
 * Code Generation
 | 
						|
 *===----------------------------------------------------------------------===*)
 | 
						|
 | 
						|
open Llvm
 | 
						|
 | 
						|
exception Error of string
 | 
						|
 | 
						|
let context = global_context ()
 | 
						|
let the_module = create_module context "my cool jit"
 | 
						|
let builder = builder context
 | 
						|
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
 | 
						|
let double_type = double_type context
 | 
						|
 | 
						|
(* Create an alloca instruction in the entry block of the function. This
 | 
						|
 * is used for mutable variables etc. *)
 | 
						|
let create_entry_block_alloca the_function var_name =
 | 
						|
  let builder = builder_at context (instr_begin (entry_block the_function)) in
 | 
						|
  build_alloca double_type var_name builder
 | 
						|
 | 
						|
let rec codegen_expr = function
 | 
						|
  | Ast.Number n -> const_float double_type n
 | 
						|
  | Ast.Variable name ->
 | 
						|
      let v = try Hashtbl.find named_values name with
 | 
						|
        | Not_found -> raise (Error "unknown variable name")
 | 
						|
      in
 | 
						|
      (* Load the value. *)
 | 
						|
      build_load v name builder
 | 
						|
  | Ast.Unary (op, operand) ->
 | 
						|
      let operand = codegen_expr operand in
 | 
						|
      let callee = "unary" ^ (String.make 1 op) in
 | 
						|
      let callee =
 | 
						|
        match lookup_function callee the_module with
 | 
						|
        | Some callee -> callee
 | 
						|
        | None -> raise (Error "unknown unary operator")
 | 
						|
      in
 | 
						|
      build_call callee [|operand|] "unop" builder
 | 
						|
  | Ast.Binary (op, lhs, rhs) ->
 | 
						|
      begin match op with
 | 
						|
      | '=' ->
 | 
						|
          (* Special case '=' because we don't want to emit the LHS as an
 | 
						|
           * expression. *)
 | 
						|
          let name =
 | 
						|
            match lhs with
 | 
						|
            | Ast.Variable name -> name
 | 
						|
            | _ -> raise (Error "destination of '=' must be a variable")
 | 
						|
          in
 | 
						|
 | 
						|
          (* Codegen the rhs. *)
 | 
						|
          let val_ = codegen_expr rhs in
 | 
						|
 | 
						|
          (* Lookup the name. *)
 | 
						|
          let variable = try Hashtbl.find named_values name with
 | 
						|
          | Not_found -> raise (Error "unknown variable name")
 | 
						|
          in
 | 
						|
          ignore(build_store val_ variable builder);
 | 
						|
          val_
 | 
						|
      | _ ->
 | 
						|
          let lhs_val = codegen_expr lhs in
 | 
						|
          let rhs_val = codegen_expr rhs in
 | 
						|
          begin
 | 
						|
            match op with
 | 
						|
            | '+' -> build_fadd lhs_val rhs_val "addtmp" builder
 | 
						|
            | '-' -> build_fsub lhs_val rhs_val "subtmp" builder
 | 
						|
            | '*' -> build_fmul lhs_val rhs_val "multmp" builder
 | 
						|
            | '<' ->
 | 
						|
                (* Convert bool 0/1 to double 0.0 or 1.0 *)
 | 
						|
                let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 | 
						|
                build_uitofp i double_type "booltmp" builder
 | 
						|
            | _ ->
 | 
						|
                (* If it wasn't a builtin binary operator, it must be a user defined
 | 
						|
                 * one. Emit a call to it. *)
 | 
						|
                let callee = "binary" ^ (String.make 1 op) in
 | 
						|
                let callee =
 | 
						|
                  match lookup_function callee the_module with
 | 
						|
                  | Some callee -> callee
 | 
						|
                  | None -> raise (Error "binary operator not found!")
 | 
						|
                in
 | 
						|
                build_call callee [|lhs_val; rhs_val|] "binop" builder
 | 
						|
          end
 | 
						|
      end
 | 
						|
  | Ast.Call (callee, args) ->
 | 
						|
      (* Look up the name in the module table. *)
 | 
						|
      let callee =
 | 
						|
        match lookup_function callee the_module with
 | 
						|
        | Some callee -> callee
 | 
						|
        | None -> raise (Error "unknown function referenced")
 | 
						|
      in
 | 
						|
      let params = params callee in
 | 
						|
 | 
						|
      (* If argument mismatch error. *)
 | 
						|
      if Array.length params == Array.length args then () else
 | 
						|
        raise (Error "incorrect # arguments passed");
 | 
						|
      let args = Array.map codegen_expr args in
 | 
						|
      build_call callee args "calltmp" builder
 | 
						|
  | Ast.If (cond, then_, else_) ->
 | 
						|
      let cond = codegen_expr cond in
 | 
						|
 | 
						|
      (* Convert condition to a bool by comparing equal to 0.0 *)
 | 
						|
      let zero = const_float double_type 0.0 in
 | 
						|
      let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
 | 
						|
 | 
						|
      (* Grab the first block so that we might later add the conditional branch
 | 
						|
       * to it at the end of the function. *)
 | 
						|
      let start_bb = insertion_block builder in
 | 
						|
      let the_function = block_parent start_bb in
 | 
						|
 | 
						|
      let then_bb = append_block context "then" the_function in
 | 
						|
 | 
						|
      (* Emit 'then' value. *)
 | 
						|
      position_at_end then_bb builder;
 | 
						|
      let then_val = codegen_expr then_ in
 | 
						|
 | 
						|
      (* Codegen of 'then' can change the current block, update then_bb for the
 | 
						|
       * phi. We create a new name because one is used for the phi node, and the
 | 
						|
       * other is used for the conditional branch. *)
 | 
						|
      let new_then_bb = insertion_block builder in
 | 
						|
 | 
						|
      (* Emit 'else' value. *)
 | 
						|
      let else_bb = append_block context "else" the_function in
 | 
						|
      position_at_end else_bb builder;
 | 
						|
      let else_val = codegen_expr else_ in
 | 
						|
 | 
						|
      (* Codegen of 'else' can change the current block, update else_bb for the
 | 
						|
       * phi. *)
 | 
						|
      let new_else_bb = insertion_block builder in
 | 
						|
 | 
						|
      (* Emit merge block. *)
 | 
						|
      let merge_bb = append_block context "ifcont" the_function in
 | 
						|
      position_at_end merge_bb builder;
 | 
						|
      let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
 | 
						|
      let phi = build_phi incoming "iftmp" builder in
 | 
						|
 | 
						|
      (* Return to the start block to add the conditional branch. *)
 | 
						|
      position_at_end start_bb builder;
 | 
						|
      ignore (build_cond_br cond_val then_bb else_bb builder);
 | 
						|
 | 
						|
      (* Set a unconditional branch at the end of the 'then' block and the
 | 
						|
       * 'else' block to the 'merge' block. *)
 | 
						|
      position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
 | 
						|
      position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
 | 
						|
 | 
						|
      (* Finally, set the builder to the end of the merge block. *)
 | 
						|
      position_at_end merge_bb builder;
 | 
						|
 | 
						|
      phi
 | 
						|
  | Ast.For (var_name, start, end_, step, body) ->
 | 
						|
      (* Output this as:
 | 
						|
       *   var = alloca double
 | 
						|
       *   ...
 | 
						|
       *   start = startexpr
 | 
						|
       *   store start -> var
 | 
						|
       *   goto loop
 | 
						|
       * loop:
 | 
						|
       *   ...
 | 
						|
       *   bodyexpr
 | 
						|
       *   ...
 | 
						|
       * loopend:
 | 
						|
       *   step = stepexpr
 | 
						|
       *   endcond = endexpr
 | 
						|
       *
 | 
						|
       *   curvar = load var
 | 
						|
       *   nextvar = curvar + step
 | 
						|
       *   store nextvar -> var
 | 
						|
       *   br endcond, loop, endloop
 | 
						|
       * outloop: *)
 | 
						|
 | 
						|
      let the_function = block_parent (insertion_block builder) in
 | 
						|
 | 
						|
      (* Create an alloca for the variable in the entry block. *)
 | 
						|
      let alloca = create_entry_block_alloca the_function var_name in
 | 
						|
 | 
						|
      (* Emit the start code first, without 'variable' in scope. *)
 | 
						|
      let start_val = codegen_expr start in
 | 
						|
 | 
						|
      (* Store the value into the alloca. *)
 | 
						|
      ignore(build_store start_val alloca builder);
 | 
						|
 | 
						|
      (* Make the new basic block for the loop header, inserting after current
 | 
						|
       * block. *)
 | 
						|
      let loop_bb = append_block context "loop" the_function in
 | 
						|
 | 
						|
      (* Insert an explicit fall through from the current block to the
 | 
						|
       * loop_bb. *)
 | 
						|
      ignore (build_br loop_bb builder);
 | 
						|
 | 
						|
      (* Start insertion in loop_bb. *)
 | 
						|
      position_at_end loop_bb builder;
 | 
						|
 | 
						|
      (* Within the loop, the variable is defined equal to the PHI node. If it
 | 
						|
       * shadows an existing variable, we have to restore it, so save it
 | 
						|
       * now. *)
 | 
						|
      let old_val =
 | 
						|
        try Some (Hashtbl.find named_values var_name) with Not_found -> None
 | 
						|
      in
 | 
						|
      Hashtbl.add named_values var_name alloca;
 | 
						|
 | 
						|
      (* Emit the body of the loop.  This, like any other expr, can change the
 | 
						|
       * current BB.  Note that we ignore the value computed by the body, but
 | 
						|
       * don't allow an error *)
 | 
						|
      ignore (codegen_expr body);
 | 
						|
 | 
						|
      (* Emit the step value. *)
 | 
						|
      let step_val =
 | 
						|
        match step with
 | 
						|
        | Some step -> codegen_expr step
 | 
						|
        (* If not specified, use 1.0. *)
 | 
						|
        | None -> const_float double_type 1.0
 | 
						|
      in
 | 
						|
 | 
						|
      (* Compute the end condition. *)
 | 
						|
      let end_cond = codegen_expr end_ in
 | 
						|
 | 
						|
      (* Reload, increment, and restore the alloca. This handles the case where
 | 
						|
       * the body of the loop mutates the variable. *)
 | 
						|
      let cur_var = build_load alloca var_name builder in
 | 
						|
      let next_var = build_add cur_var step_val "nextvar" builder in
 | 
						|
      ignore(build_store next_var alloca builder);
 | 
						|
 | 
						|
      (* Convert condition to a bool by comparing equal to 0.0. *)
 | 
						|
      let zero = const_float double_type 0.0 in
 | 
						|
      let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
 | 
						|
 | 
						|
      (* Create the "after loop" block and insert it. *)
 | 
						|
      let after_bb = append_block context "afterloop" the_function in
 | 
						|
 | 
						|
      (* Insert the conditional branch into the end of loop_end_bb. *)
 | 
						|
      ignore (build_cond_br end_cond loop_bb after_bb builder);
 | 
						|
 | 
						|
      (* Any new code will be inserted in after_bb. *)
 | 
						|
      position_at_end after_bb builder;
 | 
						|
 | 
						|
      (* Restore the unshadowed variable. *)
 | 
						|
      begin match old_val with
 | 
						|
      | Some old_val -> Hashtbl.add named_values var_name old_val
 | 
						|
      | None -> ()
 | 
						|
      end;
 | 
						|
 | 
						|
      (* for expr always returns 0.0. *)
 | 
						|
      const_null double_type
 | 
						|
  | Ast.Var (var_names, body) ->
 | 
						|
      let old_bindings = ref [] in
 | 
						|
 | 
						|
      let the_function = block_parent (insertion_block builder) in
 | 
						|
 | 
						|
      (* Register all variables and emit their initializer. *)
 | 
						|
      Array.iter (fun (var_name, init) ->
 | 
						|
        (* Emit the initializer before adding the variable to scope, this
 | 
						|
         * prevents the initializer from referencing the variable itself, and
 | 
						|
         * permits stuff like this:
 | 
						|
         *   var a = 1 in
 | 
						|
         *     var a = a in ...   # refers to outer 'a'. *)
 | 
						|
        let init_val =
 | 
						|
          match init with
 | 
						|
          | Some init -> codegen_expr init
 | 
						|
          (* If not specified, use 0.0. *)
 | 
						|
          | None -> const_float double_type 0.0
 | 
						|
        in
 | 
						|
 | 
						|
        let alloca = create_entry_block_alloca the_function var_name in
 | 
						|
        ignore(build_store init_val alloca builder);
 | 
						|
 | 
						|
        (* Remember the old variable binding so that we can restore the binding
 | 
						|
         * when we unrecurse. *)
 | 
						|
        begin
 | 
						|
          try
 | 
						|
            let old_value = Hashtbl.find named_values var_name in
 | 
						|
            old_bindings := (var_name, old_value) :: !old_bindings;
 | 
						|
          with Not_found -> ()
 | 
						|
        end;
 | 
						|
 | 
						|
        (* Remember this binding. *)
 | 
						|
        Hashtbl.add named_values var_name alloca;
 | 
						|
      ) var_names;
 | 
						|
 | 
						|
      (* Codegen the body, now that all vars are in scope. *)
 | 
						|
      let body_val = codegen_expr body in
 | 
						|
 | 
						|
      (* Pop all our variables from scope. *)
 | 
						|
      List.iter (fun (var_name, old_value) ->
 | 
						|
        Hashtbl.add named_values var_name old_value
 | 
						|
      ) !old_bindings;
 | 
						|
 | 
						|
      (* Return the body computation. *)
 | 
						|
      body_val
 | 
						|
 | 
						|
let codegen_proto = function
 | 
						|
  | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->
 | 
						|
      (* Make the function type: double(double,double) etc. *)
 | 
						|
      let doubles = Array.make (Array.length args) double_type in
 | 
						|
      let ft = function_type double_type doubles in
 | 
						|
      let f =
 | 
						|
        match lookup_function name the_module with
 | 
						|
        | None -> declare_function name ft the_module
 | 
						|
 | 
						|
        (* If 'f' conflicted, there was already something named 'name'. If it
 | 
						|
         * has a body, don't allow redefinition or reextern. *)
 | 
						|
        | Some f ->
 | 
						|
            (* If 'f' already has a body, reject this. *)
 | 
						|
            if block_begin f <> At_end f then
 | 
						|
              raise (Error "redefinition of function");
 | 
						|
 | 
						|
            (* If 'f' took a different number of arguments, reject. *)
 | 
						|
            if element_type (type_of f) <> ft then
 | 
						|
              raise (Error "redefinition of function with different # args");
 | 
						|
            f
 | 
						|
      in
 | 
						|
 | 
						|
      (* Set names for all arguments. *)
 | 
						|
      Array.iteri (fun i a ->
 | 
						|
        let n = args.(i) in
 | 
						|
        set_value_name n a;
 | 
						|
        Hashtbl.add named_values n a;
 | 
						|
      ) (params f);
 | 
						|
      f
 | 
						|
 | 
						|
(* Create an alloca for each argument and register the argument in the symbol
 | 
						|
 * table so that references to it will succeed. *)
 | 
						|
let create_argument_allocas the_function proto =
 | 
						|
  let args = match proto with
 | 
						|
    | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args
 | 
						|
  in
 | 
						|
  Array.iteri (fun i ai ->
 | 
						|
    let var_name = args.(i) in
 | 
						|
    (* Create an alloca for this variable. *)
 | 
						|
    let alloca = create_entry_block_alloca the_function var_name in
 | 
						|
 | 
						|
    (* Store the initial value into the alloca. *)
 | 
						|
    ignore(build_store ai alloca builder);
 | 
						|
 | 
						|
    (* Add arguments to variable symbol table. *)
 | 
						|
    Hashtbl.add named_values var_name alloca;
 | 
						|
  ) (params the_function)
 | 
						|
 | 
						|
let codegen_func the_fpm = function
 | 
						|
  | Ast.Function (proto, body) ->
 | 
						|
      Hashtbl.clear named_values;
 | 
						|
      let the_function = codegen_proto proto in
 | 
						|
 | 
						|
      (* If this is an operator, install it. *)
 | 
						|
      begin match proto with
 | 
						|
      | Ast.BinOpPrototype (name, args, prec) ->
 | 
						|
          let op = name.[String.length name - 1] in
 | 
						|
          Hashtbl.add Parser.binop_precedence op prec;
 | 
						|
      | _ -> ()
 | 
						|
      end;
 | 
						|
 | 
						|
      (* Create a new basic block to start insertion into. *)
 | 
						|
      let bb = append_block context "entry" the_function in
 | 
						|
      position_at_end bb builder;
 | 
						|
 | 
						|
      try
 | 
						|
        (* Add all arguments to the symbol table and create their allocas. *)
 | 
						|
        create_argument_allocas the_function proto;
 | 
						|
 | 
						|
        let ret_val = codegen_expr body in
 | 
						|
 | 
						|
        (* Finish off the function. *)
 | 
						|
        let _ = build_ret ret_val builder in
 | 
						|
 | 
						|
        (* Validate the generated code, checking for consistency. *)
 | 
						|
        Llvm_analysis.assert_valid_function the_function;
 | 
						|
 | 
						|
        (* Optimize the function. *)
 | 
						|
        let _ = PassManager.run_function the_function the_fpm in
 | 
						|
 | 
						|
        the_function
 | 
						|
      with e ->
 | 
						|
        delete_function the_function;
 | 
						|
        raise e
 |