forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1867 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1867 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- OutputSections.cpp -------------------------------------------------===//
 | 
						|
//
 | 
						|
//                             The LLVM Linker
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "OutputSections.h"
 | 
						|
#include "Config.h"
 | 
						|
#include "LinkerScript.h"
 | 
						|
#include "SymbolTable.h"
 | 
						|
#include "Target.h"
 | 
						|
#include "lld/Core/Parallel.h"
 | 
						|
#include "llvm/Support/Dwarf.h"
 | 
						|
#include "llvm/Support/MD5.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/SHA1.h"
 | 
						|
#include <map>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::dwarf;
 | 
						|
using namespace llvm::object;
 | 
						|
using namespace llvm::support::endian;
 | 
						|
using namespace llvm::ELF;
 | 
						|
 | 
						|
using namespace lld;
 | 
						|
using namespace lld::elf;
 | 
						|
 | 
						|
static bool isAlpha(char C) {
 | 
						|
  return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_';
 | 
						|
}
 | 
						|
 | 
						|
static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); }
 | 
						|
 | 
						|
// Returns true if S is valid as a C language identifier.
 | 
						|
bool elf::isValidCIdentifier(StringRef S) {
 | 
						|
  return !S.empty() && isAlpha(S[0]) &&
 | 
						|
         std::all_of(S.begin() + 1, S.end(), isAlnum);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type,
 | 
						|
                                           uintX_t Flags)
 | 
						|
    : Name(Name) {
 | 
						|
  memset(&Header, 0, sizeof(Elf_Shdr));
 | 
						|
  Header.sh_type = Type;
 | 
						|
  Header.sh_flags = Flags;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *Shdr) {
 | 
						|
  *Shdr = Header;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
GotPltSection<ELFT>::GotPltSection()
 | 
						|
    : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
 | 
						|
  this->Header.sh_addralign = sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) {
 | 
						|
  Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size();
 | 
						|
  Entries.push_back(&Sym);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> bool GotPltSection<ELFT>::empty() const {
 | 
						|
  return Entries.empty();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotPltSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_size =
 | 
						|
      (Target->GotPltHeaderEntriesNum + Entries.size()) * sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  Target->writeGotPltHeader(Buf);
 | 
						|
  Buf += Target->GotPltHeaderEntriesNum * sizeof(uintX_t);
 | 
						|
  for (const SymbolBody *B : Entries) {
 | 
						|
    Target->writeGotPlt(Buf, B->getPltVA<ELFT>());
 | 
						|
    Buf += sizeof(uintX_t);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
GotSection<ELFT>::GotSection()
 | 
						|
    : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) {
 | 
						|
  if (Config->EMachine == EM_MIPS)
 | 
						|
    this->Header.sh_flags |= SHF_MIPS_GPREL;
 | 
						|
  this->Header.sh_addralign = sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody &Sym) {
 | 
						|
  if (Config->EMachine == EM_MIPS) {
 | 
						|
    // For "true" local symbols which can be referenced from the same module
 | 
						|
    // only compiler creates two instructions for address loading:
 | 
						|
    //
 | 
						|
    // lw   $8, 0($gp) # R_MIPS_GOT16
 | 
						|
    // addi $8, $8, 0  # R_MIPS_LO16
 | 
						|
    //
 | 
						|
    // The first instruction loads high 16 bits of the symbol address while
 | 
						|
    // the second adds an offset. That allows to reduce number of required
 | 
						|
    // GOT entries because only one global offset table entry is necessary
 | 
						|
    // for every 64 KBytes of local data. So for local symbols we need to
 | 
						|
    // allocate number of GOT entries to hold all required "page" addresses.
 | 
						|
    //
 | 
						|
    // All global symbols (hidden and regular) considered by compiler uniformly.
 | 
						|
    // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation
 | 
						|
    // to load address of the symbol. So for each such symbol we need to
 | 
						|
    // allocate dedicated GOT entry to store its address.
 | 
						|
    //
 | 
						|
    // If a symbol is preemptible we need help of dynamic linker to get its
 | 
						|
    // final address. The corresponding GOT entries are allocated in the
 | 
						|
    // "global" part of GOT. Entries for non preemptible global symbol allocated
 | 
						|
    // in the "local" part of GOT.
 | 
						|
    //
 | 
						|
    // See "Global Offset Table" in Chapter 5:
 | 
						|
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						|
    if (Sym.isLocal()) {
 | 
						|
      // At this point we do not know final symbol value so to reduce number
 | 
						|
      // of allocated GOT entries do the following trick. Save all output
 | 
						|
      // sections referenced by GOT relocations. Then later in the `finalize`
 | 
						|
      // method calculate number of "pages" required to cover all saved output
 | 
						|
      // section and allocate appropriate number of GOT entries.
 | 
						|
      auto *OutSec = cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec;
 | 
						|
      MipsOutSections.insert(OutSec);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (!Sym.isPreemptible()) {
 | 
						|
      // In case of non-local symbols require an entry in the local part
 | 
						|
      // of MIPS GOT, we set GotIndex to 1 just to accent that this symbol
 | 
						|
      // has the GOT entry and escape creation more redundant GOT entries.
 | 
						|
      // FIXME (simon): We can try to store such symbols in the `Entries`
 | 
						|
      // container. But in that case we have to sort out that container
 | 
						|
      // and update GotIndex assigned to symbols.
 | 
						|
      Sym.GotIndex = 1;
 | 
						|
      ++MipsLocalEntries;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Sym.GotIndex = Entries.size();
 | 
						|
  Entries.push_back(&Sym);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) {
 | 
						|
  if (Sym.symbol()->GlobalDynIndex != -1U)
 | 
						|
    return false;
 | 
						|
  Sym.symbol()->GlobalDynIndex = Entries.size();
 | 
						|
  // Global Dynamic TLS entries take two GOT slots.
 | 
						|
  Entries.push_back(&Sym);
 | 
						|
  Entries.push_back(nullptr);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Reserves TLS entries for a TLS module ID and a TLS block offset.
 | 
						|
// In total it takes two GOT slots.
 | 
						|
template <class ELFT> bool GotSection<ELFT>::addTlsIndex() {
 | 
						|
  if (TlsIndexOff != uint32_t(-1))
 | 
						|
    return false;
 | 
						|
  TlsIndexOff = Entries.size() * sizeof(uintX_t);
 | 
						|
  Entries.push_back(nullptr);
 | 
						|
  Entries.push_back(nullptr);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getMipsLocalPageOffset(uintX_t EntryValue) {
 | 
						|
  // Initialize the entry by the %hi(EntryValue) expression
 | 
						|
  // but without right-shifting.
 | 
						|
  return getMipsLocalEntryOffset((EntryValue + 0x8000) & ~0xffff);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getMipsLocalEntryOffset(uintX_t EntryValue) {
 | 
						|
  // Take into account MIPS GOT header.
 | 
						|
  // See comment in the GotSection::writeTo.
 | 
						|
  size_t NewIndex = MipsLocalGotPos.size() + 2;
 | 
						|
  auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex));
 | 
						|
  assert(!P.second || MipsLocalGotPos.size() <= MipsLocalEntries);
 | 
						|
  return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const {
 | 
						|
  return this->getVA() + B.symbol()->GlobalDynIndex * sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
typename GotSection<ELFT>::uintX_t
 | 
						|
GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const {
 | 
						|
  return B.symbol()->GlobalDynIndex * sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const {
 | 
						|
  return Entries.empty() ? nullptr : Entries.front();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const {
 | 
						|
  return MipsLocalEntries;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotSection<ELFT>::finalize() {
 | 
						|
  if (Config->EMachine == EM_MIPS)
 | 
						|
    // Take into account MIPS GOT header.
 | 
						|
    // See comment in the GotSection::writeTo.
 | 
						|
    MipsLocalEntries += 2;
 | 
						|
  for (const OutputSectionBase<ELFT> *OutSec : MipsOutSections) {
 | 
						|
    // Calculate an upper bound of MIPS GOT entries required to store page
 | 
						|
    // addresses of local symbols. We assume the worst case - each 64kb
 | 
						|
    // page of the output section has at least one GOT relocation against it.
 | 
						|
    // Add 0x8000 to the section's size because the page address stored
 | 
						|
    // in the GOT entry is calculated as (value + 0x8000) & ~0xffff.
 | 
						|
    MipsLocalEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff;
 | 
						|
  }
 | 
						|
  this->Header.sh_size = (MipsLocalEntries + Entries.size()) * sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  if (Config->EMachine == EM_MIPS) {
 | 
						|
    // Set the MSB of the second GOT slot. This is not required by any
 | 
						|
    // MIPS ABI documentation, though.
 | 
						|
    //
 | 
						|
    // There is a comment in glibc saying that "The MSB of got[1] of a
 | 
						|
    // gnu object is set to identify gnu objects," and in GNU gold it
 | 
						|
    // says "the second entry will be used by some runtime loaders".
 | 
						|
    // But how this field is being used is unclear.
 | 
						|
    //
 | 
						|
    // We are not really willing to mimic other linkers behaviors
 | 
						|
    // without understanding why they do that, but because all files
 | 
						|
    // generated by GNU tools have this special GOT value, and because
 | 
						|
    // we've been doing this for years, it is probably a safe bet to
 | 
						|
    // keep doing this for now. We really need to revisit this to see
 | 
						|
    // if we had to do this.
 | 
						|
    auto *P = reinterpret_cast<typename ELFT::Off *>(Buf);
 | 
						|
    P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31);
 | 
						|
  }
 | 
						|
  for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) {
 | 
						|
    uint8_t *Entry = Buf + L.second * sizeof(uintX_t);
 | 
						|
    write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first);
 | 
						|
  }
 | 
						|
  Buf += MipsLocalEntries * sizeof(uintX_t);
 | 
						|
  for (const SymbolBody *B : Entries) {
 | 
						|
    uint8_t *Entry = Buf;
 | 
						|
    Buf += sizeof(uintX_t);
 | 
						|
    if (!B)
 | 
						|
      continue;
 | 
						|
    // MIPS has special rules to fill up GOT entries.
 | 
						|
    // See "Global Offset Table" in Chapter 5 in the following document
 | 
						|
    // for detailed description:
 | 
						|
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						|
    // As the first approach, we can just store addresses for all symbols.
 | 
						|
    if (Config->EMachine != EM_MIPS && B->isPreemptible())
 | 
						|
      continue; // The dynamic linker will take care of it.
 | 
						|
    uintX_t VA = B->getVA<ELFT>();
 | 
						|
    write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
PltSection<ELFT>::PltSection()
 | 
						|
    : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) {
 | 
						|
  this->Header.sh_addralign = 16;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  size_t Off = 0;
 | 
						|
  // At beginning of PLT, we have code to call the dynamic linker
 | 
						|
  // to resolve dynsyms at runtime. Write such code.
 | 
						|
  Target->writePltZero(Buf);
 | 
						|
  Off += Target->PltZeroSize;
 | 
						|
  for (auto &I : Entries) {
 | 
						|
    const SymbolBody *B = I.first;
 | 
						|
    unsigned RelOff = I.second;
 | 
						|
    uint64_t Got = B->getGotPltVA<ELFT>();
 | 
						|
    uint64_t Plt = this->getVA() + Off;
 | 
						|
    Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
 | 
						|
    Off += Target->PltEntrySize;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) {
 | 
						|
  Sym.PltIndex = Entries.size();
 | 
						|
  unsigned RelOff = Out<ELFT>::RelaPlt->getRelocOffset();
 | 
						|
  Entries.push_back(std::make_pair(&Sym, RelOff));
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void PltSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_size =
 | 
						|
      Target->PltZeroSize + Entries.size() * Target->PltEntrySize;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort)
 | 
						|
    : OutputSectionBase<ELFT>(Name, Config->Rela ? SHT_RELA : SHT_REL,
 | 
						|
                              SHF_ALLOC),
 | 
						|
      Sort(Sort) {
 | 
						|
  this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
 | 
						|
  this->Header.sh_addralign = sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) {
 | 
						|
  Relocs.push_back(Reloc);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT, class RelTy>
 | 
						|
static bool compRelocations(const RelTy &A, const RelTy &B) {
 | 
						|
  return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  uint8_t *BufBegin = Buf;
 | 
						|
  for (const DynamicReloc<ELFT> &Rel : Relocs) {
 | 
						|
    auto *P = reinterpret_cast<Elf_Rela *>(Buf);
 | 
						|
    Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
 | 
						|
    SymbolBody *Sym = Rel.Sym;
 | 
						|
 | 
						|
    if (Config->Rela)
 | 
						|
      P->r_addend = Rel.UseSymVA ? Sym->getVA<ELFT>(Rel.Addend) : Rel.Addend;
 | 
						|
    P->r_offset = Rel.OffsetInSec + Rel.OffsetSec->getVA();
 | 
						|
    uint32_t SymIdx = (!Rel.UseSymVA && Sym) ? Sym->DynsymIndex : 0;
 | 
						|
    P->setSymbolAndType(SymIdx, Rel.Type, Config->Mips64EL);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Sort) {
 | 
						|
    if (Config->Rela)
 | 
						|
      std::stable_sort((Elf_Rela *)BufBegin,
 | 
						|
                       (Elf_Rela *)BufBegin + Relocs.size(),
 | 
						|
                       compRelocations<ELFT, Elf_Rela>);
 | 
						|
    else
 | 
						|
      std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(),
 | 
						|
                       compRelocations<ELFT, Elf_Rel>);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
 | 
						|
  return this->Header.sh_entsize * Relocs.size();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void RelocationSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex
 | 
						|
                                : Out<ELFT>::DynSymTab->SectionIndex;
 | 
						|
  this->Header.sh_size = Relocs.size() * this->Header.sh_entsize;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
InterpSection<ELFT>::InterpSection()
 | 
						|
    : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) {
 | 
						|
  this->Header.sh_size = Config->DynamicLinker.size() + 1;
 | 
						|
  this->Header.sh_addralign = 1;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  StringRef S = Config->DynamicLinker;
 | 
						|
  memcpy(Buf, S.data(), S.size());
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
HashTableSection<ELFT>::HashTableSection()
 | 
						|
    : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) {
 | 
						|
  this->Header.sh_entsize = sizeof(Elf_Word);
 | 
						|
  this->Header.sh_addralign = sizeof(Elf_Word);
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t hashSysv(StringRef Name) {
 | 
						|
  uint32_t H = 0;
 | 
						|
  for (char C : Name) {
 | 
						|
    H = (H << 4) + C;
 | 
						|
    uint32_t G = H & 0xf0000000;
 | 
						|
    if (G)
 | 
						|
      H ^= G >> 24;
 | 
						|
    H &= ~G;
 | 
						|
  }
 | 
						|
  return H;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void HashTableSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
 | 
						|
 | 
						|
  unsigned NumEntries = 2;                             // nbucket and nchain.
 | 
						|
  NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.
 | 
						|
 | 
						|
  // Create as many buckets as there are symbols.
 | 
						|
  // FIXME: This is simplistic. We can try to optimize it, but implementing
 | 
						|
  // support for SHT_GNU_HASH is probably even more profitable.
 | 
						|
  NumEntries += Out<ELFT>::DynSymTab->getNumSymbols();
 | 
						|
  this->Header.sh_size = NumEntries * sizeof(Elf_Word);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols();
 | 
						|
  auto *P = reinterpret_cast<Elf_Word *>(Buf);
 | 
						|
  *P++ = NumSymbols; // nbucket
 | 
						|
  *P++ = NumSymbols; // nchain
 | 
						|
 | 
						|
  Elf_Word *Buckets = P;
 | 
						|
  Elf_Word *Chains = P + NumSymbols;
 | 
						|
 | 
						|
  for (const std::pair<SymbolBody *, unsigned> &P :
 | 
						|
       Out<ELFT>::DynSymTab->getSymbols()) {
 | 
						|
    SymbolBody *Body = P.first;
 | 
						|
    StringRef Name = Body->getName();
 | 
						|
    unsigned I = Body->DynsymIndex;
 | 
						|
    uint32_t Hash = hashSysv(Name) % NumSymbols;
 | 
						|
    Chains[I] = Buckets[Hash];
 | 
						|
    Buckets[Hash] = I;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t hashGnu(StringRef Name) {
 | 
						|
  uint32_t H = 5381;
 | 
						|
  for (uint8_t C : Name)
 | 
						|
    H = (H << 5) + H + C;
 | 
						|
  return H;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
GnuHashTableSection<ELFT>::GnuHashTableSection()
 | 
						|
    : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) {
 | 
						|
  this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4;
 | 
						|
  this->Header.sh_addralign = sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
 | 
						|
  if (!NumHashed)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // These values are prime numbers which are not greater than 2^(N-1) + 1.
 | 
						|
  // In result, for any particular NumHashed we return a prime number
 | 
						|
  // which is not greater than NumHashed.
 | 
						|
  static const unsigned Primes[] = {
 | 
						|
      1,   1,    3,    3,    7,    13,    31,    61,    127,   251,
 | 
						|
      509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};
 | 
						|
 | 
						|
  return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
 | 
						|
                                   array_lengthof(Primes) - 1)];
 | 
						|
}
 | 
						|
 | 
						|
// Bloom filter estimation: at least 8 bits for each hashed symbol.
 | 
						|
// GNU Hash table requirement: it should be a power of 2,
 | 
						|
//   the minimum value is 1, even for an empty table.
 | 
						|
// Expected results for a 32-bit target:
 | 
						|
//   calcMaskWords(0..4)   = 1
 | 
						|
//   calcMaskWords(5..8)   = 2
 | 
						|
//   calcMaskWords(9..16)  = 4
 | 
						|
// For a 64-bit target:
 | 
						|
//   calcMaskWords(0..8)   = 1
 | 
						|
//   calcMaskWords(9..16)  = 2
 | 
						|
//   calcMaskWords(17..32) = 4
 | 
						|
template <class ELFT>
 | 
						|
unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
 | 
						|
  if (!NumHashed)
 | 
						|
    return 1;
 | 
						|
  return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
 | 
						|
  unsigned NumHashed = Symbols.size();
 | 
						|
  NBuckets = calcNBuckets(NumHashed);
 | 
						|
  MaskWords = calcMaskWords(NumHashed);
 | 
						|
  // Second hash shift estimation: just predefined values.
 | 
						|
  Shift2 = ELFT::Is64Bits ? 6 : 5;
 | 
						|
 | 
						|
  this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex;
 | 
						|
  this->Header.sh_size = sizeof(Elf_Word) * 4            // Header
 | 
						|
                         + sizeof(Elf_Off) * MaskWords   // Bloom Filter
 | 
						|
                         + sizeof(Elf_Word) * NBuckets   // Hash Buckets
 | 
						|
                         + sizeof(Elf_Word) * NumHashed; // Hash Values
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  writeHeader(Buf);
 | 
						|
  if (Symbols.empty())
 | 
						|
    return;
 | 
						|
  writeBloomFilter(Buf);
 | 
						|
  writeHashTable(Buf);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
 | 
						|
  auto *P = reinterpret_cast<Elf_Word *>(Buf);
 | 
						|
  *P++ = NBuckets;
 | 
						|
  *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size();
 | 
						|
  *P++ = MaskWords;
 | 
						|
  *P++ = Shift2;
 | 
						|
  Buf = reinterpret_cast<uint8_t *>(P);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
 | 
						|
  unsigned C = sizeof(Elf_Off) * 8;
 | 
						|
 | 
						|
  auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
 | 
						|
  for (const SymbolData &Sym : Symbols) {
 | 
						|
    size_t Pos = (Sym.Hash / C) & (MaskWords - 1);
 | 
						|
    uintX_t V = (uintX_t(1) << (Sym.Hash % C)) |
 | 
						|
                (uintX_t(1) << ((Sym.Hash >> Shift2) % C));
 | 
						|
    Masks[Pos] |= V;
 | 
						|
  }
 | 
						|
  Buf += sizeof(Elf_Off) * MaskWords;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
 | 
						|
  Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
 | 
						|
  Elf_Word *Values = Buckets + NBuckets;
 | 
						|
 | 
						|
  int PrevBucket = -1;
 | 
						|
  int I = 0;
 | 
						|
  for (const SymbolData &Sym : Symbols) {
 | 
						|
    int Bucket = Sym.Hash % NBuckets;
 | 
						|
    assert(PrevBucket <= Bucket);
 | 
						|
    if (Bucket != PrevBucket) {
 | 
						|
      Buckets[Bucket] = Sym.Body->DynsymIndex;
 | 
						|
      PrevBucket = Bucket;
 | 
						|
      if (I > 0)
 | 
						|
        Values[I - 1] |= 1;
 | 
						|
    }
 | 
						|
    Values[I] = Sym.Hash & ~1;
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
  if (I > 0)
 | 
						|
    Values[I - 1] |= 1;
 | 
						|
}
 | 
						|
 | 
						|
static bool includeInGnuHashTable(SymbolBody *B) {
 | 
						|
  // Assume that includeInDynsym() is already checked.
 | 
						|
  return !B->isUndefined();
 | 
						|
}
 | 
						|
 | 
						|
// Add symbols to this symbol hash table. Note that this function
 | 
						|
// destructively sort a given vector -- which is needed because
 | 
						|
// GNU-style hash table places some sorting requirements.
 | 
						|
template <class ELFT>
 | 
						|
void GnuHashTableSection<ELFT>::addSymbols(
 | 
						|
    std::vector<std::pair<SymbolBody *, size_t>> &V) {
 | 
						|
  auto Mid = std::stable_partition(V.begin(), V.end(),
 | 
						|
                                   [](std::pair<SymbolBody *, size_t> &P) {
 | 
						|
                                     return !includeInGnuHashTable(P.first);
 | 
						|
                                   });
 | 
						|
  if (Mid == V.end())
 | 
						|
    return;
 | 
						|
  for (auto I = Mid, E = V.end(); I != E; ++I) {
 | 
						|
    SymbolBody *B = I->first;
 | 
						|
    size_t StrOff = I->second;
 | 
						|
    Symbols.push_back({B, StrOff, hashGnu(B->getName())});
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NBuckets = calcNBuckets(Symbols.size());
 | 
						|
  std::stable_sort(Symbols.begin(), Symbols.end(),
 | 
						|
                   [&](const SymbolData &L, const SymbolData &R) {
 | 
						|
                     return L.Hash % NBuckets < R.Hash % NBuckets;
 | 
						|
                   });
 | 
						|
 | 
						|
  V.erase(Mid, V.end());
 | 
						|
  for (const SymbolData &Sym : Symbols)
 | 
						|
    V.push_back({Sym.Body, Sym.STName});
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
DynamicSection<ELFT>::DynamicSection(SymbolTable<ELFT> &SymTab)
 | 
						|
    : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE),
 | 
						|
      SymTab(SymTab) {
 | 
						|
  Elf_Shdr &Header = this->Header;
 | 
						|
  Header.sh_addralign = sizeof(uintX_t);
 | 
						|
  Header.sh_entsize = ELFT::Is64Bits ? 16 : 8;
 | 
						|
 | 
						|
  // .dynamic section is not writable on MIPS.
 | 
						|
  // See "Special Section" in Chapter 4 in the following document:
 | 
						|
  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						|
  if (Config->EMachine == EM_MIPS)
 | 
						|
    Header.sh_flags = SHF_ALLOC;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void DynamicSection<ELFT>::finalize() {
 | 
						|
  if (this->Header.sh_size)
 | 
						|
    return; // Already finalized.
 | 
						|
 | 
						|
  Elf_Shdr &Header = this->Header;
 | 
						|
  Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
 | 
						|
 | 
						|
  auto Add = [=](Entry E) { Entries.push_back(E); };
 | 
						|
 | 
						|
  // Add strings. We know that these are the last strings to be added to
 | 
						|
  // DynStrTab and doing this here allows this function to set DT_STRSZ.
 | 
						|
  if (!Config->RPath.empty())
 | 
						|
    Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
 | 
						|
         Out<ELFT>::DynStrTab->addString(Config->RPath)});
 | 
						|
  for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles())
 | 
						|
    if (F->isNeeded())
 | 
						|
      Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())});
 | 
						|
  if (!Config->SoName.empty())
 | 
						|
    Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)});
 | 
						|
 | 
						|
  Out<ELFT>::DynStrTab->finalize();
 | 
						|
 | 
						|
  if (Out<ELFT>::RelaDyn->hasRelocs()) {
 | 
						|
    bool IsRela = Config->Rela;
 | 
						|
    Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn});
 | 
						|
    Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()});
 | 
						|
    Add({IsRela ? DT_RELAENT : DT_RELENT,
 | 
						|
         uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
 | 
						|
  }
 | 
						|
  if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
 | 
						|
    Add({DT_JMPREL, Out<ELFT>::RelaPlt});
 | 
						|
    Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()});
 | 
						|
    Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT,
 | 
						|
         Out<ELFT>::GotPlt});
 | 
						|
    Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)});
 | 
						|
  }
 | 
						|
 | 
						|
  Add({DT_SYMTAB, Out<ELFT>::DynSymTab});
 | 
						|
  Add({DT_SYMENT, sizeof(Elf_Sym)});
 | 
						|
  Add({DT_STRTAB, Out<ELFT>::DynStrTab});
 | 
						|
  Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()});
 | 
						|
  if (Out<ELFT>::GnuHashTab)
 | 
						|
    Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab});
 | 
						|
  if (Out<ELFT>::HashTab)
 | 
						|
    Add({DT_HASH, Out<ELFT>::HashTab});
 | 
						|
 | 
						|
  if (PreInitArraySec) {
 | 
						|
    Add({DT_PREINIT_ARRAY, PreInitArraySec});
 | 
						|
    Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()});
 | 
						|
  }
 | 
						|
  if (InitArraySec) {
 | 
						|
    Add({DT_INIT_ARRAY, InitArraySec});
 | 
						|
    Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()});
 | 
						|
  }
 | 
						|
  if (FiniArraySec) {
 | 
						|
    Add({DT_FINI_ARRAY, FiniArraySec});
 | 
						|
    Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()});
 | 
						|
  }
 | 
						|
 | 
						|
  if (SymbolBody *B = SymTab.find(Config->Init))
 | 
						|
    Add({DT_INIT, B});
 | 
						|
  if (SymbolBody *B = SymTab.find(Config->Fini))
 | 
						|
    Add({DT_FINI, B});
 | 
						|
 | 
						|
  uint32_t DtFlags = 0;
 | 
						|
  uint32_t DtFlags1 = 0;
 | 
						|
  if (Config->Bsymbolic)
 | 
						|
    DtFlags |= DF_SYMBOLIC;
 | 
						|
  if (Config->ZNodelete)
 | 
						|
    DtFlags1 |= DF_1_NODELETE;
 | 
						|
  if (Config->ZNow) {
 | 
						|
    DtFlags |= DF_BIND_NOW;
 | 
						|
    DtFlags1 |= DF_1_NOW;
 | 
						|
  }
 | 
						|
  if (Config->ZOrigin) {
 | 
						|
    DtFlags |= DF_ORIGIN;
 | 
						|
    DtFlags1 |= DF_1_ORIGIN;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DtFlags)
 | 
						|
    Add({DT_FLAGS, DtFlags});
 | 
						|
  if (DtFlags1)
 | 
						|
    Add({DT_FLAGS_1, DtFlags1});
 | 
						|
 | 
						|
  if (!Config->Entry.empty())
 | 
						|
    Add({DT_DEBUG, (uint64_t)0});
 | 
						|
 | 
						|
  if (size_t NeedNum = Out<ELFT>::VerNeed->getNeedNum()) {
 | 
						|
    Add({DT_VERSYM, Out<ELFT>::VerSym});
 | 
						|
    Add({DT_VERNEED, Out<ELFT>::VerNeed});
 | 
						|
    Add({DT_VERNEEDNUM, NeedNum});
 | 
						|
  }
 | 
						|
 | 
						|
  if (Config->EMachine == EM_MIPS) {
 | 
						|
    Add({DT_MIPS_RLD_VERSION, 1});
 | 
						|
    Add({DT_MIPS_FLAGS, RHF_NOTPOT});
 | 
						|
    Add({DT_MIPS_BASE_ADDRESS, (uintX_t)Target->getVAStart()});
 | 
						|
    Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()});
 | 
						|
    Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()});
 | 
						|
    if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry())
 | 
						|
      Add({DT_MIPS_GOTSYM, B->DynsymIndex});
 | 
						|
    else
 | 
						|
      Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()});
 | 
						|
    Add({DT_PLTGOT, Out<ELFT>::Got});
 | 
						|
    if (Out<ELFT>::MipsRldMap)
 | 
						|
      Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap});
 | 
						|
  }
 | 
						|
 | 
						|
  // +1 for DT_NULL
 | 
						|
  Header.sh_size = (Entries.size() + 1) * Header.sh_entsize;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
 | 
						|
 | 
						|
  for (const Entry &E : Entries) {
 | 
						|
    P->d_tag = E.Tag;
 | 
						|
    switch (E.Kind) {
 | 
						|
    case Entry::SecAddr:
 | 
						|
      P->d_un.d_ptr = E.OutSec->getVA();
 | 
						|
      break;
 | 
						|
    case Entry::SymAddr:
 | 
						|
      P->d_un.d_ptr = E.Sym->template getVA<ELFT>();
 | 
						|
      break;
 | 
						|
    case Entry::PlainInt:
 | 
						|
      P->d_un.d_val = E.Val;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    ++P;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
EhFrameHeader<ELFT>::EhFrameHeader()
 | 
						|
    : OutputSectionBase<ELFT>(".eh_frame_hdr", llvm::ELF::SHT_PROGBITS,
 | 
						|
                              SHF_ALLOC) {
 | 
						|
  // It's a 4 bytes of header + pointer to the contents of the .eh_frame section
 | 
						|
  // + the number of FDE pointers in the table.
 | 
						|
  this->Header.sh_size = 12;
 | 
						|
}
 | 
						|
 | 
						|
// We have to get PC values of FDEs. They depend on relocations
 | 
						|
// which are target specific, so we run this code after performing
 | 
						|
// all relocations. We read the values from ouput buffer according to the
 | 
						|
// encoding given for FDEs. Return value is an offset to the initial PC value
 | 
						|
// for the FDE.
 | 
						|
template <class ELFT>
 | 
						|
typename EhFrameHeader<ELFT>::uintX_t
 | 
						|
EhFrameHeader<ELFT>::getFdePc(uintX_t EhVA, const FdeData &F) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
  uint8_t Size = F.Enc & 0x7;
 | 
						|
  if (Size == DW_EH_PE_absptr)
 | 
						|
    Size = sizeof(uintX_t) == 8 ? DW_EH_PE_udata8 : DW_EH_PE_udata4;
 | 
						|
  uint64_t PC;
 | 
						|
  switch (Size) {
 | 
						|
  case DW_EH_PE_udata2:
 | 
						|
    PC = read16<E>(F.PCRel);
 | 
						|
    break;
 | 
						|
  case DW_EH_PE_udata4:
 | 
						|
    PC = read32<E>(F.PCRel);
 | 
						|
    break;
 | 
						|
  case DW_EH_PE_udata8:
 | 
						|
    PC = read64<E>(F.PCRel);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    fatal("unknown FDE size encoding");
 | 
						|
  }
 | 
						|
  switch (F.Enc & 0x70) {
 | 
						|
  case DW_EH_PE_absptr:
 | 
						|
    return PC;
 | 
						|
  case DW_EH_PE_pcrel:
 | 
						|
    return PC + EhVA + F.Off + 8;
 | 
						|
  default:
 | 
						|
    fatal("unknown FDE size relative encoding");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
 | 
						|
  uintX_t EhVA = Sec->getVA();
 | 
						|
  uintX_t VA = this->getVA();
 | 
						|
 | 
						|
  // InitialPC -> Offset in .eh_frame, sorted by InitialPC, and deduplicate PCs.
 | 
						|
  // FIXME: Deduplication leaves unneeded null bytes at the end of the section.
 | 
						|
  std::map<uintX_t, size_t> PcToOffset;
 | 
						|
  for (const FdeData &F : FdeList)
 | 
						|
    PcToOffset[getFdePc(EhVA, F)] = F.Off;
 | 
						|
 | 
						|
  const uint8_t Header[] = {1, DW_EH_PE_pcrel | DW_EH_PE_sdata4,
 | 
						|
                            DW_EH_PE_udata4,
 | 
						|
                            DW_EH_PE_datarel | DW_EH_PE_sdata4};
 | 
						|
  memcpy(Buf, Header, sizeof(Header));
 | 
						|
 | 
						|
  uintX_t EhOff = EhVA - VA - 4;
 | 
						|
  write32<E>(Buf + 4, EhOff);
 | 
						|
  write32<E>(Buf + 8, PcToOffset.size());
 | 
						|
  Buf += 12;
 | 
						|
 | 
						|
  for (auto &I : PcToOffset) {
 | 
						|
    // The first four bytes are an offset to the initial PC value for the FDE.
 | 
						|
    write32<E>(Buf, I.first - VA);
 | 
						|
    // The last four bytes are an offset to the FDE data itself.
 | 
						|
    write32<E>(Buf + 4, EhVA + I.second - VA);
 | 
						|
    Buf += 8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void EhFrameHeader<ELFT>::assignEhFrame(EHOutputSection<ELFT> *Sec) {
 | 
						|
  assert((!this->Sec || this->Sec == Sec) &&
 | 
						|
         "multiple .eh_frame sections not supported for .eh_frame_hdr");
 | 
						|
  Live = Config->EhFrameHdr;
 | 
						|
  this->Sec = Sec;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void EhFrameHeader<ELFT>::addFde(uint8_t Enc, size_t Off, uint8_t *PCRel) {
 | 
						|
  if (Live && (Enc & 0xF0) == DW_EH_PE_datarel)
 | 
						|
    fatal("DW_EH_PE_datarel encoding unsupported for FDEs by .eh_frame_hdr");
 | 
						|
  FdeList.push_back(FdeData{Enc, Off, PCRel});
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void EhFrameHeader<ELFT>::reserveFde() {
 | 
						|
  // Each FDE entry is 8 bytes long:
 | 
						|
  // The first four bytes are an offset to the initial PC value for the FDE. The
 | 
						|
  // last four byte are an offset to the FDE data itself.
 | 
						|
  this->Header.sh_size += 8;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
 | 
						|
    : OutputSectionBase<ELFT>(Name, Type, Flags) {
 | 
						|
  if (Type == SHT_RELA)
 | 
						|
    this->Header.sh_entsize = sizeof(Elf_Rela);
 | 
						|
  else if (Type == SHT_REL)
 | 
						|
    this->Header.sh_entsize = sizeof(Elf_Rel);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void OutputSection<ELFT>::finalize() {
 | 
						|
  uint32_t Type = this->Header.sh_type;
 | 
						|
  if (Type != SHT_RELA && Type != SHT_REL)
 | 
						|
    return;
 | 
						|
  this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex;
 | 
						|
  // sh_info for SHT_REL[A] sections should contain the section header index of
 | 
						|
  // the section to which the relocation applies.
 | 
						|
  InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
 | 
						|
  this->Header.sh_info = S->OutSec->SectionIndex;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  assert(C->Live);
 | 
						|
  auto *S = cast<InputSection<ELFT>>(C);
 | 
						|
  Sections.push_back(S);
 | 
						|
  S->OutSec = this;
 | 
						|
  this->updateAlign(S->Align);
 | 
						|
}
 | 
						|
 | 
						|
// If an input string is in the form of "foo.N" where N is a number,
 | 
						|
// return N. Otherwise, returns 65536, which is one greater than the
 | 
						|
// lowest priority.
 | 
						|
static int getPriority(StringRef S) {
 | 
						|
  size_t Pos = S.rfind('.');
 | 
						|
  if (Pos == StringRef::npos)
 | 
						|
    return 65536;
 | 
						|
  int V;
 | 
						|
  if (S.substr(Pos + 1).getAsInteger(10, V))
 | 
						|
    return 65536;
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void OutputSection<ELFT>::forEachInputSection(
 | 
						|
    std::function<void(InputSectionBase<ELFT> *S)> F) {
 | 
						|
  for (InputSection<ELFT> *S : Sections)
 | 
						|
    F(S);
 | 
						|
}
 | 
						|
 | 
						|
// Sorts input sections by section name suffixes, so that .foo.N comes
 | 
						|
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
 | 
						|
// We want to keep the original order if the priorities are the same
 | 
						|
// because the compiler keeps the original initialization order in a
 | 
						|
// translation unit and we need to respect that.
 | 
						|
// For more detail, read the section of the GCC's manual about init_priority.
 | 
						|
template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
 | 
						|
  // Sort sections by priority.
 | 
						|
  typedef std::pair<int, InputSection<ELFT> *> Pair;
 | 
						|
  auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };
 | 
						|
 | 
						|
  std::vector<Pair> V;
 | 
						|
  for (InputSection<ELFT> *S : Sections)
 | 
						|
    V.push_back({getPriority(S->getSectionName()), S});
 | 
						|
  std::stable_sort(V.begin(), V.end(), Comp);
 | 
						|
  Sections.clear();
 | 
						|
  for (Pair &P : V)
 | 
						|
    Sections.push_back(P.second);
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if S matches /Filename.?\.o$/.
 | 
						|
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
 | 
						|
  if (!S.endswith(".o"))
 | 
						|
    return false;
 | 
						|
  S = S.drop_back(2);
 | 
						|
  if (S.endswith(Filename))
 | 
						|
    return true;
 | 
						|
  return !S.empty() && S.drop_back().endswith(Filename);
 | 
						|
}
 | 
						|
 | 
						|
static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
 | 
						|
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }
 | 
						|
 | 
						|
// .ctors and .dtors are sorted by this priority from highest to lowest.
 | 
						|
//
 | 
						|
//  1. The section was contained in crtbegin (crtbegin contains
 | 
						|
//     some sentinel value in its .ctors and .dtors so that the runtime
 | 
						|
//     can find the beginning of the sections.)
 | 
						|
//
 | 
						|
//  2. The section has an optional priority value in the form of ".ctors.N"
 | 
						|
//     or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
 | 
						|
//     they are compared as string rather than number.
 | 
						|
//
 | 
						|
//  3. The section is just ".ctors" or ".dtors".
 | 
						|
//
 | 
						|
//  4. The section was contained in crtend, which contains an end marker.
 | 
						|
//
 | 
						|
// In an ideal world, we don't need this function because .init_array and
 | 
						|
// .ctors are duplicate features (and .init_array is newer.) However, there
 | 
						|
// are too many real-world use cases of .ctors, so we had no choice to
 | 
						|
// support that with this rather ad-hoc semantics.
 | 
						|
template <class ELFT>
 | 
						|
static bool compCtors(const InputSection<ELFT> *A,
 | 
						|
                      const InputSection<ELFT> *B) {
 | 
						|
  bool BeginA = isCrtbegin(A->getFile()->getName());
 | 
						|
  bool BeginB = isCrtbegin(B->getFile()->getName());
 | 
						|
  if (BeginA != BeginB)
 | 
						|
    return BeginA;
 | 
						|
  bool EndA = isCrtend(A->getFile()->getName());
 | 
						|
  bool EndB = isCrtend(B->getFile()->getName());
 | 
						|
  if (EndA != EndB)
 | 
						|
    return EndB;
 | 
						|
  StringRef X = A->getSectionName();
 | 
						|
  StringRef Y = B->getSectionName();
 | 
						|
  assert(X.startswith(".ctors") || X.startswith(".dtors"));
 | 
						|
  assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
 | 
						|
  X = X.substr(6);
 | 
						|
  Y = Y.substr(6);
 | 
						|
  if (X.empty() && Y.empty())
 | 
						|
    return false;
 | 
						|
  return X < Y;
 | 
						|
}
 | 
						|
 | 
						|
// Sorts input sections by the special rules for .ctors and .dtors.
 | 
						|
// Unfortunately, the rules are different from the one for .{init,fini}_array.
 | 
						|
// Read the comment above.
 | 
						|
template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
 | 
						|
  std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
 | 
						|
}
 | 
						|
 | 
						|
static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) {
 | 
						|
  size_t I = 0;
 | 
						|
  for (; I + A.size() < Size; I += A.size())
 | 
						|
    memcpy(Buf + I, A.data(), A.size());
 | 
						|
  memcpy(Buf + I, A.data(), Size - I);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name);
 | 
						|
  if (!Filler.empty())
 | 
						|
    fill(Buf, this->getSize(), Filler);
 | 
						|
  if (Config->Threads) {
 | 
						|
    parallel_for_each(Sections.begin(), Sections.end(),
 | 
						|
                      [=](InputSection<ELFT> *C) { C->writeTo(Buf); });
 | 
						|
  } else {
 | 
						|
    for (InputSection<ELFT> *C : Sections)
 | 
						|
      C->writeTo(Buf);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
EHOutputSection<ELFT>::EHOutputSection(StringRef Name, uint32_t Type,
 | 
						|
                                       uintX_t Flags)
 | 
						|
    : OutputSectionBase<ELFT>(Name, Type, Flags) {
 | 
						|
  Out<ELFT>::EhFrameHdr->assignEhFrame(this);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void EHOutputSection<ELFT>::forEachInputSection(
 | 
						|
    std::function<void(InputSectionBase<ELFT> *)> F) {
 | 
						|
  for (EHInputSection<ELFT> *S : Sections)
 | 
						|
    F(S);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
EHRegion<ELFT>::EHRegion(EHInputSection<ELFT> *S, unsigned Index)
 | 
						|
    : S(S), Index(Index) {}
 | 
						|
 | 
						|
template <class ELFT> StringRef EHRegion<ELFT>::data() const {
 | 
						|
  ArrayRef<uint8_t> SecData = S->getSectionData();
 | 
						|
  ArrayRef<std::pair<uintX_t, uintX_t>> Offsets = S->Offsets;
 | 
						|
  size_t Start = Offsets[Index].first;
 | 
						|
  size_t End =
 | 
						|
      Index == Offsets.size() - 1 ? SecData.size() : Offsets[Index + 1].first;
 | 
						|
  return StringRef((const char *)SecData.data() + Start, End - Start);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
Cie<ELFT>::Cie(EHInputSection<ELFT> *S, unsigned Index)
 | 
						|
    : EHRegion<ELFT>(S, Index) {}
 | 
						|
 | 
						|
// Read a byte and advance D by one byte.
 | 
						|
static uint8_t readByte(ArrayRef<uint8_t> &D) {
 | 
						|
  if (D.empty())
 | 
						|
    fatal("corrupted or unsupported CIE information");
 | 
						|
  uint8_t B = D.front();
 | 
						|
  D = D.slice(1);
 | 
						|
  return B;
 | 
						|
}
 | 
						|
 | 
						|
static void skipLeb128(ArrayRef<uint8_t> &D) {
 | 
						|
  while (!D.empty()) {
 | 
						|
    uint8_t Val = D.front();
 | 
						|
    D = D.slice(1);
 | 
						|
    if ((Val & 0x80) == 0)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  fatal("corrupted or unsupported CIE information");
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> static size_t getAugPSize(unsigned Enc) {
 | 
						|
  switch (Enc & 0x0f) {
 | 
						|
  case DW_EH_PE_absptr:
 | 
						|
  case DW_EH_PE_signed:
 | 
						|
    return ELFT::Is64Bits ? 8 : 4;
 | 
						|
  case DW_EH_PE_udata2:
 | 
						|
  case DW_EH_PE_sdata2:
 | 
						|
    return 2;
 | 
						|
  case DW_EH_PE_udata4:
 | 
						|
  case DW_EH_PE_sdata4:
 | 
						|
    return 4;
 | 
						|
  case DW_EH_PE_udata8:
 | 
						|
  case DW_EH_PE_sdata8:
 | 
						|
    return 8;
 | 
						|
  }
 | 
						|
  fatal("unknown FDE encoding");
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> static void skipAugP(ArrayRef<uint8_t> &D) {
 | 
						|
  uint8_t Enc = readByte(D);
 | 
						|
  if ((Enc & 0xf0) == DW_EH_PE_aligned)
 | 
						|
    fatal("DW_EH_PE_aligned encoding is not supported");
 | 
						|
  size_t Size = getAugPSize<ELFT>(Enc);
 | 
						|
  if (Size >= D.size())
 | 
						|
    fatal("corrupted CIE");
 | 
						|
  D = D.slice(Size);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
uint8_t EHOutputSection<ELFT>::getFdeEncoding(ArrayRef<uint8_t> D) {
 | 
						|
  if (D.size() < 8)
 | 
						|
    fatal("CIE too small");
 | 
						|
  D = D.slice(8);
 | 
						|
 | 
						|
  uint8_t Version = readByte(D);
 | 
						|
  if (Version != 1 && Version != 3)
 | 
						|
    fatal("FDE version 1 or 3 expected, but got " + Twine((unsigned)Version));
 | 
						|
 | 
						|
  const unsigned char *AugEnd = std::find(D.begin() + 1, D.end(), '\0');
 | 
						|
  if (AugEnd == D.end())
 | 
						|
    fatal("corrupted CIE");
 | 
						|
  StringRef Aug(reinterpret_cast<const char *>(D.begin()), AugEnd - D.begin());
 | 
						|
  D = D.slice(Aug.size() + 1);
 | 
						|
 | 
						|
  // Code alignment factor should always be 1 for .eh_frame.
 | 
						|
  if (readByte(D) != 1)
 | 
						|
    fatal("CIE code alignment must be 1");
 | 
						|
 | 
						|
  // Skip data alignment factor.
 | 
						|
  skipLeb128(D);
 | 
						|
 | 
						|
  // Skip the return address register. In CIE version 1 this is a single
 | 
						|
  // byte. In CIE version 3 this is an unsigned LEB128.
 | 
						|
  if (Version == 1)
 | 
						|
    readByte(D);
 | 
						|
  else
 | 
						|
    skipLeb128(D);
 | 
						|
 | 
						|
  // We only care about an 'R' value, but other records may precede an 'R'
 | 
						|
  // record. Records are not in TLV (type-length-value) format, so we need
 | 
						|
  // to teach the linker how to skip records for each type.
 | 
						|
  for (char C : Aug) {
 | 
						|
    if (C == 'R')
 | 
						|
      return readByte(D);
 | 
						|
    if (C == 'z') {
 | 
						|
      skipLeb128(D);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (C == 'P') {
 | 
						|
      skipAugP<ELFT>(D);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (C == 'L') {
 | 
						|
      readByte(D);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    fatal("unknown .eh_frame augmentation string: " + Aug);
 | 
						|
  }
 | 
						|
  return DW_EH_PE_absptr;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
static typename ELFT::uint readEntryLength(ArrayRef<uint8_t> D) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
  if (D.size() < 4)
 | 
						|
    fatal("CIE/FDE too small");
 | 
						|
 | 
						|
  // First 4 bytes of CIE/FDE is the size of the record.
 | 
						|
  // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead.
 | 
						|
  uint64_t V = read32<E>(D.data());
 | 
						|
  if (V < UINT32_MAX) {
 | 
						|
    uint64_t Len = V + 4;
 | 
						|
    if (Len > D.size())
 | 
						|
      fatal("CIE/FIE ends past the end of the section");
 | 
						|
    return Len;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.size() < 12)
 | 
						|
    fatal("CIE/FDE too small");
 | 
						|
  V = read64<E>(D.data() + 4);
 | 
						|
  uint64_t Len = V + 12;
 | 
						|
  if (Len < V || D.size() < Len)
 | 
						|
    fatal("CIE/FIE ends past the end of the section");
 | 
						|
  return Len;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
template <class RelTy>
 | 
						|
void EHOutputSection<ELFT>::addSectionAux(EHInputSection<ELFT> *S,
 | 
						|
                                          ArrayRef<RelTy> Rels) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
 | 
						|
  S->OutSec = this;
 | 
						|
  this->updateAlign(S->Align);
 | 
						|
  Sections.push_back(S);
 | 
						|
 | 
						|
  ArrayRef<uint8_t> SecData = S->getSectionData();
 | 
						|
  ArrayRef<uint8_t> D = SecData;
 | 
						|
  uintX_t Offset = 0;
 | 
						|
  auto RelI = Rels.begin();
 | 
						|
  auto RelE = Rels.end();
 | 
						|
 | 
						|
  DenseMap<unsigned, unsigned> OffsetToIndex;
 | 
						|
  while (!D.empty()) {
 | 
						|
    unsigned Index = S->Offsets.size();
 | 
						|
    S->Offsets.push_back(std::make_pair(Offset, -1));
 | 
						|
 | 
						|
    uintX_t Length = readEntryLength<ELFT>(D);
 | 
						|
    // If CIE/FDE data length is zero then Length is 4, this
 | 
						|
    // shall be considered a terminator and processing shall end.
 | 
						|
    if (Length == 4)
 | 
						|
      break;
 | 
						|
    StringRef Entry((const char *)D.data(), Length);
 | 
						|
 | 
						|
    while (RelI != RelE && RelI->r_offset < Offset)
 | 
						|
      ++RelI;
 | 
						|
    uintX_t NextOffset = Offset + Length;
 | 
						|
    bool HasReloc = RelI != RelE && RelI->r_offset < NextOffset;
 | 
						|
 | 
						|
    uint32_t ID = read32<E>(D.data() + 4);
 | 
						|
    if (ID == 0) {
 | 
						|
      // CIE
 | 
						|
      Cie<ELFT> C(S, Index);
 | 
						|
      if (Config->EhFrameHdr)
 | 
						|
        C.FdeEncoding = getFdeEncoding(D);
 | 
						|
 | 
						|
      SymbolBody *Personality = nullptr;
 | 
						|
      if (HasReloc)
 | 
						|
        Personality = &S->getFile()->getRelocTargetSym(*RelI);
 | 
						|
 | 
						|
      std::pair<StringRef, SymbolBody *> CieInfo(Entry, Personality);
 | 
						|
      auto P = CieMap.insert(std::make_pair(CieInfo, Cies.size()));
 | 
						|
      if (P.second) {
 | 
						|
        Cies.push_back(C);
 | 
						|
        this->Header.sh_size += alignTo(Length, sizeof(uintX_t));
 | 
						|
      }
 | 
						|
      OffsetToIndex[Offset] = P.first->second;
 | 
						|
    } else {
 | 
						|
      if (!HasReloc)
 | 
						|
        fatal("FDE doesn't reference another section");
 | 
						|
      SymbolBody &B = S->getFile()->getRelocTargetSym(*RelI);
 | 
						|
      auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
 | 
						|
      if (D && D->Section) {
 | 
						|
        InputSectionBase<ELFT> *Target = D->Section->Repl;
 | 
						|
        if (Target && Target->Live) {
 | 
						|
          uint32_t CieOffset = Offset + 4 - ID;
 | 
						|
          auto I = OffsetToIndex.find(CieOffset);
 | 
						|
          if (I == OffsetToIndex.end())
 | 
						|
            fatal("invalid CIE reference");
 | 
						|
          Cies[I->second].Fdes.push_back(EHRegion<ELFT>(S, Index));
 | 
						|
          Out<ELFT>::EhFrameHdr->reserveFde();
 | 
						|
          this->Header.sh_size += alignTo(Length, sizeof(uintX_t));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Offset = NextOffset;
 | 
						|
    D = D.slice(Length);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void EHOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  auto *S = cast<EHInputSection<ELFT>>(C);
 | 
						|
  const Elf_Shdr *RelSec = S->RelocSection;
 | 
						|
  if (!RelSec) {
 | 
						|
    addSectionAux(S, makeArrayRef<Elf_Rela>(nullptr, nullptr));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  ELFFile<ELFT> &Obj = S->getFile()->getObj();
 | 
						|
  if (RelSec->sh_type == SHT_RELA)
 | 
						|
    addSectionAux(S, Obj.relas(RelSec));
 | 
						|
  else
 | 
						|
    addSectionAux(S, Obj.rels(RelSec));
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
static void writeAlignedCieOrFde(StringRef Data, uint8_t *Buf) {
 | 
						|
  typedef typename ELFT::uint uintX_t;
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
  uint64_t Len = alignTo(Data.size(), sizeof(uintX_t));
 | 
						|
  write32<E>(Buf, Len - 4);
 | 
						|
  memcpy(Buf + 4, Data.data() + 4, Data.size() - 4);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void EHOutputSection<ELFT>::finalize() {
 | 
						|
  if (Finalized)
 | 
						|
    return;
 | 
						|
  Finalized = true;
 | 
						|
 | 
						|
  size_t Offset = 0;
 | 
						|
  for (const Cie<ELFT> &C : Cies) {
 | 
						|
    C.S->Offsets[C.Index].second = Offset;
 | 
						|
    Offset += alignTo(C.data().size(), sizeof(uintX_t));
 | 
						|
 | 
						|
    for (const EHRegion<ELFT> &F : C.Fdes) {
 | 
						|
      F.S->Offsets[F.Index].second = Offset;
 | 
						|
      Offset += alignTo(F.data().size(), sizeof(uintX_t));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void EHOutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
  for (const Cie<ELFT> &C : Cies) {
 | 
						|
    size_t CieOffset = C.S->Offsets[C.Index].second;
 | 
						|
    writeAlignedCieOrFde<ELFT>(C.data(), Buf + CieOffset);
 | 
						|
 | 
						|
    for (const EHRegion<ELFT> &F : C.Fdes) {
 | 
						|
      size_t Offset = F.S->Offsets[F.Index].second;
 | 
						|
      writeAlignedCieOrFde<ELFT>(F.data(), Buf + Offset);
 | 
						|
      write32<E>(Buf + Offset + 4, Offset + 4 - CieOffset); // Pointer
 | 
						|
 | 
						|
      Out<ELFT>::EhFrameHdr->addFde(C.FdeEncoding, Offset, Buf + Offset + 8);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (EHInputSection<ELFT> *S : Sections)
 | 
						|
    S->relocate(Buf, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
 | 
						|
                                             uintX_t Flags, uintX_t Alignment)
 | 
						|
    : OutputSectionBase<ELFT>(Name, Type, Flags),
 | 
						|
      Builder(llvm::StringTableBuilder::RAW, Alignment) {}
 | 
						|
 | 
						|
template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  if (shouldTailMerge()) {
 | 
						|
    StringRef Data = Builder.data();
 | 
						|
    memcpy(Buf, Data.data(), Data.size());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  for (const std::pair<CachedHash<StringRef>, size_t> &P : Builder.getMap()) {
 | 
						|
    StringRef Data = P.first.Val;
 | 
						|
    memcpy(Buf + P.second, Data.data(), Data.size());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  auto *S = cast<MergeInputSection<ELFT>>(C);
 | 
						|
  S->OutSec = this;
 | 
						|
  this->updateAlign(S->Align);
 | 
						|
 | 
						|
  ArrayRef<uint8_t> D = S->getSectionData();
 | 
						|
  StringRef Data((const char *)D.data(), D.size());
 | 
						|
  uintX_t EntSize = S->getSectionHdr()->sh_entsize;
 | 
						|
  this->Header.sh_entsize = EntSize;
 | 
						|
  MutableArrayRef<std::pair<uintX_t, uintX_t>> Offsets = S->Offsets;
 | 
						|
 | 
						|
  // If this is of type string, the contents are null-terminated strings.
 | 
						|
  if (this->Header.sh_flags & SHF_STRINGS) {
 | 
						|
    for (unsigned I = 0, N = Offsets.size(); I != N; ++I) {
 | 
						|
      auto &P = Offsets[I];
 | 
						|
      if (P.second == MergeInputSection<ELFT>::PieceDead)
 | 
						|
        continue;
 | 
						|
 | 
						|
      uintX_t Start = P.first;
 | 
						|
      uintX_t End = (I == N - 1) ? Data.size() : Offsets[I + 1].first;
 | 
						|
      StringRef Entry = Data.substr(Start, End - Start);
 | 
						|
      uintX_t OutputOffset = Builder.add(Entry);
 | 
						|
      if (shouldTailMerge())
 | 
						|
        OutputOffset = MergeInputSection<ELFT>::PieceLive;
 | 
						|
      P.second = OutputOffset;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is not of type string, every entry has the same size.
 | 
						|
  for (auto &P : Offsets) {
 | 
						|
    if (P.second == (uintX_t)-1)
 | 
						|
      continue;
 | 
						|
    StringRef Entry = Data.substr(P.first, EntSize);
 | 
						|
    P.second = Builder.add(Entry);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) {
 | 
						|
  return Builder.getOffset(Val);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
 | 
						|
  return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
 | 
						|
  if (shouldTailMerge())
 | 
						|
    Builder.finalize();
 | 
						|
  this->Header.sh_size = Builder.getSize();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic)
 | 
						|
    : OutputSectionBase<ELFT>(Name, SHT_STRTAB,
 | 
						|
                              Dynamic ? (uintX_t)SHF_ALLOC : 0),
 | 
						|
      Dynamic(Dynamic) {
 | 
						|
  this->Header.sh_addralign = 1;
 | 
						|
}
 | 
						|
 | 
						|
// Adds a string to the string table. If HashIt is true we hash and check for
 | 
						|
// duplicates. It is optional because the name of global symbols are already
 | 
						|
// uniqued and hashing them again has a big cost for a small value: uniquing
 | 
						|
// them with some other string that happens to be the same.
 | 
						|
template <class ELFT>
 | 
						|
unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) {
 | 
						|
  if (HashIt) {
 | 
						|
    auto R = StringMap.insert(std::make_pair(S, Size));
 | 
						|
    if (!R.second)
 | 
						|
      return R.first->second;
 | 
						|
  }
 | 
						|
  unsigned Ret = Size;
 | 
						|
  Size += S.size() + 1;
 | 
						|
  Strings.push_back(S);
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  // ELF string tables start with NUL byte, so advance the pointer by one.
 | 
						|
  ++Buf;
 | 
						|
  for (StringRef S : Strings) {
 | 
						|
    memcpy(Buf, S.data(), S.size());
 | 
						|
    Buf += S.size() + 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
SymbolTableSection<ELFT>::SymbolTableSection(
 | 
						|
    SymbolTable<ELFT> &Table, StringTableSection<ELFT> &StrTabSec)
 | 
						|
    : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
 | 
						|
                              StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
 | 
						|
                              StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
 | 
						|
      StrTabSec(StrTabSec), Table(Table) {
 | 
						|
  this->Header.sh_entsize = sizeof(Elf_Sym);
 | 
						|
  this->Header.sh_addralign = sizeof(uintX_t);
 | 
						|
}
 | 
						|
 | 
						|
// Orders symbols according to their positions in the GOT,
 | 
						|
// in compliance with MIPS ABI rules.
 | 
						|
// See "Global Offset Table" in Chapter 5 in the following document
 | 
						|
// for detailed description:
 | 
						|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						|
static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L,
 | 
						|
                            const std::pair<SymbolBody *, unsigned> &R) {
 | 
						|
  // Sort entries related to non-local preemptible symbols by GOT indexes.
 | 
						|
  // All other entries go to the first part of GOT in arbitrary order.
 | 
						|
  bool LIsInLocalGot = !L.first->isInGot() || !L.first->isPreemptible();
 | 
						|
  bool RIsInLocalGot = !R.first->isInGot() || !R.first->isPreemptible();
 | 
						|
  if (LIsInLocalGot || RIsInLocalGot)
 | 
						|
    return !RIsInLocalGot;
 | 
						|
  return L.first->GotIndex < R.first->GotIndex;
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t getSymbolBinding(SymbolBody *Body) {
 | 
						|
  Symbol *S = Body->symbol();
 | 
						|
  uint8_t Visibility = S->Visibility;
 | 
						|
  if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
 | 
						|
    return STB_LOCAL;
 | 
						|
  if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE)
 | 
						|
    return STB_GLOBAL;
 | 
						|
  return S->Binding;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
 | 
						|
  if (this->Header.sh_size)
 | 
						|
    return; // Already finalized.
 | 
						|
 | 
						|
  this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym);
 | 
						|
  this->Header.sh_link = StrTabSec.SectionIndex;
 | 
						|
  this->Header.sh_info = NumLocals + 1;
 | 
						|
 | 
						|
  if (Config->Relocatable) {
 | 
						|
    size_t I = NumLocals;
 | 
						|
    for (const std::pair<SymbolBody *, size_t> &P : Symbols)
 | 
						|
      P.first->DynsymIndex = ++I;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!StrTabSec.isDynamic()) {
 | 
						|
    std::stable_sort(Symbols.begin(), Symbols.end(),
 | 
						|
                     [](const std::pair<SymbolBody *, unsigned> &L,
 | 
						|
                        const std::pair<SymbolBody *, unsigned> &R) {
 | 
						|
                       return getSymbolBinding(L.first) == STB_LOCAL &&
 | 
						|
                              getSymbolBinding(R.first) != STB_LOCAL;
 | 
						|
                     });
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (Out<ELFT>::GnuHashTab)
 | 
						|
    // NB: It also sorts Symbols to meet the GNU hash table requirements.
 | 
						|
    Out<ELFT>::GnuHashTab->addSymbols(Symbols);
 | 
						|
  else if (Config->EMachine == EM_MIPS)
 | 
						|
    std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
 | 
						|
  size_t I = 0;
 | 
						|
  for (const std::pair<SymbolBody *, size_t> &P : Symbols)
 | 
						|
    P.first->DynsymIndex = ++I;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) {
 | 
						|
  Symbols.push_back({B, StrTabSec.addString(B->getName(), false)});
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  Buf += sizeof(Elf_Sym);
 | 
						|
 | 
						|
  // All symbols with STB_LOCAL binding precede the weak and global symbols.
 | 
						|
  // .dynsym only contains global symbols.
 | 
						|
  if (!Config->DiscardAll && !StrTabSec.isDynamic())
 | 
						|
    writeLocalSymbols(Buf);
 | 
						|
 | 
						|
  writeGlobalSymbols(Buf);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
 | 
						|
  // Iterate over all input object files to copy their local symbols
 | 
						|
  // to the output symbol table pointed by Buf.
 | 
						|
  for (const std::unique_ptr<ObjectFile<ELFT>> &File : Table.getObjectFiles()) {
 | 
						|
    for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P :
 | 
						|
         File->KeptLocalSyms) {
 | 
						|
      const DefinedRegular<ELFT> &Body = *P.first;
 | 
						|
      InputSectionBase<ELFT> *Section = Body.Section;
 | 
						|
      auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
 | 
						|
 | 
						|
      if (!Section) {
 | 
						|
        ESym->st_shndx = SHN_ABS;
 | 
						|
        ESym->st_value = Body.Value;
 | 
						|
      } else {
 | 
						|
        const OutputSectionBase<ELFT> *OutSec = Section->OutSec;
 | 
						|
        ESym->st_shndx = OutSec->SectionIndex;
 | 
						|
        ESym->st_value = OutSec->getVA() + Section->getOffset(Body);
 | 
						|
      }
 | 
						|
      ESym->st_name = P.second;
 | 
						|
      ESym->st_size = Body.template getSize<ELFT>();
 | 
						|
      ESym->setBindingAndType(STB_LOCAL, Body.Type);
 | 
						|
      Buf += sizeof(*ESym);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
 | 
						|
  // Write the internal symbol table contents to the output symbol table
 | 
						|
  // pointed by Buf.
 | 
						|
  auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
 | 
						|
  for (const std::pair<SymbolBody *, size_t> &P : Symbols) {
 | 
						|
    SymbolBody *Body = P.first;
 | 
						|
    size_t StrOff = P.second;
 | 
						|
 | 
						|
    uint8_t Type = Body->Type;
 | 
						|
    uintX_t Size = Body->getSize<ELFT>();
 | 
						|
 | 
						|
    ESym->setBindingAndType(getSymbolBinding(Body), Type);
 | 
						|
    ESym->st_size = Size;
 | 
						|
    ESym->st_name = StrOff;
 | 
						|
    ESym->setVisibility(Body->symbol()->Visibility);
 | 
						|
    ESym->st_value = Body->getVA<ELFT>();
 | 
						|
 | 
						|
    if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body))
 | 
						|
      ESym->st_shndx = OutSec->SectionIndex;
 | 
						|
    else if (isa<DefinedRegular<ELFT>>(Body))
 | 
						|
      ESym->st_shndx = SHN_ABS;
 | 
						|
 | 
						|
    // On MIPS we need to mark symbol which has a PLT entry and requires pointer
 | 
						|
    // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker
 | 
						|
    // distinguish such symbols and MIPS lazy-binding stubs.
 | 
						|
    // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
 | 
						|
    if (Config->EMachine == EM_MIPS && Body->isInPlt() &&
 | 
						|
        Body->NeedsCopyOrPltAddr)
 | 
						|
      ESym->st_other |= STO_MIPS_PLT;
 | 
						|
    ++ESym;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
const OutputSectionBase<ELFT> *
 | 
						|
SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) {
 | 
						|
  switch (Sym->kind()) {
 | 
						|
  case SymbolBody::DefinedSyntheticKind:
 | 
						|
    return cast<DefinedSynthetic<ELFT>>(Sym)->Section;
 | 
						|
  case SymbolBody::DefinedRegularKind: {
 | 
						|
    auto &D = cast<DefinedRegular<ELFT>>(*Sym);
 | 
						|
    if (D.Section)
 | 
						|
      return D.Section->OutSec;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case SymbolBody::DefinedCommonKind:
 | 
						|
    return Out<ELFT>::Bss;
 | 
						|
  case SymbolBody::SharedKind:
 | 
						|
    if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy())
 | 
						|
      return Out<ELFT>::Bss;
 | 
						|
    break;
 | 
						|
  case SymbolBody::UndefinedKind:
 | 
						|
  case SymbolBody::LazyArchiveKind:
 | 
						|
  case SymbolBody::LazyObjectKind:
 | 
						|
    break;
 | 
						|
  case SymbolBody::DefinedBitcodeKind:
 | 
						|
    llvm_unreachable("should have been replaced");
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
VersionTableSection<ELFT>::VersionTableSection()
 | 
						|
    : OutputSectionBase<ELFT>(".gnu.version", SHT_GNU_versym, SHF_ALLOC) {
 | 
						|
  this->Header.sh_addralign = sizeof(uint16_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void VersionTableSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_size =
 | 
						|
      sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1);
 | 
						|
  this->Header.sh_entsize = sizeof(Elf_Versym);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
 | 
						|
  for (const std::pair<SymbolBody *, size_t> &P :
 | 
						|
       Out<ELFT>::DynSymTab->getSymbols()) {
 | 
						|
    if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(P.first))
 | 
						|
      OutVersym->vs_index = SS->VersionId;
 | 
						|
    else
 | 
						|
      // The reserved identifier for a non-versioned global symbol.
 | 
						|
      OutVersym->vs_index = 1;
 | 
						|
    ++OutVersym;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
VersionNeedSection<ELFT>::VersionNeedSection()
 | 
						|
    : OutputSectionBase<ELFT>(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) {
 | 
						|
  this->Header.sh_addralign = sizeof(uint32_t);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) {
 | 
						|
  if (!SS->Verdef) {
 | 
						|
    // The reserved identifier for a non-versioned global symbol.
 | 
						|
    SS->VersionId = 1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  SharedFile<ELFT> *F = SS->File;
 | 
						|
  // If we don't already know that we need an Elf_Verneed for this DSO, prepare
 | 
						|
  // to create one by adding it to our needed list and creating a dynstr entry
 | 
						|
  // for the soname.
 | 
						|
  if (F->VerdefMap.empty())
 | 
						|
    Needed.push_back({F, Out<ELFT>::DynStrTab->addString(F->getSoName())});
 | 
						|
  typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef];
 | 
						|
  // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
 | 
						|
  // prepare to create one by allocating a version identifier and creating a
 | 
						|
  // dynstr entry for the version name.
 | 
						|
  if (NV.Index == 0) {
 | 
						|
    NV.StrTab = Out<ELFT>::DynStrTab->addString(
 | 
						|
        SS->File->getStringTable().data() + SS->Verdef->getAux()->vda_name);
 | 
						|
    NV.Index = NextIndex++;
 | 
						|
  }
 | 
						|
  SS->VersionId = NV.Index;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
 | 
						|
  auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
 | 
						|
  auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());
 | 
						|
 | 
						|
  for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
 | 
						|
    // Create an Elf_Verneed for this DSO.
 | 
						|
    Verneed->vn_version = 1;
 | 
						|
    Verneed->vn_cnt = P.first->VerdefMap.size();
 | 
						|
    Verneed->vn_file = P.second;
 | 
						|
    Verneed->vn_aux =
 | 
						|
        reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
 | 
						|
    Verneed->vn_next = sizeof(Elf_Verneed);
 | 
						|
    ++Verneed;
 | 
						|
 | 
						|
    // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
 | 
						|
    // VerdefMap, which will only contain references to needed version
 | 
						|
    // definitions. Each Elf_Vernaux is based on the information contained in
 | 
						|
    // the Elf_Verdef in the source DSO. This loop iterates over a std::map of
 | 
						|
    // pointers, but is deterministic because the pointers refer to Elf_Verdef
 | 
						|
    // data structures within a single input file.
 | 
						|
    for (auto &NV : P.first->VerdefMap) {
 | 
						|
      Vernaux->vna_hash = NV.first->vd_hash;
 | 
						|
      Vernaux->vna_flags = 0;
 | 
						|
      Vernaux->vna_other = NV.second.Index;
 | 
						|
      Vernaux->vna_name = NV.second.StrTab;
 | 
						|
      Vernaux->vna_next = sizeof(Elf_Vernaux);
 | 
						|
      ++Vernaux;
 | 
						|
    }
 | 
						|
 | 
						|
    Vernaux[-1].vna_next = 0;
 | 
						|
  }
 | 
						|
  Verneed[-1].vn_next = 0;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void VersionNeedSection<ELFT>::finalize() {
 | 
						|
  this->Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex;
 | 
						|
  this->Header.sh_info = Needed.size();
 | 
						|
  unsigned Size = Needed.size() * sizeof(Elf_Verneed);
 | 
						|
  for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
 | 
						|
    Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
 | 
						|
  this->Header.sh_size = Size;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
BuildIdSection<ELFT>::BuildIdSection(size_t HashSize)
 | 
						|
    : OutputSectionBase<ELFT>(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC),
 | 
						|
      HashSize(HashSize) {
 | 
						|
  // 16 bytes for the note section header.
 | 
						|
  this->Header.sh_size = 16 + HashSize;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
  write32<E>(Buf, 4);                   // Name size
 | 
						|
  write32<E>(Buf + 4, HashSize);        // Content size
 | 
						|
  write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type
 | 
						|
  memcpy(Buf + 12, "GNU", 4);           // Name string
 | 
						|
  HashBuf = Buf + 16;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void BuildIdFnv1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
 | 
						|
  const endianness E = ELFT::TargetEndianness;
 | 
						|
 | 
						|
  // 64-bit FNV-1 hash
 | 
						|
  uint64_t Hash = 0xcbf29ce484222325;
 | 
						|
  for (ArrayRef<uint8_t> Buf : Bufs) {
 | 
						|
    for (uint8_t B : Buf) {
 | 
						|
      Hash *= 0x100000001b3;
 | 
						|
      Hash ^= B;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  write64<E>(this->HashBuf, Hash);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void BuildIdMd5<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
 | 
						|
  llvm::MD5 Hash;
 | 
						|
  for (ArrayRef<uint8_t> Buf : Bufs)
 | 
						|
    Hash.update(Buf);
 | 
						|
  MD5::MD5Result Res;
 | 
						|
  Hash.final(Res);
 | 
						|
  memcpy(this->HashBuf, Res, 16);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void BuildIdSha1<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
 | 
						|
  llvm::SHA1 Hash;
 | 
						|
  for (ArrayRef<uint8_t> Buf : Bufs)
 | 
						|
    Hash.update(Buf);
 | 
						|
  memcpy(this->HashBuf, Hash.final().data(), 20);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
BuildIdHexstring<ELFT>::BuildIdHexstring()
 | 
						|
    : BuildIdSection<ELFT>(Config->BuildIdVector.size()) {}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void BuildIdHexstring<ELFT>::writeBuildId(ArrayRef<ArrayRef<uint8_t>> Bufs) {
 | 
						|
  memcpy(this->HashBuf, Config->BuildIdVector.data(),
 | 
						|
         Config->BuildIdVector.size());
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection()
 | 
						|
    : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) {
 | 
						|
  this->Header.sh_addralign = 4;
 | 
						|
  this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo);
 | 
						|
  this->Header.sh_size = sizeof(Elf_Mips_RegInfo);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf);
 | 
						|
  R->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
 | 
						|
  R->ri_gprmask = GprMask;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  // Copy input object file's .reginfo gprmask to output.
 | 
						|
  auto *S = cast<MipsReginfoInputSection<ELFT>>(C);
 | 
						|
  GprMask |= S->Reginfo->ri_gprmask;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
MipsOptionsOutputSection<ELFT>::MipsOptionsOutputSection()
 | 
						|
    : OutputSectionBase<ELFT>(".MIPS.options", SHT_MIPS_OPTIONS,
 | 
						|
                              SHF_ALLOC | SHF_MIPS_NOSTRIP) {
 | 
						|
  this->Header.sh_addralign = 8;
 | 
						|
  this->Header.sh_entsize = 1;
 | 
						|
  this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MipsOptionsOutputSection<ELFT>::writeTo(uint8_t *Buf) {
 | 
						|
  auto *Opt = reinterpret_cast<Elf_Mips_Options *>(Buf);
 | 
						|
  Opt->kind = ODK_REGINFO;
 | 
						|
  Opt->size = this->Header.sh_size;
 | 
						|
  Opt->section = 0;
 | 
						|
  Opt->info = 0;
 | 
						|
  auto *Reg = reinterpret_cast<Elf_Mips_RegInfo *>(Buf + sizeof(*Opt));
 | 
						|
  Reg->ri_gp_value = Out<ELFT>::Got->getVA() + MipsGPOffset;
 | 
						|
  Reg->ri_gprmask = GprMask;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void MipsOptionsOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) {
 | 
						|
  auto *S = cast<MipsOptionsInputSection<ELFT>>(C);
 | 
						|
  if (S->Reginfo)
 | 
						|
    GprMask |= S->Reginfo->ri_gprmask;
 | 
						|
}
 | 
						|
 | 
						|
namespace lld {
 | 
						|
namespace elf {
 | 
						|
template class OutputSectionBase<ELF32LE>;
 | 
						|
template class OutputSectionBase<ELF32BE>;
 | 
						|
template class OutputSectionBase<ELF64LE>;
 | 
						|
template class OutputSectionBase<ELF64BE>;
 | 
						|
 | 
						|
template class EhFrameHeader<ELF32LE>;
 | 
						|
template class EhFrameHeader<ELF32BE>;
 | 
						|
template class EhFrameHeader<ELF64LE>;
 | 
						|
template class EhFrameHeader<ELF64BE>;
 | 
						|
 | 
						|
template class GotPltSection<ELF32LE>;
 | 
						|
template class GotPltSection<ELF32BE>;
 | 
						|
template class GotPltSection<ELF64LE>;
 | 
						|
template class GotPltSection<ELF64BE>;
 | 
						|
 | 
						|
template class GotSection<ELF32LE>;
 | 
						|
template class GotSection<ELF32BE>;
 | 
						|
template class GotSection<ELF64LE>;
 | 
						|
template class GotSection<ELF64BE>;
 | 
						|
 | 
						|
template class PltSection<ELF32LE>;
 | 
						|
template class PltSection<ELF32BE>;
 | 
						|
template class PltSection<ELF64LE>;
 | 
						|
template class PltSection<ELF64BE>;
 | 
						|
 | 
						|
template class RelocationSection<ELF32LE>;
 | 
						|
template class RelocationSection<ELF32BE>;
 | 
						|
template class RelocationSection<ELF64LE>;
 | 
						|
template class RelocationSection<ELF64BE>;
 | 
						|
 | 
						|
template class InterpSection<ELF32LE>;
 | 
						|
template class InterpSection<ELF32BE>;
 | 
						|
template class InterpSection<ELF64LE>;
 | 
						|
template class InterpSection<ELF64BE>;
 | 
						|
 | 
						|
template class GnuHashTableSection<ELF32LE>;
 | 
						|
template class GnuHashTableSection<ELF32BE>;
 | 
						|
template class GnuHashTableSection<ELF64LE>;
 | 
						|
template class GnuHashTableSection<ELF64BE>;
 | 
						|
 | 
						|
template class HashTableSection<ELF32LE>;
 | 
						|
template class HashTableSection<ELF32BE>;
 | 
						|
template class HashTableSection<ELF64LE>;
 | 
						|
template class HashTableSection<ELF64BE>;
 | 
						|
 | 
						|
template class DynamicSection<ELF32LE>;
 | 
						|
template class DynamicSection<ELF32BE>;
 | 
						|
template class DynamicSection<ELF64LE>;
 | 
						|
template class DynamicSection<ELF64BE>;
 | 
						|
 | 
						|
template class OutputSection<ELF32LE>;
 | 
						|
template class OutputSection<ELF32BE>;
 | 
						|
template class OutputSection<ELF64LE>;
 | 
						|
template class OutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class EHOutputSection<ELF32LE>;
 | 
						|
template class EHOutputSection<ELF32BE>;
 | 
						|
template class EHOutputSection<ELF64LE>;
 | 
						|
template class EHOutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class MipsReginfoOutputSection<ELF32LE>;
 | 
						|
template class MipsReginfoOutputSection<ELF32BE>;
 | 
						|
template class MipsReginfoOutputSection<ELF64LE>;
 | 
						|
template class MipsReginfoOutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class MipsOptionsOutputSection<ELF32LE>;
 | 
						|
template class MipsOptionsOutputSection<ELF32BE>;
 | 
						|
template class MipsOptionsOutputSection<ELF64LE>;
 | 
						|
template class MipsOptionsOutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class MergeOutputSection<ELF32LE>;
 | 
						|
template class MergeOutputSection<ELF32BE>;
 | 
						|
template class MergeOutputSection<ELF64LE>;
 | 
						|
template class MergeOutputSection<ELF64BE>;
 | 
						|
 | 
						|
template class StringTableSection<ELF32LE>;
 | 
						|
template class StringTableSection<ELF32BE>;
 | 
						|
template class StringTableSection<ELF64LE>;
 | 
						|
template class StringTableSection<ELF64BE>;
 | 
						|
 | 
						|
template class SymbolTableSection<ELF32LE>;
 | 
						|
template class SymbolTableSection<ELF32BE>;
 | 
						|
template class SymbolTableSection<ELF64LE>;
 | 
						|
template class SymbolTableSection<ELF64BE>;
 | 
						|
 | 
						|
template class VersionTableSection<ELF32LE>;
 | 
						|
template class VersionTableSection<ELF32BE>;
 | 
						|
template class VersionTableSection<ELF64LE>;
 | 
						|
template class VersionTableSection<ELF64BE>;
 | 
						|
 | 
						|
template class VersionNeedSection<ELF32LE>;
 | 
						|
template class VersionNeedSection<ELF32BE>;
 | 
						|
template class VersionNeedSection<ELF64LE>;
 | 
						|
template class VersionNeedSection<ELF64BE>;
 | 
						|
 | 
						|
template class BuildIdSection<ELF32LE>;
 | 
						|
template class BuildIdSection<ELF32BE>;
 | 
						|
template class BuildIdSection<ELF64LE>;
 | 
						|
template class BuildIdSection<ELF64BE>;
 | 
						|
 | 
						|
template class BuildIdFnv1<ELF32LE>;
 | 
						|
template class BuildIdFnv1<ELF32BE>;
 | 
						|
template class BuildIdFnv1<ELF64LE>;
 | 
						|
template class BuildIdFnv1<ELF64BE>;
 | 
						|
 | 
						|
template class BuildIdMd5<ELF32LE>;
 | 
						|
template class BuildIdMd5<ELF32BE>;
 | 
						|
template class BuildIdMd5<ELF64LE>;
 | 
						|
template class BuildIdMd5<ELF64BE>;
 | 
						|
 | 
						|
template class BuildIdSha1<ELF32LE>;
 | 
						|
template class BuildIdSha1<ELF32BE>;
 | 
						|
template class BuildIdSha1<ELF64LE>;
 | 
						|
template class BuildIdSha1<ELF64BE>;
 | 
						|
 | 
						|
template class BuildIdHexstring<ELF32LE>;
 | 
						|
template class BuildIdHexstring<ELF32BE>;
 | 
						|
template class BuildIdHexstring<ELF64LE>;
 | 
						|
template class BuildIdHexstring<ELF64BE>;
 | 
						|
}
 | 
						|
}
 |