forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1461 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1461 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the TargetLoweringBase class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Mangler.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include <cctype>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// InitLibcallNames - Set default libcall names.
 | |
| ///
 | |
| static void InitLibcallNames(const char **Names, const Triple &TT) {
 | |
|   Names[RTLIB::SHL_I16] = "__ashlhi3";
 | |
|   Names[RTLIB::SHL_I32] = "__ashlsi3";
 | |
|   Names[RTLIB::SHL_I64] = "__ashldi3";
 | |
|   Names[RTLIB::SHL_I128] = "__ashlti3";
 | |
|   Names[RTLIB::SRL_I16] = "__lshrhi3";
 | |
|   Names[RTLIB::SRL_I32] = "__lshrsi3";
 | |
|   Names[RTLIB::SRL_I64] = "__lshrdi3";
 | |
|   Names[RTLIB::SRL_I128] = "__lshrti3";
 | |
|   Names[RTLIB::SRA_I16] = "__ashrhi3";
 | |
|   Names[RTLIB::SRA_I32] = "__ashrsi3";
 | |
|   Names[RTLIB::SRA_I64] = "__ashrdi3";
 | |
|   Names[RTLIB::SRA_I128] = "__ashrti3";
 | |
|   Names[RTLIB::MUL_I8] = "__mulqi3";
 | |
|   Names[RTLIB::MUL_I16] = "__mulhi3";
 | |
|   Names[RTLIB::MUL_I32] = "__mulsi3";
 | |
|   Names[RTLIB::MUL_I64] = "__muldi3";
 | |
|   Names[RTLIB::MUL_I128] = "__multi3";
 | |
|   Names[RTLIB::MULO_I32] = "__mulosi4";
 | |
|   Names[RTLIB::MULO_I64] = "__mulodi4";
 | |
|   Names[RTLIB::MULO_I128] = "__muloti4";
 | |
|   Names[RTLIB::SDIV_I8] = "__divqi3";
 | |
|   Names[RTLIB::SDIV_I16] = "__divhi3";
 | |
|   Names[RTLIB::SDIV_I32] = "__divsi3";
 | |
|   Names[RTLIB::SDIV_I64] = "__divdi3";
 | |
|   Names[RTLIB::SDIV_I128] = "__divti3";
 | |
|   Names[RTLIB::UDIV_I8] = "__udivqi3";
 | |
|   Names[RTLIB::UDIV_I16] = "__udivhi3";
 | |
|   Names[RTLIB::UDIV_I32] = "__udivsi3";
 | |
|   Names[RTLIB::UDIV_I64] = "__udivdi3";
 | |
|   Names[RTLIB::UDIV_I128] = "__udivti3";
 | |
|   Names[RTLIB::SREM_I8] = "__modqi3";
 | |
|   Names[RTLIB::SREM_I16] = "__modhi3";
 | |
|   Names[RTLIB::SREM_I32] = "__modsi3";
 | |
|   Names[RTLIB::SREM_I64] = "__moddi3";
 | |
|   Names[RTLIB::SREM_I128] = "__modti3";
 | |
|   Names[RTLIB::UREM_I8] = "__umodqi3";
 | |
|   Names[RTLIB::UREM_I16] = "__umodhi3";
 | |
|   Names[RTLIB::UREM_I32] = "__umodsi3";
 | |
|   Names[RTLIB::UREM_I64] = "__umoddi3";
 | |
|   Names[RTLIB::UREM_I128] = "__umodti3";
 | |
| 
 | |
|   // These are generally not available.
 | |
|   Names[RTLIB::SDIVREM_I8] = nullptr;
 | |
|   Names[RTLIB::SDIVREM_I16] = nullptr;
 | |
|   Names[RTLIB::SDIVREM_I32] = nullptr;
 | |
|   Names[RTLIB::SDIVREM_I64] = nullptr;
 | |
|   Names[RTLIB::SDIVREM_I128] = nullptr;
 | |
|   Names[RTLIB::UDIVREM_I8] = nullptr;
 | |
|   Names[RTLIB::UDIVREM_I16] = nullptr;
 | |
|   Names[RTLIB::UDIVREM_I32] = nullptr;
 | |
|   Names[RTLIB::UDIVREM_I64] = nullptr;
 | |
|   Names[RTLIB::UDIVREM_I128] = nullptr;
 | |
| 
 | |
|   Names[RTLIB::NEG_I32] = "__negsi2";
 | |
|   Names[RTLIB::NEG_I64] = "__negdi2";
 | |
|   Names[RTLIB::ADD_F32] = "__addsf3";
 | |
|   Names[RTLIB::ADD_F64] = "__adddf3";
 | |
|   Names[RTLIB::ADD_F80] = "__addxf3";
 | |
|   Names[RTLIB::ADD_F128] = "__addtf3";
 | |
|   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
 | |
|   Names[RTLIB::SUB_F32] = "__subsf3";
 | |
|   Names[RTLIB::SUB_F64] = "__subdf3";
 | |
|   Names[RTLIB::SUB_F80] = "__subxf3";
 | |
|   Names[RTLIB::SUB_F128] = "__subtf3";
 | |
|   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
 | |
|   Names[RTLIB::MUL_F32] = "__mulsf3";
 | |
|   Names[RTLIB::MUL_F64] = "__muldf3";
 | |
|   Names[RTLIB::MUL_F80] = "__mulxf3";
 | |
|   Names[RTLIB::MUL_F128] = "__multf3";
 | |
|   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
 | |
|   Names[RTLIB::DIV_F32] = "__divsf3";
 | |
|   Names[RTLIB::DIV_F64] = "__divdf3";
 | |
|   Names[RTLIB::DIV_F80] = "__divxf3";
 | |
|   Names[RTLIB::DIV_F128] = "__divtf3";
 | |
|   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
 | |
|   Names[RTLIB::REM_F32] = "fmodf";
 | |
|   Names[RTLIB::REM_F64] = "fmod";
 | |
|   Names[RTLIB::REM_F80] = "fmodl";
 | |
|   Names[RTLIB::REM_F128] = "fmodl";
 | |
|   Names[RTLIB::REM_PPCF128] = "fmodl";
 | |
|   Names[RTLIB::FMA_F32] = "fmaf";
 | |
|   Names[RTLIB::FMA_F64] = "fma";
 | |
|   Names[RTLIB::FMA_F80] = "fmal";
 | |
|   Names[RTLIB::FMA_F128] = "fmal";
 | |
|   Names[RTLIB::FMA_PPCF128] = "fmal";
 | |
|   Names[RTLIB::POWI_F32] = "__powisf2";
 | |
|   Names[RTLIB::POWI_F64] = "__powidf2";
 | |
|   Names[RTLIB::POWI_F80] = "__powixf2";
 | |
|   Names[RTLIB::POWI_F128] = "__powitf2";
 | |
|   Names[RTLIB::POWI_PPCF128] = "__powitf2";
 | |
|   Names[RTLIB::SQRT_F32] = "sqrtf";
 | |
|   Names[RTLIB::SQRT_F64] = "sqrt";
 | |
|   Names[RTLIB::SQRT_F80] = "sqrtl";
 | |
|   Names[RTLIB::SQRT_F128] = "sqrtl";
 | |
|   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
 | |
|   Names[RTLIB::LOG_F32] = "logf";
 | |
|   Names[RTLIB::LOG_F64] = "log";
 | |
|   Names[RTLIB::LOG_F80] = "logl";
 | |
|   Names[RTLIB::LOG_F128] = "logl";
 | |
|   Names[RTLIB::LOG_PPCF128] = "logl";
 | |
|   Names[RTLIB::LOG2_F32] = "log2f";
 | |
|   Names[RTLIB::LOG2_F64] = "log2";
 | |
|   Names[RTLIB::LOG2_F80] = "log2l";
 | |
|   Names[RTLIB::LOG2_F128] = "log2l";
 | |
|   Names[RTLIB::LOG2_PPCF128] = "log2l";
 | |
|   Names[RTLIB::LOG10_F32] = "log10f";
 | |
|   Names[RTLIB::LOG10_F64] = "log10";
 | |
|   Names[RTLIB::LOG10_F80] = "log10l";
 | |
|   Names[RTLIB::LOG10_F128] = "log10l";
 | |
|   Names[RTLIB::LOG10_PPCF128] = "log10l";
 | |
|   Names[RTLIB::EXP_F32] = "expf";
 | |
|   Names[RTLIB::EXP_F64] = "exp";
 | |
|   Names[RTLIB::EXP_F80] = "expl";
 | |
|   Names[RTLIB::EXP_F128] = "expl";
 | |
|   Names[RTLIB::EXP_PPCF128] = "expl";
 | |
|   Names[RTLIB::EXP2_F32] = "exp2f";
 | |
|   Names[RTLIB::EXP2_F64] = "exp2";
 | |
|   Names[RTLIB::EXP2_F80] = "exp2l";
 | |
|   Names[RTLIB::EXP2_F128] = "exp2l";
 | |
|   Names[RTLIB::EXP2_PPCF128] = "exp2l";
 | |
|   Names[RTLIB::SIN_F32] = "sinf";
 | |
|   Names[RTLIB::SIN_F64] = "sin";
 | |
|   Names[RTLIB::SIN_F80] = "sinl";
 | |
|   Names[RTLIB::SIN_F128] = "sinl";
 | |
|   Names[RTLIB::SIN_PPCF128] = "sinl";
 | |
|   Names[RTLIB::COS_F32] = "cosf";
 | |
|   Names[RTLIB::COS_F64] = "cos";
 | |
|   Names[RTLIB::COS_F80] = "cosl";
 | |
|   Names[RTLIB::COS_F128] = "cosl";
 | |
|   Names[RTLIB::COS_PPCF128] = "cosl";
 | |
|   Names[RTLIB::POW_F32] = "powf";
 | |
|   Names[RTLIB::POW_F64] = "pow";
 | |
|   Names[RTLIB::POW_F80] = "powl";
 | |
|   Names[RTLIB::POW_F128] = "powl";
 | |
|   Names[RTLIB::POW_PPCF128] = "powl";
 | |
|   Names[RTLIB::CEIL_F32] = "ceilf";
 | |
|   Names[RTLIB::CEIL_F64] = "ceil";
 | |
|   Names[RTLIB::CEIL_F80] = "ceill";
 | |
|   Names[RTLIB::CEIL_F128] = "ceill";
 | |
|   Names[RTLIB::CEIL_PPCF128] = "ceill";
 | |
|   Names[RTLIB::TRUNC_F32] = "truncf";
 | |
|   Names[RTLIB::TRUNC_F64] = "trunc";
 | |
|   Names[RTLIB::TRUNC_F80] = "truncl";
 | |
|   Names[RTLIB::TRUNC_F128] = "truncl";
 | |
|   Names[RTLIB::TRUNC_PPCF128] = "truncl";
 | |
|   Names[RTLIB::RINT_F32] = "rintf";
 | |
|   Names[RTLIB::RINT_F64] = "rint";
 | |
|   Names[RTLIB::RINT_F80] = "rintl";
 | |
|   Names[RTLIB::RINT_F128] = "rintl";
 | |
|   Names[RTLIB::RINT_PPCF128] = "rintl";
 | |
|   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
 | |
|   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
 | |
|   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
 | |
|   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
 | |
|   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
 | |
|   Names[RTLIB::ROUND_F32] = "roundf";
 | |
|   Names[RTLIB::ROUND_F64] = "round";
 | |
|   Names[RTLIB::ROUND_F80] = "roundl";
 | |
|   Names[RTLIB::ROUND_F128] = "roundl";
 | |
|   Names[RTLIB::ROUND_PPCF128] = "roundl";
 | |
|   Names[RTLIB::FLOOR_F32] = "floorf";
 | |
|   Names[RTLIB::FLOOR_F64] = "floor";
 | |
|   Names[RTLIB::FLOOR_F80] = "floorl";
 | |
|   Names[RTLIB::FLOOR_F128] = "floorl";
 | |
|   Names[RTLIB::FLOOR_PPCF128] = "floorl";
 | |
|   Names[RTLIB::ROUND_F32] = "roundf";
 | |
|   Names[RTLIB::ROUND_F64] = "round";
 | |
|   Names[RTLIB::ROUND_F80] = "roundl";
 | |
|   Names[RTLIB::ROUND_F128] = "roundl";
 | |
|   Names[RTLIB::ROUND_PPCF128] = "roundl";
 | |
|   Names[RTLIB::COPYSIGN_F32] = "copysignf";
 | |
|   Names[RTLIB::COPYSIGN_F64] = "copysign";
 | |
|   Names[RTLIB::COPYSIGN_F80] = "copysignl";
 | |
|   Names[RTLIB::COPYSIGN_F128] = "copysignl";
 | |
|   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
 | |
|   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
 | |
|   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
 | |
|   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
 | |
|   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
 | |
|   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
 | |
|   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
 | |
|   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
 | |
|   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
 | |
|   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
 | |
|   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
 | |
|   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
 | |
|   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
 | |
|   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
 | |
|   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
 | |
|   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
 | |
|   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
 | |
|   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
 | |
|   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
 | |
|   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
 | |
|   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
 | |
|   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
 | |
|   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
 | |
|   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
 | |
|   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
 | |
|   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
 | |
|   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
 | |
|   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
 | |
|   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
 | |
|   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
 | |
|   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
 | |
|   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
 | |
|   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
 | |
|   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
 | |
|   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
 | |
|   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
 | |
|   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
 | |
|   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
 | |
|   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
 | |
|   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
 | |
|   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
 | |
|   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
 | |
|   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
 | |
|   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
 | |
|   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
 | |
|   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
 | |
|   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
 | |
|   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
 | |
|   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
 | |
|   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
 | |
|   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
 | |
|   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
 | |
|   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
 | |
|   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
 | |
|   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
 | |
|   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
 | |
|   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
 | |
|   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
 | |
|   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
 | |
|   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
 | |
|   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
 | |
|   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
 | |
|   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
 | |
|   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
 | |
|   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
 | |
|   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
 | |
|   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
 | |
|   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
 | |
|   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
 | |
|   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
 | |
|   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
 | |
|   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
 | |
|   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
 | |
|   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
 | |
|   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
 | |
|   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
 | |
|   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
 | |
|   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
 | |
|   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
 | |
|   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
 | |
|   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
 | |
|   Names[RTLIB::OEQ_F32] = "__eqsf2";
 | |
|   Names[RTLIB::OEQ_F64] = "__eqdf2";
 | |
|   Names[RTLIB::OEQ_F128] = "__eqtf2";
 | |
|   Names[RTLIB::UNE_F32] = "__nesf2";
 | |
|   Names[RTLIB::UNE_F64] = "__nedf2";
 | |
|   Names[RTLIB::UNE_F128] = "__netf2";
 | |
|   Names[RTLIB::OGE_F32] = "__gesf2";
 | |
|   Names[RTLIB::OGE_F64] = "__gedf2";
 | |
|   Names[RTLIB::OGE_F128] = "__getf2";
 | |
|   Names[RTLIB::OLT_F32] = "__ltsf2";
 | |
|   Names[RTLIB::OLT_F64] = "__ltdf2";
 | |
|   Names[RTLIB::OLT_F128] = "__lttf2";
 | |
|   Names[RTLIB::OLE_F32] = "__lesf2";
 | |
|   Names[RTLIB::OLE_F64] = "__ledf2";
 | |
|   Names[RTLIB::OLE_F128] = "__letf2";
 | |
|   Names[RTLIB::OGT_F32] = "__gtsf2";
 | |
|   Names[RTLIB::OGT_F64] = "__gtdf2";
 | |
|   Names[RTLIB::OGT_F128] = "__gttf2";
 | |
|   Names[RTLIB::UO_F32] = "__unordsf2";
 | |
|   Names[RTLIB::UO_F64] = "__unorddf2";
 | |
|   Names[RTLIB::UO_F128] = "__unordtf2";
 | |
|   Names[RTLIB::O_F32] = "__unordsf2";
 | |
|   Names[RTLIB::O_F64] = "__unorddf2";
 | |
|   Names[RTLIB::O_F128] = "__unordtf2";
 | |
|   Names[RTLIB::MEMCPY] = "memcpy";
 | |
|   Names[RTLIB::MEMMOVE] = "memmove";
 | |
|   Names[RTLIB::MEMSET] = "memset";
 | |
|   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
 | |
|   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
 | |
|   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
 | |
|   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
 | |
|   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
 | |
|   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
 | |
|   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
 | |
|   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
 | |
|   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
 | |
|   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
 | |
|   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
 | |
|   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
 | |
|   
 | |
|   if (TT.getEnvironment() == Triple::GNU) {
 | |
|     Names[RTLIB::SINCOS_F32] = "sincosf";
 | |
|     Names[RTLIB::SINCOS_F64] = "sincos";
 | |
|     Names[RTLIB::SINCOS_F80] = "sincosl";
 | |
|     Names[RTLIB::SINCOS_F128] = "sincosl";
 | |
|     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
 | |
|   } else {
 | |
|     // These are generally not available.
 | |
|     Names[RTLIB::SINCOS_F32] = nullptr;
 | |
|     Names[RTLIB::SINCOS_F64] = nullptr;
 | |
|     Names[RTLIB::SINCOS_F80] = nullptr;
 | |
|     Names[RTLIB::SINCOS_F128] = nullptr;
 | |
|     Names[RTLIB::SINCOS_PPCF128] = nullptr;
 | |
|   }
 | |
| 
 | |
|   if (TT.getOS() != Triple::OpenBSD) {
 | |
|     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
 | |
|   } else {
 | |
|     // These are generally not available.
 | |
|     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InitLibcallCallingConvs - Set default libcall CallingConvs.
 | |
| ///
 | |
| static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
 | |
|   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
 | |
|     CCs[i] = CallingConv::C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFPEXT - Return the FPEXT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::f64)
 | |
|       return FPEXT_F32_F64;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return FPEXT_F32_F128;
 | |
|   } else if (OpVT == MVT::f64) {
 | |
|     if (RetVT == MVT::f128)
 | |
|       return FPEXT_F64_F128;
 | |
|   }
 | |
| 
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPROUND - Return the FPROUND_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
 | |
|   if (RetVT == MVT::f32) {
 | |
|     if (OpVT == MVT::f64)
 | |
|       return FPROUND_F64_F32;
 | |
|     if (OpVT == MVT::f80)
 | |
|       return FPROUND_F80_F32;
 | |
|     if (OpVT == MVT::f128)
 | |
|       return FPROUND_F128_F32;
 | |
|     if (OpVT == MVT::ppcf128)
 | |
|       return FPROUND_PPCF128_F32;
 | |
|   } else if (RetVT == MVT::f64) {
 | |
|     if (OpVT == MVT::f80)
 | |
|       return FPROUND_F80_F64;
 | |
|     if (OpVT == MVT::f128)
 | |
|       return FPROUND_F128_F64;
 | |
|     if (OpVT == MVT::ppcf128)
 | |
|       return FPROUND_PPCF128_F64;
 | |
|   }
 | |
| 
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::i8)
 | |
|       return FPTOSINT_F32_I8;
 | |
|     if (RetVT == MVT::i16)
 | |
|       return FPTOSINT_F32_I16;
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F32_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F32_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F32_I128;
 | |
|   } else if (OpVT == MVT::f64) {
 | |
|     if (RetVT == MVT::i8)
 | |
|       return FPTOSINT_F64_I8;
 | |
|     if (RetVT == MVT::i16)
 | |
|       return FPTOSINT_F64_I16;
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F64_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F64_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F64_I128;
 | |
|   } else if (OpVT == MVT::f80) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F80_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F80_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F80_I128;
 | |
|   } else if (OpVT == MVT::f128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F128_I128;
 | |
|   } else if (OpVT == MVT::ppcf128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_PPCF128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_PPCF128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_PPCF128_I128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::i8)
 | |
|       return FPTOUINT_F32_I8;
 | |
|     if (RetVT == MVT::i16)
 | |
|       return FPTOUINT_F32_I16;
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F32_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F32_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F32_I128;
 | |
|   } else if (OpVT == MVT::f64) {
 | |
|     if (RetVT == MVT::i8)
 | |
|       return FPTOUINT_F64_I8;
 | |
|     if (RetVT == MVT::i16)
 | |
|       return FPTOUINT_F64_I16;
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F64_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F64_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F64_I128;
 | |
|   } else if (OpVT == MVT::f80) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F80_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F80_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F80_I128;
 | |
|   } else if (OpVT == MVT::f128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F128_I128;
 | |
|   } else if (OpVT == MVT::ppcf128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_PPCF128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_PPCF128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_PPCF128_I128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::i32) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I32_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I32_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I32_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return SINTTOFP_I32_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I32_PPCF128;
 | |
|   } else if (OpVT == MVT::i64) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I64_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I64_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I64_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return SINTTOFP_I64_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I64_PPCF128;
 | |
|   } else if (OpVT == MVT::i128) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I128_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I128_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I128_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return SINTTOFP_I128_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I128_PPCF128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::i32) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I32_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I32_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I32_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return UINTTOFP_I32_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I32_PPCF128;
 | |
|   } else if (OpVT == MVT::i64) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I64_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I64_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I64_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return UINTTOFP_I64_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I64_PPCF128;
 | |
|   } else if (OpVT == MVT::i128) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I128_F32;
 | |
|     if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I128_F64;
 | |
|     if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I128_F80;
 | |
|     if (RetVT == MVT::f128)
 | |
|       return UINTTOFP_I128_F128;
 | |
|     if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I128_PPCF128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// InitCmpLibcallCCs - Set default comparison libcall CC.
 | |
| ///
 | |
| static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
 | |
|   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
 | |
|   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
 | |
|   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
 | |
|   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
 | |
|   CCs[RTLIB::UNE_F32] = ISD::SETNE;
 | |
|   CCs[RTLIB::UNE_F64] = ISD::SETNE;
 | |
|   CCs[RTLIB::UNE_F128] = ISD::SETNE;
 | |
|   CCs[RTLIB::OGE_F32] = ISD::SETGE;
 | |
|   CCs[RTLIB::OGE_F64] = ISD::SETGE;
 | |
|   CCs[RTLIB::OGE_F128] = ISD::SETGE;
 | |
|   CCs[RTLIB::OLT_F32] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLT_F64] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLT_F128] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLE_F32] = ISD::SETLE;
 | |
|   CCs[RTLIB::OLE_F64] = ISD::SETLE;
 | |
|   CCs[RTLIB::OLE_F128] = ISD::SETLE;
 | |
|   CCs[RTLIB::OGT_F32] = ISD::SETGT;
 | |
|   CCs[RTLIB::OGT_F64] = ISD::SETGT;
 | |
|   CCs[RTLIB::OGT_F128] = ISD::SETGT;
 | |
|   CCs[RTLIB::UO_F32] = ISD::SETNE;
 | |
|   CCs[RTLIB::UO_F64] = ISD::SETNE;
 | |
|   CCs[RTLIB::UO_F128] = ISD::SETNE;
 | |
|   CCs[RTLIB::O_F32] = ISD::SETEQ;
 | |
|   CCs[RTLIB::O_F64] = ISD::SETEQ;
 | |
|   CCs[RTLIB::O_F128] = ISD::SETEQ;
 | |
| }
 | |
| 
 | |
| /// NOTE: The constructor takes ownership of TLOF.
 | |
| TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
 | |
|                                        const TargetLoweringObjectFile *tlof)
 | |
|   : TM(tm), DL(TM.getDataLayout()), TLOF(*tlof) {
 | |
|   initActions();
 | |
| 
 | |
|   // Perform these initializations only once.
 | |
|   IsLittleEndian = DL->isLittleEndian();
 | |
|   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
 | |
|   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
 | |
|     = MaxStoresPerMemmoveOptSize = 4;
 | |
|   UseUnderscoreSetJmp = false;
 | |
|   UseUnderscoreLongJmp = false;
 | |
|   SelectIsExpensive = false;
 | |
|   HasMultipleConditionRegisters = false;
 | |
|   HasExtractBitsInsn = false;
 | |
|   IntDivIsCheap = false;
 | |
|   Pow2DivIsCheap = false;
 | |
|   JumpIsExpensive = false;
 | |
|   PredictableSelectIsExpensive = false;
 | |
|   MaskAndBranchFoldingIsLegal = false;
 | |
|   StackPointerRegisterToSaveRestore = 0;
 | |
|   ExceptionPointerRegister = 0;
 | |
|   ExceptionSelectorRegister = 0;
 | |
|   BooleanContents = UndefinedBooleanContent;
 | |
|   BooleanFloatContents = UndefinedBooleanContent;
 | |
|   BooleanVectorContents = UndefinedBooleanContent;
 | |
|   SchedPreferenceInfo = Sched::ILP;
 | |
|   JumpBufSize = 0;
 | |
|   JumpBufAlignment = 0;
 | |
|   MinFunctionAlignment = 0;
 | |
|   PrefFunctionAlignment = 0;
 | |
|   PrefLoopAlignment = 0;
 | |
|   MinStackArgumentAlignment = 1;
 | |
|   InsertFencesForAtomic = false;
 | |
|   SupportJumpTables = true;
 | |
|   MinimumJumpTableEntries = 4;
 | |
| 
 | |
|   InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple()));
 | |
|   InitCmpLibcallCCs(CmpLibcallCCs);
 | |
|   InitLibcallCallingConvs(LibcallCallingConvs);
 | |
| }
 | |
| 
 | |
| TargetLoweringBase::~TargetLoweringBase() {
 | |
|   delete &TLOF;
 | |
| }
 | |
| 
 | |
| void TargetLoweringBase::initActions() {
 | |
|   // All operations default to being supported.
 | |
|   memset(OpActions, 0, sizeof(OpActions));
 | |
|   memset(LoadExtActions, 0, sizeof(LoadExtActions));
 | |
|   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
 | |
|   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
 | |
|   memset(CondCodeActions, 0, sizeof(CondCodeActions));
 | |
|   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
 | |
|   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
 | |
| 
 | |
|   // Set default actions for various operations.
 | |
|   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
 | |
|     // Default all indexed load / store to expand.
 | |
|     for (unsigned IM = (unsigned)ISD::PRE_INC;
 | |
|          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
 | |
|       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
 | |
|       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
 | |
|     }
 | |
| 
 | |
|     // Most backends expect to see the node which just returns the value loaded.
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
 | |
|                        (MVT::SimpleValueType)VT, Expand);
 | |
| 
 | |
|     // These operations default to expand.
 | |
|     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
 | |
| 
 | |
|     // These library functions default to expand.
 | |
|     setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
 | |
| 
 | |
|     // These operations default to expand for vector types.
 | |
|     if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
 | |
|         VT <= MVT::LAST_VECTOR_VALUETYPE) {
 | |
|       setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
 | |
|       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,
 | |
|                          (MVT::SimpleValueType)VT, Expand);
 | |
|       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG,
 | |
|                          (MVT::SimpleValueType)VT, Expand);
 | |
|       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG,
 | |
|                          (MVT::SimpleValueType)VT, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Most targets ignore the @llvm.prefetch intrinsic.
 | |
|   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
 | |
| 
 | |
|   // ConstantFP nodes default to expand.  Targets can either change this to
 | |
|   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
 | |
|   // to optimize expansions for certain constants.
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
 | |
| 
 | |
|   // These library functions default to expand.
 | |
|   setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FLOG10, MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FRINT,  MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FROUND, MVT::f16, Expand);
 | |
|   setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FLOG10, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FRINT,  MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FROUND, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FLOG10, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FRINT,  MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FROUND, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FLOG10, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FRINT,  MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
 | |
|   setOperationAction(ISD::FROUND, MVT::f128, Expand);
 | |
| 
 | |
|   // Default ISD::TRAP to expand (which turns it into abort).
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Expand);
 | |
| 
 | |
|   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
 | |
|   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
 | |
|   //
 | |
|   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
 | |
| }
 | |
| 
 | |
| MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
 | |
|   return MVT::getIntegerVT(getPointerSizeInBits(AS));
 | |
| }
 | |
| 
 | |
| unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
 | |
|   return DL->getPointerSizeInBits(AS);
 | |
| }
 | |
| 
 | |
| unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
 | |
|   assert(Ty->isPointerTy());
 | |
|   return getPointerSizeInBits(Ty->getPointerAddressSpace());
 | |
| }
 | |
| 
 | |
| MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
 | |
|   return MVT::getIntegerVT(8*DL->getPointerSize(0));
 | |
| }
 | |
| 
 | |
| EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
 | |
|   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
 | |
|   if (LHSTy.isVector())
 | |
|     return LHSTy;
 | |
|   return getScalarShiftAmountTy(LHSTy);
 | |
| }
 | |
| 
 | |
| /// canOpTrap - Returns true if the operation can trap for the value type.
 | |
| /// VT must be a legal type.
 | |
| bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
 | |
|   assert(isTypeLegal(VT));
 | |
|   switch (Op) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ISD::FDIV:
 | |
|   case ISD::FREM:
 | |
|   case ISD::SDIV:
 | |
|   case ISD::UDIV:
 | |
|   case ISD::SREM:
 | |
|   case ISD::UREM:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
 | |
|                                           unsigned &NumIntermediates,
 | |
|                                           MVT &RegisterVT,
 | |
|                                           TargetLoweringBase *TLI) {
 | |
|   // Figure out the right, legal destination reg to copy into.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   MVT EltTy = VT.getVectorElementType();
 | |
| 
 | |
|   unsigned NumVectorRegs = 1;
 | |
| 
 | |
|   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
 | |
|   // could break down into LHS/RHS like LegalizeDAG does.
 | |
|   if (!isPowerOf2_32(NumElts)) {
 | |
|     NumVectorRegs = NumElts;
 | |
|     NumElts = 1;
 | |
|   }
 | |
| 
 | |
|   // Divide the input until we get to a supported size.  This will always
 | |
|   // end with a scalar if the target doesn't support vectors.
 | |
|   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
 | |
|     NumElts >>= 1;
 | |
|     NumVectorRegs <<= 1;
 | |
|   }
 | |
| 
 | |
|   NumIntermediates = NumVectorRegs;
 | |
| 
 | |
|   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
 | |
|   if (!TLI->isTypeLegal(NewVT))
 | |
|     NewVT = EltTy;
 | |
|   IntermediateVT = NewVT;
 | |
| 
 | |
|   unsigned NewVTSize = NewVT.getSizeInBits();
 | |
| 
 | |
|   // Convert sizes such as i33 to i64.
 | |
|   if (!isPowerOf2_32(NewVTSize))
 | |
|     NewVTSize = NextPowerOf2(NewVTSize);
 | |
| 
 | |
|   MVT DestVT = TLI->getRegisterType(NewVT);
 | |
|   RegisterVT = DestVT;
 | |
|   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
 | |
|     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
 | |
| 
 | |
|   // Otherwise, promotion or legal types use the same number of registers as
 | |
|   // the vector decimated to the appropriate level.
 | |
|   return NumVectorRegs;
 | |
| }
 | |
| 
 | |
| /// isLegalRC - Return true if the value types that can be represented by the
 | |
| /// specified register class are all legal.
 | |
| bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
 | |
|   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | |
|        I != E; ++I) {
 | |
|     if (isTypeLegal(*I))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Replace/modify any TargetFrameIndex operands with a targte-dependent
 | |
| /// sequence of memory operands that is recognized by PrologEpilogInserter.
 | |
| MachineBasicBlock*
 | |
| TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
 | |
|                                    MachineBasicBlock *MBB) const {
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
| 
 | |
|   // MI changes inside this loop as we grow operands.
 | |
|   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
 | |
|     MachineOperand &MO = MI->getOperand(OperIdx);
 | |
|     if (!MO.isFI())
 | |
|       continue;
 | |
| 
 | |
|     // foldMemoryOperand builds a new MI after replacing a single FI operand
 | |
|     // with the canonical set of five x86 addressing-mode operands.
 | |
|     int FI = MO.getIndex();
 | |
|     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
 | |
| 
 | |
|     // Copy operands before the frame-index.
 | |
|     for (unsigned i = 0; i < OperIdx; ++i)
 | |
|       MIB.addOperand(MI->getOperand(i));
 | |
|     // Add frame index operands: direct-mem-ref tag, #FI, offset.
 | |
|     MIB.addImm(StackMaps::DirectMemRefOp);
 | |
|     MIB.addOperand(MI->getOperand(OperIdx));
 | |
|     MIB.addImm(0);
 | |
|     // Copy the operands after the frame index.
 | |
|     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
 | |
|       MIB.addOperand(MI->getOperand(i));
 | |
| 
 | |
|     // Inherit previous memory operands.
 | |
|     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
 | |
|     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
 | |
| 
 | |
|     // Add a new memory operand for this FI.
 | |
|     const MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|     assert(MFI.getObjectOffset(FI) != -1);
 | |
|     MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
 | |
|                               MachineMemOperand::MOLoad,
 | |
|                               TM.getDataLayout()->getPointerSize(),
 | |
|                               MFI.getObjectAlignment(FI));
 | |
|     MIB->addMemOperand(MF, MMO);
 | |
| 
 | |
|     // Replace the instruction and update the operand index.
 | |
|     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
 | |
|     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
 | |
|     MI->eraseFromParent();
 | |
|     MI = MIB;
 | |
|   }
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| /// findRepresentativeClass - Return the largest legal super-reg register class
 | |
| /// of the register class for the specified type and its associated "cost".
 | |
| std::pair<const TargetRegisterClass*, uint8_t>
 | |
| TargetLoweringBase::findRepresentativeClass(MVT VT) const {
 | |
|   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
 | |
|   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
 | |
|   if (!RC)
 | |
|     return std::make_pair(RC, 0);
 | |
| 
 | |
|   // Compute the set of all super-register classes.
 | |
|   BitVector SuperRegRC(TRI->getNumRegClasses());
 | |
|   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
 | |
|     SuperRegRC.setBitsInMask(RCI.getMask());
 | |
| 
 | |
|   // Find the first legal register class with the largest spill size.
 | |
|   const TargetRegisterClass *BestRC = RC;
 | |
|   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
 | |
|     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
 | |
|     // We want the largest possible spill size.
 | |
|     if (SuperRC->getSize() <= BestRC->getSize())
 | |
|       continue;
 | |
|     if (!isLegalRC(SuperRC))
 | |
|       continue;
 | |
|     BestRC = SuperRC;
 | |
|   }
 | |
|   return std::make_pair(BestRC, 1);
 | |
| }
 | |
| 
 | |
| /// computeRegisterProperties - Once all of the register classes are added,
 | |
| /// this allows us to compute derived properties we expose.
 | |
| void TargetLoweringBase::computeRegisterProperties() {
 | |
|   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
 | |
|          "Too many value types for ValueTypeActions to hold!");
 | |
| 
 | |
|   // Everything defaults to needing one register.
 | |
|   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
 | |
|     NumRegistersForVT[i] = 1;
 | |
|     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
 | |
|   }
 | |
|   // ...except isVoid, which doesn't need any registers.
 | |
|   NumRegistersForVT[MVT::isVoid] = 0;
 | |
| 
 | |
|   // Find the largest integer register class.
 | |
|   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
 | |
|   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
 | |
|     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
 | |
| 
 | |
|   // Every integer value type larger than this largest register takes twice as
 | |
|   // many registers to represent as the previous ValueType.
 | |
|   for (unsigned ExpandedReg = LargestIntReg + 1;
 | |
|        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
 | |
|     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
 | |
|     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
 | |
|     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
 | |
|     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
 | |
|                                    TypeExpandInteger);
 | |
|   }
 | |
| 
 | |
|   // Inspect all of the ValueType's smaller than the largest integer
 | |
|   // register to see which ones need promotion.
 | |
|   unsigned LegalIntReg = LargestIntReg;
 | |
|   for (unsigned IntReg = LargestIntReg - 1;
 | |
|        IntReg >= (unsigned)MVT::i1; --IntReg) {
 | |
|     MVT IVT = (MVT::SimpleValueType)IntReg;
 | |
|     if (isTypeLegal(IVT)) {
 | |
|       LegalIntReg = IntReg;
 | |
|     } else {
 | |
|       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
 | |
|         (const MVT::SimpleValueType)LegalIntReg;
 | |
|       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ppcf128 type is really two f64's.
 | |
|   if (!isTypeLegal(MVT::ppcf128)) {
 | |
|     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
 | |
|     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
 | |
|     TransformToType[MVT::ppcf128] = MVT::f64;
 | |
|     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
 | |
|   }
 | |
| 
 | |
|   // Decide how to handle f128. If the target does not have native f128 support,
 | |
|   // expand it to i128 and we will be generating soft float library calls.
 | |
|   if (!isTypeLegal(MVT::f128)) {
 | |
|     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
 | |
|     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
 | |
|     TransformToType[MVT::f128] = MVT::i128;
 | |
|     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
 | |
|   }
 | |
| 
 | |
|   // Decide how to handle f64. If the target does not have native f64 support,
 | |
|   // expand it to i64 and we will be generating soft float library calls.
 | |
|   if (!isTypeLegal(MVT::f64)) {
 | |
|     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
 | |
|     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
 | |
|     TransformToType[MVT::f64] = MVT::i64;
 | |
|     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
 | |
|   }
 | |
| 
 | |
|   // Decide how to handle f32. If the target does not have native support for
 | |
|   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
 | |
|   if (!isTypeLegal(MVT::f32)) {
 | |
|     if (isTypeLegal(MVT::f64)) {
 | |
|       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
 | |
|       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
 | |
|       TransformToType[MVT::f32] = MVT::f64;
 | |
|       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
 | |
|     } else {
 | |
|       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
 | |
|       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
 | |
|       TransformToType[MVT::f32] = MVT::i32;
 | |
|       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the vector value types to see which need transformations.
 | |
|   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | |
|     MVT VT = (MVT::SimpleValueType) i;
 | |
|     if (isTypeLegal(VT))
 | |
|       continue;
 | |
| 
 | |
|     MVT EltVT = VT.getVectorElementType();
 | |
|     unsigned NElts = VT.getVectorNumElements();
 | |
|     bool IsLegalWiderType = false;
 | |
|     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
 | |
|     switch (PreferredAction) {
 | |
|     case TypePromoteInteger: {
 | |
|       // Try to promote the elements of integer vectors. If no legal
 | |
|       // promotion was found, fall through to the widen-vector method.
 | |
|       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
 | |
|         MVT SVT = (MVT::SimpleValueType) nVT;
 | |
|         // Promote vectors of integers to vectors with the same number
 | |
|         // of elements, with a wider element type.
 | |
|         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
 | |
|             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
 | |
|             && SVT.getScalarType().isInteger()) {
 | |
|           TransformToType[i] = SVT;
 | |
|           RegisterTypeForVT[i] = SVT;
 | |
|           NumRegistersForVT[i] = 1;
 | |
|           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
 | |
|           IsLegalWiderType = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (IsLegalWiderType)
 | |
|         break;
 | |
|     }
 | |
|     case TypeWidenVector: {
 | |
|       // Try to widen the vector.
 | |
|       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
 | |
|         MVT SVT = (MVT::SimpleValueType) nVT;
 | |
|         if (SVT.getVectorElementType() == EltVT
 | |
|             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
 | |
|           TransformToType[i] = SVT;
 | |
|           RegisterTypeForVT[i] = SVT;
 | |
|           NumRegistersForVT[i] = 1;
 | |
|           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
 | |
|           IsLegalWiderType = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (IsLegalWiderType)
 | |
|         break;
 | |
|     }
 | |
|     case TypeSplitVector:
 | |
|     case TypeScalarizeVector: {
 | |
|       MVT IntermediateVT;
 | |
|       MVT RegisterVT;
 | |
|       unsigned NumIntermediates;
 | |
|       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
 | |
|           NumIntermediates, RegisterVT, this);
 | |
|       RegisterTypeForVT[i] = RegisterVT;
 | |
| 
 | |
|       MVT NVT = VT.getPow2VectorType();
 | |
|       if (NVT == VT) {
 | |
|         // Type is already a power of 2.  The default action is to split.
 | |
|         TransformToType[i] = MVT::Other;
 | |
|         if (PreferredAction == TypeScalarizeVector)
 | |
|           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
 | |
|         else
 | |
|           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
 | |
|       } else {
 | |
|         TransformToType[i] = NVT;
 | |
|         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unknown vector legalization action!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Determine the 'representative' register class for each value type.
 | |
|   // An representative register class is the largest (meaning one which is
 | |
|   // not a sub-register class / subreg register class) legal register class for
 | |
|   // a group of value types. For example, on i386, i8, i16, and i32
 | |
|   // representative would be GR32; while on x86_64 it's GR64.
 | |
|   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
 | |
|     const TargetRegisterClass* RRC;
 | |
|     uint8_t Cost;
 | |
|     std::tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
 | |
|     RepRegClassForVT[i] = RRC;
 | |
|     RepRegClassCostForVT[i] = Cost;
 | |
|   }
 | |
| }
 | |
| 
 | |
| EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
 | |
|   assert(!VT.isVector() && "No default SetCC type for vectors!");
 | |
|   return getPointerTy(0).SimpleTy;
 | |
| }
 | |
| 
 | |
| MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
 | |
|   return MVT::i32; // return the default value
 | |
| }
 | |
| 
 | |
| /// getVectorTypeBreakdown - Vector types are broken down into some number of
 | |
| /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
 | |
| /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
 | |
| /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
 | |
| ///
 | |
| /// This method returns the number of registers needed, and the VT for each
 | |
| /// register.  It also returns the VT and quantity of the intermediate values
 | |
| /// before they are promoted/expanded.
 | |
| ///
 | |
| unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
 | |
|                                                 EVT &IntermediateVT,
 | |
|                                                 unsigned &NumIntermediates,
 | |
|                                                 MVT &RegisterVT) const {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   // If there is a wider vector type with the same element type as this one,
 | |
|   // or a promoted vector type that has the same number of elements which
 | |
|   // are wider, then we should convert to that legal vector type.
 | |
|   // This handles things like <2 x float> -> <4 x float> and
 | |
|   // <4 x i1> -> <4 x i32>.
 | |
|   LegalizeTypeAction TA = getTypeAction(Context, VT);
 | |
|   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
 | |
|     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
 | |
|     if (isTypeLegal(RegisterEVT)) {
 | |
|       IntermediateVT = RegisterEVT;
 | |
|       RegisterVT = RegisterEVT.getSimpleVT();
 | |
|       NumIntermediates = 1;
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Figure out the right, legal destination reg to copy into.
 | |
|   EVT EltTy = VT.getVectorElementType();
 | |
| 
 | |
|   unsigned NumVectorRegs = 1;
 | |
| 
 | |
|   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
 | |
|   // could break down into LHS/RHS like LegalizeDAG does.
 | |
|   if (!isPowerOf2_32(NumElts)) {
 | |
|     NumVectorRegs = NumElts;
 | |
|     NumElts = 1;
 | |
|   }
 | |
| 
 | |
|   // Divide the input until we get to a supported size.  This will always
 | |
|   // end with a scalar if the target doesn't support vectors.
 | |
|   while (NumElts > 1 && !isTypeLegal(
 | |
|                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
 | |
|     NumElts >>= 1;
 | |
|     NumVectorRegs <<= 1;
 | |
|   }
 | |
| 
 | |
|   NumIntermediates = NumVectorRegs;
 | |
| 
 | |
|   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
 | |
|   if (!isTypeLegal(NewVT))
 | |
|     NewVT = EltTy;
 | |
|   IntermediateVT = NewVT;
 | |
| 
 | |
|   MVT DestVT = getRegisterType(Context, NewVT);
 | |
|   RegisterVT = DestVT;
 | |
|   unsigned NewVTSize = NewVT.getSizeInBits();
 | |
| 
 | |
|   // Convert sizes such as i33 to i64.
 | |
|   if (!isPowerOf2_32(NewVTSize))
 | |
|     NewVTSize = NextPowerOf2(NewVTSize);
 | |
| 
 | |
|   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
 | |
|     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
 | |
| 
 | |
|   // Otherwise, promotion or legal types use the same number of registers as
 | |
|   // the vector decimated to the appropriate level.
 | |
|   return NumVectorRegs;
 | |
| }
 | |
| 
 | |
| /// Get the EVTs and ArgFlags collections that represent the legalized return
 | |
| /// type of the given function.  This does not require a DAG or a return value,
 | |
| /// and is suitable for use before any DAGs for the function are constructed.
 | |
| /// TODO: Move this out of TargetLowering.cpp.
 | |
| void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
 | |
|                          SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                          const TargetLowering &TLI) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, ReturnType, ValueVTs);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0) return;
 | |
| 
 | |
|   for (unsigned j = 0, f = NumValues; j != f; ++j) {
 | |
|     EVT VT = ValueVTs[j];
 | |
|     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
| 
 | |
|     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
 | |
|       ExtendKind = ISD::SIGN_EXTEND;
 | |
|     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
 | |
|       ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|     // FIXME: C calling convention requires the return type to be promoted to
 | |
|     // at least 32-bit. But this is not necessary for non-C calling
 | |
|     // conventions. The frontend should mark functions whose return values
 | |
|     // require promoting with signext or zeroext attributes.
 | |
|     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
 | |
|       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
 | |
|       if (VT.bitsLT(MinVT))
 | |
|         VT = MinVT;
 | |
|     }
 | |
| 
 | |
|     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
 | |
|     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
 | |
| 
 | |
|     // 'inreg' on function refers to return value
 | |
|     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
 | |
|     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
 | |
|       Flags.setInReg();
 | |
| 
 | |
|     // Propagate extension type if any
 | |
|     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
 | |
|       Flags.setSExt();
 | |
|     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
 | |
|       Flags.setZExt();
 | |
| 
 | |
|     for (unsigned i = 0; i < NumParts; ++i)
 | |
|       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
| /// function arguments in the caller parameter area.  This is the actual
 | |
| /// alignment, not its logarithm.
 | |
| unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
 | |
|   return DL->getABITypeAlignment(Ty);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  TargetTransformInfo Helpers
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
 | |
|   enum InstructionOpcodes {
 | |
| #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
 | |
| #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
 | |
| #include "llvm/IR/Instruction.def"
 | |
|   };
 | |
|   switch (static_cast<InstructionOpcodes>(Opcode)) {
 | |
|   case Ret:            return 0;
 | |
|   case Br:             return 0;
 | |
|   case Switch:         return 0;
 | |
|   case IndirectBr:     return 0;
 | |
|   case Invoke:         return 0;
 | |
|   case Resume:         return 0;
 | |
|   case Unreachable:    return 0;
 | |
|   case Add:            return ISD::ADD;
 | |
|   case FAdd:           return ISD::FADD;
 | |
|   case Sub:            return ISD::SUB;
 | |
|   case FSub:           return ISD::FSUB;
 | |
|   case Mul:            return ISD::MUL;
 | |
|   case FMul:           return ISD::FMUL;
 | |
|   case UDiv:           return ISD::UDIV;
 | |
|   case SDiv:           return ISD::SDIV;
 | |
|   case FDiv:           return ISD::FDIV;
 | |
|   case URem:           return ISD::UREM;
 | |
|   case SRem:           return ISD::SREM;
 | |
|   case FRem:           return ISD::FREM;
 | |
|   case Shl:            return ISD::SHL;
 | |
|   case LShr:           return ISD::SRL;
 | |
|   case AShr:           return ISD::SRA;
 | |
|   case And:            return ISD::AND;
 | |
|   case Or:             return ISD::OR;
 | |
|   case Xor:            return ISD::XOR;
 | |
|   case Alloca:         return 0;
 | |
|   case Load:           return ISD::LOAD;
 | |
|   case Store:          return ISD::STORE;
 | |
|   case GetElementPtr:  return 0;
 | |
|   case Fence:          return 0;
 | |
|   case AtomicCmpXchg:  return 0;
 | |
|   case AtomicRMW:      return 0;
 | |
|   case Trunc:          return ISD::TRUNCATE;
 | |
|   case ZExt:           return ISD::ZERO_EXTEND;
 | |
|   case SExt:           return ISD::SIGN_EXTEND;
 | |
|   case FPToUI:         return ISD::FP_TO_UINT;
 | |
|   case FPToSI:         return ISD::FP_TO_SINT;
 | |
|   case UIToFP:         return ISD::UINT_TO_FP;
 | |
|   case SIToFP:         return ISD::SINT_TO_FP;
 | |
|   case FPTrunc:        return ISD::FP_ROUND;
 | |
|   case FPExt:          return ISD::FP_EXTEND;
 | |
|   case PtrToInt:       return ISD::BITCAST;
 | |
|   case IntToPtr:       return ISD::BITCAST;
 | |
|   case BitCast:        return ISD::BITCAST;
 | |
|   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
 | |
|   case ICmp:           return ISD::SETCC;
 | |
|   case FCmp:           return ISD::SETCC;
 | |
|   case PHI:            return 0;
 | |
|   case Call:           return 0;
 | |
|   case Select:         return ISD::SELECT;
 | |
|   case UserOp1:        return 0;
 | |
|   case UserOp2:        return 0;
 | |
|   case VAArg:          return 0;
 | |
|   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
 | |
|   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
 | |
|   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
 | |
|   case ExtractValue:   return ISD::MERGE_VALUES;
 | |
|   case InsertValue:    return ISD::MERGE_VALUES;
 | |
|   case LandingPad:     return 0;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown instruction type encountered!");
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, MVT>
 | |
| TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
 | |
|   LLVMContext &C = Ty->getContext();
 | |
|   EVT MTy = getValueType(Ty);
 | |
| 
 | |
|   unsigned Cost = 1;
 | |
|   // We keep legalizing the type until we find a legal kind. We assume that
 | |
|   // the only operation that costs anything is the split. After splitting
 | |
|   // we need to handle two types.
 | |
|   while (true) {
 | |
|     LegalizeKind LK = getTypeConversion(C, MTy);
 | |
| 
 | |
|     if (LK.first == TypeLegal)
 | |
|       return std::make_pair(Cost, MTy.getSimpleVT());
 | |
| 
 | |
|     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
 | |
|       Cost *= 2;
 | |
| 
 | |
|     // Keep legalizing the type.
 | |
|     MTy = LK.second;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Loop Strength Reduction hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented
 | |
| /// by AM is legal for this target, for a load/store of the specified type.
 | |
| bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                            Type *Ty) const {
 | |
|   // The default implementation of this implements a conservative RISCy, r+r and
 | |
|   // r+i addr mode.
 | |
| 
 | |
|   // Allows a sign-extended 16-bit immediate field.
 | |
|   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | |
|     return false;
 | |
| 
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // Only support r+r,
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | |
|     break;
 | |
|   case 1:
 | |
|     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | |
|       return false;
 | |
|     // Otherwise we have r+r or r+i.
 | |
|     break;
 | |
|   case 2:
 | |
|     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | |
|       return false;
 | |
|     // Allow 2*r as r+r.
 | |
|     break;
 | |
|   default: // Don't allow n * r
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |