forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3129 lines
		
	
	
		
			113 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3129 lines
		
	
	
		
			113 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file defines ObjC ARC optimizations. ARC stands for Automatic
 | |
| /// Reference Counting and is a system for managing reference counts for objects
 | |
| /// in Objective C.
 | |
| ///
 | |
| /// The optimizations performed include elimination of redundant, partially
 | |
| /// redundant, and inconsequential reference count operations, elimination of
 | |
| /// redundant weak pointer operations, and numerous minor simplifications.
 | |
| ///
 | |
| /// WARNING: This file knows about certain library functions. It recognizes them
 | |
| /// by name, and hardwires knowledge of their semantics.
 | |
| ///
 | |
| /// WARNING: This file knows about how certain Objective-C library functions are
 | |
| /// used. Naive LLVM IR transformations which would otherwise be
 | |
| /// behavior-preserving may break these assumptions.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ObjCARC.h"
 | |
| #include "ARCRuntimeEntryPoints.h"
 | |
| #include "DependencyAnalysis.h"
 | |
| #include "ObjCARCAliasAnalysis.h"
 | |
| #include "ProvenanceAnalysis.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::objcarc;
 | |
| 
 | |
| #define DEBUG_TYPE "objc-arc-opts"
 | |
| 
 | |
| /// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific.
 | |
| /// @{
 | |
| 
 | |
| namespace {
 | |
|   /// \brief An associative container with fast insertion-order (deterministic)
 | |
|   /// iteration over its elements. Plus the special blot operation.
 | |
|   template<class KeyT, class ValueT>
 | |
|   class MapVector {
 | |
|     /// Map keys to indices in Vector.
 | |
|     typedef DenseMap<KeyT, size_t> MapTy;
 | |
|     MapTy Map;
 | |
| 
 | |
|     typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
 | |
|     /// Keys and values.
 | |
|     VectorTy Vector;
 | |
| 
 | |
|   public:
 | |
|     typedef typename VectorTy::iterator iterator;
 | |
|     typedef typename VectorTy::const_iterator const_iterator;
 | |
|     iterator begin() { return Vector.begin(); }
 | |
|     iterator end() { return Vector.end(); }
 | |
|     const_iterator begin() const { return Vector.begin(); }
 | |
|     const_iterator end() const { return Vector.end(); }
 | |
| 
 | |
| #ifdef XDEBUG
 | |
|     ~MapVector() {
 | |
|       assert(Vector.size() >= Map.size()); // May differ due to blotting.
 | |
|       for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
 | |
|            I != E; ++I) {
 | |
|         assert(I->second < Vector.size());
 | |
|         assert(Vector[I->second].first == I->first);
 | |
|       }
 | |
|       for (typename VectorTy::const_iterator I = Vector.begin(),
 | |
|            E = Vector.end(); I != E; ++I)
 | |
|         assert(!I->first ||
 | |
|                (Map.count(I->first) &&
 | |
|                 Map[I->first] == size_t(I - Vector.begin())));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     ValueT &operator[](const KeyT &Arg) {
 | |
|       std::pair<typename MapTy::iterator, bool> Pair =
 | |
|         Map.insert(std::make_pair(Arg, size_t(0)));
 | |
|       if (Pair.second) {
 | |
|         size_t Num = Vector.size();
 | |
|         Pair.first->second = Num;
 | |
|         Vector.push_back(std::make_pair(Arg, ValueT()));
 | |
|         return Vector[Num].second;
 | |
|       }
 | |
|       return Vector[Pair.first->second].second;
 | |
|     }
 | |
| 
 | |
|     std::pair<iterator, bool>
 | |
|     insert(const std::pair<KeyT, ValueT> &InsertPair) {
 | |
|       std::pair<typename MapTy::iterator, bool> Pair =
 | |
|         Map.insert(std::make_pair(InsertPair.first, size_t(0)));
 | |
|       if (Pair.second) {
 | |
|         size_t Num = Vector.size();
 | |
|         Pair.first->second = Num;
 | |
|         Vector.push_back(InsertPair);
 | |
|         return std::make_pair(Vector.begin() + Num, true);
 | |
|       }
 | |
|       return std::make_pair(Vector.begin() + Pair.first->second, false);
 | |
|     }
 | |
| 
 | |
|     iterator find(const KeyT &Key) {
 | |
|       typename MapTy::iterator It = Map.find(Key);
 | |
|       if (It == Map.end()) return Vector.end();
 | |
|       return Vector.begin() + It->second;
 | |
|     }
 | |
| 
 | |
|     const_iterator find(const KeyT &Key) const {
 | |
|       typename MapTy::const_iterator It = Map.find(Key);
 | |
|       if (It == Map.end()) return Vector.end();
 | |
|       return Vector.begin() + It->second;
 | |
|     }
 | |
| 
 | |
|     /// This is similar to erase, but instead of removing the element from the
 | |
|     /// vector, it just zeros out the key in the vector. This leaves iterators
 | |
|     /// intact, but clients must be prepared for zeroed-out keys when iterating.
 | |
|     void blot(const KeyT &Key) {
 | |
|       typename MapTy::iterator It = Map.find(Key);
 | |
|       if (It == Map.end()) return;
 | |
|       Vector[It->second].first = KeyT();
 | |
|       Map.erase(It);
 | |
|     }
 | |
| 
 | |
|     void clear() {
 | |
|       Map.clear();
 | |
|       Vector.clear();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// @}
 | |
| ///
 | |
| /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
 | |
| /// @{
 | |
| 
 | |
| /// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon
 | |
| /// as it finds a value with multiple uses.
 | |
| static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
 | |
|   if (Arg->hasOneUse()) {
 | |
|     if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
 | |
|       return FindSingleUseIdentifiedObject(BC->getOperand(0));
 | |
|     if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
 | |
|       if (GEP->hasAllZeroIndices())
 | |
|         return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
 | |
|     if (IsForwarding(GetBasicInstructionClass(Arg)))
 | |
|       return FindSingleUseIdentifiedObject(
 | |
|                cast<CallInst>(Arg)->getArgOperand(0));
 | |
|     if (!IsObjCIdentifiedObject(Arg))
 | |
|       return nullptr;
 | |
|     return Arg;
 | |
|   }
 | |
| 
 | |
|   // If we found an identifiable object but it has multiple uses, but they are
 | |
|   // trivial uses, we can still consider this to be a single-use value.
 | |
|   if (IsObjCIdentifiedObject(Arg)) {
 | |
|     for (const User *U : Arg->users())
 | |
|       if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
 | |
|          return nullptr;
 | |
| 
 | |
|     return Arg;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// This is a wrapper around getUnderlyingObjCPtr along the lines of
 | |
| /// GetUnderlyingObjects except that it returns early when it sees the first
 | |
| /// alloca.
 | |
| static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V) {
 | |
|   SmallPtrSet<const Value *, 4> Visited;
 | |
|   SmallVector<const Value *, 4> Worklist;
 | |
|   Worklist.push_back(V);
 | |
|   do {
 | |
|     const Value *P = Worklist.pop_back_val();
 | |
|     P = GetUnderlyingObjCPtr(P);
 | |
| 
 | |
|     if (isa<AllocaInst>(P))
 | |
|       return true;
 | |
| 
 | |
|     if (!Visited.insert(P))
 | |
|       continue;
 | |
| 
 | |
|     if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
 | |
|       Worklist.push_back(SI->getTrueValue());
 | |
|       Worklist.push_back(SI->getFalseValue());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const PHINode *PN = dyn_cast<const PHINode>(P)) {
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         Worklist.push_back(PN->getIncomingValue(i));
 | |
|       continue;
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @}
 | |
| ///
 | |
| /// \defgroup ARCOpt ARC Optimization.
 | |
| /// @{
 | |
| 
 | |
| // TODO: On code like this:
 | |
| //
 | |
| // objc_retain(%x)
 | |
| // stuff_that_cannot_release()
 | |
| // objc_autorelease(%x)
 | |
| // stuff_that_cannot_release()
 | |
| // objc_retain(%x)
 | |
| // stuff_that_cannot_release()
 | |
| // objc_autorelease(%x)
 | |
| //
 | |
| // The second retain and autorelease can be deleted.
 | |
| 
 | |
| // TODO: It should be possible to delete
 | |
| // objc_autoreleasePoolPush and objc_autoreleasePoolPop
 | |
| // pairs if nothing is actually autoreleased between them. Also, autorelease
 | |
| // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
 | |
| // after inlining) can be turned into plain release calls.
 | |
| 
 | |
| // TODO: Critical-edge splitting. If the optimial insertion point is
 | |
| // a critical edge, the current algorithm has to fail, because it doesn't
 | |
| // know how to split edges. It should be possible to make the optimizer
 | |
| // think in terms of edges, rather than blocks, and then split critical
 | |
| // edges on demand.
 | |
| 
 | |
| // TODO: OptimizeSequences could generalized to be Interprocedural.
 | |
| 
 | |
| // TODO: Recognize that a bunch of other objc runtime calls have
 | |
| // non-escaping arguments and non-releasing arguments, and may be
 | |
| // non-autoreleasing.
 | |
| 
 | |
| // TODO: Sink autorelease calls as far as possible. Unfortunately we
 | |
| // usually can't sink them past other calls, which would be the main
 | |
| // case where it would be useful.
 | |
| 
 | |
| // TODO: The pointer returned from objc_loadWeakRetained is retained.
 | |
| 
 | |
| // TODO: Delete release+retain pairs (rare).
 | |
| 
 | |
| STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
 | |
| STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
 | |
| STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
 | |
| STATISTIC(NumRets,        "Number of return value forwarding "
 | |
|                           "retain+autoreleases eliminated");
 | |
| STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
 | |
| STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
 | |
| #ifndef NDEBUG
 | |
| STATISTIC(NumRetainsBeforeOpt,
 | |
|           "Number of retains before optimization");
 | |
| STATISTIC(NumReleasesBeforeOpt,
 | |
|           "Number of releases before optimization");
 | |
| STATISTIC(NumRetainsAfterOpt,
 | |
|           "Number of retains after optimization");
 | |
| STATISTIC(NumReleasesAfterOpt,
 | |
|           "Number of releases after optimization");
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
|   /// \enum Sequence
 | |
|   ///
 | |
|   /// \brief A sequence of states that a pointer may go through in which an
 | |
|   /// objc_retain and objc_release are actually needed.
 | |
|   enum Sequence {
 | |
|     S_None,
 | |
|     S_Retain,         ///< objc_retain(x).
 | |
|     S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement.
 | |
|     S_Use,            ///< any use of x.
 | |
|     S_Stop,           ///< like S_Release, but code motion is stopped.
 | |
|     S_Release,        ///< objc_release(x).
 | |
|     S_MovableRelease  ///< objc_release(x), !clang.imprecise_release.
 | |
|   };
 | |
| 
 | |
|   raw_ostream &operator<<(raw_ostream &OS, const Sequence S)
 | |
|     LLVM_ATTRIBUTE_UNUSED;
 | |
|   raw_ostream &operator<<(raw_ostream &OS, const Sequence S) {
 | |
|     switch (S) {
 | |
|     case S_None:
 | |
|       return OS << "S_None";
 | |
|     case S_Retain:
 | |
|       return OS << "S_Retain";
 | |
|     case S_CanRelease:
 | |
|       return OS << "S_CanRelease";
 | |
|     case S_Use:
 | |
|       return OS << "S_Use";
 | |
|     case S_Release:
 | |
|       return OS << "S_Release";
 | |
|     case S_MovableRelease:
 | |
|       return OS << "S_MovableRelease";
 | |
|     case S_Stop:
 | |
|       return OS << "S_Stop";
 | |
|     }
 | |
|     llvm_unreachable("Unknown sequence type.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
 | |
|   // The easy cases.
 | |
|   if (A == B)
 | |
|     return A;
 | |
|   if (A == S_None || B == S_None)
 | |
|     return S_None;
 | |
| 
 | |
|   if (A > B) std::swap(A, B);
 | |
|   if (TopDown) {
 | |
|     // Choose the side which is further along in the sequence.
 | |
|     if ((A == S_Retain || A == S_CanRelease) &&
 | |
|         (B == S_CanRelease || B == S_Use))
 | |
|       return B;
 | |
|   } else {
 | |
|     // Choose the side which is further along in the sequence.
 | |
|     if ((A == S_Use || A == S_CanRelease) &&
 | |
|         (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
 | |
|       return A;
 | |
|     // If both sides are releases, choose the more conservative one.
 | |
|     if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
 | |
|       return A;
 | |
|     if (A == S_Release && B == S_MovableRelease)
 | |
|       return A;
 | |
|   }
 | |
| 
 | |
|   return S_None;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief Unidirectional information about either a
 | |
|   /// retain-decrement-use-release sequence or release-use-decrement-retain
 | |
|   /// reverse sequence.
 | |
|   struct RRInfo {
 | |
|     /// After an objc_retain, the reference count of the referenced
 | |
|     /// object is known to be positive. Similarly, before an objc_release, the
 | |
|     /// reference count of the referenced object is known to be positive. If
 | |
|     /// there are retain-release pairs in code regions where the retain count
 | |
|     /// is known to be positive, they can be eliminated, regardless of any side
 | |
|     /// effects between them.
 | |
|     ///
 | |
|     /// Also, a retain+release pair nested within another retain+release
 | |
|     /// pair all on the known same pointer value can be eliminated, regardless
 | |
|     /// of any intervening side effects.
 | |
|     ///
 | |
|     /// KnownSafe is true when either of these conditions is satisfied.
 | |
|     bool KnownSafe;
 | |
| 
 | |
|     /// True of the objc_release calls are all marked with the "tail" keyword.
 | |
|     bool IsTailCallRelease;
 | |
| 
 | |
|     /// If the Calls are objc_release calls and they all have a
 | |
|     /// clang.imprecise_release tag, this is the metadata tag.
 | |
|     MDNode *ReleaseMetadata;
 | |
| 
 | |
|     /// For a top-down sequence, the set of objc_retains or
 | |
|     /// objc_retainBlocks. For bottom-up, the set of objc_releases.
 | |
|     SmallPtrSet<Instruction *, 2> Calls;
 | |
| 
 | |
|     /// The set of optimal insert positions for moving calls in the opposite
 | |
|     /// sequence.
 | |
|     SmallPtrSet<Instruction *, 2> ReverseInsertPts;
 | |
| 
 | |
|     /// If this is true, we cannot perform code motion but can still remove
 | |
|     /// retain/release pairs.
 | |
|     bool CFGHazardAfflicted;
 | |
| 
 | |
|     RRInfo() :
 | |
|       KnownSafe(false), IsTailCallRelease(false), ReleaseMetadata(nullptr),
 | |
|       CFGHazardAfflicted(false) {}
 | |
| 
 | |
|     void clear();
 | |
| 
 | |
|     /// Conservatively merge the two RRInfo. Returns true if a partial merge has
 | |
|     /// occurred, false otherwise.
 | |
|     bool Merge(const RRInfo &Other);
 | |
| 
 | |
|   };
 | |
| }
 | |
| 
 | |
| void RRInfo::clear() {
 | |
|   KnownSafe = false;
 | |
|   IsTailCallRelease = false;
 | |
|   ReleaseMetadata = nullptr;
 | |
|   Calls.clear();
 | |
|   ReverseInsertPts.clear();
 | |
|   CFGHazardAfflicted = false;
 | |
| }
 | |
| 
 | |
| bool RRInfo::Merge(const RRInfo &Other) {
 | |
|     // Conservatively merge the ReleaseMetadata information.
 | |
|     if (ReleaseMetadata != Other.ReleaseMetadata)
 | |
|       ReleaseMetadata = nullptr;
 | |
| 
 | |
|     // Conservatively merge the boolean state.
 | |
|     KnownSafe &= Other.KnownSafe;
 | |
|     IsTailCallRelease &= Other.IsTailCallRelease;
 | |
|     CFGHazardAfflicted |= Other.CFGHazardAfflicted;
 | |
| 
 | |
|     // Merge the call sets.
 | |
|     Calls.insert(Other.Calls.begin(), Other.Calls.end());
 | |
| 
 | |
|     // Merge the insert point sets. If there are any differences,
 | |
|     // that makes this a partial merge.
 | |
|     bool Partial = ReverseInsertPts.size() != Other.ReverseInsertPts.size();
 | |
|     for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|          I = Other.ReverseInsertPts.begin(),
 | |
|          E = Other.ReverseInsertPts.end(); I != E; ++I)
 | |
|       Partial |= ReverseInsertPts.insert(*I);
 | |
|     return Partial;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief This class summarizes several per-pointer runtime properties which
 | |
|   /// are propogated through the flow graph.
 | |
|   class PtrState {
 | |
|     /// True if the reference count is known to be incremented.
 | |
|     bool KnownPositiveRefCount;
 | |
| 
 | |
|     /// True if we've seen an opportunity for partial RR elimination, such as
 | |
|     /// pushing calls into a CFG triangle or into one side of a CFG diamond.
 | |
|     bool Partial;
 | |
| 
 | |
|     /// The current position in the sequence.
 | |
|     unsigned char Seq : 8;
 | |
| 
 | |
|     /// Unidirectional information about the current sequence.
 | |
|     RRInfo RRI;
 | |
| 
 | |
|   public:
 | |
|     PtrState() : KnownPositiveRefCount(false), Partial(false),
 | |
|                  Seq(S_None) {}
 | |
| 
 | |
| 
 | |
|     bool IsKnownSafe() const {
 | |
|       return RRI.KnownSafe;
 | |
|     }
 | |
| 
 | |
|     void SetKnownSafe(const bool NewValue) {
 | |
|       RRI.KnownSafe = NewValue;
 | |
|     }
 | |
| 
 | |
|     bool IsTailCallRelease() const {
 | |
|       return RRI.IsTailCallRelease;
 | |
|     }
 | |
| 
 | |
|     void SetTailCallRelease(const bool NewValue) {
 | |
|       RRI.IsTailCallRelease = NewValue;
 | |
|     }
 | |
| 
 | |
|     bool IsTrackingImpreciseReleases() const {
 | |
|       return RRI.ReleaseMetadata != nullptr;
 | |
|     }
 | |
| 
 | |
|     const MDNode *GetReleaseMetadata() const {
 | |
|       return RRI.ReleaseMetadata;
 | |
|     }
 | |
| 
 | |
|     void SetReleaseMetadata(MDNode *NewValue) {
 | |
|       RRI.ReleaseMetadata = NewValue;
 | |
|     }
 | |
| 
 | |
|     bool IsCFGHazardAfflicted() const {
 | |
|       return RRI.CFGHazardAfflicted;
 | |
|     }
 | |
| 
 | |
|     void SetCFGHazardAfflicted(const bool NewValue) {
 | |
|       RRI.CFGHazardAfflicted = NewValue;
 | |
|     }
 | |
| 
 | |
|     void SetKnownPositiveRefCount() {
 | |
|       DEBUG(dbgs() << "Setting Known Positive.\n");
 | |
|       KnownPositiveRefCount = true;
 | |
|     }
 | |
| 
 | |
|     void ClearKnownPositiveRefCount() {
 | |
|       DEBUG(dbgs() << "Clearing Known Positive.\n");
 | |
|       KnownPositiveRefCount = false;
 | |
|     }
 | |
| 
 | |
|     bool HasKnownPositiveRefCount() const {
 | |
|       return KnownPositiveRefCount;
 | |
|     }
 | |
| 
 | |
|     void SetSeq(Sequence NewSeq) {
 | |
|       DEBUG(dbgs() << "Old: " << Seq << "; New: " << NewSeq << "\n");
 | |
|       Seq = NewSeq;
 | |
|     }
 | |
| 
 | |
|     Sequence GetSeq() const {
 | |
|       return static_cast<Sequence>(Seq);
 | |
|     }
 | |
| 
 | |
|     void ClearSequenceProgress() {
 | |
|       ResetSequenceProgress(S_None);
 | |
|     }
 | |
| 
 | |
|     void ResetSequenceProgress(Sequence NewSeq) {
 | |
|       DEBUG(dbgs() << "Resetting sequence progress.\n");
 | |
|       SetSeq(NewSeq);
 | |
|       Partial = false;
 | |
|       RRI.clear();
 | |
|     }
 | |
| 
 | |
|     void Merge(const PtrState &Other, bool TopDown);
 | |
| 
 | |
|     void InsertCall(Instruction *I) {
 | |
|       RRI.Calls.insert(I);
 | |
|     }
 | |
| 
 | |
|     void InsertReverseInsertPt(Instruction *I) {
 | |
|       RRI.ReverseInsertPts.insert(I);
 | |
|     }
 | |
| 
 | |
|     void ClearReverseInsertPts() {
 | |
|       RRI.ReverseInsertPts.clear();
 | |
|     }
 | |
| 
 | |
|     bool HasReverseInsertPts() const {
 | |
|       return !RRI.ReverseInsertPts.empty();
 | |
|     }
 | |
| 
 | |
|     const RRInfo &GetRRInfo() const {
 | |
|       return RRI;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| void
 | |
| PtrState::Merge(const PtrState &Other, bool TopDown) {
 | |
|   Seq = MergeSeqs(GetSeq(), Other.GetSeq(), TopDown);
 | |
|   KnownPositiveRefCount &= Other.KnownPositiveRefCount;
 | |
| 
 | |
|   // If we're not in a sequence (anymore), drop all associated state.
 | |
|   if (Seq == S_None) {
 | |
|     Partial = false;
 | |
|     RRI.clear();
 | |
|   } else if (Partial || Other.Partial) {
 | |
|     // If we're doing a merge on a path that's previously seen a partial
 | |
|     // merge, conservatively drop the sequence, to avoid doing partial
 | |
|     // RR elimination. If the branch predicates for the two merge differ,
 | |
|     // mixing them is unsafe.
 | |
|     ClearSequenceProgress();
 | |
|   } else {
 | |
|     // Otherwise merge the other PtrState's RRInfo into our RRInfo. At this
 | |
|     // point, we know that currently we are not partial. Stash whether or not
 | |
|     // the merge operation caused us to undergo a partial merging of reverse
 | |
|     // insertion points.
 | |
|     Partial = RRI.Merge(Other.RRI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief Per-BasicBlock state.
 | |
|   class BBState {
 | |
|     /// The number of unique control paths from the entry which can reach this
 | |
|     /// block.
 | |
|     unsigned TopDownPathCount;
 | |
| 
 | |
|     /// The number of unique control paths to exits from this block.
 | |
|     unsigned BottomUpPathCount;
 | |
| 
 | |
|     /// A type for PerPtrTopDown and PerPtrBottomUp.
 | |
|     typedef MapVector<const Value *, PtrState> MapTy;
 | |
| 
 | |
|     /// The top-down traversal uses this to record information known about a
 | |
|     /// pointer at the bottom of each block.
 | |
|     MapTy PerPtrTopDown;
 | |
| 
 | |
|     /// The bottom-up traversal uses this to record information known about a
 | |
|     /// pointer at the top of each block.
 | |
|     MapTy PerPtrBottomUp;
 | |
| 
 | |
|     /// Effective predecessors of the current block ignoring ignorable edges and
 | |
|     /// ignored backedges.
 | |
|     SmallVector<BasicBlock *, 2> Preds;
 | |
|     /// Effective successors of the current block ignoring ignorable edges and
 | |
|     /// ignored backedges.
 | |
|     SmallVector<BasicBlock *, 2> Succs;
 | |
| 
 | |
|   public:
 | |
|     static const unsigned OverflowOccurredValue;
 | |
| 
 | |
|     BBState() : TopDownPathCount(0), BottomUpPathCount(0) { }
 | |
| 
 | |
|     typedef MapTy::iterator ptr_iterator;
 | |
|     typedef MapTy::const_iterator ptr_const_iterator;
 | |
| 
 | |
|     ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
 | |
|     ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
 | |
|     ptr_const_iterator top_down_ptr_begin() const {
 | |
|       return PerPtrTopDown.begin();
 | |
|     }
 | |
|     ptr_const_iterator top_down_ptr_end() const {
 | |
|       return PerPtrTopDown.end();
 | |
|     }
 | |
| 
 | |
|     ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
 | |
|     ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
 | |
|     ptr_const_iterator bottom_up_ptr_begin() const {
 | |
|       return PerPtrBottomUp.begin();
 | |
|     }
 | |
|     ptr_const_iterator bottom_up_ptr_end() const {
 | |
|       return PerPtrBottomUp.end();
 | |
|     }
 | |
| 
 | |
|     /// Mark this block as being an entry block, which has one path from the
 | |
|     /// entry by definition.
 | |
|     void SetAsEntry() { TopDownPathCount = 1; }
 | |
| 
 | |
|     /// Mark this block as being an exit block, which has one path to an exit by
 | |
|     /// definition.
 | |
|     void SetAsExit()  { BottomUpPathCount = 1; }
 | |
| 
 | |
|     /// Attempt to find the PtrState object describing the top down state for
 | |
|     /// pointer Arg. Return a new initialized PtrState describing the top down
 | |
|     /// state for Arg if we do not find one.
 | |
|     PtrState &getPtrTopDownState(const Value *Arg) {
 | |
|       return PerPtrTopDown[Arg];
 | |
|     }
 | |
| 
 | |
|     /// Attempt to find the PtrState object describing the bottom up state for
 | |
|     /// pointer Arg. Return a new initialized PtrState describing the bottom up
 | |
|     /// state for Arg if we do not find one.
 | |
|     PtrState &getPtrBottomUpState(const Value *Arg) {
 | |
|       return PerPtrBottomUp[Arg];
 | |
|     }
 | |
| 
 | |
|     /// Attempt to find the PtrState object describing the bottom up state for
 | |
|     /// pointer Arg.
 | |
|     ptr_iterator findPtrBottomUpState(const Value *Arg) {
 | |
|       return PerPtrBottomUp.find(Arg);
 | |
|     }
 | |
| 
 | |
|     void clearBottomUpPointers() {
 | |
|       PerPtrBottomUp.clear();
 | |
|     }
 | |
| 
 | |
|     void clearTopDownPointers() {
 | |
|       PerPtrTopDown.clear();
 | |
|     }
 | |
| 
 | |
|     void InitFromPred(const BBState &Other);
 | |
|     void InitFromSucc(const BBState &Other);
 | |
|     void MergePred(const BBState &Other);
 | |
|     void MergeSucc(const BBState &Other);
 | |
| 
 | |
|     /// Compute the number of possible unique paths from an entry to an exit
 | |
|     /// which pass through this block. This is only valid after both the
 | |
|     /// top-down and bottom-up traversals are complete.
 | |
|     ///
 | |
|     /// Returns true if overflow occurred. Returns false if overflow did not
 | |
|     /// occur.
 | |
|     bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
 | |
|       if (TopDownPathCount == OverflowOccurredValue ||
 | |
|           BottomUpPathCount == OverflowOccurredValue)
 | |
|         return true;
 | |
|       unsigned long long Product =
 | |
|         (unsigned long long)TopDownPathCount*BottomUpPathCount;
 | |
|       // Overflow occurred if any of the upper bits of Product are set or if all
 | |
|       // the lower bits of Product are all set.
 | |
|       return (Product >> 32) ||
 | |
|              ((PathCount = Product) == OverflowOccurredValue);
 | |
|     }
 | |
| 
 | |
|     // Specialized CFG utilities.
 | |
|     typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
 | |
|     edge_iterator pred_begin() const { return Preds.begin(); }
 | |
|     edge_iterator pred_end() const { return Preds.end(); }
 | |
|     edge_iterator succ_begin() const { return Succs.begin(); }
 | |
|     edge_iterator succ_end() const { return Succs.end(); }
 | |
| 
 | |
|     void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
 | |
|     void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
 | |
| 
 | |
|     bool isExit() const { return Succs.empty(); }
 | |
|   };
 | |
| 
 | |
|   const unsigned BBState::OverflowOccurredValue = 0xffffffff;
 | |
| }
 | |
| 
 | |
| void BBState::InitFromPred(const BBState &Other) {
 | |
|   PerPtrTopDown = Other.PerPtrTopDown;
 | |
|   TopDownPathCount = Other.TopDownPathCount;
 | |
| }
 | |
| 
 | |
| void BBState::InitFromSucc(const BBState &Other) {
 | |
|   PerPtrBottomUp = Other.PerPtrBottomUp;
 | |
|   BottomUpPathCount = Other.BottomUpPathCount;
 | |
| }
 | |
| 
 | |
| /// The top-down traversal uses this to merge information about predecessors to
 | |
| /// form the initial state for a new block.
 | |
| void BBState::MergePred(const BBState &Other) {
 | |
|   if (TopDownPathCount == OverflowOccurredValue)
 | |
|     return;
 | |
| 
 | |
|   // Other.TopDownPathCount can be 0, in which case it is either dead or a
 | |
|   // loop backedge. Loop backedges are special.
 | |
|   TopDownPathCount += Other.TopDownPathCount;
 | |
| 
 | |
|   // In order to be consistent, we clear the top down pointers when by adding
 | |
|   // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
 | |
|   // has not occurred.
 | |
|   if (TopDownPathCount == OverflowOccurredValue) {
 | |
|     clearTopDownPointers();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check for overflow. If we have overflow, fall back to conservative
 | |
|   // behavior.
 | |
|   if (TopDownPathCount < Other.TopDownPathCount) {
 | |
|     TopDownPathCount = OverflowOccurredValue;
 | |
|     clearTopDownPointers();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For each entry in the other set, if our set has an entry with the same key,
 | |
|   // merge the entries. Otherwise, copy the entry and merge it with an empty
 | |
|   // entry.
 | |
|   for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
 | |
|        ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
 | |
|     std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
 | |
|     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
 | |
|                              /*TopDown=*/true);
 | |
|   }
 | |
| 
 | |
|   // For each entry in our set, if the other set doesn't have an entry with the
 | |
|   // same key, force it to merge with an empty entry.
 | |
|   for (ptr_iterator MI = top_down_ptr_begin(),
 | |
|        ME = top_down_ptr_end(); MI != ME; ++MI)
 | |
|     if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
 | |
|       MI->second.Merge(PtrState(), /*TopDown=*/true);
 | |
| }
 | |
| 
 | |
| /// The bottom-up traversal uses this to merge information about successors to
 | |
| /// form the initial state for a new block.
 | |
| void BBState::MergeSucc(const BBState &Other) {
 | |
|   if (BottomUpPathCount == OverflowOccurredValue)
 | |
|     return;
 | |
| 
 | |
|   // Other.BottomUpPathCount can be 0, in which case it is either dead or a
 | |
|   // loop backedge. Loop backedges are special.
 | |
|   BottomUpPathCount += Other.BottomUpPathCount;
 | |
| 
 | |
|   // In order to be consistent, we clear the top down pointers when by adding
 | |
|   // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
 | |
|   // has not occurred.
 | |
|   if (BottomUpPathCount == OverflowOccurredValue) {
 | |
|     clearBottomUpPointers();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check for overflow. If we have overflow, fall back to conservative
 | |
|   // behavior.
 | |
|   if (BottomUpPathCount < Other.BottomUpPathCount) {
 | |
|     BottomUpPathCount = OverflowOccurredValue;
 | |
|     clearBottomUpPointers();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For each entry in the other set, if our set has an entry with the
 | |
|   // same key, merge the entries. Otherwise, copy the entry and merge
 | |
|   // it with an empty entry.
 | |
|   for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
 | |
|        ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
 | |
|     std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
 | |
|     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
 | |
|                              /*TopDown=*/false);
 | |
|   }
 | |
| 
 | |
|   // For each entry in our set, if the other set doesn't have an entry
 | |
|   // with the same key, force it to merge with an empty entry.
 | |
|   for (ptr_iterator MI = bottom_up_ptr_begin(),
 | |
|        ME = bottom_up_ptr_end(); MI != ME; ++MI)
 | |
|     if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
 | |
|       MI->second.Merge(PtrState(), /*TopDown=*/false);
 | |
| }
 | |
| 
 | |
| // Only enable ARC Annotations if we are building a debug version of
 | |
| // libObjCARCOpts.
 | |
| #ifndef NDEBUG
 | |
| #define ARC_ANNOTATIONS
 | |
| #endif
 | |
| 
 | |
| // Define some macros along the lines of DEBUG and some helper functions to make
 | |
| // it cleaner to create annotations in the source code and to no-op when not
 | |
| // building in debug mode.
 | |
| #ifdef ARC_ANNOTATIONS
 | |
| 
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| 
 | |
| /// Enable/disable ARC sequence annotations.
 | |
| static cl::opt<bool>
 | |
| EnableARCAnnotations("enable-objc-arc-annotations", cl::init(false),
 | |
|                      cl::desc("Enable emission of arc data flow analysis "
 | |
|                               "annotations"));
 | |
| static cl::opt<bool>
 | |
| DisableCheckForCFGHazards("disable-objc-arc-checkforcfghazards", cl::init(false),
 | |
|                           cl::desc("Disable check for cfg hazards when "
 | |
|                                    "annotating"));
 | |
| static cl::opt<std::string>
 | |
| ARCAnnotationTargetIdentifier("objc-arc-annotation-target-identifier",
 | |
|                               cl::init(""),
 | |
|                               cl::desc("filter out all data flow annotations "
 | |
|                                        "but those that apply to the given "
 | |
|                                        "target llvm identifier."));
 | |
| 
 | |
| /// This function appends a unique ARCAnnotationProvenanceSourceMDKind id to an
 | |
| /// instruction so that we can track backwards when post processing via the llvm
 | |
| /// arc annotation processor tool. If the function is an
 | |
| static MDString *AppendMDNodeToSourcePtr(unsigned NodeId,
 | |
|                                          Value *Ptr) {
 | |
|   MDString *Hash = nullptr;
 | |
| 
 | |
|   // If pointer is a result of an instruction and it does not have a source
 | |
|   // MDNode it, attach a new MDNode onto it. If pointer is a result of
 | |
|   // an instruction and does have a source MDNode attached to it, return a
 | |
|   // reference to said Node. Otherwise just return 0.
 | |
|   if (Instruction *Inst = dyn_cast<Instruction>(Ptr)) {
 | |
|     MDNode *Node;
 | |
|     if (!(Node = Inst->getMetadata(NodeId))) {
 | |
|       // We do not have any node. Generate and attatch the hash MDString to the
 | |
|       // instruction.
 | |
| 
 | |
|       // We just use an MDString to ensure that this metadata gets written out
 | |
|       // of line at the module level and to provide a very simple format
 | |
|       // encoding the information herein. Both of these makes it simpler to
 | |
|       // parse the annotations by a simple external program.
 | |
|       std::string Str;
 | |
|       raw_string_ostream os(Str);
 | |
|       os << "(" << Inst->getParent()->getParent()->getName() << ",%"
 | |
|          << Inst->getName() << ")";
 | |
| 
 | |
|       Hash = MDString::get(Inst->getContext(), os.str());
 | |
|       Inst->setMetadata(NodeId, MDNode::get(Inst->getContext(),Hash));
 | |
|     } else {
 | |
|       // We have a node. Grab its hash and return it.
 | |
|       assert(Node->getNumOperands() == 1 &&
 | |
|         "An ARCAnnotationProvenanceSourceMDKind can only have 1 operand.");
 | |
|       Hash = cast<MDString>(Node->getOperand(0));
 | |
|     }
 | |
|   } else if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
 | |
|     std::string str;
 | |
|     raw_string_ostream os(str);
 | |
|     os << "(" << Arg->getParent()->getName() << ",%" << Arg->getName()
 | |
|        << ")";
 | |
|     Hash = MDString::get(Arg->getContext(), os.str());
 | |
|   }
 | |
| 
 | |
|   return Hash;
 | |
| }
 | |
| 
 | |
| static std::string SequenceToString(Sequence A) {
 | |
|   std::string str;
 | |
|   raw_string_ostream os(str);
 | |
|   os << A;
 | |
|   return os.str();
 | |
| }
 | |
| 
 | |
| /// Helper function to change a Sequence into a String object using our overload
 | |
| /// for raw_ostream so we only have printing code in one location.
 | |
| static MDString *SequenceToMDString(LLVMContext &Context,
 | |
|                                     Sequence A) {
 | |
|   return MDString::get(Context, SequenceToString(A));
 | |
| }
 | |
| 
 | |
| /// A simple function to generate a MDNode which describes the change in state
 | |
| /// for Value *Ptr caused by Instruction *Inst.
 | |
| static void AppendMDNodeToInstForPtr(unsigned NodeId,
 | |
|                                      Instruction *Inst,
 | |
|                                      Value *Ptr,
 | |
|                                      MDString *PtrSourceMDNodeID,
 | |
|                                      Sequence OldSeq,
 | |
|                                      Sequence NewSeq) {
 | |
|   MDNode *Node = nullptr;
 | |
|   Value *tmp[3] = {PtrSourceMDNodeID,
 | |
|                    SequenceToMDString(Inst->getContext(),
 | |
|                                       OldSeq),
 | |
|                    SequenceToMDString(Inst->getContext(),
 | |
|                                       NewSeq)};
 | |
|   Node = MDNode::get(Inst->getContext(),
 | |
|                      ArrayRef<Value*>(tmp, 3));
 | |
| 
 | |
|   Inst->setMetadata(NodeId, Node);
 | |
| }
 | |
| 
 | |
| /// Add to the beginning of the basic block llvm.ptr.annotations which show the
 | |
| /// state of a pointer at the entrance to a basic block.
 | |
| static void GenerateARCBBEntranceAnnotation(const char *Name, BasicBlock *BB,
 | |
|                                             Value *Ptr, Sequence Seq) {
 | |
|   // If we have a target identifier, make sure that we match it before
 | |
|   // continuing.
 | |
|   if(!ARCAnnotationTargetIdentifier.empty() &&
 | |
|      !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
 | |
|     return;
 | |
| 
 | |
|   Module *M = BB->getParent()->getParent();
 | |
|   LLVMContext &C = M->getContext();
 | |
|   Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
|   Type *I8XX = PointerType::getUnqual(I8X);
 | |
|   Type *Params[] = {I8XX, I8XX};
 | |
|   FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
 | |
|                                         ArrayRef<Type*>(Params, 2),
 | |
|                                         /*isVarArg=*/false);
 | |
|   Constant *Callee = M->getOrInsertFunction(Name, FTy);
 | |
| 
 | |
|   IRBuilder<> Builder(BB, BB->getFirstInsertionPt());
 | |
| 
 | |
|   Value *PtrName;
 | |
|   StringRef Tmp = Ptr->getName();
 | |
|   if (nullptr == (PtrName = M->getGlobalVariable(Tmp, true))) {
 | |
|     Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
 | |
|                                                          Tmp + "_STR");
 | |
|     PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
 | |
|                                  cast<Constant>(ActualPtrName), Tmp);
 | |
|   }
 | |
| 
 | |
|   Value *S;
 | |
|   std::string SeqStr = SequenceToString(Seq);
 | |
|   if (nullptr == (S = M->getGlobalVariable(SeqStr, true))) {
 | |
|     Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
 | |
|                                                          SeqStr + "_STR");
 | |
|     S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
 | |
|                            cast<Constant>(ActualPtrName), SeqStr);
 | |
|   }
 | |
| 
 | |
|   Builder.CreateCall2(Callee, PtrName, S);
 | |
| }
 | |
| 
 | |
| /// Add to the end of the basic block llvm.ptr.annotations which show the state
 | |
| /// of the pointer at the bottom of the basic block.
 | |
| static void GenerateARCBBTerminatorAnnotation(const char *Name, BasicBlock *BB,
 | |
|                                               Value *Ptr, Sequence Seq) {
 | |
|   // If we have a target identifier, make sure that we match it before emitting
 | |
|   // an annotation.
 | |
|   if(!ARCAnnotationTargetIdentifier.empty() &&
 | |
|      !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
 | |
|     return;
 | |
| 
 | |
|   Module *M = BB->getParent()->getParent();
 | |
|   LLVMContext &C = M->getContext();
 | |
|   Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | |
|   Type *I8XX = PointerType::getUnqual(I8X);
 | |
|   Type *Params[] = {I8XX, I8XX};
 | |
|   FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
 | |
|                                         ArrayRef<Type*>(Params, 2),
 | |
|                                         /*isVarArg=*/false);
 | |
|   Constant *Callee = M->getOrInsertFunction(Name, FTy);
 | |
| 
 | |
|   IRBuilder<> Builder(BB, std::prev(BB->end()));
 | |
| 
 | |
|   Value *PtrName;
 | |
|   StringRef Tmp = Ptr->getName();
 | |
|   if (nullptr == (PtrName = M->getGlobalVariable(Tmp, true))) {
 | |
|     Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
 | |
|                                                          Tmp + "_STR");
 | |
|     PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
 | |
|                                  cast<Constant>(ActualPtrName), Tmp);
 | |
|   }
 | |
| 
 | |
|   Value *S;
 | |
|   std::string SeqStr = SequenceToString(Seq);
 | |
|   if (nullptr == (S = M->getGlobalVariable(SeqStr, true))) {
 | |
|     Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
 | |
|                                                          SeqStr + "_STR");
 | |
|     S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
 | |
|                            cast<Constant>(ActualPtrName), SeqStr);
 | |
|   }
 | |
|   Builder.CreateCall2(Callee, PtrName, S);
 | |
| }
 | |
| 
 | |
| /// Adds a source annotation to pointer and a state change annotation to Inst
 | |
| /// referencing the source annotation and the old/new state of pointer.
 | |
| static void GenerateARCAnnotation(unsigned InstMDId,
 | |
|                                   unsigned PtrMDId,
 | |
|                                   Instruction *Inst,
 | |
|                                   Value *Ptr,
 | |
|                                   Sequence OldSeq,
 | |
|                                   Sequence NewSeq) {
 | |
|   if (EnableARCAnnotations) {
 | |
|     // If we have a target identifier, make sure that we match it before
 | |
|     // emitting an annotation.
 | |
|     if(!ARCAnnotationTargetIdentifier.empty() &&
 | |
|        !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
 | |
|       return;
 | |
| 
 | |
|     // First generate the source annotation on our pointer. This will return an
 | |
|     // MDString* if Ptr actually comes from an instruction implying we can put
 | |
|     // in a source annotation. If AppendMDNodeToSourcePtr returns 0 (i.e. NULL),
 | |
|     // then we know that our pointer is from an Argument so we put a reference
 | |
|     // to the argument number.
 | |
|     //
 | |
|     // The point of this is to make it easy for the
 | |
|     // llvm-arc-annotation-processor tool to cross reference where the source
 | |
|     // pointer is in the LLVM IR since the LLVM IR parser does not submit such
 | |
|     // information via debug info for backends to use (since why would anyone
 | |
|     // need such a thing from LLVM IR besides in non-standard cases
 | |
|     // [i.e. this]).
 | |
|     MDString *SourcePtrMDNode =
 | |
|       AppendMDNodeToSourcePtr(PtrMDId, Ptr);
 | |
|     AppendMDNodeToInstForPtr(InstMDId, Inst, Ptr, SourcePtrMDNode, OldSeq,
 | |
|                              NewSeq);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The actual interface for accessing the above functionality is defined via
 | |
| // some simple macros which are defined below. We do this so that the user does
 | |
| // not need to pass in what metadata id is needed resulting in cleaner code and
 | |
| // additionally since it provides an easy way to conditionally no-op all
 | |
| // annotation support in a non-debug build.
 | |
| 
 | |
| /// Use this macro to annotate a sequence state change when processing
 | |
| /// instructions bottom up,
 | |
| #define ANNOTATE_BOTTOMUP(inst, ptr, old, new)                          \
 | |
|   GenerateARCAnnotation(ARCAnnotationBottomUpMDKind,                    \
 | |
|                         ARCAnnotationProvenanceSourceMDKind, (inst),    \
 | |
|                         const_cast<Value*>(ptr), (old), (new))
 | |
| /// Use this macro to annotate a sequence state change when processing
 | |
| /// instructions top down.
 | |
| #define ANNOTATE_TOPDOWN(inst, ptr, old, new)                           \
 | |
|   GenerateARCAnnotation(ARCAnnotationTopDownMDKind,                     \
 | |
|                         ARCAnnotationProvenanceSourceMDKind, (inst),    \
 | |
|                         const_cast<Value*>(ptr), (old), (new))
 | |
| 
 | |
| #define ANNOTATE_BB(_states, _bb, _name, _type, _direction)                   \
 | |
|   do {                                                                        \
 | |
|     if (EnableARCAnnotations) {                                               \
 | |
|       for(BBState::ptr_const_iterator I = (_states)._direction##_ptr_begin(), \
 | |
|           E = (_states)._direction##_ptr_end(); I != E; ++I) {                \
 | |
|         Value *Ptr = const_cast<Value*>(I->first);                            \
 | |
|         Sequence Seq = I->second.GetSeq();                                    \
 | |
|         GenerateARCBB ## _type ## Annotation(_name, (_bb), Ptr, Seq);         \
 | |
|       }                                                                       \
 | |
|     }                                                                         \
 | |
|   } while (0)
 | |
| 
 | |
| #define ANNOTATE_BOTTOMUP_BBSTART(_states, _basicblock)                       \
 | |
|     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbstart", \
 | |
|                 Entrance, bottom_up)
 | |
| #define ANNOTATE_BOTTOMUP_BBEND(_states, _basicblock)                         \
 | |
|     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbend",   \
 | |
|                 Terminator, bottom_up)
 | |
| #define ANNOTATE_TOPDOWN_BBSTART(_states, _basicblock)                        \
 | |
|     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbstart",  \
 | |
|                 Entrance, top_down)
 | |
| #define ANNOTATE_TOPDOWN_BBEND(_states, _basicblock)                          \
 | |
|     ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbend",    \
 | |
|                 Terminator, top_down)
 | |
| 
 | |
| #else // !ARC_ANNOTATION
 | |
| // If annotations are off, noop.
 | |
| #define ANNOTATE_BOTTOMUP(inst, ptr, old, new)
 | |
| #define ANNOTATE_TOPDOWN(inst, ptr, old, new)
 | |
| #define ANNOTATE_BOTTOMUP_BBSTART(states, basicblock)
 | |
| #define ANNOTATE_BOTTOMUP_BBEND(states, basicblock)
 | |
| #define ANNOTATE_TOPDOWN_BBSTART(states, basicblock)
 | |
| #define ANNOTATE_TOPDOWN_BBEND(states, basicblock)
 | |
| #endif // !ARC_ANNOTATION
 | |
| 
 | |
| namespace {
 | |
|   /// \brief The main ARC optimization pass.
 | |
|   class ObjCARCOpt : public FunctionPass {
 | |
|     bool Changed;
 | |
|     ProvenanceAnalysis PA;
 | |
|     ARCRuntimeEntryPoints EP;
 | |
| 
 | |
|     // This is used to track if a pointer is stored into an alloca.
 | |
|     DenseSet<const Value *> MultiOwnersSet;
 | |
| 
 | |
|     /// A flag indicating whether this optimization pass should run.
 | |
|     bool Run;
 | |
| 
 | |
|     /// Flags which determine whether each of the interesting runtine functions
 | |
|     /// is in fact used in the current function.
 | |
|     unsigned UsedInThisFunction;
 | |
| 
 | |
|     /// The Metadata Kind for clang.imprecise_release metadata.
 | |
|     unsigned ImpreciseReleaseMDKind;
 | |
| 
 | |
|     /// The Metadata Kind for clang.arc.copy_on_escape metadata.
 | |
|     unsigned CopyOnEscapeMDKind;
 | |
| 
 | |
|     /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata.
 | |
|     unsigned NoObjCARCExceptionsMDKind;
 | |
| 
 | |
| #ifdef ARC_ANNOTATIONS
 | |
|     /// The Metadata Kind for llvm.arc.annotation.bottomup metadata.
 | |
|     unsigned ARCAnnotationBottomUpMDKind;
 | |
|     /// The Metadata Kind for llvm.arc.annotation.topdown metadata.
 | |
|     unsigned ARCAnnotationTopDownMDKind;
 | |
|     /// The Metadata Kind for llvm.arc.annotation.provenancesource metadata.
 | |
|     unsigned ARCAnnotationProvenanceSourceMDKind;
 | |
| #endif // ARC_ANNOATIONS
 | |
| 
 | |
|     bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
 | |
|     void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
 | |
|                                    InstructionClass &Class);
 | |
|     void OptimizeIndividualCalls(Function &F);
 | |
| 
 | |
|     void CheckForCFGHazards(const BasicBlock *BB,
 | |
|                             DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                             BBState &MyStates) const;
 | |
|     bool VisitInstructionBottomUp(Instruction *Inst,
 | |
|                                   BasicBlock *BB,
 | |
|                                   MapVector<Value *, RRInfo> &Retains,
 | |
|                                   BBState &MyStates);
 | |
|     bool VisitBottomUp(BasicBlock *BB,
 | |
|                        DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                        MapVector<Value *, RRInfo> &Retains);
 | |
|     bool VisitInstructionTopDown(Instruction *Inst,
 | |
|                                  DenseMap<Value *, RRInfo> &Releases,
 | |
|                                  BBState &MyStates);
 | |
|     bool VisitTopDown(BasicBlock *BB,
 | |
|                       DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                       DenseMap<Value *, RRInfo> &Releases);
 | |
|     bool Visit(Function &F,
 | |
|                DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                MapVector<Value *, RRInfo> &Retains,
 | |
|                DenseMap<Value *, RRInfo> &Releases);
 | |
| 
 | |
|     void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
 | |
|                    MapVector<Value *, RRInfo> &Retains,
 | |
|                    DenseMap<Value *, RRInfo> &Releases,
 | |
|                    SmallVectorImpl<Instruction *> &DeadInsts,
 | |
|                    Module *M);
 | |
| 
 | |
|     bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                                MapVector<Value *, RRInfo> &Retains,
 | |
|                                DenseMap<Value *, RRInfo> &Releases,
 | |
|                                Module *M,
 | |
|                                SmallVectorImpl<Instruction *> &NewRetains,
 | |
|                                SmallVectorImpl<Instruction *> &NewReleases,
 | |
|                                SmallVectorImpl<Instruction *> &DeadInsts,
 | |
|                                RRInfo &RetainsToMove,
 | |
|                                RRInfo &ReleasesToMove,
 | |
|                                Value *Arg,
 | |
|                                bool KnownSafe,
 | |
|                                bool &AnyPairsCompletelyEliminated);
 | |
| 
 | |
|     bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                               MapVector<Value *, RRInfo> &Retains,
 | |
|                               DenseMap<Value *, RRInfo> &Releases,
 | |
|                               Module *M);
 | |
| 
 | |
|     void OptimizeWeakCalls(Function &F);
 | |
| 
 | |
|     bool OptimizeSequences(Function &F);
 | |
| 
 | |
|     void OptimizeReturns(Function &F);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     void GatherStatistics(Function &F, bool AfterOptimization = false);
 | |
| #endif
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
|     bool doInitialization(Module &M) override;
 | |
|     bool runOnFunction(Function &F) override;
 | |
|     void releaseMemory() override;
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     ObjCARCOpt() : FunctionPass(ID) {
 | |
|       initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char ObjCARCOpt::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(ObjCARCOpt,
 | |
|                       "objc-arc", "ObjC ARC optimization", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
 | |
| INITIALIZE_PASS_END(ObjCARCOpt,
 | |
|                     "objc-arc", "ObjC ARC optimization", false, false)
 | |
| 
 | |
| Pass *llvm::createObjCARCOptPass() {
 | |
|   return new ObjCARCOpt();
 | |
| }
 | |
| 
 | |
| void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<ObjCARCAliasAnalysis>();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   // ARC optimization doesn't currently split critical edges.
 | |
|   AU.setPreservesCFG();
 | |
| }
 | |
| 
 | |
| /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
 | |
| /// not a return value.  Or, if it can be paired with an
 | |
| /// objc_autoreleaseReturnValue, delete the pair and return true.
 | |
| bool
 | |
| ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
 | |
|   // Check for the argument being from an immediately preceding call or invoke.
 | |
|   const Value *Arg = GetObjCArg(RetainRV);
 | |
|   ImmutableCallSite CS(Arg);
 | |
|   if (const Instruction *Call = CS.getInstruction()) {
 | |
|     if (Call->getParent() == RetainRV->getParent()) {
 | |
|       BasicBlock::const_iterator I = Call;
 | |
|       ++I;
 | |
|       while (IsNoopInstruction(I)) ++I;
 | |
|       if (&*I == RetainRV)
 | |
|         return false;
 | |
|     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|       BasicBlock *RetainRVParent = RetainRV->getParent();
 | |
|       if (II->getNormalDest() == RetainRVParent) {
 | |
|         BasicBlock::const_iterator I = RetainRVParent->begin();
 | |
|         while (IsNoopInstruction(I)) ++I;
 | |
|         if (&*I == RetainRV)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for being preceded by an objc_autoreleaseReturnValue on the same
 | |
|   // pointer. In this case, we can delete the pair.
 | |
|   BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
 | |
|   if (I != Begin) {
 | |
|     do --I; while (I != Begin && IsNoopInstruction(I));
 | |
|     if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
 | |
|         GetObjCArg(I) == Arg) {
 | |
|       Changed = true;
 | |
|       ++NumPeeps;
 | |
| 
 | |
|       DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
 | |
|                    << "Erasing " << *RetainRV << "\n");
 | |
| 
 | |
|       EraseInstruction(I);
 | |
|       EraseInstruction(RetainRV);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Turn it to a plain objc_retain.
 | |
|   Changed = true;
 | |
|   ++NumPeeps;
 | |
| 
 | |
|   DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
 | |
|                   "objc_retain since the operand is not a return value.\n"
 | |
|                   "Old = " << *RetainRV << "\n");
 | |
| 
 | |
|   Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | |
|   cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
 | |
| 
 | |
|   DEBUG(dbgs() << "New = " << *RetainRV << "\n");
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
 | |
| /// used as a return value.
 | |
| void
 | |
| ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
 | |
|                                       InstructionClass &Class) {
 | |
|   // Check for a return of the pointer value.
 | |
|   const Value *Ptr = GetObjCArg(AutoreleaseRV);
 | |
|   SmallVector<const Value *, 2> Users;
 | |
|   Users.push_back(Ptr);
 | |
|   do {
 | |
|     Ptr = Users.pop_back_val();
 | |
|     for (const User *U : Ptr->users()) {
 | |
|       if (isa<ReturnInst>(U) || GetBasicInstructionClass(U) == IC_RetainRV)
 | |
|         return;
 | |
|       if (isa<BitCastInst>(U))
 | |
|         Users.push_back(U);
 | |
|     }
 | |
|   } while (!Users.empty());
 | |
| 
 | |
|   Changed = true;
 | |
|   ++NumPeeps;
 | |
| 
 | |
|   DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => "
 | |
|                   "objc_autorelease since its operand is not used as a return "
 | |
|                   "value.\n"
 | |
|                   "Old = " << *AutoreleaseRV << "\n");
 | |
| 
 | |
|   CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
 | |
|   Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Autorelease);
 | |
|   AutoreleaseRVCI->setCalledFunction(NewDecl);
 | |
|   AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
 | |
|   Class = IC_Autorelease;
 | |
| 
 | |
|   DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Visit each call, one at a time, and make simplifications without doing any
 | |
| /// additional analysis.
 | |
| void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
 | |
|   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
 | |
|   // Reset all the flags in preparation for recomputing them.
 | |
|   UsedInThisFunction = 0;
 | |
| 
 | |
|   // Visit all objc_* calls in F.
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | |
|     Instruction *Inst = &*I++;
 | |
| 
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
| 
 | |
|     DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
 | |
| 
 | |
|     switch (Class) {
 | |
|     default: break;
 | |
| 
 | |
|     // Delete no-op casts. These function calls have special semantics, but
 | |
|     // the semantics are entirely implemented via lowering in the front-end,
 | |
|     // so by the time they reach the optimizer, they are just no-op calls
 | |
|     // which return their argument.
 | |
|     //
 | |
|     // There are gray areas here, as the ability to cast reference-counted
 | |
|     // pointers to raw void* and back allows code to break ARC assumptions,
 | |
|     // however these are currently considered to be unimportant.
 | |
|     case IC_NoopCast:
 | |
|       Changed = true;
 | |
|       ++NumNoops;
 | |
|       DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
 | |
|       EraseInstruction(Inst);
 | |
|       continue;
 | |
| 
 | |
|     // If the pointer-to-weak-pointer is null, it's undefined behavior.
 | |
|     case IC_StoreWeak:
 | |
|     case IC_LoadWeak:
 | |
|     case IC_LoadWeakRetained:
 | |
|     case IC_InitWeak:
 | |
|     case IC_DestroyWeak: {
 | |
|       CallInst *CI = cast<CallInst>(Inst);
 | |
|       if (IsNullOrUndef(CI->getArgOperand(0))) {
 | |
|         Changed = true;
 | |
|         Type *Ty = CI->getArgOperand(0)->getType();
 | |
|         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
 | |
|                       Constant::getNullValue(Ty),
 | |
|                       CI);
 | |
|         llvm::Value *NewValue = UndefValue::get(CI->getType());
 | |
|         DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
 | |
|                        "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
 | |
|         CI->replaceAllUsesWith(NewValue);
 | |
|         CI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case IC_CopyWeak:
 | |
|     case IC_MoveWeak: {
 | |
|       CallInst *CI = cast<CallInst>(Inst);
 | |
|       if (IsNullOrUndef(CI->getArgOperand(0)) ||
 | |
|           IsNullOrUndef(CI->getArgOperand(1))) {
 | |
|         Changed = true;
 | |
|         Type *Ty = CI->getArgOperand(0)->getType();
 | |
|         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
 | |
|                       Constant::getNullValue(Ty),
 | |
|                       CI);
 | |
| 
 | |
|         llvm::Value *NewValue = UndefValue::get(CI->getType());
 | |
|         DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
 | |
|                         "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
 | |
| 
 | |
|         CI->replaceAllUsesWith(NewValue);
 | |
|         CI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case IC_RetainRV:
 | |
|       if (OptimizeRetainRVCall(F, Inst))
 | |
|         continue;
 | |
|       break;
 | |
|     case IC_AutoreleaseRV:
 | |
|       OptimizeAutoreleaseRVCall(F, Inst, Class);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
 | |
|     if (IsAutorelease(Class) && Inst->use_empty()) {
 | |
|       CallInst *Call = cast<CallInst>(Inst);
 | |
|       const Value *Arg = Call->getArgOperand(0);
 | |
|       Arg = FindSingleUseIdentifiedObject(Arg);
 | |
|       if (Arg) {
 | |
|         Changed = true;
 | |
|         ++NumAutoreleases;
 | |
| 
 | |
|         // Create the declaration lazily.
 | |
|         LLVMContext &C = Inst->getContext();
 | |
| 
 | |
|         Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
 | |
|         CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
 | |
|                                              Call);
 | |
|         NewCall->setMetadata(ImpreciseReleaseMDKind, MDNode::get(C, None));
 | |
| 
 | |
|         DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
 | |
|               "since x is otherwise unused.\nOld: " << *Call << "\nNew: "
 | |
|               << *NewCall << "\n");
 | |
| 
 | |
|         EraseInstruction(Call);
 | |
|         Inst = NewCall;
 | |
|         Class = IC_Release;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // For functions which can never be passed stack arguments, add
 | |
|     // a tail keyword.
 | |
|     if (IsAlwaysTail(Class)) {
 | |
|       Changed = true;
 | |
|       DEBUG(dbgs() << "Adding tail keyword to function since it can never be "
 | |
|                       "passed stack args: " << *Inst << "\n");
 | |
|       cast<CallInst>(Inst)->setTailCall();
 | |
|     }
 | |
| 
 | |
|     // Ensure that functions that can never have a "tail" keyword due to the
 | |
|     // semantics of ARC truly do not do so.
 | |
|     if (IsNeverTail(Class)) {
 | |
|       Changed = true;
 | |
|       DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst <<
 | |
|             "\n");
 | |
|       cast<CallInst>(Inst)->setTailCall(false);
 | |
|     }
 | |
| 
 | |
|     // Set nounwind as needed.
 | |
|     if (IsNoThrow(Class)) {
 | |
|       Changed = true;
 | |
|       DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
 | |
|                    << "\n");
 | |
|       cast<CallInst>(Inst)->setDoesNotThrow();
 | |
|     }
 | |
| 
 | |
|     if (!IsNoopOnNull(Class)) {
 | |
|       UsedInThisFunction |= 1 << Class;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const Value *Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     // ARC calls with null are no-ops. Delete them.
 | |
|     if (IsNullOrUndef(Arg)) {
 | |
|       Changed = true;
 | |
|       ++NumNoops;
 | |
|       DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
 | |
|             << "\n");
 | |
|       EraseInstruction(Inst);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Keep track of which of retain, release, autorelease, and retain_block
 | |
|     // are actually present in this function.
 | |
|     UsedInThisFunction |= 1 << Class;
 | |
| 
 | |
|     // If Arg is a PHI, and one or more incoming values to the
 | |
|     // PHI are null, and the call is control-equivalent to the PHI, and there
 | |
|     // are no relevant side effects between the PHI and the call, the call
 | |
|     // could be pushed up to just those paths with non-null incoming values.
 | |
|     // For now, don't bother splitting critical edges for this.
 | |
|     SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
 | |
|     Worklist.push_back(std::make_pair(Inst, Arg));
 | |
|     do {
 | |
|       std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
 | |
|       Inst = Pair.first;
 | |
|       Arg = Pair.second;
 | |
| 
 | |
|       const PHINode *PN = dyn_cast<PHINode>(Arg);
 | |
|       if (!PN) continue;
 | |
| 
 | |
|       // Determine if the PHI has any null operands, or any incoming
 | |
|       // critical edges.
 | |
|       bool HasNull = false;
 | |
|       bool HasCriticalEdges = false;
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         Value *Incoming =
 | |
|           StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
 | |
|         if (IsNullOrUndef(Incoming))
 | |
|           HasNull = true;
 | |
|         else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
 | |
|                    .getNumSuccessors() != 1) {
 | |
|           HasCriticalEdges = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // If we have null operands and no critical edges, optimize.
 | |
|       if (!HasCriticalEdges && HasNull) {
 | |
|         SmallPtrSet<Instruction *, 4> DependingInstructions;
 | |
|         SmallPtrSet<const BasicBlock *, 4> Visited;
 | |
| 
 | |
|         // Check that there is nothing that cares about the reference
 | |
|         // count between the call and the phi.
 | |
|         switch (Class) {
 | |
|         case IC_Retain:
 | |
|         case IC_RetainBlock:
 | |
|           // These can always be moved up.
 | |
|           break;
 | |
|         case IC_Release:
 | |
|           // These can't be moved across things that care about the retain
 | |
|           // count.
 | |
|           FindDependencies(NeedsPositiveRetainCount, Arg,
 | |
|                            Inst->getParent(), Inst,
 | |
|                            DependingInstructions, Visited, PA);
 | |
|           break;
 | |
|         case IC_Autorelease:
 | |
|           // These can't be moved across autorelease pool scope boundaries.
 | |
|           FindDependencies(AutoreleasePoolBoundary, Arg,
 | |
|                            Inst->getParent(), Inst,
 | |
|                            DependingInstructions, Visited, PA);
 | |
|           break;
 | |
|         case IC_RetainRV:
 | |
|         case IC_AutoreleaseRV:
 | |
|           // Don't move these; the RV optimization depends on the autoreleaseRV
 | |
|           // being tail called, and the retainRV being immediately after a call
 | |
|           // (which might still happen if we get lucky with codegen layout, but
 | |
|           // it's not worth taking the chance).
 | |
|           continue;
 | |
|         default:
 | |
|           llvm_unreachable("Invalid dependence flavor");
 | |
|         }
 | |
| 
 | |
|         if (DependingInstructions.size() == 1 &&
 | |
|             *DependingInstructions.begin() == PN) {
 | |
|           Changed = true;
 | |
|           ++NumPartialNoops;
 | |
|           // Clone the call into each predecessor that has a non-null value.
 | |
|           CallInst *CInst = cast<CallInst>(Inst);
 | |
|           Type *ParamTy = CInst->getArgOperand(0)->getType();
 | |
|           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|             Value *Incoming =
 | |
|               StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
 | |
|             if (!IsNullOrUndef(Incoming)) {
 | |
|               CallInst *Clone = cast<CallInst>(CInst->clone());
 | |
|               Value *Op = PN->getIncomingValue(i);
 | |
|               Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
 | |
|               if (Op->getType() != ParamTy)
 | |
|                 Op = new BitCastInst(Op, ParamTy, "", InsertPos);
 | |
|               Clone->setArgOperand(0, Op);
 | |
|               Clone->insertBefore(InsertPos);
 | |
| 
 | |
|               DEBUG(dbgs() << "Cloning "
 | |
|                            << *CInst << "\n"
 | |
|                            "And inserting clone at " << *InsertPos << "\n");
 | |
|               Worklist.push_back(std::make_pair(Clone, Incoming));
 | |
|             }
 | |
|           }
 | |
|           // Erase the original call.
 | |
|           DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
 | |
|           EraseInstruction(CInst);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     } while (!Worklist.empty());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If we have a top down pointer in the S_Use state, make sure that there are
 | |
| /// no CFG hazards by checking the states of various bottom up pointers.
 | |
| static void CheckForUseCFGHazard(const Sequence SuccSSeq,
 | |
|                                  const bool SuccSRRIKnownSafe,
 | |
|                                  PtrState &S,
 | |
|                                  bool &SomeSuccHasSame,
 | |
|                                  bool &AllSuccsHaveSame,
 | |
|                                  bool &NotAllSeqEqualButKnownSafe,
 | |
|                                  bool &ShouldContinue) {
 | |
|   switch (SuccSSeq) {
 | |
|   case S_CanRelease: {
 | |
|     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
 | |
|       S.ClearSequenceProgress();
 | |
|       break;
 | |
|     }
 | |
|     S.SetCFGHazardAfflicted(true);
 | |
|     ShouldContinue = true;
 | |
|     break;
 | |
|   }
 | |
|   case S_Use:
 | |
|     SomeSuccHasSame = true;
 | |
|     break;
 | |
|   case S_Stop:
 | |
|   case S_Release:
 | |
|   case S_MovableRelease:
 | |
|     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
 | |
|       AllSuccsHaveSame = false;
 | |
|     else
 | |
|       NotAllSeqEqualButKnownSafe = true;
 | |
|     break;
 | |
|   case S_Retain:
 | |
|     llvm_unreachable("bottom-up pointer in retain state!");
 | |
|   case S_None:
 | |
|     llvm_unreachable("This should have been handled earlier.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If we have a Top Down pointer in the S_CanRelease state, make sure that
 | |
| /// there are no CFG hazards by checking the states of various bottom up
 | |
| /// pointers.
 | |
| static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
 | |
|                                         const bool SuccSRRIKnownSafe,
 | |
|                                         PtrState &S,
 | |
|                                         bool &SomeSuccHasSame,
 | |
|                                         bool &AllSuccsHaveSame,
 | |
|                                         bool &NotAllSeqEqualButKnownSafe) {
 | |
|   switch (SuccSSeq) {
 | |
|   case S_CanRelease:
 | |
|     SomeSuccHasSame = true;
 | |
|     break;
 | |
|   case S_Stop:
 | |
|   case S_Release:
 | |
|   case S_MovableRelease:
 | |
|   case S_Use:
 | |
|     if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
 | |
|       AllSuccsHaveSame = false;
 | |
|     else
 | |
|       NotAllSeqEqualButKnownSafe = true;
 | |
|     break;
 | |
|   case S_Retain:
 | |
|     llvm_unreachable("bottom-up pointer in retain state!");
 | |
|   case S_None:
 | |
|     llvm_unreachable("This should have been handled earlier.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check for critical edges, loop boundaries, irreducible control flow, or
 | |
| /// other CFG structures where moving code across the edge would result in it
 | |
| /// being executed more.
 | |
| void
 | |
| ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
 | |
|                                DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                                BBState &MyStates) const {
 | |
|   // If any top-down local-use or possible-dec has a succ which is earlier in
 | |
|   // the sequence, forget it.
 | |
|   for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
 | |
|          E = MyStates.top_down_ptr_end(); I != E; ++I) {
 | |
|     PtrState &S = I->second;
 | |
|     const Sequence Seq = I->second.GetSeq();
 | |
| 
 | |
|     // We only care about S_Retain, S_CanRelease, and S_Use.
 | |
|     if (Seq == S_None)
 | |
|       continue;
 | |
| 
 | |
|     // Make sure that if extra top down states are added in the future that this
 | |
|     // code is updated to handle it.
 | |
|     assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
 | |
|            "Unknown top down sequence state.");
 | |
| 
 | |
|     const Value *Arg = I->first;
 | |
|     const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
 | |
|     bool SomeSuccHasSame = false;
 | |
|     bool AllSuccsHaveSame = true;
 | |
|     bool NotAllSeqEqualButKnownSafe = false;
 | |
| 
 | |
|     succ_const_iterator SI(TI), SE(TI, false);
 | |
| 
 | |
|     for (; SI != SE; ++SI) {
 | |
|       // If VisitBottomUp has pointer information for this successor, take
 | |
|       // what we know about it.
 | |
|       const DenseMap<const BasicBlock *, BBState>::iterator BBI =
 | |
|         BBStates.find(*SI);
 | |
|       assert(BBI != BBStates.end());
 | |
|       const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
 | |
|       const Sequence SuccSSeq = SuccS.GetSeq();
 | |
| 
 | |
|       // If bottom up, the pointer is in an S_None state, clear the sequence
 | |
|       // progress since the sequence in the bottom up state finished
 | |
|       // suggesting a mismatch in between retains/releases. This is true for
 | |
|       // all three cases that we are handling here: S_Retain, S_Use, and
 | |
|       // S_CanRelease.
 | |
|       if (SuccSSeq == S_None) {
 | |
|         S.ClearSequenceProgress();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we have S_Use or S_CanRelease, perform our check for cfg hazard
 | |
|       // checks.
 | |
|       const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
 | |
| 
 | |
|       // *NOTE* We do not use Seq from above here since we are allowing for
 | |
|       // S.GetSeq() to change while we are visiting basic blocks.
 | |
|       switch(S.GetSeq()) {
 | |
|       case S_Use: {
 | |
|         bool ShouldContinue = false;
 | |
|         CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
 | |
|                              AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
 | |
|                              ShouldContinue);
 | |
|         if (ShouldContinue)
 | |
|           continue;
 | |
|         break;
 | |
|       }
 | |
|       case S_CanRelease: {
 | |
|         CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
 | |
|                                     SomeSuccHasSame, AllSuccsHaveSame,
 | |
|                                     NotAllSeqEqualButKnownSafe);
 | |
|         break;
 | |
|       }
 | |
|       case S_Retain:
 | |
|       case S_None:
 | |
|       case S_Stop:
 | |
|       case S_Release:
 | |
|       case S_MovableRelease:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the state at the other end of any of the successor edges
 | |
|     // matches the current state, require all edges to match. This
 | |
|     // guards against loops in the middle of a sequence.
 | |
|     if (SomeSuccHasSame && !AllSuccsHaveSame) {
 | |
|       S.ClearSequenceProgress();
 | |
|     } else if (NotAllSeqEqualButKnownSafe) {
 | |
|       // If we would have cleared the state foregoing the fact that we are known
 | |
|       // safe, stop code motion. This is because whether or not it is safe to
 | |
|       // remove RR pairs via KnownSafe is an orthogonal concept to whether we
 | |
|       // are allowed to perform code motion.
 | |
|       S.SetCFGHazardAfflicted(true);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
 | |
|                                      BasicBlock *BB,
 | |
|                                      MapVector<Value *, RRInfo> &Retains,
 | |
|                                      BBState &MyStates) {
 | |
|   bool NestingDetected = false;
 | |
|   InstructionClass Class = GetInstructionClass(Inst);
 | |
|   const Value *Arg = nullptr;
 | |
| 
 | |
|   DEBUG(dbgs() << "Class: " << Class << "\n");
 | |
| 
 | |
|   switch (Class) {
 | |
|   case IC_Release: {
 | |
|     Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     PtrState &S = MyStates.getPtrBottomUpState(Arg);
 | |
| 
 | |
|     // If we see two releases in a row on the same pointer. If so, make
 | |
|     // a note, and we'll cicle back to revisit it after we've
 | |
|     // hopefully eliminated the second release, which may allow us to
 | |
|     // eliminate the first release too.
 | |
|     // Theoretically we could implement removal of nested retain+release
 | |
|     // pairs by making PtrState hold a stack of states, but this is
 | |
|     // simple and avoids adding overhead for the non-nested case.
 | |
|     if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) {
 | |
|       DEBUG(dbgs() << "Found nested releases (i.e. a release pair)\n");
 | |
|       NestingDetected = true;
 | |
|     }
 | |
| 
 | |
|     MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
 | |
|     Sequence NewSeq = ReleaseMetadata ? S_MovableRelease : S_Release;
 | |
|     ANNOTATE_BOTTOMUP(Inst, Arg, S.GetSeq(), NewSeq);
 | |
|     S.ResetSequenceProgress(NewSeq);
 | |
|     S.SetReleaseMetadata(ReleaseMetadata);
 | |
|     S.SetKnownSafe(S.HasKnownPositiveRefCount());
 | |
|     S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall());
 | |
|     S.InsertCall(Inst);
 | |
|     S.SetKnownPositiveRefCount();
 | |
|     break;
 | |
|   }
 | |
|   case IC_RetainBlock:
 | |
|     // In OptimizeIndividualCalls, we have strength reduced all optimizable
 | |
|     // objc_retainBlocks to objc_retains. Thus at this point any
 | |
|     // objc_retainBlocks that we see are not optimizable.
 | |
|     break;
 | |
|   case IC_Retain:
 | |
|   case IC_RetainRV: {
 | |
|     Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     PtrState &S = MyStates.getPtrBottomUpState(Arg);
 | |
|     S.SetKnownPositiveRefCount();
 | |
| 
 | |
|     Sequence OldSeq = S.GetSeq();
 | |
|     switch (OldSeq) {
 | |
|     case S_Stop:
 | |
|     case S_Release:
 | |
|     case S_MovableRelease:
 | |
|     case S_Use:
 | |
|       // If OldSeq is not S_Use or OldSeq is S_Use and we are tracking an
 | |
|       // imprecise release, clear our reverse insertion points.
 | |
|       if (OldSeq != S_Use || S.IsTrackingImpreciseReleases())
 | |
|         S.ClearReverseInsertPts();
 | |
|       // FALL THROUGH
 | |
|     case S_CanRelease:
 | |
|       // Don't do retain+release tracking for IC_RetainRV, because it's
 | |
|       // better to let it remain as the first instruction after a call.
 | |
|       if (Class != IC_RetainRV)
 | |
|         Retains[Inst] = S.GetRRInfo();
 | |
|       S.ClearSequenceProgress();
 | |
|       break;
 | |
|     case S_None:
 | |
|       break;
 | |
|     case S_Retain:
 | |
|       llvm_unreachable("bottom-up pointer in retain state!");
 | |
|     }
 | |
|     ANNOTATE_BOTTOMUP(Inst, Arg, OldSeq, S.GetSeq());
 | |
|     // A retain moving bottom up can be a use.
 | |
|     break;
 | |
|   }
 | |
|   case IC_AutoreleasepoolPop:
 | |
|     // Conservatively, clear MyStates for all known pointers.
 | |
|     MyStates.clearBottomUpPointers();
 | |
|     return NestingDetected;
 | |
|   case IC_AutoreleasepoolPush:
 | |
|   case IC_None:
 | |
|     // These are irrelevant.
 | |
|     return NestingDetected;
 | |
|   case IC_User:
 | |
|     // If we have a store into an alloca of a pointer we are tracking, the
 | |
|     // pointer has multiple owners implying that we must be more conservative.
 | |
|     //
 | |
|     // This comes up in the context of a pointer being ``KnownSafe''. In the
 | |
|     // presence of a block being initialized, the frontend will emit the
 | |
|     // objc_retain on the original pointer and the release on the pointer loaded
 | |
|     // from the alloca. The optimizer will through the provenance analysis
 | |
|     // realize that the two are related, but since we only require KnownSafe in
 | |
|     // one direction, will match the inner retain on the original pointer with
 | |
|     // the guard release on the original pointer. This is fixed by ensuring that
 | |
|     // in the presence of allocas we only unconditionally remove pointers if
 | |
|     // both our retain and our release are KnownSafe.
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|       if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand())) {
 | |
|         BBState::ptr_iterator I = MyStates.findPtrBottomUpState(
 | |
|           StripPointerCastsAndObjCCalls(SI->getValueOperand()));
 | |
|         if (I != MyStates.bottom_up_ptr_end())
 | |
|           MultiOwnersSet.insert(I->first);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Consider any other possible effects of this instruction on each
 | |
|   // pointer being tracked.
 | |
|   for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
 | |
|        ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
 | |
|     const Value *Ptr = MI->first;
 | |
|     if (Ptr == Arg)
 | |
|       continue; // Handled above.
 | |
|     PtrState &S = MI->second;
 | |
|     Sequence Seq = S.GetSeq();
 | |
| 
 | |
|     // Check for possible releases.
 | |
|     if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
 | |
|       DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr
 | |
|             << "\n");
 | |
|       S.ClearKnownPositiveRefCount();
 | |
|       switch (Seq) {
 | |
|       case S_Use:
 | |
|         S.SetSeq(S_CanRelease);
 | |
|         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S.GetSeq());
 | |
|         continue;
 | |
|       case S_CanRelease:
 | |
|       case S_Release:
 | |
|       case S_MovableRelease:
 | |
|       case S_Stop:
 | |
|       case S_None:
 | |
|         break;
 | |
|       case S_Retain:
 | |
|         llvm_unreachable("bottom-up pointer in retain state!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for possible direct uses.
 | |
|     switch (Seq) {
 | |
|     case S_Release:
 | |
|     case S_MovableRelease:
 | |
|       if (CanUse(Inst, Ptr, PA, Class)) {
 | |
|         DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr
 | |
|               << "\n");
 | |
|         assert(!S.HasReverseInsertPts());
 | |
|         // If this is an invoke instruction, we're scanning it as part of
 | |
|         // one of its successor blocks, since we can't insert code after it
 | |
|         // in its own block, and we don't want to split critical edges.
 | |
|         if (isa<InvokeInst>(Inst))
 | |
|           S.InsertReverseInsertPt(BB->getFirstInsertionPt());
 | |
|         else
 | |
|           S.InsertReverseInsertPt(std::next(BasicBlock::iterator(Inst)));
 | |
|         S.SetSeq(S_Use);
 | |
|         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
 | |
|       } else if (Seq == S_Release && IsUser(Class)) {
 | |
|         DEBUG(dbgs() << "PreciseReleaseUse: Seq: " << Seq << "; " << *Ptr
 | |
|               << "\n");
 | |
|         // Non-movable releases depend on any possible objc pointer use.
 | |
|         S.SetSeq(S_Stop);
 | |
|         ANNOTATE_BOTTOMUP(Inst, Ptr, S_Release, S_Stop);
 | |
|         assert(!S.HasReverseInsertPts());
 | |
|         // As above; handle invoke specially.
 | |
|         if (isa<InvokeInst>(Inst))
 | |
|           S.InsertReverseInsertPt(BB->getFirstInsertionPt());
 | |
|         else
 | |
|           S.InsertReverseInsertPt(std::next(BasicBlock::iterator(Inst)));
 | |
|       }
 | |
|       break;
 | |
|     case S_Stop:
 | |
|       if (CanUse(Inst, Ptr, PA, Class)) {
 | |
|         DEBUG(dbgs() << "PreciseStopUse: Seq: " << Seq << "; " << *Ptr
 | |
|               << "\n");
 | |
|         S.SetSeq(S_Use);
 | |
|         ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
 | |
|       }
 | |
|       break;
 | |
|     case S_CanRelease:
 | |
|     case S_Use:
 | |
|     case S_None:
 | |
|       break;
 | |
|     case S_Retain:
 | |
|       llvm_unreachable("bottom-up pointer in retain state!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NestingDetected;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
 | |
|                           DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                           MapVector<Value *, RRInfo> &Retains) {
 | |
| 
 | |
|   DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
 | |
| 
 | |
|   bool NestingDetected = false;
 | |
|   BBState &MyStates = BBStates[BB];
 | |
| 
 | |
|   // Merge the states from each successor to compute the initial state
 | |
|   // for the current block.
 | |
|   BBState::edge_iterator SI(MyStates.succ_begin()),
 | |
|                          SE(MyStates.succ_end());
 | |
|   if (SI != SE) {
 | |
|     const BasicBlock *Succ = *SI;
 | |
|     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
 | |
|     assert(I != BBStates.end());
 | |
|     MyStates.InitFromSucc(I->second);
 | |
|     ++SI;
 | |
|     for (; SI != SE; ++SI) {
 | |
|       Succ = *SI;
 | |
|       I = BBStates.find(Succ);
 | |
|       assert(I != BBStates.end());
 | |
|       MyStates.MergeSucc(I->second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If ARC Annotations are enabled, output the current state of pointers at the
 | |
|   // bottom of the basic block.
 | |
|   ANNOTATE_BOTTOMUP_BBEND(MyStates, BB);
 | |
| 
 | |
|   // Visit all the instructions, bottom-up.
 | |
|   for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
 | |
|     Instruction *Inst = std::prev(I);
 | |
| 
 | |
|     // Invoke instructions are visited as part of their successors (below).
 | |
|     if (isa<InvokeInst>(Inst))
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "Visiting " << *Inst << "\n");
 | |
| 
 | |
|     NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
 | |
|   }
 | |
| 
 | |
|   // If there's a predecessor with an invoke, visit the invoke as if it were
 | |
|   // part of this block, since we can't insert code after an invoke in its own
 | |
|   // block, and we don't want to split critical edges.
 | |
|   for (BBState::edge_iterator PI(MyStates.pred_begin()),
 | |
|        PE(MyStates.pred_end()); PI != PE; ++PI) {
 | |
|     BasicBlock *Pred = *PI;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
 | |
|       NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
 | |
|   }
 | |
| 
 | |
|   // If ARC Annotations are enabled, output the current state of pointers at the
 | |
|   // top of the basic block.
 | |
|   ANNOTATE_BOTTOMUP_BBSTART(MyStates, BB);
 | |
| 
 | |
|   return NestingDetected;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
 | |
|                                     DenseMap<Value *, RRInfo> &Releases,
 | |
|                                     BBState &MyStates) {
 | |
|   bool NestingDetected = false;
 | |
|   InstructionClass Class = GetInstructionClass(Inst);
 | |
|   const Value *Arg = nullptr;
 | |
| 
 | |
|   switch (Class) {
 | |
|   case IC_RetainBlock:
 | |
|     // In OptimizeIndividualCalls, we have strength reduced all optimizable
 | |
|     // objc_retainBlocks to objc_retains. Thus at this point any
 | |
|     // objc_retainBlocks that we see are not optimizable.
 | |
|     break;
 | |
|   case IC_Retain:
 | |
|   case IC_RetainRV: {
 | |
|     Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     PtrState &S = MyStates.getPtrTopDownState(Arg);
 | |
| 
 | |
|     // Don't do retain+release tracking for IC_RetainRV, because it's
 | |
|     // better to let it remain as the first instruction after a call.
 | |
|     if (Class != IC_RetainRV) {
 | |
|       // If we see two retains in a row on the same pointer. If so, make
 | |
|       // a note, and we'll cicle back to revisit it after we've
 | |
|       // hopefully eliminated the second retain, which may allow us to
 | |
|       // eliminate the first retain too.
 | |
|       // Theoretically we could implement removal of nested retain+release
 | |
|       // pairs by making PtrState hold a stack of states, but this is
 | |
|       // simple and avoids adding overhead for the non-nested case.
 | |
|       if (S.GetSeq() == S_Retain)
 | |
|         NestingDetected = true;
 | |
| 
 | |
|       ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_Retain);
 | |
|       S.ResetSequenceProgress(S_Retain);
 | |
|       S.SetKnownSafe(S.HasKnownPositiveRefCount());
 | |
|       S.InsertCall(Inst);
 | |
|     }
 | |
| 
 | |
|     S.SetKnownPositiveRefCount();
 | |
| 
 | |
|     // A retain can be a potential use; procede to the generic checking
 | |
|     // code below.
 | |
|     break;
 | |
|   }
 | |
|   case IC_Release: {
 | |
|     Arg = GetObjCArg(Inst);
 | |
| 
 | |
|     PtrState &S = MyStates.getPtrTopDownState(Arg);
 | |
|     S.ClearKnownPositiveRefCount();
 | |
| 
 | |
|     Sequence OldSeq = S.GetSeq();
 | |
| 
 | |
|     MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
 | |
| 
 | |
|     switch (OldSeq) {
 | |
|     case S_Retain:
 | |
|     case S_CanRelease:
 | |
|       if (OldSeq == S_Retain || ReleaseMetadata != nullptr)
 | |
|         S.ClearReverseInsertPts();
 | |
|       // FALL THROUGH
 | |
|     case S_Use:
 | |
|       S.SetReleaseMetadata(ReleaseMetadata);
 | |
|       S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall());
 | |
|       Releases[Inst] = S.GetRRInfo();
 | |
|       ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_None);
 | |
|       S.ClearSequenceProgress();
 | |
|       break;
 | |
|     case S_None:
 | |
|       break;
 | |
|     case S_Stop:
 | |
|     case S_Release:
 | |
|     case S_MovableRelease:
 | |
|       llvm_unreachable("top-down pointer in release state!");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case IC_AutoreleasepoolPop:
 | |
|     // Conservatively, clear MyStates for all known pointers.
 | |
|     MyStates.clearTopDownPointers();
 | |
|     return NestingDetected;
 | |
|   case IC_AutoreleasepoolPush:
 | |
|   case IC_None:
 | |
|     // These are irrelevant.
 | |
|     return NestingDetected;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Consider any other possible effects of this instruction on each
 | |
|   // pointer being tracked.
 | |
|   for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
 | |
|        ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
 | |
|     const Value *Ptr = MI->first;
 | |
|     if (Ptr == Arg)
 | |
|       continue; // Handled above.
 | |
|     PtrState &S = MI->second;
 | |
|     Sequence Seq = S.GetSeq();
 | |
| 
 | |
|     // Check for possible releases.
 | |
|     if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
 | |
|       DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr
 | |
|             << "\n");
 | |
|       S.ClearKnownPositiveRefCount();
 | |
|       switch (Seq) {
 | |
|       case S_Retain:
 | |
|         S.SetSeq(S_CanRelease);
 | |
|         ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_CanRelease);
 | |
|         assert(!S.HasReverseInsertPts());
 | |
|         S.InsertReverseInsertPt(Inst);
 | |
| 
 | |
|         // One call can't cause a transition from S_Retain to S_CanRelease
 | |
|         // and S_CanRelease to S_Use. If we've made the first transition,
 | |
|         // we're done.
 | |
|         continue;
 | |
|       case S_Use:
 | |
|       case S_CanRelease:
 | |
|       case S_None:
 | |
|         break;
 | |
|       case S_Stop:
 | |
|       case S_Release:
 | |
|       case S_MovableRelease:
 | |
|         llvm_unreachable("top-down pointer in release state!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for possible direct uses.
 | |
|     switch (Seq) {
 | |
|     case S_CanRelease:
 | |
|       if (CanUse(Inst, Ptr, PA, Class)) {
 | |
|         DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr
 | |
|               << "\n");
 | |
|         S.SetSeq(S_Use);
 | |
|         ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_Use);
 | |
|       }
 | |
|       break;
 | |
|     case S_Retain:
 | |
|     case S_Use:
 | |
|     case S_None:
 | |
|       break;
 | |
|     case S_Stop:
 | |
|     case S_Release:
 | |
|     case S_MovableRelease:
 | |
|       llvm_unreachable("top-down pointer in release state!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NestingDetected;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::VisitTopDown(BasicBlock *BB,
 | |
|                          DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                          DenseMap<Value *, RRInfo> &Releases) {
 | |
|   DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
 | |
|   bool NestingDetected = false;
 | |
|   BBState &MyStates = BBStates[BB];
 | |
| 
 | |
|   // Merge the states from each predecessor to compute the initial state
 | |
|   // for the current block.
 | |
|   BBState::edge_iterator PI(MyStates.pred_begin()),
 | |
|                          PE(MyStates.pred_end());
 | |
|   if (PI != PE) {
 | |
|     const BasicBlock *Pred = *PI;
 | |
|     DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
 | |
|     assert(I != BBStates.end());
 | |
|     MyStates.InitFromPred(I->second);
 | |
|     ++PI;
 | |
|     for (; PI != PE; ++PI) {
 | |
|       Pred = *PI;
 | |
|       I = BBStates.find(Pred);
 | |
|       assert(I != BBStates.end());
 | |
|       MyStates.MergePred(I->second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If ARC Annotations are enabled, output the current state of pointers at the
 | |
|   // top of the basic block.
 | |
|   ANNOTATE_TOPDOWN_BBSTART(MyStates, BB);
 | |
| 
 | |
|   // Visit all the instructions, top-down.
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|     Instruction *Inst = I;
 | |
| 
 | |
|     DEBUG(dbgs() << "Visiting " << *Inst << "\n");
 | |
| 
 | |
|     NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
 | |
|   }
 | |
| 
 | |
|   // If ARC Annotations are enabled, output the current state of pointers at the
 | |
|   // bottom of the basic block.
 | |
|   ANNOTATE_TOPDOWN_BBEND(MyStates, BB);
 | |
| 
 | |
| #ifdef ARC_ANNOTATIONS
 | |
|   if (!(EnableARCAnnotations && DisableCheckForCFGHazards))
 | |
| #endif
 | |
|   CheckForCFGHazards(BB, BBStates, MyStates);
 | |
|   return NestingDetected;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ComputePostOrders(Function &F,
 | |
|                   SmallVectorImpl<BasicBlock *> &PostOrder,
 | |
|                   SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
 | |
|                   unsigned NoObjCARCExceptionsMDKind,
 | |
|                   DenseMap<const BasicBlock *, BBState> &BBStates) {
 | |
|   /// The visited set, for doing DFS walks.
 | |
|   SmallPtrSet<BasicBlock *, 16> Visited;
 | |
| 
 | |
|   // Do DFS, computing the PostOrder.
 | |
|   SmallPtrSet<BasicBlock *, 16> OnStack;
 | |
|   SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
 | |
| 
 | |
|   // Functions always have exactly one entry block, and we don't have
 | |
|   // any other block that we treat like an entry block.
 | |
|   BasicBlock *EntryBB = &F.getEntryBlock();
 | |
|   BBState &MyStates = BBStates[EntryBB];
 | |
|   MyStates.SetAsEntry();
 | |
|   TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
 | |
|   SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
 | |
|   Visited.insert(EntryBB);
 | |
|   OnStack.insert(EntryBB);
 | |
|   do {
 | |
|   dfs_next_succ:
 | |
|     BasicBlock *CurrBB = SuccStack.back().first;
 | |
|     TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
 | |
|     succ_iterator SE(TI, false);
 | |
| 
 | |
|     while (SuccStack.back().second != SE) {
 | |
|       BasicBlock *SuccBB = *SuccStack.back().second++;
 | |
|       if (Visited.insert(SuccBB)) {
 | |
|         TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
 | |
|         SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
 | |
|         BBStates[CurrBB].addSucc(SuccBB);
 | |
|         BBState &SuccStates = BBStates[SuccBB];
 | |
|         SuccStates.addPred(CurrBB);
 | |
|         OnStack.insert(SuccBB);
 | |
|         goto dfs_next_succ;
 | |
|       }
 | |
| 
 | |
|       if (!OnStack.count(SuccBB)) {
 | |
|         BBStates[CurrBB].addSucc(SuccBB);
 | |
|         BBStates[SuccBB].addPred(CurrBB);
 | |
|       }
 | |
|     }
 | |
|     OnStack.erase(CurrBB);
 | |
|     PostOrder.push_back(CurrBB);
 | |
|     SuccStack.pop_back();
 | |
|   } while (!SuccStack.empty());
 | |
| 
 | |
|   Visited.clear();
 | |
| 
 | |
|   // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
 | |
|   // Functions may have many exits, and there also blocks which we treat
 | |
|   // as exits due to ignored edges.
 | |
|   SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|     BasicBlock *ExitBB = I;
 | |
|     BBState &MyStates = BBStates[ExitBB];
 | |
|     if (!MyStates.isExit())
 | |
|       continue;
 | |
| 
 | |
|     MyStates.SetAsExit();
 | |
| 
 | |
|     PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
 | |
|     Visited.insert(ExitBB);
 | |
|     while (!PredStack.empty()) {
 | |
|     reverse_dfs_next_succ:
 | |
|       BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
 | |
|       while (PredStack.back().second != PE) {
 | |
|         BasicBlock *BB = *PredStack.back().second++;
 | |
|         if (Visited.insert(BB)) {
 | |
|           PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
 | |
|           goto reverse_dfs_next_succ;
 | |
|         }
 | |
|       }
 | |
|       ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Visit the function both top-down and bottom-up.
 | |
| bool
 | |
| ObjCARCOpt::Visit(Function &F,
 | |
|                   DenseMap<const BasicBlock *, BBState> &BBStates,
 | |
|                   MapVector<Value *, RRInfo> &Retains,
 | |
|                   DenseMap<Value *, RRInfo> &Releases) {
 | |
| 
 | |
|   // Use reverse-postorder traversals, because we magically know that loops
 | |
|   // will be well behaved, i.e. they won't repeatedly call retain on a single
 | |
|   // pointer without doing a release. We can't use the ReversePostOrderTraversal
 | |
|   // class here because we want the reverse-CFG postorder to consider each
 | |
|   // function exit point, and we want to ignore selected cycle edges.
 | |
|   SmallVector<BasicBlock *, 16> PostOrder;
 | |
|   SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
 | |
|   ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
 | |
|                     NoObjCARCExceptionsMDKind,
 | |
|                     BBStates);
 | |
| 
 | |
|   // Use reverse-postorder on the reverse CFG for bottom-up.
 | |
|   bool BottomUpNestingDetected = false;
 | |
|   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
 | |
|        ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
 | |
|        I != E; ++I)
 | |
|     BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
 | |
| 
 | |
|   // Use reverse-postorder for top-down.
 | |
|   bool TopDownNestingDetected = false;
 | |
|   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
 | |
|        PostOrder.rbegin(), E = PostOrder.rend();
 | |
|        I != E; ++I)
 | |
|     TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
 | |
| 
 | |
|   return TopDownNestingDetected && BottomUpNestingDetected;
 | |
| }
 | |
| 
 | |
| /// Move the calls in RetainsToMove and ReleasesToMove.
 | |
| void ObjCARCOpt::MoveCalls(Value *Arg,
 | |
|                            RRInfo &RetainsToMove,
 | |
|                            RRInfo &ReleasesToMove,
 | |
|                            MapVector<Value *, RRInfo> &Retains,
 | |
|                            DenseMap<Value *, RRInfo> &Releases,
 | |
|                            SmallVectorImpl<Instruction *> &DeadInsts,
 | |
|                            Module *M) {
 | |
|   Type *ArgTy = Arg->getType();
 | |
|   Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
 | |
| 
 | |
|   DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
 | |
| 
 | |
|   // Insert the new retain and release calls.
 | |
|   for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|        PI = ReleasesToMove.ReverseInsertPts.begin(),
 | |
|        PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
 | |
|     Instruction *InsertPt = *PI;
 | |
|     Value *MyArg = ArgTy == ParamTy ? Arg :
 | |
|                    new BitCastInst(Arg, ParamTy, "", InsertPt);
 | |
|     Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | |
|     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
 | |
|     Call->setDoesNotThrow();
 | |
|     Call->setTailCall();
 | |
| 
 | |
|     DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
 | |
|                     "At insertion point: " << *InsertPt << "\n");
 | |
|   }
 | |
|   for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|        PI = RetainsToMove.ReverseInsertPts.begin(),
 | |
|        PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
 | |
|     Instruction *InsertPt = *PI;
 | |
|     Value *MyArg = ArgTy == ParamTy ? Arg :
 | |
|                    new BitCastInst(Arg, ParamTy, "", InsertPt);
 | |
|     Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
 | |
|     CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
 | |
|     // Attach a clang.imprecise_release metadata tag, if appropriate.
 | |
|     if (MDNode *M = ReleasesToMove.ReleaseMetadata)
 | |
|       Call->setMetadata(ImpreciseReleaseMDKind, M);
 | |
|     Call->setDoesNotThrow();
 | |
|     if (ReleasesToMove.IsTailCallRelease)
 | |
|       Call->setTailCall();
 | |
| 
 | |
|     DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n"
 | |
|                     "At insertion point: " << *InsertPt << "\n");
 | |
|   }
 | |
| 
 | |
|   // Delete the original retain and release calls.
 | |
|   for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|        AI = RetainsToMove.Calls.begin(),
 | |
|        AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
 | |
|     Instruction *OrigRetain = *AI;
 | |
|     Retains.blot(OrigRetain);
 | |
|     DeadInsts.push_back(OrigRetain);
 | |
|     DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
 | |
|   }
 | |
|   for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|        AI = ReleasesToMove.Calls.begin(),
 | |
|        AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
 | |
|     Instruction *OrigRelease = *AI;
 | |
|     Releases.erase(OrigRelease);
 | |
|     DeadInsts.push_back(OrigRelease);
 | |
|     DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| bool
 | |
| ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
 | |
|                                     &BBStates,
 | |
|                                   MapVector<Value *, RRInfo> &Retains,
 | |
|                                   DenseMap<Value *, RRInfo> &Releases,
 | |
|                                   Module *M,
 | |
|                                   SmallVectorImpl<Instruction *> &NewRetains,
 | |
|                                   SmallVectorImpl<Instruction *> &NewReleases,
 | |
|                                   SmallVectorImpl<Instruction *> &DeadInsts,
 | |
|                                   RRInfo &RetainsToMove,
 | |
|                                   RRInfo &ReleasesToMove,
 | |
|                                   Value *Arg,
 | |
|                                   bool KnownSafe,
 | |
|                                   bool &AnyPairsCompletelyEliminated) {
 | |
|   // If a pair happens in a region where it is known that the reference count
 | |
|   // is already incremented, we can similarly ignore possible decrements unless
 | |
|   // we are dealing with a retainable object with multiple provenance sources.
 | |
|   bool KnownSafeTD = true, KnownSafeBU = true;
 | |
|   bool MultipleOwners = false;
 | |
|   bool CFGHazardAfflicted = false;
 | |
| 
 | |
|   // Connect the dots between the top-down-collected RetainsToMove and
 | |
|   // bottom-up-collected ReleasesToMove to form sets of related calls.
 | |
|   // This is an iterative process so that we connect multiple releases
 | |
|   // to multiple retains if needed.
 | |
|   unsigned OldDelta = 0;
 | |
|   unsigned NewDelta = 0;
 | |
|   unsigned OldCount = 0;
 | |
|   unsigned NewCount = 0;
 | |
|   bool FirstRelease = true;
 | |
|   for (;;) {
 | |
|     for (SmallVectorImpl<Instruction *>::const_iterator
 | |
|            NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
 | |
|       Instruction *NewRetain = *NI;
 | |
|       MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
 | |
|       assert(It != Retains.end());
 | |
|       const RRInfo &NewRetainRRI = It->second;
 | |
|       KnownSafeTD &= NewRetainRRI.KnownSafe;
 | |
|       MultipleOwners =
 | |
|         MultipleOwners || MultiOwnersSet.count(GetObjCArg(NewRetain));
 | |
|       for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|              LI = NewRetainRRI.Calls.begin(),
 | |
|              LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
 | |
|         Instruction *NewRetainRelease = *LI;
 | |
|         DenseMap<Value *, RRInfo>::const_iterator Jt =
 | |
|           Releases.find(NewRetainRelease);
 | |
|         if (Jt == Releases.end())
 | |
|           return false;
 | |
|         const RRInfo &NewRetainReleaseRRI = Jt->second;
 | |
| 
 | |
|         // If the release does not have a reference to the retain as well,
 | |
|         // something happened which is unaccounted for. Do not do anything.
 | |
|         //
 | |
|         // This can happen if we catch an additive overflow during path count
 | |
|         // merging.
 | |
|         if (!NewRetainReleaseRRI.Calls.count(NewRetain))
 | |
|           return false;
 | |
| 
 | |
|         if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
 | |
| 
 | |
|           // If we overflow when we compute the path count, don't remove/move
 | |
|           // anything.
 | |
|           const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
 | |
|           unsigned PathCount = BBState::OverflowOccurredValue;
 | |
|           if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
 | |
|             return false;
 | |
|           assert(PathCount != BBState::OverflowOccurredValue &&
 | |
|                  "PathCount at this point can not be "
 | |
|                  "OverflowOccurredValue.");
 | |
|           OldDelta -= PathCount;
 | |
| 
 | |
|           // Merge the ReleaseMetadata and IsTailCallRelease values.
 | |
|           if (FirstRelease) {
 | |
|             ReleasesToMove.ReleaseMetadata =
 | |
|               NewRetainReleaseRRI.ReleaseMetadata;
 | |
|             ReleasesToMove.IsTailCallRelease =
 | |
|               NewRetainReleaseRRI.IsTailCallRelease;
 | |
|             FirstRelease = false;
 | |
|           } else {
 | |
|             if (ReleasesToMove.ReleaseMetadata !=
 | |
|                 NewRetainReleaseRRI.ReleaseMetadata)
 | |
|               ReleasesToMove.ReleaseMetadata = nullptr;
 | |
|             if (ReleasesToMove.IsTailCallRelease !=
 | |
|                 NewRetainReleaseRRI.IsTailCallRelease)
 | |
|               ReleasesToMove.IsTailCallRelease = false;
 | |
|           }
 | |
| 
 | |
|           // Collect the optimal insertion points.
 | |
|           if (!KnownSafe)
 | |
|             for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|                    RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
 | |
|                    RE = NewRetainReleaseRRI.ReverseInsertPts.end();
 | |
|                  RI != RE; ++RI) {
 | |
|               Instruction *RIP = *RI;
 | |
|               if (ReleasesToMove.ReverseInsertPts.insert(RIP)) {
 | |
|                 // If we overflow when we compute the path count, don't
 | |
|                 // remove/move anything.
 | |
|                 const BBState &RIPBBState = BBStates[RIP->getParent()];
 | |
|                 PathCount = BBState::OverflowOccurredValue;
 | |
|                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
 | |
|                   return false;
 | |
|                 assert(PathCount != BBState::OverflowOccurredValue &&
 | |
|                        "PathCount at this point can not be "
 | |
|                        "OverflowOccurredValue.");
 | |
|                 NewDelta -= PathCount;
 | |
|               }
 | |
|             }
 | |
|           NewReleases.push_back(NewRetainRelease);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     NewRetains.clear();
 | |
|     if (NewReleases.empty()) break;
 | |
| 
 | |
|     // Back the other way.
 | |
|     for (SmallVectorImpl<Instruction *>::const_iterator
 | |
|            NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
 | |
|       Instruction *NewRelease = *NI;
 | |
|       DenseMap<Value *, RRInfo>::const_iterator It =
 | |
|         Releases.find(NewRelease);
 | |
|       assert(It != Releases.end());
 | |
|       const RRInfo &NewReleaseRRI = It->second;
 | |
|       KnownSafeBU &= NewReleaseRRI.KnownSafe;
 | |
|       CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
 | |
|       for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|              LI = NewReleaseRRI.Calls.begin(),
 | |
|              LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
 | |
|         Instruction *NewReleaseRetain = *LI;
 | |
|         MapVector<Value *, RRInfo>::const_iterator Jt =
 | |
|           Retains.find(NewReleaseRetain);
 | |
|         if (Jt == Retains.end())
 | |
|           return false;
 | |
|         const RRInfo &NewReleaseRetainRRI = Jt->second;
 | |
| 
 | |
|         // If the retain does not have a reference to the release as well,
 | |
|         // something happened which is unaccounted for. Do not do anything.
 | |
|         //
 | |
|         // This can happen if we catch an additive overflow during path count
 | |
|         // merging.
 | |
|         if (!NewReleaseRetainRRI.Calls.count(NewRelease))
 | |
|           return false;
 | |
| 
 | |
|         if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
 | |
|           // If we overflow when we compute the path count, don't remove/move
 | |
|           // anything.
 | |
|           const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
 | |
|           unsigned PathCount = BBState::OverflowOccurredValue;
 | |
|           if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
 | |
|             return false;
 | |
|           assert(PathCount != BBState::OverflowOccurredValue &&
 | |
|                  "PathCount at this point can not be "
 | |
|                  "OverflowOccurredValue.");
 | |
|           OldDelta += PathCount;
 | |
|           OldCount += PathCount;
 | |
| 
 | |
|           // Collect the optimal insertion points.
 | |
|           if (!KnownSafe)
 | |
|             for (SmallPtrSet<Instruction *, 2>::const_iterator
 | |
|                    RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
 | |
|                    RE = NewReleaseRetainRRI.ReverseInsertPts.end();
 | |
|                  RI != RE; ++RI) {
 | |
|               Instruction *RIP = *RI;
 | |
|               if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
 | |
|                 // If we overflow when we compute the path count, don't
 | |
|                 // remove/move anything.
 | |
|                 const BBState &RIPBBState = BBStates[RIP->getParent()];
 | |
| 
 | |
|                 PathCount = BBState::OverflowOccurredValue;
 | |
|                 if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
 | |
|                   return false;
 | |
|                 assert(PathCount != BBState::OverflowOccurredValue &&
 | |
|                        "PathCount at this point can not be "
 | |
|                        "OverflowOccurredValue.");
 | |
|                 NewDelta += PathCount;
 | |
|                 NewCount += PathCount;
 | |
|               }
 | |
|             }
 | |
|           NewRetains.push_back(NewReleaseRetain);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     NewReleases.clear();
 | |
|     if (NewRetains.empty()) break;
 | |
|   }
 | |
| 
 | |
|   // If the pointer is known incremented in 1 direction and we do not have
 | |
|   // MultipleOwners, we can safely remove the retain/releases. Otherwise we need
 | |
|   // to be known safe in both directions.
 | |
|   bool UnconditionallySafe = (KnownSafeTD && KnownSafeBU) ||
 | |
|     ((KnownSafeTD || KnownSafeBU) && !MultipleOwners);
 | |
|   if (UnconditionallySafe) {
 | |
|     RetainsToMove.ReverseInsertPts.clear();
 | |
|     ReleasesToMove.ReverseInsertPts.clear();
 | |
|     NewCount = 0;
 | |
|   } else {
 | |
|     // Determine whether the new insertion points we computed preserve the
 | |
|     // balance of retain and release calls through the program.
 | |
|     // TODO: If the fully aggressive solution isn't valid, try to find a
 | |
|     // less aggressive solution which is.
 | |
|     if (NewDelta != 0)
 | |
|       return false;
 | |
| 
 | |
|     // At this point, we are not going to remove any RR pairs, but we still are
 | |
|     // able to move RR pairs. If one of our pointers is afflicted with
 | |
|     // CFGHazards, we cannot perform such code motion so exit early.
 | |
|     const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() ||
 | |
|       ReleasesToMove.ReverseInsertPts.size();
 | |
|     if (CFGHazardAfflicted && WillPerformCodeMotion)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Determine whether the original call points are balanced in the retain and
 | |
|   // release calls through the program. If not, conservatively don't touch
 | |
|   // them.
 | |
|   // TODO: It's theoretically possible to do code motion in this case, as
 | |
|   // long as the existing imbalances are maintained.
 | |
|   if (OldDelta != 0)
 | |
|     return false;
 | |
| 
 | |
| #ifdef ARC_ANNOTATIONS
 | |
|   // Do not move calls if ARC annotations are requested.
 | |
|   if (EnableARCAnnotations)
 | |
|     return false;
 | |
| #endif // ARC_ANNOTATIONS
 | |
| 
 | |
|   Changed = true;
 | |
|   assert(OldCount != 0 && "Unreachable code?");
 | |
|   NumRRs += OldCount - NewCount;
 | |
|   // Set to true if we completely removed any RR pairs.
 | |
|   AnyPairsCompletelyEliminated = NewCount == 0;
 | |
| 
 | |
|   // We can move calls!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Identify pairings between the retains and releases, and delete and/or move
 | |
| /// them.
 | |
| bool
 | |
| ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
 | |
|                                    &BBStates,
 | |
|                                  MapVector<Value *, RRInfo> &Retains,
 | |
|                                  DenseMap<Value *, RRInfo> &Releases,
 | |
|                                  Module *M) {
 | |
|   DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
 | |
| 
 | |
|   bool AnyPairsCompletelyEliminated = false;
 | |
|   RRInfo RetainsToMove;
 | |
|   RRInfo ReleasesToMove;
 | |
|   SmallVector<Instruction *, 4> NewRetains;
 | |
|   SmallVector<Instruction *, 4> NewReleases;
 | |
|   SmallVector<Instruction *, 8> DeadInsts;
 | |
| 
 | |
|   // Visit each retain.
 | |
|   for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
 | |
|        E = Retains.end(); I != E; ++I) {
 | |
|     Value *V = I->first;
 | |
|     if (!V) continue; // blotted
 | |
| 
 | |
|     Instruction *Retain = cast<Instruction>(V);
 | |
| 
 | |
|     DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
 | |
| 
 | |
|     Value *Arg = GetObjCArg(Retain);
 | |
| 
 | |
|     // If the object being released is in static or stack storage, we know it's
 | |
|     // not being managed by ObjC reference counting, so we can delete pairs
 | |
|     // regardless of what possible decrements or uses lie between them.
 | |
|     bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
 | |
| 
 | |
|     // A constant pointer can't be pointing to an object on the heap. It may
 | |
|     // be reference-counted, but it won't be deleted.
 | |
|     if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
 | |
|       if (const GlobalVariable *GV =
 | |
|             dyn_cast<GlobalVariable>(
 | |
|               StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
 | |
|         if (GV->isConstant())
 | |
|           KnownSafe = true;
 | |
| 
 | |
|     // Connect the dots between the top-down-collected RetainsToMove and
 | |
|     // bottom-up-collected ReleasesToMove to form sets of related calls.
 | |
|     NewRetains.push_back(Retain);
 | |
|     bool PerformMoveCalls =
 | |
|       ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains,
 | |
|                             NewReleases, DeadInsts, RetainsToMove,
 | |
|                             ReleasesToMove, Arg, KnownSafe,
 | |
|                             AnyPairsCompletelyEliminated);
 | |
| 
 | |
|     if (PerformMoveCalls) {
 | |
|       // Ok, everything checks out and we're all set. Let's move/delete some
 | |
|       // code!
 | |
|       MoveCalls(Arg, RetainsToMove, ReleasesToMove,
 | |
|                 Retains, Releases, DeadInsts, M);
 | |
|     }
 | |
| 
 | |
|     // Clean up state for next retain.
 | |
|     NewReleases.clear();
 | |
|     NewRetains.clear();
 | |
|     RetainsToMove.clear();
 | |
|     ReleasesToMove.clear();
 | |
|   }
 | |
| 
 | |
|   // Now that we're done moving everything, we can delete the newly dead
 | |
|   // instructions, as we no longer need them as insert points.
 | |
|   while (!DeadInsts.empty())
 | |
|     EraseInstruction(DeadInsts.pop_back_val());
 | |
| 
 | |
|   return AnyPairsCompletelyEliminated;
 | |
| }
 | |
| 
 | |
| /// Weak pointer optimizations.
 | |
| void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
 | |
|   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
 | |
| 
 | |
|   // First, do memdep-style RLE and S2L optimizations. We can't use memdep
 | |
|   // itself because it uses AliasAnalysis and we need to do provenance
 | |
|   // queries instead.
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | |
|     Instruction *Inst = &*I++;
 | |
| 
 | |
|     DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
 | |
| 
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
|     if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
 | |
|       continue;
 | |
| 
 | |
|     // Delete objc_loadWeak calls with no users.
 | |
|     if (Class == IC_LoadWeak && Inst->use_empty()) {
 | |
|       Inst->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // TODO: For now, just look for an earlier available version of this value
 | |
|     // within the same block. Theoretically, we could do memdep-style non-local
 | |
|     // analysis too, but that would want caching. A better approach would be to
 | |
|     // use the technique that EarlyCSE uses.
 | |
|     inst_iterator Current = std::prev(I);
 | |
|     BasicBlock *CurrentBB = Current.getBasicBlockIterator();
 | |
|     for (BasicBlock::iterator B = CurrentBB->begin(),
 | |
|                               J = Current.getInstructionIterator();
 | |
|          J != B; --J) {
 | |
|       Instruction *EarlierInst = &*std::prev(J);
 | |
|       InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
 | |
|       switch (EarlierClass) {
 | |
|       case IC_LoadWeak:
 | |
|       case IC_LoadWeakRetained: {
 | |
|         // If this is loading from the same pointer, replace this load's value
 | |
|         // with that one.
 | |
|         CallInst *Call = cast<CallInst>(Inst);
 | |
|         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
 | |
|         Value *Arg = Call->getArgOperand(0);
 | |
|         Value *EarlierArg = EarlierCall->getArgOperand(0);
 | |
|         switch (PA.getAA()->alias(Arg, EarlierArg)) {
 | |
|         case AliasAnalysis::MustAlias:
 | |
|           Changed = true;
 | |
|           // If the load has a builtin retain, insert a plain retain for it.
 | |
|           if (Class == IC_LoadWeakRetained) {
 | |
|             Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | |
|             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
 | |
|             CI->setTailCall();
 | |
|           }
 | |
|           // Zap the fully redundant load.
 | |
|           Call->replaceAllUsesWith(EarlierCall);
 | |
|           Call->eraseFromParent();
 | |
|           goto clobbered;
 | |
|         case AliasAnalysis::MayAlias:
 | |
|         case AliasAnalysis::PartialAlias:
 | |
|           goto clobbered;
 | |
|         case AliasAnalysis::NoAlias:
 | |
|           break;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case IC_StoreWeak:
 | |
|       case IC_InitWeak: {
 | |
|         // If this is storing to the same pointer and has the same size etc.
 | |
|         // replace this load's value with the stored value.
 | |
|         CallInst *Call = cast<CallInst>(Inst);
 | |
|         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
 | |
|         Value *Arg = Call->getArgOperand(0);
 | |
|         Value *EarlierArg = EarlierCall->getArgOperand(0);
 | |
|         switch (PA.getAA()->alias(Arg, EarlierArg)) {
 | |
|         case AliasAnalysis::MustAlias:
 | |
|           Changed = true;
 | |
|           // If the load has a builtin retain, insert a plain retain for it.
 | |
|           if (Class == IC_LoadWeakRetained) {
 | |
|             Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | |
|             CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
 | |
|             CI->setTailCall();
 | |
|           }
 | |
|           // Zap the fully redundant load.
 | |
|           Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
 | |
|           Call->eraseFromParent();
 | |
|           goto clobbered;
 | |
|         case AliasAnalysis::MayAlias:
 | |
|         case AliasAnalysis::PartialAlias:
 | |
|           goto clobbered;
 | |
|         case AliasAnalysis::NoAlias:
 | |
|           break;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case IC_MoveWeak:
 | |
|       case IC_CopyWeak:
 | |
|         // TOOD: Grab the copied value.
 | |
|         goto clobbered;
 | |
|       case IC_AutoreleasepoolPush:
 | |
|       case IC_None:
 | |
|       case IC_IntrinsicUser:
 | |
|       case IC_User:
 | |
|         // Weak pointers are only modified through the weak entry points
 | |
|         // (and arbitrary calls, which could call the weak entry points).
 | |
|         break;
 | |
|       default:
 | |
|         // Anything else could modify the weak pointer.
 | |
|         goto clobbered;
 | |
|       }
 | |
|     }
 | |
|   clobbered:;
 | |
|   }
 | |
| 
 | |
|   // Then, for each destroyWeak with an alloca operand, check to see if
 | |
|   // the alloca and all its users can be zapped.
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | |
|     Instruction *Inst = &*I++;
 | |
|     InstructionClass Class = GetBasicInstructionClass(Inst);
 | |
|     if (Class != IC_DestroyWeak)
 | |
|       continue;
 | |
| 
 | |
|     CallInst *Call = cast<CallInst>(Inst);
 | |
|     Value *Arg = Call->getArgOperand(0);
 | |
|     if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
 | |
|       for (User *U : Alloca->users()) {
 | |
|         const Instruction *UserInst = cast<Instruction>(U);
 | |
|         switch (GetBasicInstructionClass(UserInst)) {
 | |
|         case IC_InitWeak:
 | |
|         case IC_StoreWeak:
 | |
|         case IC_DestroyWeak:
 | |
|           continue;
 | |
|         default:
 | |
|           goto done;
 | |
|         }
 | |
|       }
 | |
|       Changed = true;
 | |
|       for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
 | |
|         CallInst *UserInst = cast<CallInst>(*UI++);
 | |
|         switch (GetBasicInstructionClass(UserInst)) {
 | |
|         case IC_InitWeak:
 | |
|         case IC_StoreWeak:
 | |
|           // These functions return their second argument.
 | |
|           UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
 | |
|           break;
 | |
|         case IC_DestroyWeak:
 | |
|           // No return value.
 | |
|           break;
 | |
|         default:
 | |
|           llvm_unreachable("alloca really is used!");
 | |
|         }
 | |
|         UserInst->eraseFromParent();
 | |
|       }
 | |
|       Alloca->eraseFromParent();
 | |
|     done:;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Identify program paths which execute sequences of retains and releases which
 | |
| /// can be eliminated.
 | |
| bool ObjCARCOpt::OptimizeSequences(Function &F) {
 | |
|   // Releases, Retains - These are used to store the results of the main flow
 | |
|   // analysis. These use Value* as the key instead of Instruction* so that the
 | |
|   // map stays valid when we get around to rewriting code and calls get
 | |
|   // replaced by arguments.
 | |
|   DenseMap<Value *, RRInfo> Releases;
 | |
|   MapVector<Value *, RRInfo> Retains;
 | |
| 
 | |
|   // This is used during the traversal of the function to track the
 | |
|   // states for each identified object at each block.
 | |
|   DenseMap<const BasicBlock *, BBState> BBStates;
 | |
| 
 | |
|   // Analyze the CFG of the function, and all instructions.
 | |
|   bool NestingDetected = Visit(F, BBStates, Retains, Releases);
 | |
| 
 | |
|   // Transform.
 | |
|   bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
 | |
|                                                            Releases,
 | |
|                                                            F.getParent());
 | |
| 
 | |
|   // Cleanup.
 | |
|   MultiOwnersSet.clear();
 | |
| 
 | |
|   return AnyPairsCompletelyEliminated && NestingDetected;
 | |
| }
 | |
| 
 | |
| /// Check if there is a dependent call earlier that does not have anything in
 | |
| /// between the Retain and the call that can affect the reference count of their
 | |
| /// shared pointer argument. Note that Retain need not be in BB.
 | |
| static bool
 | |
| HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
 | |
|                              SmallPtrSet<Instruction *, 4> &DepInsts,
 | |
|                              SmallPtrSet<const BasicBlock *, 4> &Visited,
 | |
|                              ProvenanceAnalysis &PA) {
 | |
|   FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
 | |
|                    DepInsts, Visited, PA);
 | |
|   if (DepInsts.size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   CallInst *Call =
 | |
|     dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | |
| 
 | |
|   // Check that the pointer is the return value of the call.
 | |
|   if (!Call || Arg != Call)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the call is a regular call.
 | |
|   InstructionClass Class = GetBasicInstructionClass(Call);
 | |
|   if (Class != IC_CallOrUser && Class != IC_Call)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Find a dependent retain that precedes the given autorelease for which there
 | |
| /// is nothing in between the two instructions that can affect the ref count of
 | |
| /// Arg.
 | |
| static CallInst *
 | |
| FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
 | |
|                                   Instruction *Autorelease,
 | |
|                                   SmallPtrSet<Instruction *, 4> &DepInsts,
 | |
|                                   SmallPtrSet<const BasicBlock *, 4> &Visited,
 | |
|                                   ProvenanceAnalysis &PA) {
 | |
|   FindDependencies(CanChangeRetainCount, Arg,
 | |
|                    BB, Autorelease, DepInsts, Visited, PA);
 | |
|   if (DepInsts.size() != 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   CallInst *Retain =
 | |
|     dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | |
| 
 | |
|   // Check that we found a retain with the same argument.
 | |
|   if (!Retain ||
 | |
|       !IsRetain(GetBasicInstructionClass(Retain)) ||
 | |
|       GetObjCArg(Retain) != Arg) {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return Retain;
 | |
| }
 | |
| 
 | |
| /// Look for an ``autorelease'' instruction dependent on Arg such that there are
 | |
| /// no instructions dependent on Arg that need a positive ref count in between
 | |
| /// the autorelease and the ret.
 | |
| static CallInst *
 | |
| FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
 | |
|                                        ReturnInst *Ret,
 | |
|                                        SmallPtrSet<Instruction *, 4> &DepInsts,
 | |
|                                        SmallPtrSet<const BasicBlock *, 4> &V,
 | |
|                                        ProvenanceAnalysis &PA) {
 | |
|   FindDependencies(NeedsPositiveRetainCount, Arg,
 | |
|                    BB, Ret, DepInsts, V, PA);
 | |
|   if (DepInsts.size() != 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   CallInst *Autorelease =
 | |
|     dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | |
|   if (!Autorelease)
 | |
|     return nullptr;
 | |
|   InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
 | |
|   if (!IsAutorelease(AutoreleaseClass))
 | |
|     return nullptr;
 | |
|   if (GetObjCArg(Autorelease) != Arg)
 | |
|     return nullptr;
 | |
| 
 | |
|   return Autorelease;
 | |
| }
 | |
| 
 | |
| /// Look for this pattern:
 | |
| /// \code
 | |
| ///    %call = call i8* @something(...)
 | |
| ///    %2 = call i8* @objc_retain(i8* %call)
 | |
| ///    %3 = call i8* @objc_autorelease(i8* %2)
 | |
| ///    ret i8* %3
 | |
| /// \endcode
 | |
| /// And delete the retain and autorelease.
 | |
| void ObjCARCOpt::OptimizeReturns(Function &F) {
 | |
|   if (!F.getReturnType()->isPointerTy())
 | |
|     return;
 | |
| 
 | |
|   DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 4> DependingInstructions;
 | |
|   SmallPtrSet<const BasicBlock *, 4> Visited;
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
 | |
|     BasicBlock *BB = FI;
 | |
|     ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
 | |
| 
 | |
|     DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
 | |
| 
 | |
|     if (!Ret)
 | |
|       continue;
 | |
| 
 | |
|     const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
 | |
| 
 | |
|     // Look for an ``autorelease'' instruction that is a predecessor of Ret and
 | |
|     // dependent on Arg such that there are no instructions dependent on Arg
 | |
|     // that need a positive ref count in between the autorelease and Ret.
 | |
|     CallInst *Autorelease =
 | |
|       FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret,
 | |
|                                              DependingInstructions, Visited,
 | |
|                                              PA);
 | |
|     DependingInstructions.clear();
 | |
|     Visited.clear();
 | |
| 
 | |
|     if (!Autorelease)
 | |
|       continue;
 | |
| 
 | |
|     CallInst *Retain =
 | |
|       FindPredecessorRetainWithSafePath(Arg, BB, Autorelease,
 | |
|                                         DependingInstructions, Visited, PA);
 | |
|     DependingInstructions.clear();
 | |
|     Visited.clear();
 | |
| 
 | |
|     if (!Retain)
 | |
|       continue;
 | |
| 
 | |
|     // Check that there is nothing that can affect the reference count
 | |
|     // between the retain and the call.  Note that Retain need not be in BB.
 | |
|     bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
 | |
|                                                           DependingInstructions,
 | |
|                                                           Visited, PA);
 | |
|     DependingInstructions.clear();
 | |
|     Visited.clear();
 | |
| 
 | |
|     if (!HasSafePathToCall)
 | |
|       continue;
 | |
| 
 | |
|     // If so, we can zap the retain and autorelease.
 | |
|     Changed = true;
 | |
|     ++NumRets;
 | |
|     DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: "
 | |
|           << *Autorelease << "\n");
 | |
|     EraseInstruction(Retain);
 | |
|     EraseInstruction(Autorelease);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| void
 | |
| ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
 | |
|   llvm::Statistic &NumRetains =
 | |
|     AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt;
 | |
|   llvm::Statistic &NumReleases =
 | |
|     AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt;
 | |
| 
 | |
|   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | |
|     Instruction *Inst = &*I++;
 | |
|     switch (GetBasicInstructionClass(Inst)) {
 | |
|     default:
 | |
|       break;
 | |
|     case IC_Retain:
 | |
|       ++NumRetains;
 | |
|       break;
 | |
|     case IC_Release:
 | |
|       ++NumReleases;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool ObjCARCOpt::doInitialization(Module &M) {
 | |
|   if (!EnableARCOpts)
 | |
|     return false;
 | |
| 
 | |
|   // If nothing in the Module uses ARC, don't do anything.
 | |
|   Run = ModuleHasARC(M);
 | |
|   if (!Run)
 | |
|     return false;
 | |
| 
 | |
|   // Identify the imprecise release metadata kind.
 | |
|   ImpreciseReleaseMDKind =
 | |
|     M.getContext().getMDKindID("clang.imprecise_release");
 | |
|   CopyOnEscapeMDKind =
 | |
|     M.getContext().getMDKindID("clang.arc.copy_on_escape");
 | |
|   NoObjCARCExceptionsMDKind =
 | |
|     M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
 | |
| #ifdef ARC_ANNOTATIONS
 | |
|   ARCAnnotationBottomUpMDKind =
 | |
|     M.getContext().getMDKindID("llvm.arc.annotation.bottomup");
 | |
|   ARCAnnotationTopDownMDKind =
 | |
|     M.getContext().getMDKindID("llvm.arc.annotation.topdown");
 | |
|   ARCAnnotationProvenanceSourceMDKind =
 | |
|     M.getContext().getMDKindID("llvm.arc.annotation.provenancesource");
 | |
| #endif // ARC_ANNOTATIONS
 | |
| 
 | |
|   // Intuitively, objc_retain and others are nocapture, however in practice
 | |
|   // they are not, because they return their argument value. And objc_release
 | |
|   // calls finalizers which can have arbitrary side effects.
 | |
| 
 | |
|   // Initialize our runtime entry point cache.
 | |
|   EP.Initialize(&M);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ObjCARCOpt::runOnFunction(Function &F) {
 | |
|   if (!EnableARCOpts)
 | |
|     return false;
 | |
| 
 | |
|   // If nothing in the Module uses ARC, don't do anything.
 | |
|   if (!Run)
 | |
|     return false;
 | |
| 
 | |
|   Changed = false;
 | |
| 
 | |
|   DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>"
 | |
|         "\n");
 | |
| 
 | |
|   PA.setAA(&getAnalysis<AliasAnalysis>());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (AreStatisticsEnabled()) {
 | |
|     GatherStatistics(F, false);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // This pass performs several distinct transformations. As a compile-time aid
 | |
|   // when compiling code that isn't ObjC, skip these if the relevant ObjC
 | |
|   // library functions aren't declared.
 | |
| 
 | |
|   // Preliminary optimizations. This also computes UsedInThisFunction.
 | |
|   OptimizeIndividualCalls(F);
 | |
| 
 | |
|   // Optimizations for weak pointers.
 | |
|   if (UsedInThisFunction & ((1 << IC_LoadWeak) |
 | |
|                             (1 << IC_LoadWeakRetained) |
 | |
|                             (1 << IC_StoreWeak) |
 | |
|                             (1 << IC_InitWeak) |
 | |
|                             (1 << IC_CopyWeak) |
 | |
|                             (1 << IC_MoveWeak) |
 | |
|                             (1 << IC_DestroyWeak)))
 | |
|     OptimizeWeakCalls(F);
 | |
| 
 | |
|   // Optimizations for retain+release pairs.
 | |
|   if (UsedInThisFunction & ((1 << IC_Retain) |
 | |
|                             (1 << IC_RetainRV) |
 | |
|                             (1 << IC_RetainBlock)))
 | |
|     if (UsedInThisFunction & (1 << IC_Release))
 | |
|       // Run OptimizeSequences until it either stops making changes or
 | |
|       // no retain+release pair nesting is detected.
 | |
|       while (OptimizeSequences(F)) {}
 | |
| 
 | |
|   // Optimizations if objc_autorelease is used.
 | |
|   if (UsedInThisFunction & ((1 << IC_Autorelease) |
 | |
|                             (1 << IC_AutoreleaseRV)))
 | |
|     OptimizeReturns(F);
 | |
| 
 | |
|   // Gather statistics after optimization.
 | |
| #ifndef NDEBUG
 | |
|   if (AreStatisticsEnabled()) {
 | |
|     GatherStatistics(F, true);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   DEBUG(dbgs() << "\n");
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void ObjCARCOpt::releaseMemory() {
 | |
|   PA.clear();
 | |
| }
 | |
| 
 | |
| /// @}
 | |
| ///
 |