forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1070 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- sanitizer_win.cc --------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is shared between AddressSanitizer and ThreadSanitizer
 | |
| // run-time libraries and implements windows-specific functions from
 | |
| // sanitizer_libc.h.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "sanitizer_platform.h"
 | |
| #if SANITIZER_WINDOWS
 | |
| 
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #define NOGDI
 | |
| #include <windows.h>
 | |
| #include <io.h>
 | |
| #include <psapi.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #include "sanitizer_common.h"
 | |
| #include "sanitizer_file.h"
 | |
| #include "sanitizer_libc.h"
 | |
| #include "sanitizer_mutex.h"
 | |
| #include "sanitizer_placement_new.h"
 | |
| #include "sanitizer_win_defs.h"
 | |
| 
 | |
| #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
 | |
| #pragma comment(lib, "psapi")
 | |
| #endif
 | |
| 
 | |
| // A macro to tell the compiler that this part of the code cannot be reached,
 | |
| // if the compiler supports this feature. Since we're using this in
 | |
| // code that is called when terminating the process, the expansion of the
 | |
| // macro should not terminate the process to avoid infinite recursion.
 | |
| #if defined(__clang__)
 | |
| # define BUILTIN_UNREACHABLE() __builtin_unreachable()
 | |
| #elif defined(__GNUC__) && \
 | |
|     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
 | |
| # define BUILTIN_UNREACHABLE() __builtin_unreachable()
 | |
| #elif defined(_MSC_VER)
 | |
| # define BUILTIN_UNREACHABLE() __assume(0)
 | |
| #else
 | |
| # define BUILTIN_UNREACHABLE()
 | |
| #endif
 | |
| 
 | |
| namespace __sanitizer {
 | |
| 
 | |
| #include "sanitizer_syscall_generic.inc"
 | |
| 
 | |
| // --------------------- sanitizer_common.h
 | |
| uptr GetPageSize() {
 | |
|   SYSTEM_INFO si;
 | |
|   GetSystemInfo(&si);
 | |
|   return si.dwPageSize;
 | |
| }
 | |
| 
 | |
| uptr GetMmapGranularity() {
 | |
|   SYSTEM_INFO si;
 | |
|   GetSystemInfo(&si);
 | |
|   return si.dwAllocationGranularity;
 | |
| }
 | |
| 
 | |
| uptr GetMaxUserVirtualAddress() {
 | |
|   SYSTEM_INFO si;
 | |
|   GetSystemInfo(&si);
 | |
|   return (uptr)si.lpMaximumApplicationAddress;
 | |
| }
 | |
| 
 | |
| uptr GetMaxVirtualAddress() {
 | |
|   return GetMaxUserVirtualAddress();
 | |
| }
 | |
| 
 | |
| bool FileExists(const char *filename) {
 | |
|   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
 | |
| }
 | |
| 
 | |
| uptr internal_getpid() {
 | |
|   return GetProcessId(GetCurrentProcess());
 | |
| }
 | |
| 
 | |
| // In contrast to POSIX, on Windows GetCurrentThreadId()
 | |
| // returns a system-unique identifier.
 | |
| tid_t GetTid() {
 | |
|   return GetCurrentThreadId();
 | |
| }
 | |
| 
 | |
| uptr GetThreadSelf() {
 | |
|   return GetTid();
 | |
| }
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
 | |
|                                 uptr *stack_bottom) {
 | |
|   CHECK(stack_top);
 | |
|   CHECK(stack_bottom);
 | |
|   MEMORY_BASIC_INFORMATION mbi;
 | |
|   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
 | |
|   // FIXME: is it possible for the stack to not be a single allocation?
 | |
|   // Are these values what ASan expects to get (reserved, not committed;
 | |
|   // including stack guard page) ?
 | |
|   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
 | |
|   *stack_bottom = (uptr)mbi.AllocationBase;
 | |
| }
 | |
| #endif  // #if !SANITIZER_GO
 | |
| 
 | |
| void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
 | |
|   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
 | |
|   if (rv == 0)
 | |
|     ReportMmapFailureAndDie(size, mem_type, "allocate",
 | |
|                             GetLastError(), raw_report);
 | |
|   return rv;
 | |
| }
 | |
| 
 | |
| void UnmapOrDie(void *addr, uptr size) {
 | |
|   if (!size || !addr)
 | |
|     return;
 | |
| 
 | |
|   MEMORY_BASIC_INFORMATION mbi;
 | |
|   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
 | |
| 
 | |
|   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
 | |
|   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
 | |
|   // fails try MEM_DECOMMIT.
 | |
|   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
 | |
|     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
 | |
|       Report("ERROR: %s failed to "
 | |
|              "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
 | |
|              SanitizerToolName, size, size, addr, GetLastError());
 | |
|       CHECK("unable to unmap" && 0);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
 | |
|                                      const char *mmap_type) {
 | |
|   error_t last_error = GetLastError();
 | |
|   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
 | |
|     return nullptr;
 | |
|   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
 | |
| }
 | |
| 
 | |
| void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
 | |
|   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
 | |
|   if (rv == 0)
 | |
|     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
 | |
|   return rv;
 | |
| }
 | |
| 
 | |
| // We want to map a chunk of address space aligned to 'alignment'.
 | |
| void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
 | |
|                                    const char *mem_type) {
 | |
|   CHECK(IsPowerOfTwo(size));
 | |
|   CHECK(IsPowerOfTwo(alignment));
 | |
| 
 | |
|   // Windows will align our allocations to at least 64K.
 | |
|   alignment = Max(alignment, GetMmapGranularity());
 | |
| 
 | |
|   uptr mapped_addr =
 | |
|       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
 | |
|   if (!mapped_addr)
 | |
|     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
 | |
| 
 | |
|   // If we got it right on the first try, return. Otherwise, unmap it and go to
 | |
|   // the slow path.
 | |
|   if (IsAligned(mapped_addr, alignment))
 | |
|     return (void*)mapped_addr;
 | |
|   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
 | |
|     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
 | |
| 
 | |
|   // If we didn't get an aligned address, overallocate, find an aligned address,
 | |
|   // unmap, and try to allocate at that aligned address.
 | |
|   int retries = 0;
 | |
|   const int kMaxRetries = 10;
 | |
|   for (; retries < kMaxRetries &&
 | |
|          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
 | |
|        retries++) {
 | |
|     // Overallocate size + alignment bytes.
 | |
|     mapped_addr =
 | |
|         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
 | |
|     if (!mapped_addr)
 | |
|       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
 | |
| 
 | |
|     // Find the aligned address.
 | |
|     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
 | |
| 
 | |
|     // Free the overallocation.
 | |
|     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
 | |
|       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
 | |
| 
 | |
|     // Attempt to allocate exactly the number of bytes we need at the aligned
 | |
|     // address. This may fail for a number of reasons, in which case we continue
 | |
|     // the loop.
 | |
|     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
 | |
|                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
 | |
|   }
 | |
| 
 | |
|   // Fail if we can't make this work quickly.
 | |
|   if (retries == kMaxRetries && mapped_addr == 0)
 | |
|     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
 | |
| 
 | |
|   return (void *)mapped_addr;
 | |
| }
 | |
| 
 | |
| bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
 | |
|   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
 | |
|   // but on Win64 it does.
 | |
|   (void)name;  // unsupported
 | |
| #if !SANITIZER_GO && SANITIZER_WINDOWS64
 | |
|   // On asan/Windows64, use MEM_COMMIT would result in error
 | |
|   // 1455:ERROR_COMMITMENT_LIMIT.
 | |
|   // Asan uses exception handler to commit page on demand.
 | |
|   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
 | |
| #else
 | |
|   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
 | |
|                          PAGE_READWRITE);
 | |
| #endif
 | |
|   if (p == 0) {
 | |
|     Report("ERROR: %s failed to "
 | |
|            "allocate %p (%zd) bytes at %p (error code: %d)\n",
 | |
|            SanitizerToolName, size, size, fixed_addr, GetLastError());
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
 | |
| // 'MmapFixedNoAccess'.
 | |
| void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
 | |
|   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
 | |
|       MEM_COMMIT, PAGE_READWRITE);
 | |
|   if (p == 0) {
 | |
|     char mem_type[30];
 | |
|     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
 | |
|                       fixed_addr);
 | |
|     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| // Uses fixed_addr for now.
 | |
| // Will use offset instead once we've implemented this function for real.
 | |
| uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size) {
 | |
|   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
 | |
| }
 | |
| 
 | |
| uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size) {
 | |
|   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
 | |
| }
 | |
| 
 | |
| void ReservedAddressRange::Unmap(uptr addr, uptr size) {
 | |
|   // Only unmap if it covers the entire range.
 | |
|   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
 | |
|   // We unmap the whole range, just null out the base.
 | |
|   base_ = nullptr;
 | |
|   size_ = 0;
 | |
|   UnmapOrDie(reinterpret_cast<void*>(addr), size);
 | |
| }
 | |
| 
 | |
| void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
 | |
|   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
 | |
|       MEM_COMMIT, PAGE_READWRITE);
 | |
|   if (p == 0) {
 | |
|     char mem_type[30];
 | |
|     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
 | |
|                       fixed_addr);
 | |
|     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
 | |
|   // FIXME: make this really NoReserve?
 | |
|   return MmapOrDie(size, mem_type);
 | |
| }
 | |
| 
 | |
| uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
 | |
|   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
 | |
|   size_ = size;
 | |
|   name_ = name;
 | |
|   (void)os_handle_;  // unsupported
 | |
|   return reinterpret_cast<uptr>(base_);
 | |
| }
 | |
| 
 | |
| 
 | |
| void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
 | |
|   (void)name; // unsupported
 | |
|   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
 | |
|                            MEM_RESERVE, PAGE_NOACCESS);
 | |
|   if (res == 0)
 | |
|     Report("WARNING: %s failed to "
 | |
|            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
 | |
|            SanitizerToolName, size, size, fixed_addr, GetLastError());
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| void *MmapNoAccess(uptr size) {
 | |
|   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
 | |
|   if (res == 0)
 | |
|     Report("WARNING: %s failed to "
 | |
|            "mprotect %p (%zd) bytes (error code: %d)\n",
 | |
|            SanitizerToolName, size, size, GetLastError());
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| bool MprotectNoAccess(uptr addr, uptr size) {
 | |
|   DWORD old_protection;
 | |
|   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
 | |
| }
 | |
| 
 | |
| void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
 | |
|   // This is almost useless on 32-bits.
 | |
|   // FIXME: add madvise-analog when we move to 64-bits.
 | |
| }
 | |
| 
 | |
| bool NoHugePagesInRegion(uptr addr, uptr size) {
 | |
|   // FIXME: probably similar to ReleaseMemoryToOS.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DontDumpShadowMemory(uptr addr, uptr length) {
 | |
|   // This is almost useless on 32-bits.
 | |
|   // FIXME: add madvise-analog when we move to 64-bits.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
 | |
|                               uptr *largest_gap_found,
 | |
|                               uptr *max_occupied_addr) {
 | |
|   uptr address = 0;
 | |
|   while (true) {
 | |
|     MEMORY_BASIC_INFORMATION info;
 | |
|     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
 | |
|       return 0;
 | |
| 
 | |
|     if (info.State == MEM_FREE) {
 | |
|       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
 | |
|                                       alignment);
 | |
|       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
 | |
|         return shadow_address;
 | |
|     }
 | |
| 
 | |
|     // Move to the next region.
 | |
|     address = (uptr)info.BaseAddress + info.RegionSize;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
 | |
|   MEMORY_BASIC_INFORMATION mbi;
 | |
|   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
 | |
|   return mbi.Protect == PAGE_NOACCESS &&
 | |
|          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
 | |
| }
 | |
| 
 | |
| void *MapFileToMemory(const char *file_name, uptr *buff_size) {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| static const int kMaxEnvNameLength = 128;
 | |
| static const DWORD kMaxEnvValueLength = 32767;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct EnvVariable {
 | |
|   char name[kMaxEnvNameLength];
 | |
|   char value[kMaxEnvValueLength];
 | |
| };
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| static const int kEnvVariables = 5;
 | |
| static EnvVariable env_vars[kEnvVariables];
 | |
| static int num_env_vars;
 | |
| 
 | |
| const char *GetEnv(const char *name) {
 | |
|   // Note: this implementation caches the values of the environment variables
 | |
|   // and limits their quantity.
 | |
|   for (int i = 0; i < num_env_vars; i++) {
 | |
|     if (0 == internal_strcmp(name, env_vars[i].name))
 | |
|       return env_vars[i].value;
 | |
|   }
 | |
|   CHECK_LT(num_env_vars, kEnvVariables);
 | |
|   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
 | |
|                                      kMaxEnvValueLength);
 | |
|   if (rv > 0 && rv < kMaxEnvValueLength) {
 | |
|     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
 | |
|     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
 | |
|     num_env_vars++;
 | |
|     return env_vars[num_env_vars - 1].value;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| const char *GetPwd() {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| u32 GetUid() {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct ModuleInfo {
 | |
|   const char *filepath;
 | |
|   uptr base_address;
 | |
|   uptr end_address;
 | |
| };
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| int CompareModulesBase(const void *pl, const void *pr) {
 | |
|   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
 | |
|   if (l->base_address < r->base_address)
 | |
|     return -1;
 | |
|   return l->base_address > r->base_address;
 | |
| }
 | |
| #endif
 | |
| }  // namespace
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| void DumpProcessMap() {
 | |
|   Report("Dumping process modules:\n");
 | |
|   ListOfModules modules;
 | |
|   modules.init();
 | |
|   uptr num_modules = modules.size();
 | |
| 
 | |
|   InternalMmapVector<ModuleInfo> module_infos(num_modules);
 | |
|   for (size_t i = 0; i < num_modules; ++i) {
 | |
|     module_infos[i].filepath = modules[i].full_name();
 | |
|     module_infos[i].base_address = modules[i].ranges().front()->beg;
 | |
|     module_infos[i].end_address = modules[i].ranges().back()->end;
 | |
|   }
 | |
|   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
 | |
|         CompareModulesBase);
 | |
| 
 | |
|   for (size_t i = 0; i < num_modules; ++i) {
 | |
|     const ModuleInfo &mi = module_infos[i];
 | |
|     if (mi.end_address != 0) {
 | |
|       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
 | |
|              mi.filepath[0] ? mi.filepath : "[no name]");
 | |
|     } else if (mi.filepath[0]) {
 | |
|       Printf("\t??\?-??? %s\n", mi.filepath);
 | |
|     } else {
 | |
|       Printf("\t???\n");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void PrintModuleMap() { }
 | |
| 
 | |
| void DisableCoreDumperIfNecessary() {
 | |
|   // Do nothing.
 | |
| }
 | |
| 
 | |
| void ReExec() {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
 | |
| 
 | |
| bool StackSizeIsUnlimited() {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| void SetStackSizeLimitInBytes(uptr limit) {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| bool AddressSpaceIsUnlimited() {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| void SetAddressSpaceUnlimited() {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| bool IsPathSeparator(const char c) {
 | |
|   return c == '\\' || c == '/';
 | |
| }
 | |
| 
 | |
| bool IsAbsolutePath(const char *path) {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| void SleepForSeconds(int seconds) {
 | |
|   Sleep(seconds * 1000);
 | |
| }
 | |
| 
 | |
| void SleepForMillis(int millis) {
 | |
|   Sleep(millis);
 | |
| }
 | |
| 
 | |
| u64 NanoTime() {
 | |
|   static LARGE_INTEGER frequency = {};
 | |
|   LARGE_INTEGER counter;
 | |
|   if (UNLIKELY(frequency.QuadPart == 0)) {
 | |
|     QueryPerformanceFrequency(&frequency);
 | |
|     CHECK_NE(frequency.QuadPart, 0);
 | |
|   }
 | |
|   QueryPerformanceCounter(&counter);
 | |
|   counter.QuadPart *= 1000ULL * 1000000ULL;
 | |
|   counter.QuadPart /= frequency.QuadPart;
 | |
|   return counter.QuadPart;
 | |
| }
 | |
| 
 | |
| u64 MonotonicNanoTime() { return NanoTime(); }
 | |
| 
 | |
| void Abort() {
 | |
|   internal__exit(3);
 | |
| }
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| // Read the file to extract the ImageBase field from the PE header. If ASLR is
 | |
| // disabled and this virtual address is available, the loader will typically
 | |
| // load the image at this address. Therefore, we call it the preferred base. Any
 | |
| // addresses in the DWARF typically assume that the object has been loaded at
 | |
| // this address.
 | |
| static uptr GetPreferredBase(const char *modname) {
 | |
|   fd_t fd = OpenFile(modname, RdOnly, nullptr);
 | |
|   if (fd == kInvalidFd)
 | |
|     return 0;
 | |
|   FileCloser closer(fd);
 | |
| 
 | |
|   // Read just the DOS header.
 | |
|   IMAGE_DOS_HEADER dos_header;
 | |
|   uptr bytes_read;
 | |
|   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
 | |
|       bytes_read != sizeof(dos_header))
 | |
|     return 0;
 | |
| 
 | |
|   // The file should start with the right signature.
 | |
|   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
 | |
|     return 0;
 | |
| 
 | |
|   // The layout at e_lfanew is:
 | |
|   // "PE\0\0"
 | |
|   // IMAGE_FILE_HEADER
 | |
|   // IMAGE_OPTIONAL_HEADER
 | |
|   // Seek to e_lfanew and read all that data.
 | |
|   char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
 | |
|   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
 | |
|       INVALID_SET_FILE_POINTER)
 | |
|     return 0;
 | |
|   if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
 | |
|       bytes_read != sizeof(buf))
 | |
|     return 0;
 | |
| 
 | |
|   // Check for "PE\0\0" before the PE header.
 | |
|   char *pe_sig = &buf[0];
 | |
|   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
 | |
|     return 0;
 | |
| 
 | |
|   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
 | |
|   IMAGE_OPTIONAL_HEADER *pe_header =
 | |
|       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
 | |
| 
 | |
|   // Check for more magic in the PE header.
 | |
|   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
 | |
|     return 0;
 | |
| 
 | |
|   // Finally, return the ImageBase.
 | |
|   return (uptr)pe_header->ImageBase;
 | |
| }
 | |
| 
 | |
| void ListOfModules::init() {
 | |
|   clearOrInit();
 | |
|   HANDLE cur_process = GetCurrentProcess();
 | |
| 
 | |
|   // Query the list of modules.  Start by assuming there are no more than 256
 | |
|   // modules and retry if that's not sufficient.
 | |
|   HMODULE *hmodules = 0;
 | |
|   uptr modules_buffer_size = sizeof(HMODULE) * 256;
 | |
|   DWORD bytes_required;
 | |
|   while (!hmodules) {
 | |
|     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
 | |
|     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
 | |
|                              &bytes_required));
 | |
|     if (bytes_required > modules_buffer_size) {
 | |
|       // Either there turned out to be more than 256 hmodules, or new hmodules
 | |
|       // could have loaded since the last try.  Retry.
 | |
|       UnmapOrDie(hmodules, modules_buffer_size);
 | |
|       hmodules = 0;
 | |
|       modules_buffer_size = bytes_required;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // |num_modules| is the number of modules actually present,
 | |
|   size_t num_modules = bytes_required / sizeof(HMODULE);
 | |
|   for (size_t i = 0; i < num_modules; ++i) {
 | |
|     HMODULE handle = hmodules[i];
 | |
|     MODULEINFO mi;
 | |
|     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
 | |
|       continue;
 | |
| 
 | |
|     // Get the UTF-16 path and convert to UTF-8.
 | |
|     wchar_t modname_utf16[kMaxPathLength];
 | |
|     int modname_utf16_len =
 | |
|         GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
 | |
|     if (modname_utf16_len == 0)
 | |
|       modname_utf16[0] = '\0';
 | |
|     char module_name[kMaxPathLength];
 | |
|     int module_name_len =
 | |
|         ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
 | |
|                               &module_name[0], kMaxPathLength, NULL, NULL);
 | |
|     module_name[module_name_len] = '\0';
 | |
| 
 | |
|     uptr base_address = (uptr)mi.lpBaseOfDll;
 | |
|     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
 | |
| 
 | |
|     // Adjust the base address of the module so that we get a VA instead of an
 | |
|     // RVA when computing the module offset. This helps llvm-symbolizer find the
 | |
|     // right DWARF CU. In the common case that the image is loaded at it's
 | |
|     // preferred address, we will now print normal virtual addresses.
 | |
|     uptr preferred_base = GetPreferredBase(&module_name[0]);
 | |
|     uptr adjusted_base = base_address - preferred_base;
 | |
| 
 | |
|     LoadedModule cur_module;
 | |
|     cur_module.set(module_name, adjusted_base);
 | |
|     // We add the whole module as one single address range.
 | |
|     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
 | |
|                                /*writable*/ true);
 | |
|     modules_.push_back(cur_module);
 | |
|   }
 | |
|   UnmapOrDie(hmodules, modules_buffer_size);
 | |
| }
 | |
| 
 | |
| void ListOfModules::fallbackInit() { clear(); }
 | |
| 
 | |
| // We can't use atexit() directly at __asan_init time as the CRT is not fully
 | |
| // initialized at this point.  Place the functions into a vector and use
 | |
| // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
 | |
| InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
 | |
| 
 | |
| int Atexit(void (*function)(void)) {
 | |
|   atexit_functions.push_back(function);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static int RunAtexit() {
 | |
|   int ret = 0;
 | |
|   for (uptr i = 0; i < atexit_functions.size(); ++i) {
 | |
|     ret |= atexit(atexit_functions[i]);
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| #pragma section(".CRT$XID", long, read)  // NOLINT
 | |
| __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
 | |
| #endif
 | |
| 
 | |
| // ------------------ sanitizer_libc.h
 | |
| fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
 | |
|   // FIXME: Use the wide variants to handle Unicode filenames.
 | |
|   fd_t res;
 | |
|   if (mode == RdOnly) {
 | |
|     res = CreateFileA(filename, GENERIC_READ,
 | |
|                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
 | |
|                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
 | |
|   } else if (mode == WrOnly) {
 | |
|     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
 | |
|                       FILE_ATTRIBUTE_NORMAL, nullptr);
 | |
|   } else {
 | |
|     UNIMPLEMENTED();
 | |
|   }
 | |
|   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
 | |
|   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
 | |
|   if (res == kInvalidFd && last_error)
 | |
|     *last_error = GetLastError();
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| void CloseFile(fd_t fd) {
 | |
|   CloseHandle(fd);
 | |
| }
 | |
| 
 | |
| bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
 | |
|                   error_t *error_p) {
 | |
|   CHECK(fd != kInvalidFd);
 | |
| 
 | |
|   // bytes_read can't be passed directly to ReadFile:
 | |
|   // uptr is unsigned long long on 64-bit Windows.
 | |
|   unsigned long num_read_long;
 | |
| 
 | |
|   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
 | |
|   if (!success && error_p)
 | |
|     *error_p = GetLastError();
 | |
|   if (bytes_read)
 | |
|     *bytes_read = num_read_long;
 | |
|   return success;
 | |
| }
 | |
| 
 | |
| bool SupportsColoredOutput(fd_t fd) {
 | |
|   // FIXME: support colored output.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
 | |
|                  error_t *error_p) {
 | |
|   CHECK(fd != kInvalidFd);
 | |
| 
 | |
|   // Handle null optional parameters.
 | |
|   error_t dummy_error;
 | |
|   error_p = error_p ? error_p : &dummy_error;
 | |
|   uptr dummy_bytes_written;
 | |
|   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
 | |
| 
 | |
|   // Initialize output parameters in case we fail.
 | |
|   *error_p = 0;
 | |
|   *bytes_written = 0;
 | |
| 
 | |
|   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
 | |
|   // closed, in which case this will fail.
 | |
|   if (fd == kStdoutFd || fd == kStderrFd) {
 | |
|     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
 | |
|     if (fd == 0) {
 | |
|       *error_p = ERROR_INVALID_HANDLE;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DWORD bytes_written_32;
 | |
|   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
 | |
|     *error_p = GetLastError();
 | |
|     return false;
 | |
|   } else {
 | |
|     *bytes_written = bytes_written_32;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| uptr internal_sched_yield() {
 | |
|   Sleep(0);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void internal__exit(int exitcode) {
 | |
|   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
 | |
|   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
 | |
|   // so add our own breakpoint here.
 | |
|   if (::IsDebuggerPresent())
 | |
|     __debugbreak();
 | |
|   TerminateProcess(GetCurrentProcess(), exitcode);
 | |
|   BUILTIN_UNREACHABLE();
 | |
| }
 | |
| 
 | |
| uptr internal_ftruncate(fd_t fd, uptr size) {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| uptr GetRSS() {
 | |
|   PROCESS_MEMORY_COUNTERS counters;
 | |
|   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
 | |
|     return 0;
 | |
|   return counters.WorkingSetSize;
 | |
| }
 | |
| 
 | |
| void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
 | |
| void internal_join_thread(void *th) { }
 | |
| 
 | |
| // ---------------------- BlockingMutex ---------------- {{{1
 | |
| 
 | |
| BlockingMutex::BlockingMutex() {
 | |
|   CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
 | |
|   internal_memset(this, 0, sizeof(*this));
 | |
| }
 | |
| 
 | |
| void BlockingMutex::Lock() {
 | |
|   AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
 | |
|   CHECK_EQ(owner_, 0);
 | |
|   owner_ = GetThreadSelf();
 | |
| }
 | |
| 
 | |
| void BlockingMutex::Unlock() {
 | |
|   CheckLocked();
 | |
|   owner_ = 0;
 | |
|   ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
 | |
| }
 | |
| 
 | |
| void BlockingMutex::CheckLocked() {
 | |
|   CHECK_EQ(owner_, GetThreadSelf());
 | |
| }
 | |
| 
 | |
| uptr GetTlsSize() {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void InitTlsSize() {
 | |
| }
 | |
| 
 | |
| void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
 | |
|                           uptr *tls_addr, uptr *tls_size) {
 | |
| #if SANITIZER_GO
 | |
|   *stk_addr = 0;
 | |
|   *stk_size = 0;
 | |
|   *tls_addr = 0;
 | |
|   *tls_size = 0;
 | |
| #else
 | |
|   uptr stack_top, stack_bottom;
 | |
|   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
 | |
|   *stk_addr = stack_bottom;
 | |
|   *stk_size = stack_top - stack_bottom;
 | |
|   *tls_addr = 0;
 | |
|   *tls_size = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ReportFile::Write(const char *buffer, uptr length) {
 | |
|   SpinMutexLock l(mu);
 | |
|   ReopenIfNecessary();
 | |
|   if (!WriteToFile(fd, buffer, length)) {
 | |
|     // stderr may be closed, but we may be able to print to the debugger
 | |
|     // instead.  This is the case when launching a program from Visual Studio,
 | |
|     // and the following routine should write to its console.
 | |
|     OutputDebugStringA(buffer);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SetAlternateSignalStack() {
 | |
|   // FIXME: Decide what to do on Windows.
 | |
| }
 | |
| 
 | |
| void UnsetAlternateSignalStack() {
 | |
|   // FIXME: Decide what to do on Windows.
 | |
| }
 | |
| 
 | |
| void InstallDeadlySignalHandlers(SignalHandlerType handler) {
 | |
|   (void)handler;
 | |
|   // FIXME: Decide what to do on Windows.
 | |
| }
 | |
| 
 | |
| HandleSignalMode GetHandleSignalMode(int signum) {
 | |
|   // FIXME: Decide what to do on Windows.
 | |
|   return kHandleSignalNo;
 | |
| }
 | |
| 
 | |
| // Check based on flags if we should handle this exception.
 | |
| bool IsHandledDeadlyException(DWORD exceptionCode) {
 | |
|   switch (exceptionCode) {
 | |
|     case EXCEPTION_ACCESS_VIOLATION:
 | |
|     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
 | |
|     case EXCEPTION_STACK_OVERFLOW:
 | |
|     case EXCEPTION_DATATYPE_MISALIGNMENT:
 | |
|     case EXCEPTION_IN_PAGE_ERROR:
 | |
|       return common_flags()->handle_segv;
 | |
|     case EXCEPTION_ILLEGAL_INSTRUCTION:
 | |
|     case EXCEPTION_PRIV_INSTRUCTION:
 | |
|     case EXCEPTION_BREAKPOINT:
 | |
|       return common_flags()->handle_sigill;
 | |
|     case EXCEPTION_FLT_DENORMAL_OPERAND:
 | |
|     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
 | |
|     case EXCEPTION_FLT_INEXACT_RESULT:
 | |
|     case EXCEPTION_FLT_INVALID_OPERATION:
 | |
|     case EXCEPTION_FLT_OVERFLOW:
 | |
|     case EXCEPTION_FLT_STACK_CHECK:
 | |
|     case EXCEPTION_FLT_UNDERFLOW:
 | |
|     case EXCEPTION_INT_DIVIDE_BY_ZERO:
 | |
|     case EXCEPTION_INT_OVERFLOW:
 | |
|       return common_flags()->handle_sigfpe;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool IsAccessibleMemoryRange(uptr beg, uptr size) {
 | |
|   SYSTEM_INFO si;
 | |
|   GetNativeSystemInfo(&si);
 | |
|   uptr page_size = si.dwPageSize;
 | |
|   uptr page_mask = ~(page_size - 1);
 | |
| 
 | |
|   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
 | |
|        page <= end;) {
 | |
|     MEMORY_BASIC_INFORMATION info;
 | |
|     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
 | |
|       return false;
 | |
| 
 | |
|     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
 | |
|         info.Protect == PAGE_EXECUTE)
 | |
|       return false;
 | |
| 
 | |
|     if (info.RegionSize == 0)
 | |
|       return false;
 | |
| 
 | |
|     page += info.RegionSize;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SignalContext::IsStackOverflow() const {
 | |
|   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
 | |
| }
 | |
| 
 | |
| void SignalContext::InitPcSpBp() {
 | |
|   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
 | |
|   CONTEXT *context_record = (CONTEXT *)context;
 | |
| 
 | |
|   pc = (uptr)exception_record->ExceptionAddress;
 | |
| #ifdef _WIN64
 | |
|   bp = (uptr)context_record->Rbp;
 | |
|   sp = (uptr)context_record->Rsp;
 | |
| #else
 | |
|   bp = (uptr)context_record->Ebp;
 | |
|   sp = (uptr)context_record->Esp;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| uptr SignalContext::GetAddress() const {
 | |
|   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
 | |
|   return exception_record->ExceptionInformation[1];
 | |
| }
 | |
| 
 | |
| bool SignalContext::IsMemoryAccess() const {
 | |
|   return GetWriteFlag() != SignalContext::UNKNOWN;
 | |
| }
 | |
| 
 | |
| SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
 | |
|   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
 | |
|   // The contents of this array are documented at
 | |
|   // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
 | |
|   // The first element indicates read as 0, write as 1, or execute as 8.  The
 | |
|   // second element is the faulting address.
 | |
|   switch (exception_record->ExceptionInformation[0]) {
 | |
|     case 0:
 | |
|       return SignalContext::READ;
 | |
|     case 1:
 | |
|       return SignalContext::WRITE;
 | |
|     case 8:
 | |
|       return SignalContext::UNKNOWN;
 | |
|   }
 | |
|   return SignalContext::UNKNOWN;
 | |
| }
 | |
| 
 | |
| void SignalContext::DumpAllRegisters(void *context) {
 | |
|   // FIXME: Implement this.
 | |
| }
 | |
| 
 | |
| int SignalContext::GetType() const {
 | |
|   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
 | |
| }
 | |
| 
 | |
| const char *SignalContext::Describe() const {
 | |
|   unsigned code = GetType();
 | |
|   // Get the string description of the exception if this is a known deadly
 | |
|   // exception.
 | |
|   switch (code) {
 | |
|     case EXCEPTION_ACCESS_VIOLATION:
 | |
|       return "access-violation";
 | |
|     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
 | |
|       return "array-bounds-exceeded";
 | |
|     case EXCEPTION_STACK_OVERFLOW:
 | |
|       return "stack-overflow";
 | |
|     case EXCEPTION_DATATYPE_MISALIGNMENT:
 | |
|       return "datatype-misalignment";
 | |
|     case EXCEPTION_IN_PAGE_ERROR:
 | |
|       return "in-page-error";
 | |
|     case EXCEPTION_ILLEGAL_INSTRUCTION:
 | |
|       return "illegal-instruction";
 | |
|     case EXCEPTION_PRIV_INSTRUCTION:
 | |
|       return "priv-instruction";
 | |
|     case EXCEPTION_BREAKPOINT:
 | |
|       return "breakpoint";
 | |
|     case EXCEPTION_FLT_DENORMAL_OPERAND:
 | |
|       return "flt-denormal-operand";
 | |
|     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
 | |
|       return "flt-divide-by-zero";
 | |
|     case EXCEPTION_FLT_INEXACT_RESULT:
 | |
|       return "flt-inexact-result";
 | |
|     case EXCEPTION_FLT_INVALID_OPERATION:
 | |
|       return "flt-invalid-operation";
 | |
|     case EXCEPTION_FLT_OVERFLOW:
 | |
|       return "flt-overflow";
 | |
|     case EXCEPTION_FLT_STACK_CHECK:
 | |
|       return "flt-stack-check";
 | |
|     case EXCEPTION_FLT_UNDERFLOW:
 | |
|       return "flt-underflow";
 | |
|     case EXCEPTION_INT_DIVIDE_BY_ZERO:
 | |
|       return "int-divide-by-zero";
 | |
|     case EXCEPTION_INT_OVERFLOW:
 | |
|       return "int-overflow";
 | |
|   }
 | |
|   return "unknown exception";
 | |
| }
 | |
| 
 | |
| uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
 | |
|   // FIXME: Actually implement this function.
 | |
|   CHECK_GT(buf_len, 0);
 | |
|   buf[0] = 0;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
 | |
|   return ReadBinaryName(buf, buf_len);
 | |
| }
 | |
| 
 | |
| void CheckVMASize() {
 | |
|   // Do nothing.
 | |
| }
 | |
| 
 | |
| void InitializePlatformEarly() {
 | |
|   // Do nothing.
 | |
| }
 | |
| 
 | |
| void MaybeReexec() {
 | |
|   // No need to re-exec on Windows.
 | |
| }
 | |
| 
 | |
| void CheckASLR() {
 | |
|   // Do nothing
 | |
| }
 | |
| 
 | |
| void CheckMPROTECT() {
 | |
|   // Do nothing
 | |
| }
 | |
| 
 | |
| char **GetArgv() {
 | |
|   // FIXME: Actually implement this function.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| char **GetEnviron() {
 | |
|   // FIXME: Actually implement this function.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| pid_t StartSubprocess(const char *program, const char *const argv[],
 | |
|                       fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
 | |
|   // FIXME: implement on this platform
 | |
|   // Should be implemented based on
 | |
|   // SymbolizerProcess::StarAtSymbolizerSubprocess
 | |
|   // from lib/sanitizer_common/sanitizer_symbolizer_win.cc.
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool IsProcessRunning(pid_t pid) {
 | |
|   // FIXME: implement on this platform.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| int WaitForProcess(pid_t pid) { return -1; }
 | |
| 
 | |
| // FIXME implement on this platform.
 | |
| void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
 | |
| 
 | |
| void CheckNoDeepBind(const char *filename, int flag) {
 | |
|   // Do nothing.
 | |
| }
 | |
| 
 | |
| // FIXME: implement on this platform.
 | |
| bool GetRandom(void *buffer, uptr length, bool blocking) {
 | |
|   UNIMPLEMENTED();
 | |
| }
 | |
| 
 | |
| u32 GetNumberOfCPUs() {
 | |
|   SYSTEM_INFO sysinfo = {};
 | |
|   GetNativeSystemInfo(&sysinfo);
 | |
|   return sysinfo.dwNumberOfProcessors;
 | |
| }
 | |
| 
 | |
| }  // namespace __sanitizer
 | |
| 
 | |
| #endif  // _WIN32
 |