forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2868 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2868 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // These classes wrap the information about a call or function
 | |
| // definition used to handle ABI compliancy.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "TargetInfo.h"
 | |
| #include "ABIInfo.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
 | |
|                                llvm::Value *Array,
 | |
|                                llvm::Value *Value,
 | |
|                                unsigned FirstIndex,
 | |
|                                unsigned LastIndex) {
 | |
|   // Alternatively, we could emit this as a loop in the source.
 | |
|   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
 | |
|     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
 | |
|     Builder.CreateStore(Value, Cell);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isAggregateTypeForABI(QualType T) {
 | |
|   return CodeGenFunction::hasAggregateLLVMType(T) ||
 | |
|          T->isMemberFunctionPointerType();
 | |
| }
 | |
| 
 | |
| ABIInfo::~ABIInfo() {}
 | |
| 
 | |
| ASTContext &ABIInfo::getContext() const {
 | |
|   return CGT.getContext();
 | |
| }
 | |
| 
 | |
| llvm::LLVMContext &ABIInfo::getVMContext() const {
 | |
|   return CGT.getLLVMContext();
 | |
| }
 | |
| 
 | |
| const llvm::TargetData &ABIInfo::getTargetData() const {
 | |
|   return CGT.getTargetData();
 | |
| }
 | |
| 
 | |
| 
 | |
| void ABIArgInfo::dump() const {
 | |
|   llvm::raw_ostream &OS = llvm::errs();
 | |
|   OS << "(ABIArgInfo Kind=";
 | |
|   switch (TheKind) {
 | |
|   case Direct:
 | |
|     OS << "Direct Type=";
 | |
|     if (const llvm::Type *Ty = getCoerceToType())
 | |
|       Ty->print(OS);
 | |
|     else
 | |
|       OS << "null";
 | |
|     break;
 | |
|   case Extend:
 | |
|     OS << "Extend";
 | |
|     break;
 | |
|   case Ignore:
 | |
|     OS << "Ignore";
 | |
|     break;
 | |
|   case Indirect:
 | |
|     OS << "Indirect Align=" << getIndirectAlign()
 | |
|        << " Byal=" << getIndirectByVal()
 | |
|        << " Realign=" << getIndirectRealign();
 | |
|     break;
 | |
|   case Expand:
 | |
|     OS << "Expand";
 | |
|     break;
 | |
|   }
 | |
|   OS << ")\n";
 | |
| }
 | |
| 
 | |
| TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
 | |
| 
 | |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
 | |
| 
 | |
| /// isEmptyField - Return true iff a the field is "empty", that is it
 | |
| /// is an unnamed bit-field or an (array of) empty record(s).
 | |
| static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
 | |
|                          bool AllowArrays) {
 | |
|   if (FD->isUnnamedBitfield())
 | |
|     return true;
 | |
| 
 | |
|   QualType FT = FD->getType();
 | |
| 
 | |
|     // Constant arrays of empty records count as empty, strip them off.
 | |
|   if (AllowArrays)
 | |
|     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
 | |
|       FT = AT->getElementType();
 | |
| 
 | |
|   const RecordType *RT = FT->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
| 
 | |
|   // C++ record fields are never empty, at least in the Itanium ABI.
 | |
|   //
 | |
|   // FIXME: We should use a predicate for whether this behavior is true in the
 | |
|   // current ABI.
 | |
|   if (isa<CXXRecordDecl>(RT->getDecl()))
 | |
|     return false;
 | |
| 
 | |
|   return isEmptyRecord(Context, FT, AllowArrays);
 | |
| }
 | |
| 
 | |
| /// isEmptyRecord - Return true iff a structure contains only empty
 | |
| /// fields. Note that a structure with a flexible array member is not
 | |
| /// considered empty.
 | |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
 | |
|   const RecordType *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return 0;
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   if (RD->hasFlexibleArrayMember())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a C++ record, check the bases first.
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | |
|            e = CXXRD->bases_end(); i != e; ++i)
 | |
|       if (!isEmptyRecord(Context, i->getType(), true))
 | |
|         return false;
 | |
| 
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|          i != e; ++i)
 | |
|     if (!isEmptyField(Context, *i, AllowArrays))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
 | |
| /// a non-trivial destructor or a non-trivial copy constructor.
 | |
| static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
 | |
|   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
 | |
|   if (!RD)
 | |
|     return false;
 | |
| 
 | |
|   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
 | |
| }
 | |
| 
 | |
| /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
 | |
| /// a record type with either a non-trivial destructor or a non-trivial copy
 | |
| /// constructor.
 | |
| static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
 | |
|   const RecordType *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
| 
 | |
|   return hasNonTrivialDestructorOrCopyConstructor(RT);
 | |
| }
 | |
| 
 | |
| /// isSingleElementStruct - Determine if a structure is a "single
 | |
| /// element struct", i.e. it has exactly one non-empty field or
 | |
| /// exactly one field which is itself a single element
 | |
| /// struct. Structures with flexible array members are never
 | |
| /// considered single element structs.
 | |
| ///
 | |
| /// \return The field declaration for the single non-empty field, if
 | |
| /// it exists.
 | |
| static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
 | |
|   const RecordType *RT = T->getAsStructureType();
 | |
|   if (!RT)
 | |
|     return 0;
 | |
| 
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   if (RD->hasFlexibleArrayMember())
 | |
|     return 0;
 | |
| 
 | |
|   const Type *Found = 0;
 | |
| 
 | |
|   // If this is a C++ record, check the bases first.
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | |
|            e = CXXRD->bases_end(); i != e; ++i) {
 | |
|       // Ignore empty records.
 | |
|       if (isEmptyRecord(Context, i->getType(), true))
 | |
|         continue;
 | |
| 
 | |
|       // If we already found an element then this isn't a single-element struct.
 | |
|       if (Found)
 | |
|         return 0;
 | |
| 
 | |
|       // If this is non-empty and not a single element struct, the composite
 | |
|       // cannot be a single element struct.
 | |
|       Found = isSingleElementStruct(i->getType(), Context);
 | |
|       if (!Found)
 | |
|         return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for single element.
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|          i != e; ++i) {
 | |
|     const FieldDecl *FD = *i;
 | |
|     QualType FT = FD->getType();
 | |
| 
 | |
|     // Ignore empty fields.
 | |
|     if (isEmptyField(Context, FD, true))
 | |
|       continue;
 | |
| 
 | |
|     // If we already found an element then this isn't a single-element
 | |
|     // struct.
 | |
|     if (Found)
 | |
|       return 0;
 | |
| 
 | |
|     // Treat single element arrays as the element.
 | |
|     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
 | |
|       if (AT->getSize().getZExtValue() != 1)
 | |
|         break;
 | |
|       FT = AT->getElementType();
 | |
|     }
 | |
| 
 | |
|     if (!isAggregateTypeForABI(FT)) {
 | |
|       Found = FT.getTypePtr();
 | |
|     } else {
 | |
|       Found = isSingleElementStruct(FT, Context);
 | |
|       if (!Found)
 | |
|         return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
 | |
|   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
 | |
|       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
 | |
|       !Ty->isBlockPointerType())
 | |
|     return false;
 | |
| 
 | |
|   uint64_t Size = Context.getTypeSize(Ty);
 | |
|   return Size == 32 || Size == 64;
 | |
| }
 | |
| 
 | |
| /// canExpandIndirectArgument - Test whether an argument type which is to be
 | |
| /// passed indirectly (on the stack) would have the equivalent layout if it was
 | |
| /// expanded into separate arguments. If so, we prefer to do the latter to avoid
 | |
| /// inhibiting optimizations.
 | |
| ///
 | |
| // FIXME: This predicate is missing many cases, currently it just follows
 | |
| // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
 | |
| // should probably make this smarter, or better yet make the LLVM backend
 | |
| // capable of handling it.
 | |
| static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
 | |
|   // We can only expand structure types.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
| 
 | |
|   // We can only expand (C) structures.
 | |
|   //
 | |
|   // FIXME: This needs to be generalized to handle classes as well.
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
 | |
|     return false;
 | |
| 
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|          i != e; ++i) {
 | |
|     const FieldDecl *FD = *i;
 | |
| 
 | |
|     if (!is32Or64BitBasicType(FD->getType(), Context))
 | |
|       return false;
 | |
| 
 | |
|     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
 | |
|     // how to expand them yet, and the predicate for telling if a bitfield still
 | |
|     // counts as "basic" is more complicated than what we were doing previously.
 | |
|     if (FD->isBitField())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// DefaultABIInfo - The default implementation for ABI specific
 | |
| /// details. This implementation provides information which results in
 | |
| /// self-consistent and sensible LLVM IR generation, but does not
 | |
| /// conform to any particular ABI.
 | |
| class DefaultABIInfo : public ABIInfo {
 | |
| public:
 | |
|   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
| 
 | |
|   virtual void computeInfo(CGFunctionInfo &FI) const {
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | |
|          it != ie; ++it)
 | |
|       it->info = classifyArgumentType(it->type);
 | |
|   }
 | |
| 
 | |
|   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                  CodeGenFunction &CGF) const;
 | |
| };
 | |
| 
 | |
| class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
 | |
| };
 | |
| 
 | |
| llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                        CodeGenFunction &CGF) const {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   if (isAggregateTypeForABI(Ty))
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (Ty->isPromotableIntegerType() ?
 | |
|           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (isAggregateTypeForABI(RetTy))
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|     RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (RetTy->isPromotableIntegerType() ?
 | |
|           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| /// UseX86_MMXType - Return true if this is an MMX type that should use the special
 | |
| /// x86_mmx type.
 | |
| bool UseX86_MMXType(const llvm::Type *IRType) {
 | |
|   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
 | |
|   // special x86_mmx type.
 | |
|   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
 | |
|     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
 | |
|     IRType->getScalarSizeInBits() != 64;
 | |
| }
 | |
| 
 | |
| static const llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | |
|                                                 llvm::StringRef Constraint,
 | |
|                                                 const llvm::Type* Ty) {
 | |
|   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
 | |
|     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86-32 ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// X86_32ABIInfo - The X86-32 ABI information.
 | |
| class X86_32ABIInfo : public ABIInfo {
 | |
|   static const unsigned MinABIStackAlignInBytes = 4;
 | |
| 
 | |
|   bool IsDarwinVectorABI;
 | |
|   bool IsSmallStructInRegABI;
 | |
| 
 | |
|   static bool isRegisterSize(unsigned Size) {
 | |
|     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
 | |
|   }
 | |
| 
 | |
|   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
 | |
| 
 | |
|   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | |
|   /// such that the argument will be passed in memory.
 | |
|   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
 | |
| 
 | |
|   /// \brief Return the alignment to use for the given type on the stack.
 | |
|   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
 | |
| 
 | |
| public:
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
| 
 | |
|   virtual void computeInfo(CGFunctionInfo &FI) const {
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | |
|          it != ie; ++it)
 | |
|       it->info = classifyArgumentType(it->type);
 | |
|   }
 | |
| 
 | |
|   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                  CodeGenFunction &CGF) const;
 | |
| 
 | |
|   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
 | |
|     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
 | |
| };
 | |
| 
 | |
| class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
 | |
|     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
 | |
| 
 | |
|   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &CGM) const;
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
 | |
|     // Darwin uses different dwarf register numbers for EH.
 | |
|     if (CGM.isTargetDarwin()) return 5;
 | |
| 
 | |
|     return 4;
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const;
 | |
| 
 | |
|   const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | |
|                                         llvm::StringRef Constraint,
 | |
|                                         const llvm::Type* Ty) const {
 | |
|     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// shouldReturnTypeInRegister - Determine if the given type should be
 | |
| /// passed in a register (for the Darwin ABI).
 | |
| bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
 | |
|                                                ASTContext &Context) {
 | |
|   uint64_t Size = Context.getTypeSize(Ty);
 | |
| 
 | |
|   // Type must be register sized.
 | |
|   if (!isRegisterSize(Size))
 | |
|     return false;
 | |
| 
 | |
|   if (Ty->isVectorType()) {
 | |
|     // 64- and 128- bit vectors inside structures are not returned in
 | |
|     // registers.
 | |
|     if (Size == 64 || Size == 128)
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this is a builtin, pointer, enum, complex type, member pointer, or
 | |
|   // member function pointer it is ok.
 | |
|   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
 | |
|       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
 | |
|       Ty->isBlockPointerType() || Ty->isMemberPointerType())
 | |
|     return true;
 | |
| 
 | |
|   // Arrays are treated like records.
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
 | |
|     return shouldReturnTypeInRegister(AT->getElementType(), Context);
 | |
| 
 | |
|   // Otherwise, it must be a record type.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (!RT) return false;
 | |
| 
 | |
|   // FIXME: Traverse bases here too.
 | |
| 
 | |
|   // Structure types are passed in register if all fields would be
 | |
|   // passed in a register.
 | |
|   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
 | |
|          e = RT->getDecl()->field_end(); i != e; ++i) {
 | |
|     const FieldDecl *FD = *i;
 | |
| 
 | |
|     // Empty fields are ignored.
 | |
|     if (isEmptyField(Context, FD, true))
 | |
|       continue;
 | |
| 
 | |
|     // Check fields recursively.
 | |
|     if (!shouldReturnTypeInRegister(FD->getType(), Context))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
 | |
|     // On Darwin, some vectors are returned in registers.
 | |
|     if (IsDarwinVectorABI) {
 | |
|       uint64_t Size = getContext().getTypeSize(RetTy);
 | |
| 
 | |
|       // 128-bit vectors are a special case; they are returned in
 | |
|       // registers and we need to make sure to pick a type the LLVM
 | |
|       // backend will like.
 | |
|       if (Size == 128)
 | |
|         return ABIArgInfo::getDirect(llvm::VectorType::get(
 | |
|                   llvm::Type::getInt64Ty(getVMContext()), 2));
 | |
| 
 | |
|       // Always return in register if it fits in a general purpose
 | |
|       // register, or if it is 64 bits and has a single element.
 | |
|       if ((Size == 8 || Size == 16 || Size == 32) ||
 | |
|           (Size == 64 && VT->getNumElements() == 1))
 | |
|         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | |
|                                                             Size));
 | |
| 
 | |
|       return ABIArgInfo::getIndirect(0);
 | |
|     }
 | |
| 
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
|   if (isAggregateTypeForABI(RetTy)) {
 | |
|     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
 | |
|       // Structures with either a non-trivial destructor or a non-trivial
 | |
|       // copy constructor are always indirect.
 | |
|       if (hasNonTrivialDestructorOrCopyConstructor(RT))
 | |
|         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | |
| 
 | |
|       // Structures with flexible arrays are always indirect.
 | |
|       if (RT->getDecl()->hasFlexibleArrayMember())
 | |
|         return ABIArgInfo::getIndirect(0);
 | |
|     }
 | |
| 
 | |
|     // If specified, structs and unions are always indirect.
 | |
|     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
 | |
|       return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|     // Classify "single element" structs as their element type.
 | |
|     if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
 | |
|       if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
 | |
|         if (BT->isIntegerType()) {
 | |
|           // We need to use the size of the structure, padding
 | |
|           // bit-fields can adjust that to be larger than the single
 | |
|           // element type.
 | |
|           uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|           return ABIArgInfo::getDirect(
 | |
|             llvm::IntegerType::get(getVMContext(), (unsigned)Size));
 | |
|         }
 | |
| 
 | |
|         if (BT->getKind() == BuiltinType::Float) {
 | |
|           assert(getContext().getTypeSize(RetTy) ==
 | |
|                  getContext().getTypeSize(SeltTy) &&
 | |
|                  "Unexpect single element structure size!");
 | |
|           return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
 | |
|         }
 | |
| 
 | |
|         if (BT->getKind() == BuiltinType::Double) {
 | |
|           assert(getContext().getTypeSize(RetTy) ==
 | |
|                  getContext().getTypeSize(SeltTy) &&
 | |
|                  "Unexpect single element structure size!");
 | |
|           return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
 | |
|         }
 | |
|       } else if (SeltTy->isPointerType()) {
 | |
|         // FIXME: It would be really nice if this could come out as the proper
 | |
|         // pointer type.
 | |
|         const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
 | |
|         return ABIArgInfo::getDirect(PtrTy);
 | |
|       } else if (SeltTy->isVectorType()) {
 | |
|         // 64- and 128-bit vectors are never returned in a
 | |
|         // register when inside a structure.
 | |
|         uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|         if (Size == 64 || Size == 128)
 | |
|           return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|         return classifyReturnType(QualType(SeltTy, 0));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Small structures which are register sized are generally returned
 | |
|     // in a register.
 | |
|     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
 | |
|       uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
 | |
|     }
 | |
| 
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
|   }
 | |
| 
 | |
|   // Treat an enum type as its underlying type.
 | |
|   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|     RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (RetTy->isPromotableIntegerType() ?
 | |
|           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return 0;
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
| 
 | |
|   // If this is a C++ record, check the bases first.
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | |
|            e = CXXRD->bases_end(); i != e; ++i)
 | |
|       if (!isRecordWithSSEVectorType(Context, i->getType()))
 | |
|         return false;
 | |
| 
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|        i != e; ++i) {
 | |
|     QualType FT = i->getType();
 | |
| 
 | |
|     if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
 | |
|       return true;
 | |
| 
 | |
|     if (isRecordWithSSEVectorType(Context, FT))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
 | |
|                                                  unsigned Align) const {
 | |
|   // Otherwise, if the alignment is less than or equal to the minimum ABI
 | |
|   // alignment, just use the default; the backend will handle this.
 | |
|   if (Align <= MinABIStackAlignInBytes)
 | |
|     return 0; // Use default alignment.
 | |
| 
 | |
|   // On non-Darwin, the stack type alignment is always 4.
 | |
|   if (!IsDarwinVectorABI) {
 | |
|     // Set explicit alignment, since we may need to realign the top.
 | |
|     return MinABIStackAlignInBytes;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
 | |
|   if (isRecordWithSSEVectorType(getContext(), Ty))
 | |
|     return 16;
 | |
| 
 | |
|   return MinABIStackAlignInBytes;
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
 | |
|   if (!ByVal)
 | |
|     return ABIArgInfo::getIndirect(0, false);
 | |
| 
 | |
|   // Compute the byval alignment.
 | |
|   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
 | |
|   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
 | |
|   if (StackAlign == 0)
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|   // If the stack alignment is less than the type alignment, realign the
 | |
|   // argument.
 | |
|   if (StackAlign < TypeAlign)
 | |
|     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
 | |
|                                    /*Realign=*/true);
 | |
| 
 | |
|   return ABIArgInfo::getIndirect(StackAlign);
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   // FIXME: Set alignment on indirect arguments.
 | |
|   if (isAggregateTypeForABI(Ty)) {
 | |
|     // Structures with flexible arrays are always indirect.
 | |
|     if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|       // Structures with either a non-trivial destructor or a non-trivial
 | |
|       // copy constructor are always indirect.
 | |
|       if (hasNonTrivialDestructorOrCopyConstructor(RT))
 | |
|         return getIndirectResult(Ty, /*ByVal=*/false);
 | |
| 
 | |
|       if (RT->getDecl()->hasFlexibleArrayMember())
 | |
|         return getIndirectResult(Ty);
 | |
|     }
 | |
| 
 | |
|     // Ignore empty structs.
 | |
|     if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     // Expand small (<= 128-bit) record types when we know that the stack layout
 | |
|     // of those arguments will match the struct. This is important because the
 | |
|     // LLVM backend isn't smart enough to remove byval, which inhibits many
 | |
|     // optimizations.
 | |
|     if (getContext().getTypeSize(Ty) <= 4*32 &&
 | |
|         canExpandIndirectArgument(Ty, getContext()))
 | |
|       return ABIArgInfo::getExpand();
 | |
| 
 | |
|     return getIndirectResult(Ty);
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     // On Darwin, some vectors are passed in memory, we handle this by passing
 | |
|     // it as an i8/i16/i32/i64.
 | |
|     if (IsDarwinVectorABI) {
 | |
|       uint64_t Size = getContext().getTypeSize(Ty);
 | |
|       if ((Size == 8 || Size == 16 || Size == 32) ||
 | |
|           (Size == 64 && VT->getNumElements() == 1))
 | |
|         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | |
|                                                             Size));
 | |
|     }
 | |
| 
 | |
|     const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
 | |
|     if (UseX86_MMXType(IRType)) {
 | |
|       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
 | |
|       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
 | |
|       return AAI;
 | |
|     }
 | |
| 
 | |
|     return ABIArgInfo::getDirect();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   return (Ty->isPromotableIntegerType() ?
 | |
|           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                       CodeGenFunction &CGF) const {
 | |
|   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
 | |
|   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
 | |
| 
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
|   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
 | |
|                                                        "ap");
 | |
|   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | |
|   llvm::Type *PTy =
 | |
|     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | |
|   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | |
| 
 | |
|   uint64_t Offset =
 | |
|     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
 | |
|   llvm::Value *NextAddr =
 | |
|     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
 | |
|                       "ap.next");
 | |
|   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | |
| 
 | |
|   return AddrTyped;
 | |
| }
 | |
| 
 | |
| void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
 | |
|                                                   llvm::GlobalValue *GV,
 | |
|                                             CodeGen::CodeGenModule &CGM) const {
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
 | |
|       // Get the LLVM function.
 | |
|       llvm::Function *Fn = cast<llvm::Function>(GV);
 | |
| 
 | |
|       // Now add the 'alignstack' attribute with a value of 16.
 | |
|       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
 | |
|                                                CodeGen::CodeGenFunction &CGF,
 | |
|                                                llvm::Value *Address) const {
 | |
|   CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
|   llvm::LLVMContext &Context = CGF.getLLVMContext();
 | |
| 
 | |
|   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
 | |
|   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
 | |
| 
 | |
|   // 0-7 are the eight integer registers;  the order is different
 | |
|   //   on Darwin (for EH), but the range is the same.
 | |
|   // 8 is %eip.
 | |
|   AssignToArrayRange(Builder, Address, Four8, 0, 8);
 | |
| 
 | |
|   if (CGF.CGM.isTargetDarwin()) {
 | |
|     // 12-16 are st(0..4).  Not sure why we stop at 4.
 | |
|     // These have size 16, which is sizeof(long double) on
 | |
|     // platforms with 8-byte alignment for that type.
 | |
|     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
 | |
|     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
 | |
| 
 | |
|   } else {
 | |
|     // 9 is %eflags, which doesn't get a size on Darwin for some
 | |
|     // reason.
 | |
|     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
 | |
| 
 | |
|     // 11-16 are st(0..5).  Not sure why we stop at 5.
 | |
|     // These have size 12, which is sizeof(long double) on
 | |
|     // platforms with 4-byte alignment for that type.
 | |
|     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
 | |
|     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86-64 ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| /// X86_64ABIInfo - The X86_64 ABI information.
 | |
| class X86_64ABIInfo : public ABIInfo {
 | |
|   enum Class {
 | |
|     Integer = 0,
 | |
|     SSE,
 | |
|     SSEUp,
 | |
|     X87,
 | |
|     X87Up,
 | |
|     ComplexX87,
 | |
|     NoClass,
 | |
|     Memory
 | |
|   };
 | |
| 
 | |
|   /// merge - Implement the X86_64 ABI merging algorithm.
 | |
|   ///
 | |
|   /// Merge an accumulating classification \arg Accum with a field
 | |
|   /// classification \arg Field.
 | |
|   ///
 | |
|   /// \param Accum - The accumulating classification. This should
 | |
|   /// always be either NoClass or the result of a previous merge
 | |
|   /// call. In addition, this should never be Memory (the caller
 | |
|   /// should just return Memory for the aggregate).
 | |
|   static Class merge(Class Accum, Class Field);
 | |
| 
 | |
|   /// classify - Determine the x86_64 register classes in which the
 | |
|   /// given type T should be passed.
 | |
|   ///
 | |
|   /// \param Lo - The classification for the parts of the type
 | |
|   /// residing in the low word of the containing object.
 | |
|   ///
 | |
|   /// \param Hi - The classification for the parts of the type
 | |
|   /// residing in the high word of the containing object.
 | |
|   ///
 | |
|   /// \param OffsetBase - The bit offset of this type in the
 | |
|   /// containing object.  Some parameters are classified different
 | |
|   /// depending on whether they straddle an eightbyte boundary.
 | |
|   ///
 | |
|   /// If a word is unused its result will be NoClass; if a type should
 | |
|   /// be passed in Memory then at least the classification of \arg Lo
 | |
|   /// will be Memory.
 | |
|   ///
 | |
|   /// The \arg Lo class will be NoClass iff the argument is ignored.
 | |
|   ///
 | |
|   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
 | |
|   /// also be ComplexX87.
 | |
|   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
 | |
| 
 | |
|   const llvm::Type *Get16ByteVectorType(QualType Ty) const;
 | |
|   const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
 | |
|                                        unsigned IROffset, QualType SourceTy,
 | |
|                                        unsigned SourceOffset) const;
 | |
|   const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
 | |
|                                            unsigned IROffset, QualType SourceTy,
 | |
|                                            unsigned SourceOffset) const;
 | |
| 
 | |
|   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | |
|   /// such that the argument will be returned in memory.
 | |
|   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
 | |
| 
 | |
|   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | |
|   /// such that the argument will be passed in memory.
 | |
|   ABIArgInfo getIndirectResult(QualType Ty) const;
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
| 
 | |
|   ABIArgInfo classifyArgumentType(QualType Ty,
 | |
|                                   unsigned &neededInt,
 | |
|                                   unsigned &neededSSE) const;
 | |
| 
 | |
| public:
 | |
|   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
|   virtual void computeInfo(CGFunctionInfo &FI) const;
 | |
| 
 | |
|   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                  CodeGenFunction &CGF) const;
 | |
| };
 | |
| 
 | |
| /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
 | |
| class WinX86_64ABIInfo : public ABIInfo {
 | |
| 
 | |
|   ABIArgInfo classify(QualType Ty) const;
 | |
| 
 | |
| public:
 | |
|   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
|   virtual void computeInfo(CGFunctionInfo &FI) const;
 | |
| 
 | |
|   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                  CodeGenFunction &CGF) const;
 | |
| };
 | |
| 
 | |
| class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
 | |
|     return 7;
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const {
 | |
|     CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
|     llvm::LLVMContext &Context = CGF.getLLVMContext();
 | |
| 
 | |
|     const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
 | |
|     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
 | |
| 
 | |
|     // 0-15 are the 16 integer registers.
 | |
|     // 16 is %rip.
 | |
|     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
 | |
|                                         llvm::StringRef Constraint,
 | |
|                                         const llvm::Type* Ty) const {
 | |
|     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
 | |
|     return 7;
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const {
 | |
|     CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
|     llvm::LLVMContext &Context = CGF.getLLVMContext();
 | |
| 
 | |
|     const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
 | |
|     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
 | |
| 
 | |
|     // 0-15 are the 16 integer registers.
 | |
|     // 16 is %rip.
 | |
|     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
 | |
|   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
 | |
|   // classified recursively so that always two fields are
 | |
|   // considered. The resulting class is calculated according to
 | |
|   // the classes of the fields in the eightbyte:
 | |
|   //
 | |
|   // (a) If both classes are equal, this is the resulting class.
 | |
|   //
 | |
|   // (b) If one of the classes is NO_CLASS, the resulting class is
 | |
|   // the other class.
 | |
|   //
 | |
|   // (c) If one of the classes is MEMORY, the result is the MEMORY
 | |
|   // class.
 | |
|   //
 | |
|   // (d) If one of the classes is INTEGER, the result is the
 | |
|   // INTEGER.
 | |
|   //
 | |
|   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
 | |
|   // MEMORY is used as class.
 | |
|   //
 | |
|   // (f) Otherwise class SSE is used.
 | |
| 
 | |
|   // Accum should never be memory (we should have returned) or
 | |
|   // ComplexX87 (because this cannot be passed in a structure).
 | |
|   assert((Accum != Memory && Accum != ComplexX87) &&
 | |
|          "Invalid accumulated classification during merge.");
 | |
|   if (Accum == Field || Field == NoClass)
 | |
|     return Accum;
 | |
|   if (Field == Memory)
 | |
|     return Memory;
 | |
|   if (Accum == NoClass)
 | |
|     return Field;
 | |
|   if (Accum == Integer || Field == Integer)
 | |
|     return Integer;
 | |
|   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
 | |
|       Accum == X87 || Accum == X87Up)
 | |
|     return Memory;
 | |
|   return SSE;
 | |
| }
 | |
| 
 | |
| void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
 | |
|                              Class &Lo, Class &Hi) const {
 | |
|   // FIXME: This code can be simplified by introducing a simple value class for
 | |
|   // Class pairs with appropriate constructor methods for the various
 | |
|   // situations.
 | |
| 
 | |
|   // FIXME: Some of the split computations are wrong; unaligned vectors
 | |
|   // shouldn't be passed in registers for example, so there is no chance they
 | |
|   // can straddle an eightbyte. Verify & simplify.
 | |
| 
 | |
|   Lo = Hi = NoClass;
 | |
| 
 | |
|   Class &Current = OffsetBase < 64 ? Lo : Hi;
 | |
|   Current = Memory;
 | |
| 
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
 | |
|     BuiltinType::Kind k = BT->getKind();
 | |
| 
 | |
|     if (k == BuiltinType::Void) {
 | |
|       Current = NoClass;
 | |
|     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
 | |
|       Lo = Integer;
 | |
|       Hi = Integer;
 | |
|     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
 | |
|       Current = Integer;
 | |
|     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
 | |
|       Current = SSE;
 | |
|     } else if (k == BuiltinType::LongDouble) {
 | |
|       Lo = X87;
 | |
|       Hi = X87Up;
 | |
|     }
 | |
|     // FIXME: _Decimal32 and _Decimal64 are SSE.
 | |
|     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const EnumType *ET = Ty->getAs<EnumType>()) {
 | |
|     // Classify the underlying integer type.
 | |
|     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Ty->hasPointerRepresentation()) {
 | |
|     Current = Integer;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Ty->isMemberPointerType()) {
 | |
|     if (Ty->isMemberFunctionPointerType())
 | |
|       Lo = Hi = Integer;
 | |
|     else
 | |
|       Current = Integer;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *VT = Ty->getAs<VectorType>()) {
 | |
|     uint64_t Size = getContext().getTypeSize(VT);
 | |
|     if (Size == 32) {
 | |
|       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
 | |
|       // float> as integer.
 | |
|       Current = Integer;
 | |
| 
 | |
|       // If this type crosses an eightbyte boundary, it should be
 | |
|       // split.
 | |
|       uint64_t EB_Real = (OffsetBase) / 64;
 | |
|       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
 | |
|       if (EB_Real != EB_Imag)
 | |
|         Hi = Lo;
 | |
|     } else if (Size == 64) {
 | |
|       // gcc passes <1 x double> in memory. :(
 | |
|       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
 | |
|         return;
 | |
| 
 | |
|       // gcc passes <1 x long long> as INTEGER.
 | |
|       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
 | |
|           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
 | |
|           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
 | |
|           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
 | |
|         Current = Integer;
 | |
|       else
 | |
|         Current = SSE;
 | |
| 
 | |
|       // If this type crosses an eightbyte boundary, it should be
 | |
|       // split.
 | |
|       if (OffsetBase && OffsetBase != 64)
 | |
|         Hi = Lo;
 | |
|     } else if (Size == 128) {
 | |
|       Lo = SSE;
 | |
|       Hi = SSEUp;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
 | |
|     QualType ET = getContext().getCanonicalType(CT->getElementType());
 | |
| 
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
|     if (ET->isIntegralOrEnumerationType()) {
 | |
|       if (Size <= 64)
 | |
|         Current = Integer;
 | |
|       else if (Size <= 128)
 | |
|         Lo = Hi = Integer;
 | |
|     } else if (ET == getContext().FloatTy)
 | |
|       Current = SSE;
 | |
|     else if (ET == getContext().DoubleTy)
 | |
|       Lo = Hi = SSE;
 | |
|     else if (ET == getContext().LongDoubleTy)
 | |
|       Current = ComplexX87;
 | |
| 
 | |
|     // If this complex type crosses an eightbyte boundary then it
 | |
|     // should be split.
 | |
|     uint64_t EB_Real = (OffsetBase) / 64;
 | |
|     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
 | |
|     if (Hi == NoClass && EB_Real != EB_Imag)
 | |
|       Hi = Lo;
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
 | |
|     // Arrays are treated like structures.
 | |
| 
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
 | |
|     // than two eightbytes, ..., it has class MEMORY.
 | |
|     if (Size > 128)
 | |
|       return;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
 | |
|     // fields, it has class MEMORY.
 | |
|     //
 | |
|     // Only need to check alignment of array base.
 | |
|     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
 | |
|       return;
 | |
| 
 | |
|     // Otherwise implement simplified merge. We could be smarter about
 | |
|     // this, but it isn't worth it and would be harder to verify.
 | |
|     Current = NoClass;
 | |
|     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
 | |
|     uint64_t ArraySize = AT->getSize().getZExtValue();
 | |
|     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
 | |
|       Class FieldLo, FieldHi;
 | |
|       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
 | |
|       Lo = merge(Lo, FieldLo);
 | |
|       Hi = merge(Hi, FieldHi);
 | |
|       if (Lo == Memory || Hi == Memory)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Do post merger cleanup (see below). Only case we worry about is Memory.
 | |
|     if (Hi == Memory)
 | |
|       Lo = Memory;
 | |
|     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     uint64_t Size = getContext().getTypeSize(Ty);
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
 | |
|     // than two eightbytes, ..., it has class MEMORY.
 | |
|     if (Size > 128)
 | |
|       return;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
 | |
|     // copy constructor or a non-trivial destructor, it is passed by invisible
 | |
|     // reference.
 | |
|     if (hasNonTrivialDestructorOrCopyConstructor(RT))
 | |
|       return;
 | |
| 
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
| 
 | |
|     // Assume variable sized types are passed in memory.
 | |
|     if (RD->hasFlexibleArrayMember())
 | |
|       return;
 | |
| 
 | |
|     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
 | |
| 
 | |
|     // Reset Lo class, this will be recomputed.
 | |
|     Current = NoClass;
 | |
| 
 | |
|     // If this is a C++ record, classify the bases first.
 | |
|     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | |
|              e = CXXRD->bases_end(); i != e; ++i) {
 | |
|         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
 | |
|                "Unexpected base class!");
 | |
|         const CXXRecordDecl *Base =
 | |
|           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|         // Classify this field.
 | |
|         //
 | |
|         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
 | |
|         // single eightbyte, each is classified separately. Each eightbyte gets
 | |
|         // initialized to class NO_CLASS.
 | |
|         Class FieldLo, FieldHi;
 | |
|         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
 | |
|         classify(i->getType(), Offset, FieldLo, FieldHi);
 | |
|         Lo = merge(Lo, FieldLo);
 | |
|         Hi = merge(Hi, FieldHi);
 | |
|         if (Lo == Memory || Hi == Memory)
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Classify the fields one at a time, merging the results.
 | |
|     unsigned idx = 0;
 | |
|     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|            i != e; ++i, ++idx) {
 | |
|       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
 | |
|       bool BitField = i->isBitField();
 | |
| 
 | |
|       // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
 | |
|       // fields, it has class MEMORY.
 | |
|       //
 | |
|       // Note, skip this test for bit-fields, see below.
 | |
|       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
 | |
|         Lo = Memory;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Classify this field.
 | |
|       //
 | |
|       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
 | |
|       // exceeds a single eightbyte, each is classified
 | |
|       // separately. Each eightbyte gets initialized to class
 | |
|       // NO_CLASS.
 | |
|       Class FieldLo, FieldHi;
 | |
| 
 | |
|       // Bit-fields require special handling, they do not force the
 | |
|       // structure to be passed in memory even if unaligned, and
 | |
|       // therefore they can straddle an eightbyte.
 | |
|       if (BitField) {
 | |
|         // Ignore padding bit-fields.
 | |
|         if (i->isUnnamedBitfield())
 | |
|           continue;
 | |
| 
 | |
|         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
 | |
|         uint64_t Size =
 | |
|           i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
 | |
| 
 | |
|         uint64_t EB_Lo = Offset / 64;
 | |
|         uint64_t EB_Hi = (Offset + Size - 1) / 64;
 | |
|         FieldLo = FieldHi = NoClass;
 | |
|         if (EB_Lo) {
 | |
|           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
 | |
|           FieldLo = NoClass;
 | |
|           FieldHi = Integer;
 | |
|         } else {
 | |
|           FieldLo = Integer;
 | |
|           FieldHi = EB_Hi ? Integer : NoClass;
 | |
|         }
 | |
|       } else
 | |
|         classify(i->getType(), Offset, FieldLo, FieldHi);
 | |
|       Lo = merge(Lo, FieldLo);
 | |
|       Hi = merge(Hi, FieldHi);
 | |
|       if (Lo == Memory || Hi == Memory)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
 | |
|     //
 | |
|     // (a) If one of the classes is MEMORY, the whole argument is
 | |
|     // passed in memory.
 | |
|     //
 | |
|     // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
 | |
| 
 | |
|     // The first of these conditions is guaranteed by how we implement
 | |
|     // the merge (just bail).
 | |
|     //
 | |
|     // The second condition occurs in the case of unions; for example
 | |
|     // union { _Complex double; unsigned; }.
 | |
|     if (Hi == Memory)
 | |
|       Lo = Memory;
 | |
|     if (Hi == SSEUp && Lo != SSE)
 | |
|       Hi = SSE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
 | |
|   // If this is a scalar LLVM value then assume LLVM will pass it in the right
 | |
|   // place naturally.
 | |
|   if (!isAggregateTypeForABI(Ty)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return (Ty->isPromotableIntegerType() ?
 | |
|             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   return ABIArgInfo::getIndirect(0);
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
 | |
|   // If this is a scalar LLVM value then assume LLVM will pass it in the right
 | |
|   // place naturally.
 | |
|   if (!isAggregateTypeForABI(Ty)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return (Ty->isPromotableIntegerType() ?
 | |
|             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
 | |
|     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | |
| 
 | |
|   // Compute the byval alignment. We trust the back-end to honor the
 | |
|   // minimum ABI alignment for byval, to make cleaner IR.
 | |
|   const unsigned MinABIAlign = 8;
 | |
|   unsigned Align = getContext().getTypeAlign(Ty) / 8;
 | |
|   if (Align > MinABIAlign)
 | |
|     return ABIArgInfo::getIndirect(Align);
 | |
|   return ABIArgInfo::getIndirect(0);
 | |
| }
 | |
| 
 | |
| /// Get16ByteVectorType - The ABI specifies that a value should be passed in an
 | |
| /// full vector XMM register.  Pick an LLVM IR type that will be passed as a
 | |
| /// vector register.
 | |
| const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
 | |
|   const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
 | |
| 
 | |
|   // Wrapper structs that just contain vectors are passed just like vectors,
 | |
|   // strip them off if present.
 | |
|   const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
 | |
|   while (STy && STy->getNumElements() == 1) {
 | |
|     IRType = STy->getElementType(0);
 | |
|     STy = dyn_cast<llvm::StructType>(IRType);
 | |
|   }
 | |
| 
 | |
|   // If the preferred type is a 16-byte vector, prefer to pass it.
 | |
|   if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
 | |
|     const llvm::Type *EltTy = VT->getElementType();
 | |
|     if (VT->getBitWidth() == 128 &&
 | |
|         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
 | |
|          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
 | |
|          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
 | |
|          EltTy->isIntegerTy(128)))
 | |
|       return VT;
 | |
|   }
 | |
| 
 | |
|   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
 | |
| }
 | |
| 
 | |
| /// BitsContainNoUserData - Return true if the specified [start,end) bit range
 | |
| /// is known to either be off the end of the specified type or being in
 | |
| /// alignment padding.  The user type specified is known to be at most 128 bits
 | |
| /// in size, and have passed through X86_64ABIInfo::classify with a successful
 | |
| /// classification that put one of the two halves in the INTEGER class.
 | |
| ///
 | |
| /// It is conservatively correct to return false.
 | |
| static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
 | |
|                                   unsigned EndBit, ASTContext &Context) {
 | |
|   // If the bytes being queried are off the end of the type, there is no user
 | |
|   // data hiding here.  This handles analysis of builtins, vectors and other
 | |
|   // types that don't contain interesting padding.
 | |
|   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
 | |
|   if (TySize <= StartBit)
 | |
|     return true;
 | |
| 
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
 | |
|     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
 | |
|     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
 | |
| 
 | |
|     // Check each element to see if the element overlaps with the queried range.
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       // If the element is after the span we care about, then we're done..
 | |
|       unsigned EltOffset = i*EltSize;
 | |
|       if (EltOffset >= EndBit) break;
 | |
| 
 | |
|       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
 | |
|       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
 | |
|                                  EndBit-EltOffset, Context))
 | |
|         return false;
 | |
|     }
 | |
|     // If it overlaps no elements, then it is safe to process as padding.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|     // If this is a C++ record, check the bases first.
 | |
|     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
 | |
|            e = CXXRD->bases_end(); i != e; ++i) {
 | |
|         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
 | |
|                "Unexpected base class!");
 | |
|         const CXXRecordDecl *Base =
 | |
|           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|         // If the base is after the span we care about, ignore it.
 | |
|         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
 | |
|         if (BaseOffset >= EndBit) continue;
 | |
| 
 | |
|         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
 | |
|         if (!BitsContainNoUserData(i->getType(), BaseStart,
 | |
|                                    EndBit-BaseOffset, Context))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Verify that no field has data that overlaps the region of interest.  Yes
 | |
|     // this could be sped up a lot by being smarter about queried fields,
 | |
|     // however we're only looking at structs up to 16 bytes, so we don't care
 | |
|     // much.
 | |
|     unsigned idx = 0;
 | |
|     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|          i != e; ++i, ++idx) {
 | |
|       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
 | |
| 
 | |
|       // If we found a field after the region we care about, then we're done.
 | |
|       if (FieldOffset >= EndBit) break;
 | |
| 
 | |
|       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
 | |
|       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
 | |
|                                  Context))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If nothing in this record overlapped the area of interest, then we're
 | |
|     // clean.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
 | |
| /// float member at the specified offset.  For example, {int,{float}} has a
 | |
| /// float at offset 4.  It is conservatively correct for this routine to return
 | |
| /// false.
 | |
| static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
 | |
|                                   const llvm::TargetData &TD) {
 | |
|   // Base case if we find a float.
 | |
|   if (IROffset == 0 && IRType->isFloatTy())
 | |
|     return true;
 | |
| 
 | |
|   // If this is a struct, recurse into the field at the specified offset.
 | |
|   if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
 | |
|     const llvm::StructLayout *SL = TD.getStructLayout(STy);
 | |
|     unsigned Elt = SL->getElementContainingOffset(IROffset);
 | |
|     IROffset -= SL->getElementOffset(Elt);
 | |
|     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
 | |
|   }
 | |
| 
 | |
|   // If this is an array, recurse into the field at the specified offset.
 | |
|   if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
 | |
|     const llvm::Type *EltTy = ATy->getElementType();
 | |
|     unsigned EltSize = TD.getTypeAllocSize(EltTy);
 | |
|     IROffset -= IROffset/EltSize*EltSize;
 | |
|     return ContainsFloatAtOffset(EltTy, IROffset, TD);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
 | |
| /// low 8 bytes of an XMM register, corresponding to the SSE class.
 | |
| const llvm::Type *X86_64ABIInfo::
 | |
| GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
 | |
|                    QualType SourceTy, unsigned SourceOffset) const {
 | |
|   // The only three choices we have are either double, <2 x float>, or float. We
 | |
|   // pass as float if the last 4 bytes is just padding.  This happens for
 | |
|   // structs that contain 3 floats.
 | |
|   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
 | |
|                             SourceOffset*8+64, getContext()))
 | |
|     return llvm::Type::getFloatTy(getVMContext());
 | |
| 
 | |
|   // We want to pass as <2 x float> if the LLVM IR type contains a float at
 | |
|   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
 | |
|   // case.
 | |
|   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
 | |
|       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
 | |
|     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
 | |
| 
 | |
|   return llvm::Type::getDoubleTy(getVMContext());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
 | |
| /// an 8-byte GPR.  This means that we either have a scalar or we are talking
 | |
| /// about the high or low part of an up-to-16-byte struct.  This routine picks
 | |
| /// the best LLVM IR type to represent this, which may be i64 or may be anything
 | |
| /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
 | |
| /// etc).
 | |
| ///
 | |
| /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
 | |
| /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
 | |
| /// the 8-byte value references.  PrefType may be null.
 | |
| ///
 | |
| /// SourceTy is the source level type for the entire argument.  SourceOffset is
 | |
| /// an offset into this that we're processing (which is always either 0 or 8).
 | |
| ///
 | |
| const llvm::Type *X86_64ABIInfo::
 | |
| GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
 | |
|                        QualType SourceTy, unsigned SourceOffset) const {
 | |
|   // If we're dealing with an un-offset LLVM IR type, then it means that we're
 | |
|   // returning an 8-byte unit starting with it.  See if we can safely use it.
 | |
|   if (IROffset == 0) {
 | |
|     // Pointers and int64's always fill the 8-byte unit.
 | |
|     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
 | |
|       return IRType;
 | |
| 
 | |
|     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
 | |
|     // goodness in the source type is just tail padding.  This is allowed to
 | |
|     // kick in for struct {double,int} on the int, but not on
 | |
|     // struct{double,int,int} because we wouldn't return the second int.  We
 | |
|     // have to do this analysis on the source type because we can't depend on
 | |
|     // unions being lowered a specific way etc.
 | |
|     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
 | |
|         IRType->isIntegerTy(32)) {
 | |
|       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
 | |
| 
 | |
|       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
 | |
|                                 SourceOffset*8+64, getContext()))
 | |
|         return IRType;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
 | |
|     // If this is a struct, recurse into the field at the specified offset.
 | |
|     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
 | |
|     if (IROffset < SL->getSizeInBytes()) {
 | |
|       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
 | |
|       IROffset -= SL->getElementOffset(FieldIdx);
 | |
| 
 | |
|       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
 | |
|                                     SourceTy, SourceOffset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
 | |
|     const llvm::Type *EltTy = ATy->getElementType();
 | |
|     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
 | |
|     unsigned EltOffset = IROffset/EltSize*EltSize;
 | |
|     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
 | |
|                                   SourceOffset);
 | |
|   }
 | |
| 
 | |
|   // Okay, we don't have any better idea of what to pass, so we pass this in an
 | |
|   // integer register that isn't too big to fit the rest of the struct.
 | |
|   unsigned TySizeInBytes =
 | |
|     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
 | |
| 
 | |
|   assert(TySizeInBytes != SourceOffset && "Empty field?");
 | |
| 
 | |
|   // It is always safe to classify this as an integer type up to i64 that
 | |
|   // isn't larger than the structure.
 | |
|   return llvm::IntegerType::get(getVMContext(),
 | |
|                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
 | |
| /// be used as elements of a two register pair to pass or return, return a
 | |
| /// first class aggregate to represent them.  For example, if the low part of
 | |
| /// a by-value argument should be passed as i32* and the high part as float,
 | |
| /// return {i32*, float}.
 | |
| static const llvm::Type *
 | |
| GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
 | |
|                            const llvm::TargetData &TD) {
 | |
|   // In order to correctly satisfy the ABI, we need to the high part to start
 | |
|   // at offset 8.  If the high and low parts we inferred are both 4-byte types
 | |
|   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
 | |
|   // the second element at offset 8.  Check for this:
 | |
|   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
 | |
|   unsigned HiAlign = TD.getABITypeAlignment(Hi);
 | |
|   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
 | |
|   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
 | |
| 
 | |
|   // To handle this, we have to increase the size of the low part so that the
 | |
|   // second element will start at an 8 byte offset.  We can't increase the size
 | |
|   // of the second element because it might make us access off the end of the
 | |
|   // struct.
 | |
|   if (HiStart != 8) {
 | |
|     // There are only two sorts of types the ABI generation code can produce for
 | |
|     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
 | |
|     // Promote these to a larger type.
 | |
|     if (Lo->isFloatTy())
 | |
|       Lo = llvm::Type::getDoubleTy(Lo->getContext());
 | |
|     else {
 | |
|       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
 | |
|       Lo = llvm::Type::getInt64Ty(Lo->getContext());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const llvm::StructType *Result =
 | |
|     llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
 | |
| 
 | |
| 
 | |
|   // Verify that the second element is at an 8-byte offset.
 | |
|   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
 | |
|          "Invalid x86-64 argument pair!");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::
 | |
| classifyReturnType(QualType RetTy) const {
 | |
|   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
 | |
|   // classification algorithm.
 | |
|   X86_64ABIInfo::Class Lo, Hi;
 | |
|   classify(RetTy, 0, Lo, Hi);
 | |
| 
 | |
|   // Check some invariants.
 | |
|   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
 | |
|   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
 | |
| 
 | |
|   const llvm::Type *ResType = 0;
 | |
|   switch (Lo) {
 | |
|   case NoClass:
 | |
|     if (Hi == NoClass)
 | |
|       return ABIArgInfo::getIgnore();
 | |
|     // If the low part is just padding, it takes no register, leave ResType
 | |
|     // null.
 | |
|     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
 | |
|            "Unknown missing lo part");
 | |
|     break;
 | |
| 
 | |
|   case SSEUp:
 | |
|   case X87Up:
 | |
|     assert(0 && "Invalid classification for lo word.");
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
 | |
|     // hidden argument.
 | |
|   case Memory:
 | |
|     return getIndirectReturnResult(RetTy);
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
 | |
|     // available register of the sequence %rax, %rdx is used.
 | |
|   case Integer:
 | |
|     ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
 | |
|                                      RetTy, 0);
 | |
| 
 | |
|     // If we have a sign or zero extended integer, make sure to return Extend
 | |
|     // so that the parameter gets the right LLVM IR attributes.
 | |
|     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
 | |
|       // Treat an enum type as its underlying type.
 | |
|       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|         RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|       if (RetTy->isIntegralOrEnumerationType() &&
 | |
|           RetTy->isPromotableIntegerType())
 | |
|         return ABIArgInfo::getExtend();
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
 | |
|     // available SSE register of the sequence %xmm0, %xmm1 is used.
 | |
|   case SSE:
 | |
|     ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
 | |
|     // returned on the X87 stack in %st0 as 80-bit x87 number.
 | |
|   case X87:
 | |
|     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
 | |
|     // part of the value is returned in %st0 and the imaginary part in
 | |
|     // %st1.
 | |
|   case ComplexX87:
 | |
|     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
 | |
|     ResType = llvm::StructType::get(getVMContext(),
 | |
|                                     llvm::Type::getX86_FP80Ty(getVMContext()),
 | |
|                                     llvm::Type::getX86_FP80Ty(getVMContext()),
 | |
|                                     NULL);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const llvm::Type *HighPart = 0;
 | |
|   switch (Hi) {
 | |
|     // Memory was handled previously and X87 should
 | |
|     // never occur as a hi class.
 | |
|   case Memory:
 | |
|   case X87:
 | |
|     assert(0 && "Invalid classification for hi word.");
 | |
| 
 | |
|   case ComplexX87: // Previously handled.
 | |
|   case NoClass:
 | |
|     break;
 | |
| 
 | |
|   case Integer:
 | |
|     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
 | |
|                                       8, RetTy, 8);
 | |
|     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | |
|       return ABIArgInfo::getDirect(HighPart, 8);
 | |
|     break;
 | |
|   case SSE:
 | |
|     HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
 | |
|     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | |
|       return ABIArgInfo::getDirect(HighPart, 8);
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
 | |
|     // is passed in the upper half of the last used SSE register.
 | |
|     //
 | |
|     // SSEUP should always be preceeded by SSE, just widen.
 | |
|   case SSEUp:
 | |
|     assert(Lo == SSE && "Unexpected SSEUp classification.");
 | |
|     ResType = Get16ByteVectorType(RetTy);
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
 | |
|     // returned together with the previous X87 value in %st0.
 | |
|   case X87Up:
 | |
|     // If X87Up is preceeded by X87, we don't need to do
 | |
|     // anything. However, in some cases with unions it may not be
 | |
|     // preceeded by X87. In such situations we follow gcc and pass the
 | |
|     // extra bits in an SSE reg.
 | |
|     if (Lo != X87) {
 | |
|       HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
 | |
|                                     8, RetTy, 8);
 | |
|       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
 | |
|         return ABIArgInfo::getDirect(HighPart, 8);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If a high part was specified, merge it together with the low part.  It is
 | |
|   // known to pass in the high eightbyte of the result.  We do this by forming a
 | |
|   // first class struct aggregate with the high and low part: {low, high}
 | |
|   if (HighPart)
 | |
|     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
 | |
| 
 | |
|   return ABIArgInfo::getDirect(ResType);
 | |
| }
 | |
| 
 | |
| ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
 | |
|                                                unsigned &neededSSE) const {
 | |
|   X86_64ABIInfo::Class Lo, Hi;
 | |
|   classify(Ty, 0, Lo, Hi);
 | |
| 
 | |
|   // Check some invariants.
 | |
|   // FIXME: Enforce these by construction.
 | |
|   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
 | |
|   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
 | |
| 
 | |
|   neededInt = 0;
 | |
|   neededSSE = 0;
 | |
|   const llvm::Type *ResType = 0;
 | |
|   switch (Lo) {
 | |
|   case NoClass:
 | |
|     if (Hi == NoClass)
 | |
|       return ABIArgInfo::getIgnore();
 | |
|     // If the low part is just padding, it takes no register, leave ResType
 | |
|     // null.
 | |
|     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
 | |
|            "Unknown missing lo part");
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
 | |
|     // on the stack.
 | |
|   case Memory:
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
 | |
|     // COMPLEX_X87, it is passed in memory.
 | |
|   case X87:
 | |
|   case ComplexX87:
 | |
|     return getIndirectResult(Ty);
 | |
| 
 | |
|   case SSEUp:
 | |
|   case X87Up:
 | |
|     assert(0 && "Invalid classification for lo word.");
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
 | |
|     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
 | |
|     // and %r9 is used.
 | |
|   case Integer:
 | |
|     ++neededInt;
 | |
| 
 | |
|     // Pick an 8-byte type based on the preferred type.
 | |
|     ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
 | |
| 
 | |
|     // If we have a sign or zero extended integer, make sure to return Extend
 | |
|     // so that the parameter gets the right LLVM IR attributes.
 | |
|     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
 | |
|       // Treat an enum type as its underlying type.
 | |
|       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|         Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|       if (Ty->isIntegralOrEnumerationType() &&
 | |
|           Ty->isPromotableIntegerType())
 | |
|         return ABIArgInfo::getExtend();
 | |
|     }
 | |
| 
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
 | |
|     // available SSE register is used, the registers are taken in the
 | |
|     // order from %xmm0 to %xmm7.
 | |
|   case SSE: {
 | |
|     const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
 | |
|     if (Hi != NoClass || !UseX86_MMXType(IRType))
 | |
|       ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
 | |
|     else
 | |
|       // This is an MMX type. Treat it as such.
 | |
|       ResType = llvm::Type::getX86_MMXTy(getVMContext());
 | |
| 
 | |
|     ++neededSSE;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   const llvm::Type *HighPart = 0;
 | |
|   switch (Hi) {
 | |
|     // Memory was handled previously, ComplexX87 and X87 should
 | |
|     // never occur as hi classes, and X87Up must be preceed by X87,
 | |
|     // which is passed in memory.
 | |
|   case Memory:
 | |
|   case X87:
 | |
|   case ComplexX87:
 | |
|     assert(0 && "Invalid classification for hi word.");
 | |
|     break;
 | |
| 
 | |
|   case NoClass: break;
 | |
| 
 | |
|   case Integer:
 | |
|     ++neededInt;
 | |
|     // Pick an 8-byte type based on the preferred type.
 | |
|     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
 | |
| 
 | |
|     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
 | |
|       return ABIArgInfo::getDirect(HighPart, 8);
 | |
|     break;
 | |
| 
 | |
|     // X87Up generally doesn't occur here (long double is passed in
 | |
|     // memory), except in situations involving unions.
 | |
|   case X87Up:
 | |
|   case SSE:
 | |
|     HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
 | |
| 
 | |
|     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
 | |
|       return ABIArgInfo::getDirect(HighPart, 8);
 | |
| 
 | |
|     ++neededSSE;
 | |
|     break;
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
 | |
|     // eightbyte is passed in the upper half of the last used SSE
 | |
|     // register.  This only happens when 128-bit vectors are passed.
 | |
|   case SSEUp:
 | |
|     assert(Lo == SSE && "Unexpected SSEUp classification");
 | |
|     ResType = Get16ByteVectorType(Ty);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If a high part was specified, merge it together with the low part.  It is
 | |
|   // known to pass in the high eightbyte of the result.  We do this by forming a
 | |
|   // first class struct aggregate with the high and low part: {low, high}
 | |
|   if (HighPart)
 | |
|     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
 | |
| 
 | |
|   return ABIArgInfo::getDirect(ResType);
 | |
| }
 | |
| 
 | |
| void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
| 
 | |
|   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
| 
 | |
|   // Keep track of the number of assigned registers.
 | |
|   unsigned freeIntRegs = 6, freeSSERegs = 8;
 | |
| 
 | |
|   // If the return value is indirect, then the hidden argument is consuming one
 | |
|   // integer register.
 | |
|   if (FI.getReturnInfo().isIndirect())
 | |
|     --freeIntRegs;
 | |
| 
 | |
|   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
 | |
|   // get assigned (in left-to-right order) for passing as follows...
 | |
|   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | |
|        it != ie; ++it) {
 | |
|     unsigned neededInt, neededSSE;
 | |
|     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
 | |
| 
 | |
|     // AMD64-ABI 3.2.3p3: If there are no registers available for any
 | |
|     // eightbyte of an argument, the whole argument is passed on the
 | |
|     // stack. If registers have already been assigned for some
 | |
|     // eightbytes of such an argument, the assignments get reverted.
 | |
|     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
 | |
|       freeIntRegs -= neededInt;
 | |
|       freeSSERegs -= neededSSE;
 | |
|     } else {
 | |
|       it->info = getIndirectResult(it->type);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
 | |
|                                         QualType Ty,
 | |
|                                         CodeGenFunction &CGF) {
 | |
|   llvm::Value *overflow_arg_area_p =
 | |
|     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
 | |
|   llvm::Value *overflow_arg_area =
 | |
|     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
 | |
|   // byte boundary if alignment needed by type exceeds 8 byte boundary.
 | |
|   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
 | |
|   if (Align > 8) {
 | |
|     // Note that we follow the ABI & gcc here, even though the type
 | |
|     // could in theory have an alignment greater than 16. This case
 | |
|     // shouldn't ever matter in practice.
 | |
| 
 | |
|     // overflow_arg_area = (overflow_arg_area + 15) & ~15;
 | |
|     llvm::Value *Offset =
 | |
|       llvm::ConstantInt::get(CGF.Int32Ty, 15);
 | |
|     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
 | |
|     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
 | |
|                                                     CGF.Int64Ty);
 | |
|     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
 | |
|     overflow_arg_area =
 | |
|       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
 | |
|                                  overflow_arg_area->getType(),
 | |
|                                  "overflow_arg_area.align");
 | |
|   }
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
 | |
|   const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
 | |
|   llvm::Value *Res =
 | |
|     CGF.Builder.CreateBitCast(overflow_arg_area,
 | |
|                               llvm::PointerType::getUnqual(LTy));
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
 | |
|   // l->overflow_arg_area + sizeof(type).
 | |
|   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
 | |
|   // an 8 byte boundary.
 | |
| 
 | |
|   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
 | |
|   llvm::Value *Offset =
 | |
|       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
 | |
|   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
 | |
|                                             "overflow_arg_area.next");
 | |
|   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                       CodeGenFunction &CGF) const {
 | |
|   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
 | |
| 
 | |
|   // Assume that va_list type is correct; should be pointer to LLVM type:
 | |
|   // struct {
 | |
|   //   i32 gp_offset;
 | |
|   //   i32 fp_offset;
 | |
|   //   i8* overflow_arg_area;
 | |
|   //   i8* reg_save_area;
 | |
|   // };
 | |
|   unsigned neededInt, neededSSE;
 | |
| 
 | |
|   Ty = CGF.getContext().getCanonicalType(Ty);
 | |
|   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
 | |
|   // in the registers. If not go to step 7.
 | |
|   if (!neededInt && !neededSSE)
 | |
|     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
 | |
|   // general purpose registers needed to pass type and num_fp to hold
 | |
|   // the number of floating point registers needed.
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
 | |
|   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
 | |
|   // l->fp_offset > 304 - num_fp * 16 go to step 7.
 | |
|   //
 | |
|   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
 | |
|   // register save space).
 | |
| 
 | |
|   llvm::Value *InRegs = 0;
 | |
|   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
 | |
|   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
 | |
|   if (neededInt) {
 | |
|     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
 | |
|     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
 | |
|     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
 | |
|     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
 | |
|   }
 | |
| 
 | |
|   if (neededSSE) {
 | |
|     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
 | |
|     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
 | |
|     llvm::Value *FitsInFP =
 | |
|       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
 | |
|     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
 | |
|     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
 | |
|   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
 | |
|   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
 | |
| 
 | |
|   // Emit code to load the value if it was passed in registers.
 | |
| 
 | |
|   CGF.EmitBlock(InRegBlock);
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
 | |
|   // an offset of l->gp_offset and/or l->fp_offset. This may require
 | |
|   // copying to a temporary location in case the parameter is passed
 | |
|   // in different register classes or requires an alignment greater
 | |
|   // than 8 for general purpose registers and 16 for XMM registers.
 | |
|   //
 | |
|   // FIXME: This really results in shameful code when we end up needing to
 | |
|   // collect arguments from different places; often what should result in a
 | |
|   // simple assembling of a structure from scattered addresses has many more
 | |
|   // loads than necessary. Can we clean this up?
 | |
|   const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
 | |
|   llvm::Value *RegAddr =
 | |
|     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
 | |
|                            "reg_save_area");
 | |
|   if (neededInt && neededSSE) {
 | |
|     // FIXME: Cleanup.
 | |
|     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
 | |
|     const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
 | |
|     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
 | |
|     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
 | |
|     const llvm::Type *TyLo = ST->getElementType(0);
 | |
|     const llvm::Type *TyHi = ST->getElementType(1);
 | |
|     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
 | |
|            "Unexpected ABI info for mixed regs");
 | |
|     const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
 | |
|     const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
 | |
|     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
 | |
|     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | |
|     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
 | |
|     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
 | |
|     llvm::Value *V =
 | |
|       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
 | |
|     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
 | |
|     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
 | |
|     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
 | |
| 
 | |
|     RegAddr = CGF.Builder.CreateBitCast(Tmp,
 | |
|                                         llvm::PointerType::getUnqual(LTy));
 | |
|   } else if (neededInt) {
 | |
|     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
 | |
|     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
 | |
|                                         llvm::PointerType::getUnqual(LTy));
 | |
|   } else if (neededSSE == 1) {
 | |
|     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | |
|     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
 | |
|                                         llvm::PointerType::getUnqual(LTy));
 | |
|   } else {
 | |
|     assert(neededSSE == 2 && "Invalid number of needed registers!");
 | |
|     // SSE registers are spaced 16 bytes apart in the register save
 | |
|     // area, we need to collect the two eightbytes together.
 | |
|     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | |
|     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
 | |
|     const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
 | |
|     const llvm::Type *DblPtrTy =
 | |
|       llvm::PointerType::getUnqual(DoubleTy);
 | |
|     const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
 | |
|                                                        DoubleTy, NULL);
 | |
|     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
 | |
|     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
 | |
|                                                          DblPtrTy));
 | |
|     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
 | |
|     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
 | |
|                                                          DblPtrTy));
 | |
|     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
 | |
|     RegAddr = CGF.Builder.CreateBitCast(Tmp,
 | |
|                                         llvm::PointerType::getUnqual(LTy));
 | |
|   }
 | |
| 
 | |
|   // AMD64-ABI 3.5.7p5: Step 5. Set:
 | |
|   // l->gp_offset = l->gp_offset + num_gp * 8
 | |
|   // l->fp_offset = l->fp_offset + num_fp * 16.
 | |
|   if (neededInt) {
 | |
|     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
 | |
|     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
 | |
|                             gp_offset_p);
 | |
|   }
 | |
|   if (neededSSE) {
 | |
|     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
 | |
|     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
 | |
|                             fp_offset_p);
 | |
|   }
 | |
|   CGF.EmitBranch(ContBlock);
 | |
| 
 | |
|   // Emit code to load the value if it was passed in memory.
 | |
| 
 | |
|   CGF.EmitBlock(InMemBlock);
 | |
|   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
 | |
| 
 | |
|   // Return the appropriate result.
 | |
| 
 | |
|   CGF.EmitBlock(ContBlock);
 | |
|   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
 | |
|                                                  "vaarg.addr");
 | |
|   ResAddr->addIncoming(RegAddr, InRegBlock);
 | |
|   ResAddr->addIncoming(MemAddr, InMemBlock);
 | |
|   return ResAddr;
 | |
| }
 | |
| 
 | |
| ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
 | |
| 
 | |
|   if (Ty->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|     Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|   uint64_t Size = getContext().getTypeSize(Ty);
 | |
| 
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
 | |
|         RT->getDecl()->hasFlexibleArrayMember())
 | |
|       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | |
| 
 | |
|     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
 | |
|     if (Size == 128 &&
 | |
|         getContext().Target.getTriple().getOS() == llvm::Triple::MinGW32)
 | |
|       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | |
|                                                           Size));
 | |
| 
 | |
|     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
 | |
|     // not 1, 2, 4, or 8 bytes, must be passed by reference."
 | |
|     if (Size <= 64 &&
 | |
|         (Size & (Size - 1)) == 0)
 | |
|       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | |
|                                                           Size));
 | |
| 
 | |
|     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | |
|   }
 | |
| 
 | |
|   if (Ty->isPromotableIntegerType())
 | |
|     return ABIArgInfo::getExtend();
 | |
| 
 | |
|   return ABIArgInfo::getDirect();
 | |
| }
 | |
| 
 | |
| void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
| 
 | |
|   QualType RetTy = FI.getReturnType();
 | |
|   FI.getReturnInfo() = classify(RetTy);
 | |
| 
 | |
|   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | |
|        it != ie; ++it)
 | |
|     it->info = classify(it->type);
 | |
| }
 | |
| 
 | |
| llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                       CodeGenFunction &CGF) const {
 | |
|   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
 | |
|   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
 | |
| 
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
|   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
 | |
|                                                        "ap");
 | |
|   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | |
|   llvm::Type *PTy =
 | |
|     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | |
|   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | |
| 
 | |
|   uint64_t Offset =
 | |
|     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
 | |
|   llvm::Value *NextAddr =
 | |
|     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
 | |
|                       "ap.next");
 | |
|   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | |
| 
 | |
|   return AddrTyped;
 | |
| }
 | |
| 
 | |
| // PowerPC-32
 | |
| 
 | |
| namespace {
 | |
| class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
 | |
| public:
 | |
|   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
 | |
|     // This is recovered from gcc output.
 | |
|     return 1; // r1 is the dedicated stack pointer
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                                 llvm::Value *Address) const {
 | |
|   // This is calculated from the LLVM and GCC tables and verified
 | |
|   // against gcc output.  AFAIK all ABIs use the same encoding.
 | |
| 
 | |
|   CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
|   llvm::LLVMContext &Context = CGF.getLLVMContext();
 | |
| 
 | |
|   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
 | |
|   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
 | |
|   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
 | |
|   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
 | |
| 
 | |
|   // 0-31: r0-31, the 4-byte general-purpose registers
 | |
|   AssignToArrayRange(Builder, Address, Four8, 0, 31);
 | |
| 
 | |
|   // 32-63: fp0-31, the 8-byte floating-point registers
 | |
|   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
 | |
| 
 | |
|   // 64-76 are various 4-byte special-purpose registers:
 | |
|   // 64: mq
 | |
|   // 65: lr
 | |
|   // 66: ctr
 | |
|   // 67: ap
 | |
|   // 68-75 cr0-7
 | |
|   // 76: xer
 | |
|   AssignToArrayRange(Builder, Address, Four8, 64, 76);
 | |
| 
 | |
|   // 77-108: v0-31, the 16-byte vector registers
 | |
|   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
 | |
| 
 | |
|   // 109: vrsave
 | |
|   // 110: vscr
 | |
|   // 111: spe_acc
 | |
|   // 112: spefscr
 | |
|   // 113: sfp
 | |
|   AssignToArrayRange(Builder, Address, Four8, 109, 113);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ARM ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ARMABIInfo : public ABIInfo {
 | |
| public:
 | |
|   enum ABIKind {
 | |
|     APCS = 0,
 | |
|     AAPCS = 1,
 | |
|     AAPCS_VFP
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   ABIKind Kind;
 | |
| 
 | |
| public:
 | |
|   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
 | |
| 
 | |
| private:
 | |
|   ABIKind getABIKind() const { return Kind; }
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
| 
 | |
|   virtual void computeInfo(CGFunctionInfo &FI) const;
 | |
| 
 | |
|   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                  CodeGenFunction &CGF) const;
 | |
| };
 | |
| 
 | |
| class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
 | |
|     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
 | |
|     return 13;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
 | |
|   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | |
|        it != ie; ++it)
 | |
|     it->info = classifyArgumentType(it->type);
 | |
| 
 | |
|   const llvm::Triple &Triple(getContext().Target.getTriple());
 | |
|   llvm::CallingConv::ID DefaultCC;
 | |
|   if (Triple.getEnvironmentName() == "gnueabi" ||
 | |
|       Triple.getEnvironmentName() == "eabi")
 | |
|     DefaultCC = llvm::CallingConv::ARM_AAPCS;
 | |
|   else
 | |
|     DefaultCC = llvm::CallingConv::ARM_APCS;
 | |
| 
 | |
|   switch (getABIKind()) {
 | |
|   case APCS:
 | |
|     if (DefaultCC != llvm::CallingConv::ARM_APCS)
 | |
|       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
 | |
|     break;
 | |
| 
 | |
|   case AAPCS:
 | |
|     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
 | |
|       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
 | |
|     break;
 | |
| 
 | |
|   case AAPCS_VFP:
 | |
|     FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   if (!isAggregateTypeForABI(Ty)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
 | |
|       Ty = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return (Ty->isPromotableIntegerType() ?
 | |
|             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   // Ignore empty records.
 | |
|   if (isEmptyRecord(getContext(), Ty, true))
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   // Structures with either a non-trivial destructor or a non-trivial
 | |
|   // copy constructor are always indirect.
 | |
|   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
 | |
|     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | |
| 
 | |
|   // Otherwise, pass by coercing to a structure of the appropriate size.
 | |
|   //
 | |
|   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
 | |
|   // backend doesn't support byval.
 | |
|   // FIXME: This doesn't handle alignment > 64 bits.
 | |
|   const llvm::Type* ElemTy;
 | |
|   unsigned SizeRegs;
 | |
|   if (getContext().getTypeAlign(Ty) > 32) {
 | |
|     ElemTy = llvm::Type::getInt64Ty(getVMContext());
 | |
|     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
 | |
|   } else {
 | |
|     ElemTy = llvm::Type::getInt32Ty(getVMContext());
 | |
|     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
 | |
|   }
 | |
|   std::vector<const llvm::Type*> LLVMFields;
 | |
|   LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
 | |
|   const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
 | |
|                                                 true);
 | |
|   return ABIArgInfo::getDirect(STy);
 | |
| }
 | |
| 
 | |
| static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
 | |
|                               llvm::LLVMContext &VMContext) {
 | |
|   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
 | |
|   // is called integer-like if its size is less than or equal to one word, and
 | |
|   // the offset of each of its addressable sub-fields is zero.
 | |
| 
 | |
|   uint64_t Size = Context.getTypeSize(Ty);
 | |
| 
 | |
|   // Check that the type fits in a word.
 | |
|   if (Size > 32)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Handle vector types!
 | |
|   if (Ty->isVectorType())
 | |
|     return false;
 | |
| 
 | |
|   // Float types are never treated as "integer like".
 | |
|   if (Ty->isRealFloatingType())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a builtin or pointer type then it is ok.
 | |
|   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
 | |
|     return true;
 | |
| 
 | |
|   // Small complex integer types are "integer like".
 | |
|   if (const ComplexType *CT = Ty->getAs<ComplexType>())
 | |
|     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
 | |
| 
 | |
|   // Single element and zero sized arrays should be allowed, by the definition
 | |
|   // above, but they are not.
 | |
| 
 | |
|   // Otherwise, it must be a record type.
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   if (!RT) return false;
 | |
| 
 | |
|   // Ignore records with flexible arrays.
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   if (RD->hasFlexibleArrayMember())
 | |
|     return false;
 | |
| 
 | |
|   // Check that all sub-fields are at offset 0, and are themselves "integer
 | |
|   // like".
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   bool HadField = false;
 | |
|   unsigned idx = 0;
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|        i != e; ++i, ++idx) {
 | |
|     const FieldDecl *FD = *i;
 | |
| 
 | |
|     // Bit-fields are not addressable, we only need to verify they are "integer
 | |
|     // like". We still have to disallow a subsequent non-bitfield, for example:
 | |
|     //   struct { int : 0; int x }
 | |
|     // is non-integer like according to gcc.
 | |
|     if (FD->isBitField()) {
 | |
|       if (!RD->isUnion())
 | |
|         HadField = true;
 | |
| 
 | |
|       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
 | |
|         return false;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check if this field is at offset 0.
 | |
|     if (Layout.getFieldOffset(idx) != 0)
 | |
|       return false;
 | |
| 
 | |
|     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
 | |
|       return false;
 | |
| 
 | |
|     // Only allow at most one field in a structure. This doesn't match the
 | |
|     // wording above, but follows gcc in situations with a field following an
 | |
|     // empty structure.
 | |
|     if (!RD->isUnion()) {
 | |
|       if (HadField)
 | |
|         return false;
 | |
| 
 | |
|       HadField = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   // Large vector types should be returned via memory.
 | |
|   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|   if (!isAggregateTypeForABI(RetTy)) {
 | |
|     // Treat an enum type as its underlying type.
 | |
|     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
 | |
|       RetTy = EnumTy->getDecl()->getIntegerType();
 | |
| 
 | |
|     return (RetTy->isPromotableIntegerType() ?
 | |
|             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
|   }
 | |
| 
 | |
|   // Structures with either a non-trivial destructor or a non-trivial
 | |
|   // copy constructor are always indirect.
 | |
|   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
 | |
|     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
 | |
| 
 | |
|   // Are we following APCS?
 | |
|   if (getABIKind() == APCS) {
 | |
|     if (isEmptyRecord(getContext(), RetTy, false))
 | |
|       return ABIArgInfo::getIgnore();
 | |
| 
 | |
|     // Complex types are all returned as packed integers.
 | |
|     //
 | |
|     // FIXME: Consider using 2 x vector types if the back end handles them
 | |
|     // correctly.
 | |
|     if (RetTy->isAnyComplexType())
 | |
|       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
 | |
|                                               getContext().getTypeSize(RetTy)));
 | |
| 
 | |
|     // Integer like structures are returned in r0.
 | |
|     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
 | |
|       // Return in the smallest viable integer type.
 | |
|       uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|       if (Size <= 8)
 | |
|         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | |
|       if (Size <= 16)
 | |
|         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | |
|       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | |
|     }
 | |
| 
 | |
|     // Otherwise return in memory.
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
|   }
 | |
| 
 | |
|   // Otherwise this is an AAPCS variant.
 | |
| 
 | |
|   if (isEmptyRecord(getContext(), RetTy, true))
 | |
|     return ABIArgInfo::getIgnore();
 | |
| 
 | |
|   // Aggregates <= 4 bytes are returned in r0; other aggregates
 | |
|   // are returned indirectly.
 | |
|   uint64_t Size = getContext().getTypeSize(RetTy);
 | |
|   if (Size <= 32) {
 | |
|     // Return in the smallest viable integer type.
 | |
|     if (Size <= 8)
 | |
|       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
 | |
|     if (Size <= 16)
 | |
|       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
 | |
|     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
 | |
|   }
 | |
| 
 | |
|   return ABIArgInfo::getIndirect(0);
 | |
| }
 | |
| 
 | |
| llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                    CodeGenFunction &CGF) const {
 | |
|   // FIXME: Need to handle alignment
 | |
|   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
 | |
|   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
 | |
| 
 | |
|   CGBuilderTy &Builder = CGF.Builder;
 | |
|   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
 | |
|                                                        "ap");
 | |
|   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | |
|   llvm::Type *PTy =
 | |
|     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
 | |
|   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | |
| 
 | |
|   uint64_t Offset =
 | |
|     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
 | |
|   llvm::Value *NextAddr =
 | |
|     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
 | |
|                       "ap.next");
 | |
|   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | |
| 
 | |
|   return AddrTyped;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SystemZ ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class SystemZABIInfo : public ABIInfo {
 | |
| public:
 | |
|   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
|   bool isPromotableIntegerType(QualType Ty) const;
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
| 
 | |
|   virtual void computeInfo(CGFunctionInfo &FI) const {
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | |
|          it != ie; ++it)
 | |
|       it->info = classifyArgumentType(it->type);
 | |
|   }
 | |
| 
 | |
|   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                  CodeGenFunction &CGF) const;
 | |
| };
 | |
| 
 | |
| class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
 | |
|   // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
 | |
|     switch (BT->getKind()) {
 | |
|     case BuiltinType::Bool:
 | |
|     case BuiltinType::Char_S:
 | |
|     case BuiltinType::Char_U:
 | |
|     case BuiltinType::SChar:
 | |
|     case BuiltinType::UChar:
 | |
|     case BuiltinType::Short:
 | |
|     case BuiltinType::UShort:
 | |
|     case BuiltinType::Int:
 | |
|     case BuiltinType::UInt:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                        CodeGenFunction &CGF) const {
 | |
|   // FIXME: Implement
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
|   if (isAggregateTypeForABI(RetTy))
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|   return (isPromotableIntegerType(RetTy) ?
 | |
|           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   if (isAggregateTypeForABI(Ty))
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|   return (isPromotableIntegerType(Ty) ?
 | |
|           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MBlaze ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class MBlazeABIInfo : public ABIInfo {
 | |
| public:
 | |
|   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
 | |
| 
 | |
|   bool isPromotableIntegerType(QualType Ty) const;
 | |
| 
 | |
|   ABIArgInfo classifyReturnType(QualType RetTy) const;
 | |
|   ABIArgInfo classifyArgumentType(QualType RetTy) const;
 | |
| 
 | |
|   virtual void computeInfo(CGFunctionInfo &FI) const {
 | |
|     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 | |
|     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | |
|          it != ie; ++it)
 | |
|       it->info = classifyArgumentType(it->type);
 | |
|   }
 | |
| 
 | |
|   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                  CodeGenFunction &CGF) const;
 | |
| };
 | |
| 
 | |
| class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
 | |
|   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &M) const;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
 | |
|   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
 | |
|   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
 | |
|     switch (BT->getKind()) {
 | |
|     case BuiltinType::Bool:
 | |
|     case BuiltinType::Char_S:
 | |
|     case BuiltinType::Char_U:
 | |
|     case BuiltinType::SChar:
 | |
|     case BuiltinType::UChar:
 | |
|     case BuiltinType::Short:
 | |
|     case BuiltinType::UShort:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | |
|                                       CodeGenFunction &CGF) const {
 | |
|   // FIXME: Implement
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
 | |
|   if (RetTy->isVoidType())
 | |
|     return ABIArgInfo::getIgnore();
 | |
|   if (isAggregateTypeForABI(RetTy))
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|   return (isPromotableIntegerType(RetTy) ?
 | |
|           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
 | |
|   if (isAggregateTypeForABI(Ty))
 | |
|     return ABIArgInfo::getIndirect(0);
 | |
| 
 | |
|   return (isPromotableIntegerType(Ty) ?
 | |
|           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | |
| }
 | |
| 
 | |
| void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
 | |
|                                                   llvm::GlobalValue *GV,
 | |
|                                                   CodeGen::CodeGenModule &M)
 | |
|                                                   const {
 | |
|   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | |
|   if (!FD) return;
 | |
| 
 | |
|   llvm::CallingConv::ID CC = llvm::CallingConv::C;
 | |
|   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
 | |
|     CC = llvm::CallingConv::MBLAZE_INTR;
 | |
|   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
 | |
|     CC = llvm::CallingConv::MBLAZE_SVOL;
 | |
| 
 | |
|   if (CC != llvm::CallingConv::C) {
 | |
|       // Handle 'interrupt_handler' attribute:
 | |
|       llvm::Function *F = cast<llvm::Function>(GV);
 | |
| 
 | |
|       // Step 1: Set ISR calling convention.
 | |
|       F->setCallingConv(CC);
 | |
| 
 | |
|       // Step 2: Add attributes goodness.
 | |
|       F->addFnAttr(llvm::Attribute::NoInline);
 | |
|   }
 | |
| 
 | |
|   // Step 3: Emit _interrupt_handler alias.
 | |
|   if (CC == llvm::CallingConv::MBLAZE_INTR)
 | |
|     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
 | |
|                           "_interrupt_handler", GV, &M.getModule());
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MSP430 ABI Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
 | |
|   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
 | |
|                            CodeGen::CodeGenModule &M) const;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
 | |
|                                                   llvm::GlobalValue *GV,
 | |
|                                              CodeGen::CodeGenModule &M) const {
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
 | |
|       // Handle 'interrupt' attribute:
 | |
|       llvm::Function *F = cast<llvm::Function>(GV);
 | |
| 
 | |
|       // Step 1: Set ISR calling convention.
 | |
|       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
 | |
| 
 | |
|       // Step 2: Add attributes goodness.
 | |
|       F->addFnAttr(llvm::Attribute::NoInline);
 | |
| 
 | |
|       // Step 3: Emit ISR vector alias.
 | |
|       unsigned Num = attr->getNumber() + 0xffe0;
 | |
|       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
 | |
|                             "vector_" + llvm::Twine::utohexstr(Num),
 | |
|                             GV, &M.getModule());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MIPS ABI Implementation.  This works for both little-endian and
 | |
| // big-endian variants.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
 | |
| public:
 | |
|   MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
 | |
|     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
 | |
| 
 | |
|   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
 | |
|     return 29;
 | |
|   }
 | |
| 
 | |
|   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                llvm::Value *Address) const;
 | |
| };
 | |
| }
 | |
| 
 | |
| bool
 | |
| MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
 | |
|                                                llvm::Value *Address) const {
 | |
|   // This information comes from gcc's implementation, which seems to
 | |
|   // as canonical as it gets.
 | |
| 
 | |
|   CodeGen::CGBuilderTy &Builder = CGF.Builder;
 | |
|   llvm::LLVMContext &Context = CGF.getLLVMContext();
 | |
| 
 | |
|   // Everything on MIPS is 4 bytes.  Double-precision FP registers
 | |
|   // are aliased to pairs of single-precision FP registers.
 | |
|   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
 | |
|   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
 | |
| 
 | |
|   // 0-31 are the general purpose registers, $0 - $31.
 | |
|   // 32-63 are the floating-point registers, $f0 - $f31.
 | |
|   // 64 and 65 are the multiply/divide registers, $hi and $lo.
 | |
|   // 66 is the (notional, I think) register for signal-handler return.
 | |
|   AssignToArrayRange(Builder, Address, Four8, 0, 65);
 | |
| 
 | |
|   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
 | |
|   // They are one bit wide and ignored here.
 | |
| 
 | |
|   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
 | |
|   // (coprocessor 1 is the FP unit)
 | |
|   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
 | |
|   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
 | |
|   // 176-181 are the DSP accumulator registers.
 | |
|   AssignToArrayRange(Builder, Address, Four8, 80, 181);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
 | |
|   if (TheTargetCodeGenInfo)
 | |
|     return *TheTargetCodeGenInfo;
 | |
| 
 | |
|   // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
 | |
|   // free it.
 | |
| 
 | |
|   const llvm::Triple &Triple = getContext().Target.getTriple();
 | |
|   switch (Triple.getArch()) {
 | |
|   default:
 | |
|     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::mips:
 | |
|   case llvm::Triple::mipsel:
 | |
|     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::arm:
 | |
|   case llvm::Triple::thumb:
 | |
|     // FIXME: We want to know the float calling convention as well.
 | |
|     if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
 | |
|       return *(TheTargetCodeGenInfo =
 | |
|                new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
 | |
| 
 | |
|     return *(TheTargetCodeGenInfo =
 | |
|              new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
 | |
| 
 | |
|   case llvm::Triple::ppc:
 | |
|     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::systemz:
 | |
|     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::mblaze:
 | |
|     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::msp430:
 | |
|     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
 | |
| 
 | |
|   case llvm::Triple::x86:
 | |
|     switch (Triple.getOS()) {
 | |
|     case llvm::Triple::Darwin:
 | |
|       return *(TheTargetCodeGenInfo =
 | |
|                new X86_32TargetCodeGenInfo(Types, true, true));
 | |
|     case llvm::Triple::Cygwin:
 | |
|     case llvm::Triple::MinGW32:
 | |
|     case llvm::Triple::AuroraUX:
 | |
|     case llvm::Triple::DragonFly:
 | |
|     case llvm::Triple::FreeBSD:
 | |
|     case llvm::Triple::OpenBSD:
 | |
|     case llvm::Triple::NetBSD:
 | |
|       return *(TheTargetCodeGenInfo =
 | |
|                new X86_32TargetCodeGenInfo(Types, false, true));
 | |
| 
 | |
|     default:
 | |
|       return *(TheTargetCodeGenInfo =
 | |
|                new X86_32TargetCodeGenInfo(Types, false, false));
 | |
|     }
 | |
| 
 | |
|   case llvm::Triple::x86_64:
 | |
|     switch (Triple.getOS()) {
 | |
|     case llvm::Triple::Win32:
 | |
|     case llvm::Triple::MinGW32:
 | |
|     case llvm::Triple::Cygwin:
 | |
|       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
 | |
|     default:
 | |
|       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
 | |
|     }
 | |
|   }
 | |
| }
 |