forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2358 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2358 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the Base ARM implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARMBaseInstrInfo.h"
 | |
| #include "ARM.h"
 | |
| #include "ARMAddressingModes.h"
 | |
| #include "ARMConstantPoolValue.h"
 | |
| #include "ARMHazardRecognizer.h"
 | |
| #include "ARMMachineFunctionInfo.h"
 | |
| #include "ARMRegisterInfo.h"
 | |
| #include "ARMGenInstrInfo.inc"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
 | |
|                cl::desc("Enable ARM 2-addr to 3-addr conv"));
 | |
| 
 | |
| /// ARM_MLxEntry - Record information about MLA / MLS instructions.
 | |
| struct ARM_MLxEntry {
 | |
|   unsigned MLxOpc;     // MLA / MLS opcode
 | |
|   unsigned MulOpc;     // Expanded multiplication opcode
 | |
|   unsigned AddSubOpc;  // Expanded add / sub opcode
 | |
|   bool NegAcc;         // True if the acc is negated before the add / sub.
 | |
|   bool HasLane;        // True if instruction has an extra "lane" operand.
 | |
| };
 | |
| 
 | |
| static const ARM_MLxEntry ARM_MLxTable[] = {
 | |
|   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
 | |
|   // fp scalar ops
 | |
|   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
 | |
|   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
 | |
|   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
 | |
|   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
 | |
|   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
 | |
|   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
 | |
|   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
 | |
|   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
 | |
| 
 | |
|   // fp SIMD ops
 | |
|   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
 | |
|   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
 | |
|   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
 | |
|   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
 | |
|   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
 | |
|   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
 | |
|   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
 | |
|   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
 | |
| };
 | |
| 
 | |
| ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
 | |
|   : TargetInstrInfoImpl(ARMInsts, array_lengthof(ARMInsts)),
 | |
|     Subtarget(STI) {
 | |
|   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
 | |
|     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
 | |
|       assert(false && "Duplicated entries?");
 | |
|     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
 | |
|     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
 | |
| // currently defaults to no prepass hazard recognizer.
 | |
| ScheduleHazardRecognizer *ARMBaseInstrInfo::
 | |
| CreateTargetHazardRecognizer(const TargetMachine *TM,
 | |
|                              const ScheduleDAG *DAG) const {
 | |
|   if (usePreRAHazardRecognizer()) {
 | |
|     const InstrItineraryData *II = TM->getInstrItineraryData();
 | |
|     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
 | |
|   }
 | |
|   return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
 | |
| }
 | |
| 
 | |
| ScheduleHazardRecognizer *ARMBaseInstrInfo::
 | |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
 | |
|                                    const ScheduleDAG *DAG) const {
 | |
|   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
 | |
|     return (ScheduleHazardRecognizer *)
 | |
|       new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
 | |
|   return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
 | |
|                                         MachineBasicBlock::iterator &MBBI,
 | |
|                                         LiveVariables *LV) const {
 | |
|   // FIXME: Thumb2 support.
 | |
| 
 | |
|   if (!EnableARM3Addr)
 | |
|     return NULL;
 | |
| 
 | |
|   MachineInstr *MI = MBBI;
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   uint64_t TSFlags = MI->getDesc().TSFlags;
 | |
|   bool isPre = false;
 | |
|   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
 | |
|   default: return NULL;
 | |
|   case ARMII::IndexModePre:
 | |
|     isPre = true;
 | |
|     break;
 | |
|   case ARMII::IndexModePost:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
 | |
|   // operation.
 | |
|   unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
 | |
|   if (MemOpc == 0)
 | |
|     return NULL;
 | |
| 
 | |
|   MachineInstr *UpdateMI = NULL;
 | |
|   MachineInstr *MemMI = NULL;
 | |
|   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   unsigned NumOps = TID.getNumOperands();
 | |
|   bool isLoad = !TID.mayStore();
 | |
|   const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
 | |
|   const MachineOperand &Base = MI->getOperand(2);
 | |
|   const MachineOperand &Offset = MI->getOperand(NumOps-3);
 | |
|   unsigned WBReg = WB.getReg();
 | |
|   unsigned BaseReg = Base.getReg();
 | |
|   unsigned OffReg = Offset.getReg();
 | |
|   unsigned OffImm = MI->getOperand(NumOps-2).getImm();
 | |
|   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
 | |
|   switch (AddrMode) {
 | |
|   default:
 | |
|     assert(false && "Unknown indexed op!");
 | |
|     return NULL;
 | |
|   case ARMII::AddrMode2: {
 | |
|     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
 | |
|     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
 | |
|     if (OffReg == 0) {
 | |
|       if (ARM_AM::getSOImmVal(Amt) == -1)
 | |
|         // Can't encode it in a so_imm operand. This transformation will
 | |
|         // add more than 1 instruction. Abandon!
 | |
|         return NULL;
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
 | |
|         .addReg(BaseReg).addImm(Amt)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     } else if (Amt != 0) {
 | |
|       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
 | |
|       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
 | |
|         .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     } else
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
 | |
|         .addReg(BaseReg).addReg(OffReg)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   case ARMII::AddrMode3 : {
 | |
|     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
 | |
|     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
 | |
|     if (OffReg == 0)
 | |
|       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
 | |
|         .addReg(BaseReg).addImm(Amt)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     else
 | |
|       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
 | |
|         .addReg(BaseReg).addReg(OffReg)
 | |
|         .addImm(Pred).addReg(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   std::vector<MachineInstr*> NewMIs;
 | |
|   if (isPre) {
 | |
|     if (isLoad)
 | |
|       MemMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                       get(MemOpc), MI->getOperand(0).getReg())
 | |
|         .addReg(WBReg).addImm(0).addImm(Pred);
 | |
|     else
 | |
|       MemMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
 | |
|         .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
 | |
|     NewMIs.push_back(MemMI);
 | |
|     NewMIs.push_back(UpdateMI);
 | |
|   } else {
 | |
|     if (isLoad)
 | |
|       MemMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                       get(MemOpc), MI->getOperand(0).getReg())
 | |
|         .addReg(BaseReg).addImm(0).addImm(Pred);
 | |
|     else
 | |
|       MemMI = BuildMI(MF, MI->getDebugLoc(),
 | |
|                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
 | |
|         .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
 | |
|     if (WB.isDead())
 | |
|       UpdateMI->getOperand(0).setIsDead();
 | |
|     NewMIs.push_back(UpdateMI);
 | |
|     NewMIs.push_back(MemMI);
 | |
|   }
 | |
| 
 | |
|   // Transfer LiveVariables states, kill / dead info.
 | |
|   if (LV) {
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|         unsigned Reg = MO.getReg();
 | |
| 
 | |
|         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
 | |
|         if (MO.isDef()) {
 | |
|           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
 | |
|           if (MO.isDead())
 | |
|             LV->addVirtualRegisterDead(Reg, NewMI);
 | |
|         }
 | |
|         if (MO.isUse() && MO.isKill()) {
 | |
|           for (unsigned j = 0; j < 2; ++j) {
 | |
|             // Look at the two new MI's in reverse order.
 | |
|             MachineInstr *NewMI = NewMIs[j];
 | |
|             if (!NewMI->readsRegister(Reg))
 | |
|               continue;
 | |
|             LV->addVirtualRegisterKilled(Reg, NewMI);
 | |
|             if (VI.removeKill(MI))
 | |
|               VI.Kills.push_back(NewMI);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MFI->insert(MBBI, NewMIs[1]);
 | |
|   MFI->insert(MBBI, NewMIs[0]);
 | |
|   return NewMIs[0];
 | |
| }
 | |
| 
 | |
| // Branch analysis.
 | |
| bool
 | |
| ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
 | |
|                                 MachineBasicBlock *&FBB,
 | |
|                                 SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                 bool AllowModify) const {
 | |
|   // If the block has no terminators, it just falls into the block after it.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin())
 | |
|     return false;
 | |
|   --I;
 | |
|   while (I->isDebugValue()) {
 | |
|     if (I == MBB.begin())
 | |
|       return false;
 | |
|     --I;
 | |
|   }
 | |
|   if (!isUnpredicatedTerminator(I))
 | |
|     return false;
 | |
| 
 | |
|   // Get the last instruction in the block.
 | |
|   MachineInstr *LastInst = I;
 | |
| 
 | |
|   // If there is only one terminator instruction, process it.
 | |
|   unsigned LastOpc = LastInst->getOpcode();
 | |
|   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
 | |
|     if (isUncondBranchOpcode(LastOpc)) {
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       return false;
 | |
|     }
 | |
|     if (isCondBranchOpcode(LastOpc)) {
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       Cond.push_back(LastInst->getOperand(1));
 | |
|       Cond.push_back(LastInst->getOperand(2));
 | |
|       return false;
 | |
|     }
 | |
|     return true;  // Can't handle indirect branch.
 | |
|   }
 | |
| 
 | |
|   // Get the instruction before it if it is a terminator.
 | |
|   MachineInstr *SecondLastInst = I;
 | |
|   unsigned SecondLastOpc = SecondLastInst->getOpcode();
 | |
| 
 | |
|   // If AllowModify is true and the block ends with two or more unconditional
 | |
|   // branches, delete all but the first unconditional branch.
 | |
|   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
 | |
|     while (isUncondBranchOpcode(SecondLastOpc)) {
 | |
|       LastInst->eraseFromParent();
 | |
|       LastInst = SecondLastInst;
 | |
|       LastOpc = LastInst->getOpcode();
 | |
|       if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
 | |
|         // Return now the only terminator is an unconditional branch.
 | |
|         TBB = LastInst->getOperand(0).getMBB();
 | |
|         return false;
 | |
|       } else {
 | |
|         SecondLastInst = I;
 | |
|         SecondLastOpc = SecondLastInst->getOpcode();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are three terminators, we don't know what sort of block this is.
 | |
|   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
 | |
|     return true;
 | |
| 
 | |
|   // If the block ends with a B and a Bcc, handle it.
 | |
|   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
 | |
|     TBB =  SecondLastInst->getOperand(0).getMBB();
 | |
|     Cond.push_back(SecondLastInst->getOperand(1));
 | |
|     Cond.push_back(SecondLastInst->getOperand(2));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the block ends with two unconditional branches, handle it.  The second
 | |
|   // one is not executed, so remove it.
 | |
|   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
 | |
|     TBB = SecondLastInst->getOperand(0).getMBB();
 | |
|     I = LastInst;
 | |
|     if (AllowModify)
 | |
|       I->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // ...likewise if it ends with a branch table followed by an unconditional
 | |
|   // branch. The branch folder can create these, and we must get rid of them for
 | |
|   // correctness of Thumb constant islands.
 | |
|   if ((isJumpTableBranchOpcode(SecondLastOpc) ||
 | |
|        isIndirectBranchOpcode(SecondLastOpc)) &&
 | |
|       isUncondBranchOpcode(LastOpc)) {
 | |
|     I = LastInst;
 | |
|     if (AllowModify)
 | |
|       I->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, can't handle this.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin()) return 0;
 | |
|   --I;
 | |
|   while (I->isDebugValue()) {
 | |
|     if (I == MBB.begin())
 | |
|       return 0;
 | |
|     --I;
 | |
|   }
 | |
|   if (!isUncondBranchOpcode(I->getOpcode()) &&
 | |
|       !isCondBranchOpcode(I->getOpcode()))
 | |
|     return 0;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
| 
 | |
|   I = MBB.end();
 | |
| 
 | |
|   if (I == MBB.begin()) return 1;
 | |
|   --I;
 | |
|   if (!isCondBranchOpcode(I->getOpcode()))
 | |
|     return 1;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | |
|                                MachineBasicBlock *FBB,
 | |
|                                const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                DebugLoc DL) const {
 | |
|   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
 | |
|   int BOpc   = !AFI->isThumbFunction()
 | |
|     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
 | |
|   int BccOpc = !AFI->isThumbFunction()
 | |
|     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
 | |
| 
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 2 || Cond.size() == 0) &&
 | |
|          "ARM branch conditions have two components!");
 | |
| 
 | |
|   if (FBB == 0) {
 | |
|     if (Cond.empty()) // Unconditional branch?
 | |
|       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
 | |
|     else
 | |
|       BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
 | |
|         .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Two-way conditional branch.
 | |
|   BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
 | |
|     .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
 | |
|   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
 | |
|   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| PredicateInstruction(MachineInstr *MI,
 | |
|                      const SmallVectorImpl<MachineOperand> &Pred) const {
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   if (isUncondBranchOpcode(Opc)) {
 | |
|     MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
 | |
|     MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
 | |
|     MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   int PIdx = MI->findFirstPredOperandIdx();
 | |
|   if (PIdx != -1) {
 | |
|     MachineOperand &PMO = MI->getOperand(PIdx);
 | |
|     PMO.setImm(Pred[0].getImm());
 | |
|     MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
 | |
|                   const SmallVectorImpl<MachineOperand> &Pred2) const {
 | |
|   if (Pred1.size() > 2 || Pred2.size() > 2)
 | |
|     return false;
 | |
| 
 | |
|   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
 | |
|   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
 | |
|   if (CC1 == CC2)
 | |
|     return true;
 | |
| 
 | |
|   switch (CC1) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ARMCC::AL:
 | |
|     return true;
 | |
|   case ARMCC::HS:
 | |
|     return CC2 == ARMCC::HI;
 | |
|   case ARMCC::LS:
 | |
|     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
 | |
|   case ARMCC::GE:
 | |
|     return CC2 == ARMCC::GT;
 | |
|   case ARMCC::LE:
 | |
|     return CC2 == ARMCC::LT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
 | |
|                                     std::vector<MachineOperand> &Pred) const {
 | |
|   // FIXME: This confuses implicit_def with optional CPSR def.
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   if (!TID.getImplicitDefs() && !TID.hasOptionalDef())
 | |
|     return false;
 | |
| 
 | |
|   bool Found = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.getReg() == ARM::CPSR) {
 | |
|       Pred.push_back(MO);
 | |
|       Found = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| /// isPredicable - Return true if the specified instruction can be predicated.
 | |
| /// By default, this returns true for every instruction with a
 | |
| /// PredicateOperand.
 | |
| bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   if (!TID.isPredicable())
 | |
|     return false;
 | |
| 
 | |
|   if ((TID.TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
 | |
|     ARMFunctionInfo *AFI =
 | |
|       MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
 | |
|     return AFI->isThumb2Function();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
 | |
| LLVM_ATTRIBUTE_NOINLINE
 | |
| static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
 | |
|                                 unsigned JTI);
 | |
| static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
 | |
|                                 unsigned JTI) {
 | |
|   assert(JTI < JT.size());
 | |
|   return JT[JTI].MBBs.size();
 | |
| }
 | |
| 
 | |
| /// GetInstSize - Return the size of the specified MachineInstr.
 | |
| ///
 | |
| unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
 | |
|   const MachineBasicBlock &MBB = *MI->getParent();
 | |
|   const MachineFunction *MF = MBB.getParent();
 | |
|   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
 | |
| 
 | |
|   // Basic size info comes from the TSFlags field.
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   uint64_t TSFlags = TID.TSFlags;
 | |
| 
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
 | |
|   default: {
 | |
|     // If this machine instr is an inline asm, measure it.
 | |
|     if (MI->getOpcode() == ARM::INLINEASM)
 | |
|       return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
 | |
|     if (MI->isLabel())
 | |
|       return 0;
 | |
|     switch (Opc) {
 | |
|     default:
 | |
|       llvm_unreachable("Unknown or unset size field for instr!");
 | |
|     case TargetOpcode::IMPLICIT_DEF:
 | |
|     case TargetOpcode::KILL:
 | |
|     case TargetOpcode::PROLOG_LABEL:
 | |
|     case TargetOpcode::EH_LABEL:
 | |
|     case TargetOpcode::DBG_VALUE:
 | |
|       return 0;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ARMII::Size8Bytes: return 8;          // ARM instruction x 2.
 | |
|   case ARMII::Size4Bytes: return 4;          // ARM / Thumb2 instruction.
 | |
|   case ARMII::Size2Bytes: return 2;          // Thumb1 instruction.
 | |
|   case ARMII::SizeSpecial: {
 | |
|     switch (Opc) {
 | |
|     case ARM::MOVi16_ga_pcrel:
 | |
|     case ARM::MOVTi16_ga_pcrel:
 | |
|     case ARM::t2MOVi16_ga_pcrel:
 | |
|     case ARM::t2MOVTi16_ga_pcrel:
 | |
|       return 4;
 | |
|     case ARM::MOVi32imm:
 | |
|     case ARM::t2MOVi32imm:
 | |
|       return 8;
 | |
|     case ARM::CONSTPOOL_ENTRY:
 | |
|       // If this machine instr is a constant pool entry, its size is recorded as
 | |
|       // operand #2.
 | |
|       return MI->getOperand(2).getImm();
 | |
|     case ARM::Int_eh_sjlj_longjmp:
 | |
|       return 16;
 | |
|     case ARM::tInt_eh_sjlj_longjmp:
 | |
|       return 10;
 | |
|     case ARM::Int_eh_sjlj_setjmp:
 | |
|     case ARM::Int_eh_sjlj_setjmp_nofp:
 | |
|       return 20;
 | |
|     case ARM::tInt_eh_sjlj_setjmp:
 | |
|     case ARM::t2Int_eh_sjlj_setjmp:
 | |
|     case ARM::t2Int_eh_sjlj_setjmp_nofp:
 | |
|       return 12;
 | |
|     case ARM::BR_JTr:
 | |
|     case ARM::BR_JTm:
 | |
|     case ARM::BR_JTadd:
 | |
|     case ARM::tBR_JTr:
 | |
|     case ARM::t2BR_JT:
 | |
|     case ARM::t2TBB_JT:
 | |
|     case ARM::t2TBH_JT: {
 | |
|       // These are jumptable branches, i.e. a branch followed by an inlined
 | |
|       // jumptable. The size is 4 + 4 * number of entries. For TBB, each
 | |
|       // entry is one byte; TBH two byte each.
 | |
|       unsigned EntrySize = (Opc == ARM::t2TBB_JT)
 | |
|         ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
 | |
|       unsigned NumOps = TID.getNumOperands();
 | |
|       MachineOperand JTOP =
 | |
|         MI->getOperand(NumOps - (TID.isPredicable() ? 3 : 2));
 | |
|       unsigned JTI = JTOP.getIndex();
 | |
|       const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
 | |
|       assert(MJTI != 0);
 | |
|       const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|       assert(JTI < JT.size());
 | |
|       // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
 | |
|       // 4 aligned. The assembler / linker may add 2 byte padding just before
 | |
|       // the JT entries.  The size does not include this padding; the
 | |
|       // constant islands pass does separate bookkeeping for it.
 | |
|       // FIXME: If we know the size of the function is less than (1 << 16) *2
 | |
|       // bytes, we can use 16-bit entries instead. Then there won't be an
 | |
|       // alignment issue.
 | |
|       unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
 | |
|       unsigned NumEntries = getNumJTEntries(JT, JTI);
 | |
|       if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
 | |
|         // Make sure the instruction that follows TBB is 2-byte aligned.
 | |
|         // FIXME: Constant island pass should insert an "ALIGN" instruction
 | |
|         // instead.
 | |
|         ++NumEntries;
 | |
|       return NumEntries * EntrySize + InstSize;
 | |
|     }
 | |
|     default:
 | |
|       // Otherwise, pseudo-instruction sizes are zero.
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
|   return 0; // Not reached
 | |
| }
 | |
| 
 | |
| void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator I, DebugLoc DL,
 | |
|                                    unsigned DestReg, unsigned SrcReg,
 | |
|                                    bool KillSrc) const {
 | |
|   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
 | |
|   bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
 | |
| 
 | |
|   if (GPRDest && GPRSrc) {
 | |
|     AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
 | |
|                                   .addReg(SrcReg, getKillRegState(KillSrc))));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
 | |
|   bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
 | |
| 
 | |
|   unsigned Opc;
 | |
|   if (SPRDest && SPRSrc)
 | |
|     Opc = ARM::VMOVS;
 | |
|   else if (GPRDest && SPRSrc)
 | |
|     Opc = ARM::VMOVRS;
 | |
|   else if (SPRDest && GPRSrc)
 | |
|     Opc = ARM::VMOVSR;
 | |
|   else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = ARM::VMOVD;
 | |
|   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = ARM::VMOVQ;
 | |
|   else if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = ARM::VMOVQQ;
 | |
|   else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = ARM::VMOVQQQQ;
 | |
|   else
 | |
|     llvm_unreachable("Impossible reg-to-reg copy");
 | |
| 
 | |
|   MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
 | |
|   MIB.addReg(SrcReg, getKillRegState(KillSrc));
 | |
|   if (Opc != ARM::VMOVQQ && Opc != ARM::VMOVQQQQ)
 | |
|     AddDefaultPred(MIB);
 | |
| }
 | |
| 
 | |
| static const
 | |
| MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
 | |
|                              unsigned Reg, unsigned SubIdx, unsigned State,
 | |
|                              const TargetRegisterInfo *TRI) {
 | |
|   if (!SubIdx)
 | |
|     return MIB.addReg(Reg, State);
 | |
| 
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
 | |
|   return MIB.addReg(Reg, State, SubIdx);
 | |
| }
 | |
| 
 | |
| void ARMBaseInstrInfo::
 | |
| storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 | |
|                     unsigned SrcReg, bool isKill, int FI,
 | |
|                     const TargetRegisterClass *RC,
 | |
|                     const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL;
 | |
|   if (I != MBB.end()) DL = I->getDebugLoc();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   unsigned Align = MFI.getObjectAlignment(FI);
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(MachinePointerInfo(
 | |
|                                          PseudoSourceValue::getFixedStack(FI)),
 | |
|                             MachineMemOperand::MOStore,
 | |
|                             MFI.getObjectSize(FI),
 | |
|                             Align);
 | |
| 
 | |
|   // tGPR is used sometimes in ARM instructions that need to avoid using
 | |
|   // certain registers.  Just treat it as GPR here. Likewise, rGPR.
 | |
|   if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
 | |
|       || RC == ARM::rGPRRegisterClass)
 | |
|     RC = ARM::GPRRegisterClass;
 | |
| 
 | |
|   switch (RC->getID()) {
 | |
|   case ARM::GPRRegClassID:
 | |
|     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
 | |
|                    .addReg(SrcReg, getKillRegState(isKill))
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|     break;
 | |
|   case ARM::SPRRegClassID:
 | |
|     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
 | |
|                    .addReg(SrcReg, getKillRegState(isKill))
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|     break;
 | |
|   case ARM::DPRRegClassID:
 | |
|   case ARM::DPR_VFP2RegClassID:
 | |
|   case ARM::DPR_8RegClassID:
 | |
|     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
 | |
|                    .addReg(SrcReg, getKillRegState(isKill))
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|     break;
 | |
|   case ARM::QPRRegClassID:
 | |
|   case ARM::QPR_VFP2RegClassID:
 | |
|   case ARM::QPR_8RegClassID:
 | |
|     if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addReg(SrcReg, getKillRegState(isKill))
 | |
|                      .addMemOperand(MMO));
 | |
|     } else {
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
 | |
|                      .addReg(SrcReg, getKillRegState(isKill))
 | |
|                      .addFrameIndex(FI)
 | |
|                      .addMemOperand(MMO));
 | |
|     }
 | |
|     break;
 | |
|   case ARM::QQPRRegClassID:
 | |
|   case ARM::QQPR_VFP2RegClassID:
 | |
|     if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
 | |
|       // FIXME: It's possible to only store part of the QQ register if the
 | |
|       // spilled def has a sub-register index.
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addReg(SrcReg, getKillRegState(isKill))
 | |
|                      .addMemOperand(MMO));
 | |
|     } else {
 | |
|       MachineInstrBuilder MIB =
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
 | |
|                        .addFrameIndex(FI))
 | |
|         .addMemOperand(MMO);
 | |
|       MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
 | |
|       MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
 | |
|       MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
 | |
|             AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
 | |
|     }
 | |
|     break;
 | |
|   case ARM::QQQQPRRegClassID: {
 | |
|     MachineInstrBuilder MIB =
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
 | |
|                      .addFrameIndex(FI))
 | |
|       .addMemOperand(MMO);
 | |
|     MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
 | |
|     MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
 | |
|     MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
 | |
|     MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
 | |
|     MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
 | |
|     MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
 | |
|     MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
 | |
|           AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unknown regclass!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
 | |
|                                      int &FrameIndex) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARM::STRrs:
 | |
|   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(2).isReg() &&
 | |
|         MI->getOperand(3).isImm() &&
 | |
|         MI->getOperand(2).getReg() == 0 &&
 | |
|         MI->getOperand(3).getImm() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::STRi12:
 | |
|   case ARM::t2STRi12:
 | |
|   case ARM::tSpill:
 | |
|   case ARM::VSTRD:
 | |
|   case ARM::VSTRS:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(2).isImm() &&
 | |
|         MI->getOperand(2).getImm() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::VST1q64Pseudo:
 | |
|     if (MI->getOperand(0).isFI() &&
 | |
|         MI->getOperand(2).getSubReg() == 0) {
 | |
|       FrameIndex = MI->getOperand(0).getIndex();
 | |
|       return MI->getOperand(2).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::VSTMQIA:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(0).getSubReg() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ARMBaseInstrInfo::
 | |
| loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 | |
|                      unsigned DestReg, int FI,
 | |
|                      const TargetRegisterClass *RC,
 | |
|                      const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL;
 | |
|   if (I != MBB.end()) DL = I->getDebugLoc();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   unsigned Align = MFI.getObjectAlignment(FI);
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(
 | |
|                     MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
 | |
|                             MachineMemOperand::MOLoad,
 | |
|                             MFI.getObjectSize(FI),
 | |
|                             Align);
 | |
| 
 | |
|   // tGPR is used sometimes in ARM instructions that need to avoid using
 | |
|   // certain registers.  Just treat it as GPR here.
 | |
|   if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
 | |
|       || RC == ARM::rGPRRegisterClass)
 | |
|     RC = ARM::GPRRegisterClass;
 | |
| 
 | |
|   switch (RC->getID()) {
 | |
|   case ARM::GPRRegClassID:
 | |
|     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|     break;
 | |
|   case ARM::SPRRegClassID:
 | |
|     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|     break;
 | |
|   case ARM::DPRRegClassID:
 | |
|   case ARM::DPR_VFP2RegClassID:
 | |
|   case ARM::DPR_8RegClassID:
 | |
|     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
 | |
|                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
 | |
|     break;
 | |
|   case ARM::QPRRegClassID:
 | |
|   case ARM::QPR_VFP2RegClassID:
 | |
|   case ARM::QPR_8RegClassID:
 | |
|     if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addMemOperand(MMO));
 | |
|     } else {
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
 | |
|                      .addFrameIndex(FI)
 | |
|                      .addMemOperand(MMO));
 | |
|     }
 | |
|     break;
 | |
|   case ARM::QQPRRegClassID:
 | |
|   case ARM::QQPR_VFP2RegClassID:
 | |
|     if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
 | |
|                      .addFrameIndex(FI).addImm(16)
 | |
|                      .addMemOperand(MMO));
 | |
|     } else {
 | |
|       MachineInstrBuilder MIB =
 | |
|         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
 | |
|                        .addFrameIndex(FI))
 | |
|         .addMemOperand(MMO);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
 | |
|       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
 | |
|             AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
 | |
|     }
 | |
|     break;
 | |
|   case ARM::QQQQPRRegClassID: {
 | |
|     MachineInstrBuilder MIB =
 | |
|       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
 | |
|                      .addFrameIndex(FI))
 | |
|       .addMemOperand(MMO);
 | |
|     MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
 | |
|     MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
 | |
|     MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
 | |
|     MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
 | |
|     MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI);
 | |
|     MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI);
 | |
|     MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI);
 | |
|     AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI);
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unknown regclass!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
 | |
|                                       int &FrameIndex) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARM::LDRrs:
 | |
|   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(2).isReg() &&
 | |
|         MI->getOperand(3).isImm() &&
 | |
|         MI->getOperand(2).getReg() == 0 &&
 | |
|         MI->getOperand(3).getImm() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::LDRi12:
 | |
|   case ARM::t2LDRi12:
 | |
|   case ARM::tRestore:
 | |
|   case ARM::VLDRD:
 | |
|   case ARM::VLDRS:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(2).isImm() &&
 | |
|         MI->getOperand(2).getImm() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::VLD1q64Pseudo:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(0).getSubReg() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   case ARM::VLDMQIA:
 | |
|     if (MI->getOperand(1).isFI() &&
 | |
|         MI->getOperand(0).getSubReg() == 0) {
 | |
|       FrameIndex = MI->getOperand(1).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| MachineInstr*
 | |
| ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
 | |
|                                            int FrameIx, uint64_t Offset,
 | |
|                                            const MDNode *MDPtr,
 | |
|                                            DebugLoc DL) const {
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
 | |
|     .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
 | |
|   return &*MIB;
 | |
| }
 | |
| 
 | |
| /// Create a copy of a const pool value. Update CPI to the new index and return
 | |
| /// the label UID.
 | |
| static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
 | |
|   MachineConstantPool *MCP = MF.getConstantPool();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
 | |
|   assert(MCPE.isMachineConstantPoolEntry() &&
 | |
|          "Expecting a machine constantpool entry!");
 | |
|   ARMConstantPoolValue *ACPV =
 | |
|     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
 | |
| 
 | |
|   unsigned PCLabelId = AFI->createPICLabelUId();
 | |
|   ARMConstantPoolValue *NewCPV = 0;
 | |
|   // FIXME: The below assumes PIC relocation model and that the function
 | |
|   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
 | |
|   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
 | |
|   // instructions, so that's probably OK, but is PIC always correct when
 | |
|   // we get here?
 | |
|   if (ACPV->isGlobalValue())
 | |
|     NewCPV = new ARMConstantPoolValue(ACPV->getGV(), PCLabelId,
 | |
|                                       ARMCP::CPValue, 4);
 | |
|   else if (ACPV->isExtSymbol())
 | |
|     NewCPV = new ARMConstantPoolValue(MF.getFunction()->getContext(),
 | |
|                                       ACPV->getSymbol(), PCLabelId, 4);
 | |
|   else if (ACPV->isBlockAddress())
 | |
|     NewCPV = new ARMConstantPoolValue(ACPV->getBlockAddress(), PCLabelId,
 | |
|                                       ARMCP::CPBlockAddress, 4);
 | |
|   else if (ACPV->isLSDA())
 | |
|     NewCPV = new ARMConstantPoolValue(MF.getFunction(), PCLabelId,
 | |
|                                       ARMCP::CPLSDA, 4);
 | |
|   else
 | |
|     llvm_unreachable("Unexpected ARM constantpool value type!!");
 | |
|   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
 | |
|   return PCLabelId;
 | |
| }
 | |
| 
 | |
| void ARMBaseInstrInfo::
 | |
| reMaterialize(MachineBasicBlock &MBB,
 | |
|               MachineBasicBlock::iterator I,
 | |
|               unsigned DestReg, unsigned SubIdx,
 | |
|               const MachineInstr *Orig,
 | |
|               const TargetRegisterInfo &TRI) const {
 | |
|   unsigned Opcode = Orig->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   default: {
 | |
|     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
 | |
|     MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
 | |
|     MBB.insert(I, MI);
 | |
|     break;
 | |
|   }
 | |
|   case ARM::tLDRpci_pic:
 | |
|   case ARM::t2LDRpci_pic: {
 | |
|     MachineFunction &MF = *MBB.getParent();
 | |
|     unsigned CPI = Orig->getOperand(1).getIndex();
 | |
|     unsigned PCLabelId = duplicateCPV(MF, CPI);
 | |
|     MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
 | |
|                                       DestReg)
 | |
|       .addConstantPoolIndex(CPI).addImm(PCLabelId);
 | |
|     (*MIB).setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
 | |
|   MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
 | |
|   switch(Orig->getOpcode()) {
 | |
|   case ARM::tLDRpci_pic:
 | |
|   case ARM::t2LDRpci_pic: {
 | |
|     unsigned CPI = Orig->getOperand(1).getIndex();
 | |
|     unsigned PCLabelId = duplicateCPV(MF, CPI);
 | |
|     Orig->getOperand(1).setIndex(CPI);
 | |
|     Orig->getOperand(2).setImm(PCLabelId);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
 | |
|                                         const MachineInstr *MI1,
 | |
|                                         const MachineRegisterInfo *MRI) const {
 | |
|   int Opcode = MI0->getOpcode();
 | |
|   if (Opcode == ARM::t2LDRpci ||
 | |
|       Opcode == ARM::t2LDRpci_pic ||
 | |
|       Opcode == ARM::tLDRpci ||
 | |
|       Opcode == ARM::tLDRpci_pic ||
 | |
|       Opcode == ARM::MOV_ga_dyn ||
 | |
|       Opcode == ARM::MOV_ga_pcrel ||
 | |
|       Opcode == ARM::MOV_ga_pcrel_ldr ||
 | |
|       Opcode == ARM::t2MOV_ga_dyn ||
 | |
|       Opcode == ARM::t2MOV_ga_pcrel) {
 | |
|     if (MI1->getOpcode() != Opcode)
 | |
|       return false;
 | |
|     if (MI0->getNumOperands() != MI1->getNumOperands())
 | |
|       return false;
 | |
| 
 | |
|     const MachineOperand &MO0 = MI0->getOperand(1);
 | |
|     const MachineOperand &MO1 = MI1->getOperand(1);
 | |
|     if (MO0.getOffset() != MO1.getOffset())
 | |
|       return false;
 | |
| 
 | |
|     if (Opcode == ARM::MOV_ga_dyn ||
 | |
|         Opcode == ARM::MOV_ga_pcrel ||
 | |
|         Opcode == ARM::MOV_ga_pcrel_ldr ||
 | |
|         Opcode == ARM::t2MOV_ga_dyn ||
 | |
|         Opcode == ARM::t2MOV_ga_pcrel)
 | |
|       // Ignore the PC labels.
 | |
|       return MO0.getGlobal() == MO1.getGlobal();
 | |
| 
 | |
|     const MachineFunction *MF = MI0->getParent()->getParent();
 | |
|     const MachineConstantPool *MCP = MF->getConstantPool();
 | |
|     int CPI0 = MO0.getIndex();
 | |
|     int CPI1 = MO1.getIndex();
 | |
|     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
 | |
|     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
 | |
|     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
 | |
|     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
 | |
|     if (isARMCP0 && isARMCP1) {
 | |
|       ARMConstantPoolValue *ACPV0 =
 | |
|         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
 | |
|       ARMConstantPoolValue *ACPV1 =
 | |
|         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
 | |
|       return ACPV0->hasSameValue(ACPV1);
 | |
|     } else if (!isARMCP0 && !isARMCP1) {
 | |
|       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
 | |
|     }
 | |
|     return false;
 | |
|   } else if (Opcode == ARM::PICLDR) {
 | |
|     if (MI1->getOpcode() != Opcode)
 | |
|       return false;
 | |
|     if (MI0->getNumOperands() != MI1->getNumOperands())
 | |
|       return false;
 | |
| 
 | |
|     unsigned Addr0 = MI0->getOperand(1).getReg();
 | |
|     unsigned Addr1 = MI1->getOperand(1).getReg();
 | |
|     if (Addr0 != Addr1) {
 | |
|       if (!MRI ||
 | |
|           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
 | |
|           !TargetRegisterInfo::isVirtualRegister(Addr1))
 | |
|         return false;
 | |
| 
 | |
|       // This assumes SSA form.
 | |
|       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
 | |
|       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
 | |
|       // Check if the loaded value, e.g. a constantpool of a global address, are
 | |
|       // the same.
 | |
|       if (!produceSameValue(Def0, Def1, MRI))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
 | |
|       // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
 | |
|       const MachineOperand &MO0 = MI0->getOperand(i);
 | |
|       const MachineOperand &MO1 = MI1->getOperand(i);
 | |
|       if (!MO0.isIdenticalTo(MO1))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
 | |
| }
 | |
| 
 | |
| /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
 | |
| /// determine if two loads are loading from the same base address. It should
 | |
| /// only return true if the base pointers are the same and the only differences
 | |
| /// between the two addresses is the offset. It also returns the offsets by
 | |
| /// reference.
 | |
| bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
 | |
|                                                int64_t &Offset1,
 | |
|                                                int64_t &Offset2) const {
 | |
|   // Don't worry about Thumb: just ARM and Thumb2.
 | |
|   if (Subtarget.isThumb1Only()) return false;
 | |
| 
 | |
|   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
 | |
|     return false;
 | |
| 
 | |
|   switch (Load1->getMachineOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ARM::LDRi12:
 | |
|   case ARM::LDRBi12:
 | |
|   case ARM::LDRD:
 | |
|   case ARM::LDRH:
 | |
|   case ARM::LDRSB:
 | |
|   case ARM::LDRSH:
 | |
|   case ARM::VLDRD:
 | |
|   case ARM::VLDRS:
 | |
|   case ARM::t2LDRi8:
 | |
|   case ARM::t2LDRDi8:
 | |
|   case ARM::t2LDRSHi8:
 | |
|   case ARM::t2LDRi12:
 | |
|   case ARM::t2LDRSHi12:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (Load2->getMachineOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ARM::LDRi12:
 | |
|   case ARM::LDRBi12:
 | |
|   case ARM::LDRD:
 | |
|   case ARM::LDRH:
 | |
|   case ARM::LDRSB:
 | |
|   case ARM::LDRSH:
 | |
|   case ARM::VLDRD:
 | |
|   case ARM::VLDRS:
 | |
|   case ARM::t2LDRi8:
 | |
|   case ARM::t2LDRDi8:
 | |
|   case ARM::t2LDRSHi8:
 | |
|   case ARM::t2LDRi12:
 | |
|   case ARM::t2LDRSHi12:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Check if base addresses and chain operands match.
 | |
|   if (Load1->getOperand(0) != Load2->getOperand(0) ||
 | |
|       Load1->getOperand(4) != Load2->getOperand(4))
 | |
|     return false;
 | |
| 
 | |
|   // Index should be Reg0.
 | |
|   if (Load1->getOperand(3) != Load2->getOperand(3))
 | |
|     return false;
 | |
| 
 | |
|   // Determine the offsets.
 | |
|   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
 | |
|       isa<ConstantSDNode>(Load2->getOperand(1))) {
 | |
|     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
 | |
|     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
 | |
| /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
 | |
| /// be scheduled togther. On some targets if two loads are loading from
 | |
| /// addresses in the same cache line, it's better if they are scheduled
 | |
| /// together. This function takes two integers that represent the load offsets
 | |
| /// from the common base address. It returns true if it decides it's desirable
 | |
| /// to schedule the two loads together. "NumLoads" is the number of loads that
 | |
| /// have already been scheduled after Load1.
 | |
| bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
 | |
|                                                int64_t Offset1, int64_t Offset2,
 | |
|                                                unsigned NumLoads) const {
 | |
|   // Don't worry about Thumb: just ARM and Thumb2.
 | |
|   if (Subtarget.isThumb1Only()) return false;
 | |
| 
 | |
|   assert(Offset2 > Offset1);
 | |
| 
 | |
|   if ((Offset2 - Offset1) / 8 > 64)
 | |
|     return false;
 | |
| 
 | |
|   if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
 | |
|     return false;  // FIXME: overly conservative?
 | |
| 
 | |
|   // Four loads in a row should be sufficient.
 | |
|   if (NumLoads >= 3)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
 | |
|                                             const MachineBasicBlock *MBB,
 | |
|                                             const MachineFunction &MF) const {
 | |
|   // Debug info is never a scheduling boundary. It's necessary to be explicit
 | |
|   // due to the special treatment of IT instructions below, otherwise a
 | |
|   // dbg_value followed by an IT will result in the IT instruction being
 | |
|   // considered a scheduling hazard, which is wrong. It should be the actual
 | |
|   // instruction preceding the dbg_value instruction(s), just like it is
 | |
|   // when debug info is not present.
 | |
|   if (MI->isDebugValue())
 | |
|     return false;
 | |
| 
 | |
|   // Terminators and labels can't be scheduled around.
 | |
|   if (MI->getDesc().isTerminator() || MI->isLabel())
 | |
|     return true;
 | |
| 
 | |
|   // Treat the start of the IT block as a scheduling boundary, but schedule
 | |
|   // t2IT along with all instructions following it.
 | |
|   // FIXME: This is a big hammer. But the alternative is to add all potential
 | |
|   // true and anti dependencies to IT block instructions as implicit operands
 | |
|   // to the t2IT instruction. The added compile time and complexity does not
 | |
|   // seem worth it.
 | |
|   MachineBasicBlock::const_iterator I = MI;
 | |
|   // Make sure to skip any dbg_value instructions
 | |
|   while (++I != MBB->end() && I->isDebugValue())
 | |
|     ;
 | |
|   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
 | |
|     return true;
 | |
| 
 | |
|   // Don't attempt to schedule around any instruction that defines
 | |
|   // a stack-oriented pointer, as it's unlikely to be profitable. This
 | |
|   // saves compile time, because it doesn't require every single
 | |
|   // stack slot reference to depend on the instruction that does the
 | |
|   // modification.
 | |
|   if (MI->definesRegister(ARM::SP))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
 | |
|                                            unsigned NumCyles,
 | |
|                                            unsigned ExtraPredCycles,
 | |
|                                            float Probability,
 | |
|                                            float Confidence) const {
 | |
|   if (!NumCyles)
 | |
|     return false;
 | |
| 
 | |
|   // Attempt to estimate the relative costs of predication versus branching.
 | |
|   float UnpredCost = Probability * NumCyles;
 | |
|   UnpredCost += 1.0; // The branch itself
 | |
|   UnpredCost += (1.0 - Confidence) * Subtarget.getMispredictionPenalty();
 | |
| 
 | |
|   return (float)(NumCyles + ExtraPredCycles) < UnpredCost;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | |
|                     unsigned TCycles, unsigned TExtra,
 | |
|                     MachineBasicBlock &FMBB,
 | |
|                     unsigned FCycles, unsigned FExtra,
 | |
|                     float Probability, float Confidence) const {
 | |
|   if (!TCycles || !FCycles)
 | |
|     return false;
 | |
| 
 | |
|   // Attempt to estimate the relative costs of predication versus branching.
 | |
|   float UnpredCost = Probability * TCycles + (1.0 - Probability) * FCycles;
 | |
|   UnpredCost += 1.0; // The branch itself
 | |
|   UnpredCost += (1.0 - Confidence) * Subtarget.getMispredictionPenalty();
 | |
| 
 | |
|   return (float)(TCycles + FCycles + TExtra + FExtra) < UnpredCost;
 | |
| }
 | |
| 
 | |
| /// getInstrPredicate - If instruction is predicated, returns its predicate
 | |
| /// condition, otherwise returns AL. It also returns the condition code
 | |
| /// register by reference.
 | |
| ARMCC::CondCodes
 | |
| llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
 | |
|   int PIdx = MI->findFirstPredOperandIdx();
 | |
|   if (PIdx == -1) {
 | |
|     PredReg = 0;
 | |
|     return ARMCC::AL;
 | |
|   }
 | |
| 
 | |
|   PredReg = MI->getOperand(PIdx+1).getReg();
 | |
|   return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
 | |
| }
 | |
| 
 | |
| 
 | |
| int llvm::getMatchingCondBranchOpcode(int Opc) {
 | |
|   if (Opc == ARM::B)
 | |
|     return ARM::Bcc;
 | |
|   else if (Opc == ARM::tB)
 | |
|     return ARM::tBcc;
 | |
|   else if (Opc == ARM::t2B)
 | |
|       return ARM::t2Bcc;
 | |
| 
 | |
|   llvm_unreachable("Unknown unconditional branch opcode!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
 | |
|                                MachineBasicBlock::iterator &MBBI, DebugLoc dl,
 | |
|                                unsigned DestReg, unsigned BaseReg, int NumBytes,
 | |
|                                ARMCC::CondCodes Pred, unsigned PredReg,
 | |
|                                const ARMBaseInstrInfo &TII, unsigned MIFlags) {
 | |
|   bool isSub = NumBytes < 0;
 | |
|   if (isSub) NumBytes = -NumBytes;
 | |
| 
 | |
|   while (NumBytes) {
 | |
|     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
 | |
|     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
 | |
|     assert(ThisVal && "Didn't extract field correctly");
 | |
| 
 | |
|     // We will handle these bits from offset, clear them.
 | |
|     NumBytes &= ~ThisVal;
 | |
| 
 | |
|     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
 | |
| 
 | |
|     // Build the new ADD / SUB.
 | |
|     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
 | |
|     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
 | |
|       .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
 | |
|       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
 | |
|       .setMIFlags(MIFlags);
 | |
|     BaseReg = DestReg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
 | |
|                                 unsigned FrameReg, int &Offset,
 | |
|                                 const ARMBaseInstrInfo &TII) {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   const TargetInstrDesc &Desc = MI.getDesc();
 | |
|   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
 | |
|   bool isSub = false;
 | |
| 
 | |
|   // Memory operands in inline assembly always use AddrMode2.
 | |
|   if (Opcode == ARM::INLINEASM)
 | |
|     AddrMode = ARMII::AddrMode2;
 | |
| 
 | |
|   if (Opcode == ARM::ADDri) {
 | |
|     Offset += MI.getOperand(FrameRegIdx+1).getImm();
 | |
|     if (Offset == 0) {
 | |
|       // Turn it into a move.
 | |
|       MI.setDesc(TII.get(ARM::MOVr));
 | |
|       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
 | |
|       MI.RemoveOperand(FrameRegIdx+1);
 | |
|       Offset = 0;
 | |
|       return true;
 | |
|     } else if (Offset < 0) {
 | |
|       Offset = -Offset;
 | |
|       isSub = true;
 | |
|       MI.setDesc(TII.get(ARM::SUBri));
 | |
|     }
 | |
| 
 | |
|     // Common case: small offset, fits into instruction.
 | |
|     if (ARM_AM::getSOImmVal(Offset) != -1) {
 | |
|       // Replace the FrameIndex with sp / fp
 | |
|       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
 | |
|       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
 | |
|       Offset = 0;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
 | |
|     // as possible.
 | |
|     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
 | |
|     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
 | |
| 
 | |
|     // We will handle these bits from offset, clear them.
 | |
|     Offset &= ~ThisImmVal;
 | |
| 
 | |
|     // Get the properly encoded SOImmVal field.
 | |
|     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
 | |
|            "Bit extraction didn't work?");
 | |
|     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
 | |
|  } else {
 | |
|     unsigned ImmIdx = 0;
 | |
|     int InstrOffs = 0;
 | |
|     unsigned NumBits = 0;
 | |
|     unsigned Scale = 1;
 | |
|     switch (AddrMode) {
 | |
|     case ARMII::AddrMode_i12: {
 | |
|       ImmIdx = FrameRegIdx + 1;
 | |
|       InstrOffs = MI.getOperand(ImmIdx).getImm();
 | |
|       NumBits = 12;
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::AddrMode2: {
 | |
|       ImmIdx = FrameRegIdx+2;
 | |
|       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
 | |
|       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
 | |
|         InstrOffs *= -1;
 | |
|       NumBits = 12;
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::AddrMode3: {
 | |
|       ImmIdx = FrameRegIdx+2;
 | |
|       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
 | |
|       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
 | |
|         InstrOffs *= -1;
 | |
|       NumBits = 8;
 | |
|       break;
 | |
|     }
 | |
|     case ARMII::AddrMode4:
 | |
|     case ARMII::AddrMode6:
 | |
|       // Can't fold any offset even if it's zero.
 | |
|       return false;
 | |
|     case ARMII::AddrMode5: {
 | |
|       ImmIdx = FrameRegIdx+1;
 | |
|       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
 | |
|       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
 | |
|         InstrOffs *= -1;
 | |
|       NumBits = 8;
 | |
|       Scale = 4;
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unsupported addressing mode!");
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Offset += InstrOffs * Scale;
 | |
|     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
 | |
|     if (Offset < 0) {
 | |
|       Offset = -Offset;
 | |
|       isSub = true;
 | |
|     }
 | |
| 
 | |
|     // Attempt to fold address comp. if opcode has offset bits
 | |
|     if (NumBits > 0) {
 | |
|       // Common case: small offset, fits into instruction.
 | |
|       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
 | |
|       int ImmedOffset = Offset / Scale;
 | |
|       unsigned Mask = (1 << NumBits) - 1;
 | |
|       if ((unsigned)Offset <= Mask * Scale) {
 | |
|         // Replace the FrameIndex with sp
 | |
|         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
 | |
|         // FIXME: When addrmode2 goes away, this will simplify (like the
 | |
|         // T2 version), as the LDR.i12 versions don't need the encoding
 | |
|         // tricks for the offset value.
 | |
|         if (isSub) {
 | |
|           if (AddrMode == ARMII::AddrMode_i12)
 | |
|             ImmedOffset = -ImmedOffset;
 | |
|           else
 | |
|             ImmedOffset |= 1 << NumBits;
 | |
|         }
 | |
|         ImmOp.ChangeToImmediate(ImmedOffset);
 | |
|         Offset = 0;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
 | |
|       ImmedOffset = ImmedOffset & Mask;
 | |
|       if (isSub) {
 | |
|         if (AddrMode == ARMII::AddrMode_i12)
 | |
|           ImmedOffset = -ImmedOffset;
 | |
|         else
 | |
|           ImmedOffset |= 1 << NumBits;
 | |
|       }
 | |
|       ImmOp.ChangeToImmediate(ImmedOffset);
 | |
|       Offset &= ~(Mask*Scale);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Offset = (isSub) ? -Offset : Offset;
 | |
|   return Offset == 0;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
 | |
|                int &CmpValue) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARM::CMPri:
 | |
|   case ARM::t2CMPri:
 | |
|     SrcReg = MI->getOperand(0).getReg();
 | |
|     CmpMask = ~0;
 | |
|     CmpValue = MI->getOperand(1).getImm();
 | |
|     return true;
 | |
|   case ARM::TSTri:
 | |
|   case ARM::t2TSTri:
 | |
|     SrcReg = MI->getOperand(0).getReg();
 | |
|     CmpMask = MI->getOperand(1).getImm();
 | |
|     CmpValue = 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isSuitableForMask - Identify a suitable 'and' instruction that
 | |
| /// operates on the given source register and applies the same mask
 | |
| /// as a 'tst' instruction. Provide a limited look-through for copies.
 | |
| /// When successful, MI will hold the found instruction.
 | |
| static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
 | |
|                               int CmpMask, bool CommonUse) {
 | |
|   switch (MI->getOpcode()) {
 | |
|     case ARM::ANDri:
 | |
|     case ARM::t2ANDri:
 | |
|       if (CmpMask != MI->getOperand(2).getImm())
 | |
|         return false;
 | |
|       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
 | |
|         return true;
 | |
|       break;
 | |
|     case ARM::COPY: {
 | |
|       // Walk down one instruction which is potentially an 'and'.
 | |
|       const MachineInstr &Copy = *MI;
 | |
|       MachineBasicBlock::iterator AND(
 | |
|         llvm::next(MachineBasicBlock::iterator(MI)));
 | |
|       if (AND == MI->getParent()->end()) return false;
 | |
|       MI = AND;
 | |
|       return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
 | |
|                                CmpMask, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// OptimizeCompareInstr - Convert the instruction supplying the argument to the
 | |
| /// comparison into one that sets the zero bit in the flags register.
 | |
| bool ARMBaseInstrInfo::
 | |
| OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
 | |
|                      int CmpValue, const MachineRegisterInfo *MRI) const {
 | |
|   if (CmpValue != 0)
 | |
|     return false;
 | |
| 
 | |
|   MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
 | |
|   if (llvm::next(DI) != MRI->def_end())
 | |
|     // Only support one definition.
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *MI = &*DI;
 | |
| 
 | |
|   // Masked compares sometimes use the same register as the corresponding 'and'.
 | |
|   if (CmpMask != ~0) {
 | |
|     if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
 | |
|       MI = 0;
 | |
|       for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
 | |
|            UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|         if (UI->getParent() != CmpInstr->getParent()) continue;
 | |
|         MachineInstr *PotentialAND = &*UI;
 | |
|         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
 | |
|           continue;
 | |
|         MI = PotentialAND;
 | |
|         break;
 | |
|       }
 | |
|       if (!MI) return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Conservatively refuse to convert an instruction which isn't in the same BB
 | |
|   // as the comparison.
 | |
|   if (MI->getParent() != CmpInstr->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // Check that CPSR isn't set between the comparison instruction and the one we
 | |
|   // want to change.
 | |
|   MachineBasicBlock::const_iterator I = CmpInstr, E = MI,
 | |
|     B = MI->getParent()->begin();
 | |
| 
 | |
|   // Early exit if CmpInstr is at the beginning of the BB.
 | |
|   if (I == B) return false;
 | |
| 
 | |
|   --I;
 | |
|   for (; I != E; --I) {
 | |
|     const MachineInstr &Instr = *I;
 | |
| 
 | |
|     for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
 | |
|       const MachineOperand &MO = Instr.getOperand(IO);
 | |
|       if (!MO.isReg()) continue;
 | |
| 
 | |
|       // This instruction modifies or uses CPSR after the one we want to
 | |
|       // change. We can't do this transformation.
 | |
|       if (MO.getReg() == ARM::CPSR)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (I == B)
 | |
|       // The 'and' is below the comparison instruction.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Set the "zero" bit in CPSR.
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case ARM::ADDri:
 | |
|   case ARM::SUBri:
 | |
|   case ARM::t2ADDri:
 | |
|   case ARM::t2SUBri: {
 | |
|     // Scan forward for the use of CPSR, if it's a conditional code requires
 | |
|     // checking of V bit, then this is not safe to do. If we can't find the
 | |
|     // CPSR use (i.e. used in another block), then it's not safe to perform
 | |
|     // the optimization.
 | |
|     bool isSafe = false;
 | |
|     I = CmpInstr;
 | |
|     E = MI->getParent()->end();
 | |
|     while (!isSafe && ++I != E) {
 | |
|       const MachineInstr &Instr = *I;
 | |
|       for (unsigned IO = 0, EO = Instr.getNumOperands();
 | |
|            !isSafe && IO != EO; ++IO) {
 | |
|         const MachineOperand &MO = Instr.getOperand(IO);
 | |
|         if (!MO.isReg() || MO.getReg() != ARM::CPSR)
 | |
|           continue;
 | |
|         if (MO.isDef()) {
 | |
|           isSafe = true;
 | |
|           break;
 | |
|         }
 | |
|         // Condition code is after the operand before CPSR.
 | |
|         ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
 | |
|         switch (CC) {
 | |
|         default:
 | |
|           isSafe = true;
 | |
|           break;
 | |
|         case ARMCC::VS:
 | |
|         case ARMCC::VC:
 | |
|         case ARMCC::GE:
 | |
|         case ARMCC::LT:
 | |
|         case ARMCC::GT:
 | |
|         case ARMCC::LE:
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!isSafe)
 | |
|       return false;
 | |
| 
 | |
|     // fallthrough
 | |
|   }
 | |
|   case ARM::ANDri:
 | |
|   case ARM::t2ANDri:
 | |
|     // Toggle the optional operand to CPSR.
 | |
|     MI->getOperand(5).setReg(ARM::CPSR);
 | |
|     MI->getOperand(5).setIsDef(true);
 | |
|     CmpInstr->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
 | |
|                                      MachineInstr *DefMI, unsigned Reg,
 | |
|                                      MachineRegisterInfo *MRI) const {
 | |
|   // Fold large immediates into add, sub, or, xor.
 | |
|   unsigned DefOpc = DefMI->getOpcode();
 | |
|   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
 | |
|     return false;
 | |
|   if (!DefMI->getOperand(1).isImm())
 | |
|     // Could be t2MOVi32imm <ga:xx>
 | |
|     return false;
 | |
| 
 | |
|   if (!MRI->hasOneNonDBGUse(Reg))
 | |
|     return false;
 | |
| 
 | |
|   unsigned UseOpc = UseMI->getOpcode();
 | |
|   unsigned NewUseOpc = 0;
 | |
|   uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
 | |
|   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
 | |
|   bool Commute = false;
 | |
|   switch (UseOpc) {
 | |
|   default: return false;
 | |
|   case ARM::SUBrr:
 | |
|   case ARM::ADDrr:
 | |
|   case ARM::ORRrr:
 | |
|   case ARM::EORrr:
 | |
|   case ARM::t2SUBrr:
 | |
|   case ARM::t2ADDrr:
 | |
|   case ARM::t2ORRrr:
 | |
|   case ARM::t2EORrr: {
 | |
|     Commute = UseMI->getOperand(2).getReg() != Reg;
 | |
|     switch (UseOpc) {
 | |
|     default: break;
 | |
|     case ARM::SUBrr: {
 | |
|       if (Commute)
 | |
|         return false;
 | |
|       ImmVal = -ImmVal;
 | |
|       NewUseOpc = ARM::SUBri;
 | |
|       // Fallthrough
 | |
|     }
 | |
|     case ARM::ADDrr:
 | |
|     case ARM::ORRrr:
 | |
|     case ARM::EORrr: {
 | |
|       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
 | |
|         return false;
 | |
|       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
 | |
|       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
 | |
|       switch (UseOpc) {
 | |
|       default: break;
 | |
|       case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
 | |
|       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
 | |
|       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case ARM::t2SUBrr: {
 | |
|       if (Commute)
 | |
|         return false;
 | |
|       ImmVal = -ImmVal;
 | |
|       NewUseOpc = ARM::t2SUBri;
 | |
|       // Fallthrough
 | |
|     }
 | |
|     case ARM::t2ADDrr:
 | |
|     case ARM::t2ORRrr:
 | |
|     case ARM::t2EORrr: {
 | |
|       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
 | |
|         return false;
 | |
|       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
 | |
|       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
 | |
|       switch (UseOpc) {
 | |
|       default: break;
 | |
|       case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
 | |
|       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
 | |
|       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   unsigned OpIdx = Commute ? 2 : 1;
 | |
|   unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
 | |
|   bool isKill = UseMI->getOperand(OpIdx).isKill();
 | |
|   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
 | |
|   AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
 | |
|                                       *UseMI, UseMI->getDebugLoc(),
 | |
|                                       get(NewUseOpc), NewReg)
 | |
|                               .addReg(Reg1, getKillRegState(isKill))
 | |
|                               .addImm(SOImmValV1)));
 | |
|   UseMI->setDesc(get(NewUseOpc));
 | |
|   UseMI->getOperand(1).setReg(NewReg);
 | |
|   UseMI->getOperand(1).setIsKill();
 | |
|   UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
 | |
|   DefMI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
 | |
|                                  const MachineInstr *MI) const {
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return 1;
 | |
| 
 | |
|   const TargetInstrDesc &Desc = MI->getDesc();
 | |
|   unsigned Class = Desc.getSchedClass();
 | |
|   unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
 | |
|   if (UOps)
 | |
|     return UOps;
 | |
| 
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   switch (Opc) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected multi-uops instruction!");
 | |
|     break;
 | |
|   case ARM::VLDMQIA:
 | |
|   case ARM::VSTMQIA:
 | |
|     return 2;
 | |
| 
 | |
|   // The number of uOps for load / store multiple are determined by the number
 | |
|   // registers.
 | |
|   //
 | |
|   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
 | |
|   // same cycle. The scheduling for the first load / store must be done
 | |
|   // separately by assuming the the address is not 64-bit aligned.
 | |
|   //
 | |
|   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
 | |
|   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
 | |
|   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
 | |
|   case ARM::VLDMDIA:
 | |
|   case ARM::VLDMDIA_UPD:
 | |
|   case ARM::VLDMDDB_UPD:
 | |
|   case ARM::VLDMSIA:
 | |
|   case ARM::VLDMSIA_UPD:
 | |
|   case ARM::VLDMSDB_UPD:
 | |
|   case ARM::VSTMDIA:
 | |
|   case ARM::VSTMDIA_UPD:
 | |
|   case ARM::VSTMDDB_UPD:
 | |
|   case ARM::VSTMSIA:
 | |
|   case ARM::VSTMSIA_UPD:
 | |
|   case ARM::VSTMSDB_UPD: {
 | |
|     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
 | |
|     return (NumRegs / 2) + (NumRegs % 2) + 1;
 | |
|   }
 | |
| 
 | |
|   case ARM::LDMIA_RET:
 | |
|   case ARM::LDMIA:
 | |
|   case ARM::LDMDA:
 | |
|   case ARM::LDMDB:
 | |
|   case ARM::LDMIB:
 | |
|   case ARM::LDMIA_UPD:
 | |
|   case ARM::LDMDA_UPD:
 | |
|   case ARM::LDMDB_UPD:
 | |
|   case ARM::LDMIB_UPD:
 | |
|   case ARM::STMIA:
 | |
|   case ARM::STMDA:
 | |
|   case ARM::STMDB:
 | |
|   case ARM::STMIB:
 | |
|   case ARM::STMIA_UPD:
 | |
|   case ARM::STMDA_UPD:
 | |
|   case ARM::STMDB_UPD:
 | |
|   case ARM::STMIB_UPD:
 | |
|   case ARM::tLDMIA:
 | |
|   case ARM::tLDMIA_UPD:
 | |
|   case ARM::tSTMIA:
 | |
|   case ARM::tSTMIA_UPD:
 | |
|   case ARM::tPOP_RET:
 | |
|   case ARM::tPOP:
 | |
|   case ARM::tPUSH:
 | |
|   case ARM::t2LDMIA_RET:
 | |
|   case ARM::t2LDMIA:
 | |
|   case ARM::t2LDMDB:
 | |
|   case ARM::t2LDMIA_UPD:
 | |
|   case ARM::t2LDMDB_UPD:
 | |
|   case ARM::t2STMIA:
 | |
|   case ARM::t2STMDB:
 | |
|   case ARM::t2STMIA_UPD:
 | |
|   case ARM::t2STMDB_UPD: {
 | |
|     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
 | |
|     if (Subtarget.isCortexA8()) {
 | |
|       if (NumRegs < 4)
 | |
|         return 2;
 | |
|       // 4 registers would be issued: 2, 2.
 | |
|       // 5 registers would be issued: 2, 2, 1.
 | |
|       UOps = (NumRegs / 2);
 | |
|       if (NumRegs % 2)
 | |
|         ++UOps;
 | |
|       return UOps;
 | |
|     } else if (Subtarget.isCortexA9()) {
 | |
|       UOps = (NumRegs / 2);
 | |
|       // If there are odd number of registers or if it's not 64-bit aligned,
 | |
|       // then it takes an extra AGU (Address Generation Unit) cycle.
 | |
|       if ((NumRegs % 2) ||
 | |
|           !MI->hasOneMemOperand() ||
 | |
|           (*MI->memoperands_begin())->getAlignment() < 8)
 | |
|         ++UOps;
 | |
|       return UOps;
 | |
|     } else {
 | |
|       // Assume the worst.
 | |
|       return NumRegs;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
 | |
|                                   const TargetInstrDesc &DefTID,
 | |
|                                   unsigned DefClass,
 | |
|                                   unsigned DefIdx, unsigned DefAlign) const {
 | |
|   int RegNo = (int)(DefIdx+1) - DefTID.getNumOperands() + 1;
 | |
|   if (RegNo <= 0)
 | |
|     // Def is the address writeback.
 | |
|     return ItinData->getOperandCycle(DefClass, DefIdx);
 | |
| 
 | |
|   int DefCycle;
 | |
|   if (Subtarget.isCortexA8()) {
 | |
|     // (regno / 2) + (regno % 2) + 1
 | |
|     DefCycle = RegNo / 2 + 1;
 | |
|     if (RegNo % 2)
 | |
|       ++DefCycle;
 | |
|   } else if (Subtarget.isCortexA9()) {
 | |
|     DefCycle = RegNo;
 | |
|     bool isSLoad = false;
 | |
| 
 | |
|     switch (DefTID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::VLDMSIA:
 | |
|     case ARM::VLDMSIA_UPD:
 | |
|     case ARM::VLDMSDB_UPD:
 | |
|       isSLoad = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
 | |
|     // then it takes an extra cycle.
 | |
|     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
 | |
|       ++DefCycle;
 | |
|   } else {
 | |
|     // Assume the worst.
 | |
|     DefCycle = RegNo + 2;
 | |
|   }
 | |
| 
 | |
|   return DefCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
 | |
|                                  const TargetInstrDesc &DefTID,
 | |
|                                  unsigned DefClass,
 | |
|                                  unsigned DefIdx, unsigned DefAlign) const {
 | |
|   int RegNo = (int)(DefIdx+1) - DefTID.getNumOperands() + 1;
 | |
|   if (RegNo <= 0)
 | |
|     // Def is the address writeback.
 | |
|     return ItinData->getOperandCycle(DefClass, DefIdx);
 | |
| 
 | |
|   int DefCycle;
 | |
|   if (Subtarget.isCortexA8()) {
 | |
|     // 4 registers would be issued: 1, 2, 1.
 | |
|     // 5 registers would be issued: 1, 2, 2.
 | |
|     DefCycle = RegNo / 2;
 | |
|     if (DefCycle < 1)
 | |
|       DefCycle = 1;
 | |
|     // Result latency is issue cycle + 2: E2.
 | |
|     DefCycle += 2;
 | |
|   } else if (Subtarget.isCortexA9()) {
 | |
|     DefCycle = (RegNo / 2);
 | |
|     // If there are odd number of registers or if it's not 64-bit aligned,
 | |
|     // then it takes an extra AGU (Address Generation Unit) cycle.
 | |
|     if ((RegNo % 2) || DefAlign < 8)
 | |
|       ++DefCycle;
 | |
|     // Result latency is AGU cycles + 2.
 | |
|     DefCycle += 2;
 | |
|   } else {
 | |
|     // Assume the worst.
 | |
|     DefCycle = RegNo + 2;
 | |
|   }
 | |
| 
 | |
|   return DefCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
 | |
|                                   const TargetInstrDesc &UseTID,
 | |
|                                   unsigned UseClass,
 | |
|                                   unsigned UseIdx, unsigned UseAlign) const {
 | |
|   int RegNo = (int)(UseIdx+1) - UseTID.getNumOperands() + 1;
 | |
|   if (RegNo <= 0)
 | |
|     return ItinData->getOperandCycle(UseClass, UseIdx);
 | |
| 
 | |
|   int UseCycle;
 | |
|   if (Subtarget.isCortexA8()) {
 | |
|     // (regno / 2) + (regno % 2) + 1
 | |
|     UseCycle = RegNo / 2 + 1;
 | |
|     if (RegNo % 2)
 | |
|       ++UseCycle;
 | |
|   } else if (Subtarget.isCortexA9()) {
 | |
|     UseCycle = RegNo;
 | |
|     bool isSStore = false;
 | |
| 
 | |
|     switch (UseTID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::VSTMSIA:
 | |
|     case ARM::VSTMSIA_UPD:
 | |
|     case ARM::VSTMSDB_UPD:
 | |
|       isSStore = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
 | |
|     // then it takes an extra cycle.
 | |
|     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
 | |
|       ++UseCycle;
 | |
|   } else {
 | |
|     // Assume the worst.
 | |
|     UseCycle = RegNo + 2;
 | |
|   }
 | |
| 
 | |
|   return UseCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
 | |
|                                  const TargetInstrDesc &UseTID,
 | |
|                                  unsigned UseClass,
 | |
|                                  unsigned UseIdx, unsigned UseAlign) const {
 | |
|   int RegNo = (int)(UseIdx+1) - UseTID.getNumOperands() + 1;
 | |
|   if (RegNo <= 0)
 | |
|     return ItinData->getOperandCycle(UseClass, UseIdx);
 | |
| 
 | |
|   int UseCycle;
 | |
|   if (Subtarget.isCortexA8()) {
 | |
|     UseCycle = RegNo / 2;
 | |
|     if (UseCycle < 2)
 | |
|       UseCycle = 2;
 | |
|     // Read in E3.
 | |
|     UseCycle += 2;
 | |
|   } else if (Subtarget.isCortexA9()) {
 | |
|     UseCycle = (RegNo / 2);
 | |
|     // If there are odd number of registers or if it's not 64-bit aligned,
 | |
|     // then it takes an extra AGU (Address Generation Unit) cycle.
 | |
|     if ((RegNo % 2) || UseAlign < 8)
 | |
|       ++UseCycle;
 | |
|   } else {
 | |
|     // Assume the worst.
 | |
|     UseCycle = 1;
 | |
|   }
 | |
|   return UseCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                     const TargetInstrDesc &DefTID,
 | |
|                                     unsigned DefIdx, unsigned DefAlign,
 | |
|                                     const TargetInstrDesc &UseTID,
 | |
|                                     unsigned UseIdx, unsigned UseAlign) const {
 | |
|   unsigned DefClass = DefTID.getSchedClass();
 | |
|   unsigned UseClass = UseTID.getSchedClass();
 | |
| 
 | |
|   if (DefIdx < DefTID.getNumDefs() && UseIdx < UseTID.getNumOperands())
 | |
|     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
 | |
| 
 | |
|   // This may be a def / use of a variable_ops instruction, the operand
 | |
|   // latency might be determinable dynamically. Let the target try to
 | |
|   // figure it out.
 | |
|   int DefCycle = -1;
 | |
|   bool LdmBypass = false;
 | |
|   switch (DefTID.getOpcode()) {
 | |
|   default:
 | |
|     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
 | |
|     break;
 | |
| 
 | |
|   case ARM::VLDMDIA:
 | |
|   case ARM::VLDMDIA_UPD:
 | |
|   case ARM::VLDMDDB_UPD:
 | |
|   case ARM::VLDMSIA:
 | |
|   case ARM::VLDMSIA_UPD:
 | |
|   case ARM::VLDMSDB_UPD:
 | |
|     DefCycle = getVLDMDefCycle(ItinData, DefTID, DefClass, DefIdx, DefAlign);
 | |
|     break;
 | |
| 
 | |
|   case ARM::LDMIA_RET:
 | |
|   case ARM::LDMIA:
 | |
|   case ARM::LDMDA:
 | |
|   case ARM::LDMDB:
 | |
|   case ARM::LDMIB:
 | |
|   case ARM::LDMIA_UPD:
 | |
|   case ARM::LDMDA_UPD:
 | |
|   case ARM::LDMDB_UPD:
 | |
|   case ARM::LDMIB_UPD:
 | |
|   case ARM::tLDMIA:
 | |
|   case ARM::tLDMIA_UPD:
 | |
|   case ARM::tPUSH:
 | |
|   case ARM::t2LDMIA_RET:
 | |
|   case ARM::t2LDMIA:
 | |
|   case ARM::t2LDMDB:
 | |
|   case ARM::t2LDMIA_UPD:
 | |
|   case ARM::t2LDMDB_UPD:
 | |
|     LdmBypass = 1;
 | |
|     DefCycle = getLDMDefCycle(ItinData, DefTID, DefClass, DefIdx, DefAlign);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (DefCycle == -1)
 | |
|     // We can't seem to determine the result latency of the def, assume it's 2.
 | |
|     DefCycle = 2;
 | |
| 
 | |
|   int UseCycle = -1;
 | |
|   switch (UseTID.getOpcode()) {
 | |
|   default:
 | |
|     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
 | |
|     break;
 | |
| 
 | |
|   case ARM::VSTMDIA:
 | |
|   case ARM::VSTMDIA_UPD:
 | |
|   case ARM::VSTMDDB_UPD:
 | |
|   case ARM::VSTMSIA:
 | |
|   case ARM::VSTMSIA_UPD:
 | |
|   case ARM::VSTMSDB_UPD:
 | |
|     UseCycle = getVSTMUseCycle(ItinData, UseTID, UseClass, UseIdx, UseAlign);
 | |
|     break;
 | |
| 
 | |
|   case ARM::STMIA:
 | |
|   case ARM::STMDA:
 | |
|   case ARM::STMDB:
 | |
|   case ARM::STMIB:
 | |
|   case ARM::STMIA_UPD:
 | |
|   case ARM::STMDA_UPD:
 | |
|   case ARM::STMDB_UPD:
 | |
|   case ARM::STMIB_UPD:
 | |
|   case ARM::tSTMIA:
 | |
|   case ARM::tSTMIA_UPD:
 | |
|   case ARM::tPOP_RET:
 | |
|   case ARM::tPOP:
 | |
|   case ARM::t2STMIA:
 | |
|   case ARM::t2STMDB:
 | |
|   case ARM::t2STMIA_UPD:
 | |
|   case ARM::t2STMDB_UPD:
 | |
|     UseCycle = getSTMUseCycle(ItinData, UseTID, UseClass, UseIdx, UseAlign);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (UseCycle == -1)
 | |
|     // Assume it's read in the first stage.
 | |
|     UseCycle = 1;
 | |
| 
 | |
|   UseCycle = DefCycle - UseCycle + 1;
 | |
|   if (UseCycle > 0) {
 | |
|     if (LdmBypass) {
 | |
|       // It's a variable_ops instruction so we can't use DefIdx here. Just use
 | |
|       // first def operand.
 | |
|       if (ItinData->hasPipelineForwarding(DefClass, DefTID.getNumOperands()-1,
 | |
|                                           UseClass, UseIdx))
 | |
|         --UseCycle;
 | |
|     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
 | |
|                                                UseClass, UseIdx)) {
 | |
|       --UseCycle;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return UseCycle;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                              const MachineInstr *DefMI, unsigned DefIdx,
 | |
|                              const MachineInstr *UseMI, unsigned UseIdx) const {
 | |
|   if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
 | |
|       DefMI->isRegSequence() || DefMI->isImplicitDef())
 | |
|     return 1;
 | |
| 
 | |
|   const TargetInstrDesc &DefTID = DefMI->getDesc();
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return DefTID.mayLoad() ? 3 : 1;
 | |
| 
 | |
|   const TargetInstrDesc &UseTID = UseMI->getDesc();
 | |
|   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
 | |
|   if (DefMO.getReg() == ARM::CPSR) {
 | |
|     if (DefMI->getOpcode() == ARM::FMSTAT) {
 | |
|       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
 | |
|       return Subtarget.isCortexA9() ? 1 : 20;
 | |
|     }
 | |
| 
 | |
|     // CPSR set and branch can be paired in the same cycle.
 | |
|     if (UseTID.isBranch())
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   unsigned DefAlign = DefMI->hasOneMemOperand()
 | |
|     ? (*DefMI->memoperands_begin())->getAlignment() : 0;
 | |
|   unsigned UseAlign = UseMI->hasOneMemOperand()
 | |
|     ? (*UseMI->memoperands_begin())->getAlignment() : 0;
 | |
|   int Latency = getOperandLatency(ItinData, DefTID, DefIdx, DefAlign,
 | |
|                                   UseTID, UseIdx, UseAlign);
 | |
| 
 | |
|   if (Latency > 1 &&
 | |
|       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
 | |
|     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
 | |
|     // variants are one cycle cheaper.
 | |
|     switch (DefTID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::LDRrs:
 | |
|     case ARM::LDRBrs: {
 | |
|       unsigned ShOpVal = DefMI->getOperand(3).getImm();
 | |
|       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|       if (ShImm == 0 ||
 | |
|           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
 | |
|         --Latency;
 | |
|       break;
 | |
|     }
 | |
|     case ARM::t2LDRs:
 | |
|     case ARM::t2LDRBs:
 | |
|     case ARM::t2LDRHs:
 | |
|     case ARM::t2LDRSHs: {
 | |
|       // Thumb2 mode: lsl only.
 | |
|       unsigned ShAmt = DefMI->getOperand(3).getImm();
 | |
|       if (ShAmt == 0 || ShAmt == 2)
 | |
|         --Latency;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| int
 | |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                     SDNode *DefNode, unsigned DefIdx,
 | |
|                                     SDNode *UseNode, unsigned UseIdx) const {
 | |
|   if (!DefNode->isMachineOpcode())
 | |
|     return 1;
 | |
| 
 | |
|   const TargetInstrDesc &DefTID = get(DefNode->getMachineOpcode());
 | |
| 
 | |
|   if (isZeroCost(DefTID.Opcode))
 | |
|     return 0;
 | |
| 
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return DefTID.mayLoad() ? 3 : 1;
 | |
| 
 | |
|   if (!UseNode->isMachineOpcode()) {
 | |
|     int Latency = ItinData->getOperandCycle(DefTID.getSchedClass(), DefIdx);
 | |
|     if (Subtarget.isCortexA9())
 | |
|       return Latency <= 2 ? 1 : Latency - 1;
 | |
|     else
 | |
|       return Latency <= 3 ? 1 : Latency - 2;
 | |
|   }
 | |
| 
 | |
|   const TargetInstrDesc &UseTID = get(UseNode->getMachineOpcode());
 | |
|   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
 | |
|   unsigned DefAlign = !DefMN->memoperands_empty()
 | |
|     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
 | |
|   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
 | |
|   unsigned UseAlign = !UseMN->memoperands_empty()
 | |
|     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
 | |
|   int Latency = getOperandLatency(ItinData, DefTID, DefIdx, DefAlign,
 | |
|                                   UseTID, UseIdx, UseAlign);
 | |
| 
 | |
|   if (Latency > 1 &&
 | |
|       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
 | |
|     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
 | |
|     // variants are one cycle cheaper.
 | |
|     switch (DefTID.getOpcode()) {
 | |
|     default: break;
 | |
|     case ARM::LDRrs:
 | |
|     case ARM::LDRBrs: {
 | |
|       unsigned ShOpVal =
 | |
|         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
 | |
|       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
 | |
|       if (ShImm == 0 ||
 | |
|           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
 | |
|         --Latency;
 | |
|       break;
 | |
|     }
 | |
|     case ARM::t2LDRs:
 | |
|     case ARM::t2LDRBs:
 | |
|     case ARM::t2LDRHs:
 | |
|     case ARM::t2LDRSHs: {
 | |
|       // Thumb2 mode: lsl only.
 | |
|       unsigned ShAmt =
 | |
|         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
 | |
|       if (ShAmt == 0 || ShAmt == 2)
 | |
|         --Latency;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | |
|                                       const MachineInstr *MI,
 | |
|                                       unsigned *PredCost) const {
 | |
|   if (MI->isCopyLike() || MI->isInsertSubreg() ||
 | |
|       MI->isRegSequence() || MI->isImplicitDef())
 | |
|     return 1;
 | |
| 
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return 1;
 | |
| 
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   unsigned Class = TID.getSchedClass();
 | |
|   unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
 | |
|   if (PredCost && TID.hasImplicitDefOfPhysReg(ARM::CPSR))
 | |
|     // When predicated, CPSR is an additional source operand for CPSR updating
 | |
|     // instructions, this apparently increases their latencies.
 | |
|     *PredCost = 1;
 | |
|   if (UOps)
 | |
|     return ItinData->getStageLatency(Class);
 | |
|   return getNumMicroOps(ItinData, MI);
 | |
| }
 | |
| 
 | |
| int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | |
|                                       SDNode *Node) const {
 | |
|   if (!Node->isMachineOpcode())
 | |
|     return 1;
 | |
| 
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return 1;
 | |
| 
 | |
|   unsigned Opcode = Node->getMachineOpcode();
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return ItinData->getStageLatency(get(Opcode).getSchedClass());
 | |
|   case ARM::VLDMQIA:
 | |
|   case ARM::VSTMQIA:
 | |
|     return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| hasHighOperandLatency(const InstrItineraryData *ItinData,
 | |
|                       const MachineRegisterInfo *MRI,
 | |
|                       const MachineInstr *DefMI, unsigned DefIdx,
 | |
|                       const MachineInstr *UseMI, unsigned UseIdx) const {
 | |
|   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
 | |
|   unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
 | |
|   if (Subtarget.isCortexA8() &&
 | |
|       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
 | |
|     // CortexA8 VFP instructions are not pipelined.
 | |
|     return true;
 | |
| 
 | |
|   // Hoist VFP / NEON instructions with 4 or higher latency.
 | |
|   int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
 | |
|   if (Latency <= 3)
 | |
|     return false;
 | |
|   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
 | |
|          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
 | |
| }
 | |
| 
 | |
| bool ARMBaseInstrInfo::
 | |
| hasLowDefLatency(const InstrItineraryData *ItinData,
 | |
|                  const MachineInstr *DefMI, unsigned DefIdx) const {
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return false;
 | |
| 
 | |
|   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
 | |
|   if (DDomain == ARMII::DomainGeneral) {
 | |
|     unsigned DefClass = DefMI->getDesc().getSchedClass();
 | |
|     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
 | |
|     return (DefCycle != -1 && DefCycle <= 2);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
 | |
|                                      unsigned &AddSubOpc,
 | |
|                                      bool &NegAcc, bool &HasLane) const {
 | |
|   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
 | |
|   if (I == MLxEntryMap.end())
 | |
|     return false;
 | |
| 
 | |
|   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
 | |
|   MulOpc = Entry.MulOpc;
 | |
|   AddSubOpc = Entry.AddSubOpc;
 | |
|   NegAcc = Entry.NegAcc;
 | |
|   HasLane = Entry.HasLane;
 | |
|   return true;
 | |
| }
 |