forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			998 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			998 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the pass that transforms the X86 machine instructions into
 | |
| // relocatable machine code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-emitter"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86JITInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "X86Relocations.h"
 | |
| #include "X86.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/CodeGen/JITCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/MC/MCCodeEmitter.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumEmitted, "Number of machine instructions emitted");
 | |
| 
 | |
| namespace {
 | |
|   template<class CodeEmitter>
 | |
|   class Emitter : public MachineFunctionPass {
 | |
|     const X86InstrInfo  *II;
 | |
|     const TargetData    *TD;
 | |
|     X86TargetMachine    &TM;
 | |
|     CodeEmitter         &MCE;
 | |
|     MachineModuleInfo   *MMI;
 | |
|     intptr_t PICBaseOffset;
 | |
|     bool Is64BitMode;
 | |
|     bool IsPIC;
 | |
|   public:
 | |
|     static char ID;
 | |
|     explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
 | |
|       : MachineFunctionPass(ID), II(0), TD(0), TM(tm), 
 | |
|       MCE(mce), PICBaseOffset(0), Is64BitMode(false),
 | |
|       IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
 | |
|     Emitter(X86TargetMachine &tm, CodeEmitter &mce,
 | |
|             const X86InstrInfo &ii, const TargetData &td, bool is64)
 | |
|       : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm), 
 | |
|       MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
 | |
|       IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 Machine Code Emitter";
 | |
|     }
 | |
| 
 | |
|     void emitInstruction(MachineInstr &MI, const TargetInstrDesc *Desc);
 | |
|     
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|       AU.addRequired<MachineModuleInfo>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
 | |
|     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
 | |
|                            intptr_t Disp = 0, intptr_t PCAdj = 0,
 | |
|                            bool Indirect = false);
 | |
|     void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
 | |
|     void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
 | |
|                               intptr_t PCAdj = 0);
 | |
|     void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
 | |
|                               intptr_t PCAdj = 0);
 | |
| 
 | |
|     void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
 | |
|                                intptr_t Adj = 0, bool IsPCRel = true);
 | |
| 
 | |
|     void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
 | |
|     void emitRegModRMByte(unsigned RegOpcodeField);
 | |
|     void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
 | |
|     void emitConstant(uint64_t Val, unsigned Size);
 | |
| 
 | |
|     void emitMemModRMByte(const MachineInstr &MI,
 | |
|                           unsigned Op, unsigned RegOpcodeField,
 | |
|                           intptr_t PCAdj = 0);
 | |
| 
 | |
|     unsigned getX86RegNum(unsigned RegNo) const;
 | |
|   };
 | |
| 
 | |
| template<class CodeEmitter>
 | |
|   char Emitter<CodeEmitter>::ID = 0;
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
 | |
| /// to the specified templated MachineCodeEmitter object.
 | |
| FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
 | |
|                                                 JITCodeEmitter &JCE) {
 | |
|   return new Emitter<JITCodeEmitter>(TM, JCE);
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
 | |
|   MMI = &getAnalysis<MachineModuleInfo>();
 | |
|   MCE.setModuleInfo(MMI);
 | |
|   
 | |
|   II = TM.getInstrInfo();
 | |
|   TD = TM.getTargetData();
 | |
|   Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
 | |
|   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
 | |
|   
 | |
|   do {
 | |
|     DEBUG(dbgs() << "JITTing function '" 
 | |
|           << MF.getFunction()->getName() << "'\n");
 | |
|     MCE.startFunction(MF);
 | |
|     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
 | |
|          MBB != E; ++MBB) {
 | |
|       MCE.StartMachineBasicBlock(MBB);
 | |
|       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | |
|            I != E; ++I) {
 | |
|         const TargetInstrDesc &Desc = I->getDesc();
 | |
|         emitInstruction(*I, &Desc);
 | |
|         // MOVPC32r is basically a call plus a pop instruction.
 | |
|         if (Desc.getOpcode() == X86::MOVPC32r)
 | |
|           emitInstruction(*I, &II->get(X86::POP32r));
 | |
|         ++NumEmitted;  // Keep track of the # of mi's emitted
 | |
|       }
 | |
|     }
 | |
|   } while (MCE.finishFunction(MF));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
 | |
| /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 | |
| /// size, and 3) use of X86-64 extended registers.
 | |
| static unsigned determineREX(const MachineInstr &MI) {
 | |
|   unsigned REX = 0;
 | |
|   const TargetInstrDesc &Desc = MI.getDesc();
 | |
|   
 | |
|   // Pseudo instructions do not need REX prefix byte.
 | |
|   if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
 | |
|     return 0;
 | |
|   if (Desc.TSFlags & X86II::REX_W)
 | |
|     REX |= 1 << 3;
 | |
|   
 | |
|   unsigned NumOps = Desc.getNumOperands();
 | |
|   if (NumOps) {
 | |
|     bool isTwoAddr = NumOps > 1 &&
 | |
|     Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
 | |
|     
 | |
|     // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
 | |
|     unsigned i = isTwoAddr ? 1 : 0;
 | |
|     for (unsigned e = NumOps; i != e; ++i) {
 | |
|       const MachineOperand& MO = MI.getOperand(i);
 | |
|       if (MO.isReg()) {
 | |
|         unsigned Reg = MO.getReg();
 | |
|         if (X86InstrInfo::isX86_64NonExtLowByteReg(Reg))
 | |
|           REX |= 0x40;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     switch (Desc.TSFlags & X86II::FormMask) {
 | |
|       case X86II::MRMInitReg:
 | |
|         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|           REX |= (1 << 0) | (1 << 2);
 | |
|         break;
 | |
|       case X86II::MRMSrcReg: {
 | |
|         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|           REX |= 1 << 2;
 | |
|         i = isTwoAddr ? 2 : 1;
 | |
|         for (unsigned e = NumOps; i != e; ++i) {
 | |
|           const MachineOperand& MO = MI.getOperand(i);
 | |
|           if (X86InstrInfo::isX86_64ExtendedReg(MO))
 | |
|             REX |= 1 << 0;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case X86II::MRMSrcMem: {
 | |
|         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|           REX |= 1 << 2;
 | |
|         unsigned Bit = 0;
 | |
|         i = isTwoAddr ? 2 : 1;
 | |
|         for (; i != NumOps; ++i) {
 | |
|           const MachineOperand& MO = MI.getOperand(i);
 | |
|           if (MO.isReg()) {
 | |
|             if (X86InstrInfo::isX86_64ExtendedReg(MO))
 | |
|               REX |= 1 << Bit;
 | |
|             Bit++;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case X86II::MRM0m: case X86II::MRM1m:
 | |
|       case X86II::MRM2m: case X86II::MRM3m:
 | |
|       case X86II::MRM4m: case X86II::MRM5m:
 | |
|       case X86II::MRM6m: case X86II::MRM7m:
 | |
|       case X86II::MRMDestMem: {
 | |
|         unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
 | |
|         i = isTwoAddr ? 1 : 0;
 | |
|         if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
 | |
|           REX |= 1 << 2;
 | |
|         unsigned Bit = 0;
 | |
|         for (; i != e; ++i) {
 | |
|           const MachineOperand& MO = MI.getOperand(i);
 | |
|           if (MO.isReg()) {
 | |
|             if (X86InstrInfo::isX86_64ExtendedReg(MO))
 | |
|               REX |= 1 << Bit;
 | |
|             Bit++;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
 | |
|           REX |= 1 << 0;
 | |
|         i = isTwoAddr ? 2 : 1;
 | |
|         for (unsigned e = NumOps; i != e; ++i) {
 | |
|           const MachineOperand& MO = MI.getOperand(i);
 | |
|           if (X86InstrInfo::isX86_64ExtendedReg(MO))
 | |
|             REX |= 1 << 2;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return REX;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// emitPCRelativeBlockAddress - This method keeps track of the information
 | |
| /// necessary to resolve the address of this block later and emits a dummy
 | |
| /// value.
 | |
| ///
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
 | |
|   // Remember where this reference was and where it is to so we can
 | |
|   // deal with it later.
 | |
|   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
 | |
|                                              X86::reloc_pcrel_word, MBB));
 | |
|   MCE.emitWordLE(0);
 | |
| }
 | |
| 
 | |
| /// emitGlobalAddress - Emit the specified address to the code stream assuming
 | |
| /// this is part of a "take the address of a global" instruction.
 | |
| ///
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
 | |
|                                 unsigned Reloc,
 | |
|                                 intptr_t Disp /* = 0 */,
 | |
|                                 intptr_t PCAdj /* = 0 */,
 | |
|                                 bool Indirect /* = false */) {
 | |
|   intptr_t RelocCST = Disp;
 | |
|   if (Reloc == X86::reloc_picrel_word)
 | |
|     RelocCST = PICBaseOffset;
 | |
|   else if (Reloc == X86::reloc_pcrel_word)
 | |
|     RelocCST = PCAdj;
 | |
|   MachineRelocation MR = Indirect
 | |
|     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
 | |
|                                            const_cast<GlobalValue *>(GV),
 | |
|                                            RelocCST, false)
 | |
|     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
 | |
|                                const_cast<GlobalValue *>(GV), RelocCST, false);
 | |
|   MCE.addRelocation(MR);
 | |
|   // The relocated value will be added to the displacement
 | |
|   if (Reloc == X86::reloc_absolute_dword)
 | |
|     MCE.emitDWordLE(Disp);
 | |
|   else
 | |
|     MCE.emitWordLE((int32_t)Disp);
 | |
| }
 | |
| 
 | |
| /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
 | |
|                                                      unsigned Reloc) {
 | |
|   intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
 | |
| 
 | |
|   // X86 never needs stubs because instruction selection will always pick
 | |
|   // an instruction sequence that is large enough to hold any address
 | |
|   // to a symbol.
 | |
|   // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
 | |
|   bool NeedStub = false;
 | |
|   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
 | |
|                                                  Reloc, ES, RelocCST,
 | |
|                                                  0, NeedStub));
 | |
|   if (Reloc == X86::reloc_absolute_dword)
 | |
|     MCE.emitDWordLE(0);
 | |
|   else
 | |
|     MCE.emitWordLE(0);
 | |
| }
 | |
| 
 | |
| /// emitConstPoolAddress - Arrange for the address of an constant pool
 | |
| /// to be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
 | |
|                                    intptr_t Disp /* = 0 */,
 | |
|                                    intptr_t PCAdj /* = 0 */) {
 | |
|   intptr_t RelocCST = 0;
 | |
|   if (Reloc == X86::reloc_picrel_word)
 | |
|     RelocCST = PICBaseOffset;
 | |
|   else if (Reloc == X86::reloc_pcrel_word)
 | |
|     RelocCST = PCAdj;
 | |
|   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
 | |
|                                                     Reloc, CPI, RelocCST));
 | |
|   // The relocated value will be added to the displacement
 | |
|   if (Reloc == X86::reloc_absolute_dword)
 | |
|     MCE.emitDWordLE(Disp);
 | |
|   else
 | |
|     MCE.emitWordLE((int32_t)Disp);
 | |
| }
 | |
| 
 | |
| /// emitJumpTableAddress - Arrange for the address of a jump table to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
 | |
|                                    intptr_t PCAdj /* = 0 */) {
 | |
|   intptr_t RelocCST = 0;
 | |
|   if (Reloc == X86::reloc_picrel_word)
 | |
|     RelocCST = PICBaseOffset;
 | |
|   else if (Reloc == X86::reloc_pcrel_word)
 | |
|     RelocCST = PCAdj;
 | |
|   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
 | |
|                                                     Reloc, JTI, RelocCST));
 | |
|   // The relocated value will be added to the displacement
 | |
|   if (Reloc == X86::reloc_absolute_dword)
 | |
|     MCE.emitDWordLE(0);
 | |
|   else
 | |
|     MCE.emitWordLE(0);
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const {
 | |
|   return X86RegisterInfo::getX86RegNum(RegNo);
 | |
| }
 | |
| 
 | |
| inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | |
|                                       unsigned RM) {
 | |
|   assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | |
|   return RM | (RegOpcode << 3) | (Mod << 6);
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
 | |
|                                             unsigned RegOpcodeFld){
 | |
|   MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
 | |
|   MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitSIBByte(unsigned SS, 
 | |
|                                        unsigned Index,
 | |
|                                        unsigned Base) {
 | |
|   // SIB byte is in the same format as the ModRMByte...
 | |
|   MCE.emitByte(ModRMByte(SS, Index, Base));
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
 | |
|   // Output the constant in little endian byte order...
 | |
|   for (unsigned i = 0; i != Size; ++i) {
 | |
|     MCE.emitByte(Val & 255);
 | |
|     Val >>= 8;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isDisp8 - Return true if this signed displacement fits in a 8-bit 
 | |
| /// sign-extended field. 
 | |
| static bool isDisp8(int Value) {
 | |
|   return Value == (signed char)Value;
 | |
| }
 | |
| 
 | |
| static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
 | |
|                               const TargetMachine &TM) {
 | |
|   // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
 | |
|   // mechanism as 32-bit mode.
 | |
|   if (TM.getSubtarget<X86Subtarget>().is64Bit() && 
 | |
|       !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
 | |
|     return false;
 | |
|   
 | |
|   // Return true if this is a reference to a stub containing the address of the
 | |
|   // global, not the global itself.
 | |
|   return isGlobalStubReference(GVOp.getTargetFlags());
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
 | |
|                                                  int DispVal,
 | |
|                                                  intptr_t Adj /* = 0 */,
 | |
|                                                  bool IsPCRel /* = true */) {
 | |
|   // If this is a simple integer displacement that doesn't require a relocation,
 | |
|   // emit it now.
 | |
|   if (!RelocOp) {
 | |
|     emitConstant(DispVal, 4);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is something that requires a relocation.  Emit it as such
 | |
|   // now.
 | |
|   unsigned RelocType = Is64BitMode ?
 | |
|     (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
 | |
|     : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | |
|   if (RelocOp->isGlobal()) {
 | |
|     // In 64-bit static small code model, we could potentially emit absolute.
 | |
|     // But it's probably not beneficial. If the MCE supports using RIP directly
 | |
|     // do it, otherwise fallback to absolute (this is determined by IsPCRel). 
 | |
|     //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
 | |
|     //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
 | |
|     bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
 | |
|     emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
 | |
|                       Adj, Indirect);
 | |
|   } else if (RelocOp->isSymbol()) {
 | |
|     emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
 | |
|   } else if (RelocOp->isCPI()) {
 | |
|     emitConstPoolAddress(RelocOp->getIndex(), RelocType,
 | |
|                          RelocOp->getOffset(), Adj);
 | |
|   } else {
 | |
|     assert(RelocOp->isJTI() && "Unexpected machine operand!");
 | |
|     emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
 | |
|                                             unsigned Op,unsigned RegOpcodeField,
 | |
|                                             intptr_t PCAdj) {
 | |
|   const MachineOperand &Op3 = MI.getOperand(Op+3);
 | |
|   int DispVal = 0;
 | |
|   const MachineOperand *DispForReloc = 0;
 | |
|   
 | |
|   // Figure out what sort of displacement we have to handle here.
 | |
|   if (Op3.isGlobal()) {
 | |
|     DispForReloc = &Op3;
 | |
|   } else if (Op3.isSymbol()) {
 | |
|     DispForReloc = &Op3;
 | |
|   } else if (Op3.isCPI()) {
 | |
|     if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
 | |
|       DispForReloc = &Op3;
 | |
|     } else {
 | |
|       DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
 | |
|       DispVal += Op3.getOffset();
 | |
|     }
 | |
|   } else if (Op3.isJTI()) {
 | |
|     if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
 | |
|       DispForReloc = &Op3;
 | |
|     } else {
 | |
|       DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
 | |
|     }
 | |
|   } else {
 | |
|     DispVal = Op3.getImm();
 | |
|   }
 | |
| 
 | |
|   const MachineOperand &Base     = MI.getOperand(Op);
 | |
|   const MachineOperand &Scale    = MI.getOperand(Op+1);
 | |
|   const MachineOperand &IndexReg = MI.getOperand(Op+2);
 | |
| 
 | |
|   unsigned BaseReg = Base.getReg();
 | |
|   
 | |
|   // Handle %rip relative addressing.
 | |
|   if (BaseReg == X86::RIP ||
 | |
|       (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
 | |
|     assert(IndexReg.getReg() == 0 && Is64BitMode &&
 | |
|            "Invalid rip-relative address");
 | |
|     MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
 | |
|     emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Indicate that the displacement will use an pcrel or absolute reference
 | |
|   // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
 | |
|   // while others, unless explicit asked to use RIP, use absolute references.
 | |
|   bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
 | |
| 
 | |
|   // Is a SIB byte needed?
 | |
|   // If no BaseReg, issue a RIP relative instruction only if the MCE can 
 | |
|   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
 | |
|   // 2-7) and absolute references.
 | |
|   unsigned BaseRegNo = -1U;
 | |
|   if (BaseReg != 0 && BaseReg != X86::RIP)
 | |
|     BaseRegNo = getX86RegNum(BaseReg);
 | |
| 
 | |
|   if (// The SIB byte must be used if there is an index register.
 | |
|       IndexReg.getReg() == 0 && 
 | |
|       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
 | |
|       // encode to an R/M value of 4, which indicates that a SIB byte is
 | |
|       // present.
 | |
|       BaseRegNo != N86::ESP &&
 | |
|       // If there is no base register and we're in 64-bit mode, we need a SIB
 | |
|       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
 | |
|       (!Is64BitMode || BaseReg != 0)) {
 | |
|     if (BaseReg == 0 ||          // [disp32]     in X86-32 mode
 | |
|         BaseReg == X86::RIP) {   // [disp32+RIP] in X86-64 mode
 | |
|       MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
 | |
|       emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // If the base is not EBP/ESP and there is no displacement, use simple
 | |
|     // indirect register encoding, this handles addresses like [EAX].  The
 | |
|     // encoding for [EBP] with no displacement means [disp32] so we handle it
 | |
|     // by emitting a displacement of 0 below.
 | |
|     if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
 | |
|       MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
 | |
|     if (!DispForReloc && isDisp8(DispVal)) {
 | |
|       MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
 | |
|       emitConstant(DispVal, 1);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
 | |
|     MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
 | |
|     emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
 | |
|   assert(IndexReg.getReg() != X86::ESP &&
 | |
|          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | |
| 
 | |
|   bool ForceDisp32 = false;
 | |
|   bool ForceDisp8  = false;
 | |
|   if (BaseReg == 0) {
 | |
|     // If there is no base register, we emit the special case SIB byte with
 | |
|     // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
 | |
|     MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | |
|     ForceDisp32 = true;
 | |
|   } else if (DispForReloc) {
 | |
|     // Emit the normal disp32 encoding.
 | |
|     MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | |
|     ForceDisp32 = true;
 | |
|   } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
 | |
|     // Emit no displacement ModR/M byte
 | |
|     MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | |
|   } else if (isDisp8(DispVal)) {
 | |
|     // Emit the disp8 encoding...
 | |
|     MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
 | |
|     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | |
|   } else {
 | |
|     // Emit the normal disp32 encoding...
 | |
|     MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | |
|   }
 | |
| 
 | |
|   // Calculate what the SS field value should be...
 | |
|   static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
 | |
|   unsigned SS = SSTable[Scale.getImm()];
 | |
| 
 | |
|   if (BaseReg == 0) {
 | |
|     // Handle the SIB byte for the case where there is no base, see Intel 
 | |
|     // Manual 2A, table 2-7. The displacement has already been output.
 | |
|     unsigned IndexRegNo;
 | |
|     if (IndexReg.getReg())
 | |
|       IndexRegNo = getX86RegNum(IndexReg.getReg());
 | |
|     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
 | |
|       IndexRegNo = 4;
 | |
|     emitSIBByte(SS, IndexRegNo, 5);
 | |
|   } else {
 | |
|     unsigned BaseRegNo = getX86RegNum(BaseReg);
 | |
|     unsigned IndexRegNo;
 | |
|     if (IndexReg.getReg())
 | |
|       IndexRegNo = getX86RegNum(IndexReg.getReg());
 | |
|     else
 | |
|       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | |
|     emitSIBByte(SS, IndexRegNo, BaseRegNo);
 | |
|   }
 | |
| 
 | |
|   // Do we need to output a displacement?
 | |
|   if (ForceDisp8) {
 | |
|     emitConstant(DispVal, 1);
 | |
|   } else if (DispVal != 0 || ForceDisp32) {
 | |
|     emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template<class CodeEmitter>
 | |
| void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
 | |
|                                            const TargetInstrDesc *Desc) {
 | |
|   DEBUG(dbgs() << MI);
 | |
|   
 | |
|   // If this is a pseudo instruction, lower it.
 | |
|   switch (Desc->getOpcode()) {
 | |
|   case X86::ADD16rr_DB:   Desc = &II->get(X86::OR16rr); MI.setDesc(*Desc);break;
 | |
|   case X86::ADD32rr_DB:   Desc = &II->get(X86::OR32rr); MI.setDesc(*Desc);break;
 | |
|   case X86::ADD64rr_DB:   Desc = &II->get(X86::OR64rr); MI.setDesc(*Desc);break;
 | |
|   case X86::ADD16ri_DB:   Desc = &II->get(X86::OR16ri); MI.setDesc(*Desc);break;
 | |
|   case X86::ADD32ri_DB:   Desc = &II->get(X86::OR32ri); MI.setDesc(*Desc);break;
 | |
|   case X86::ADD64ri32_DB:Desc = &II->get(X86::OR64ri32);MI.setDesc(*Desc);break;
 | |
|   case X86::ADD16ri8_DB:  Desc = &II->get(X86::OR16ri8);MI.setDesc(*Desc);break;
 | |
|   case X86::ADD32ri8_DB:  Desc = &II->get(X86::OR32ri8);MI.setDesc(*Desc);break;
 | |
|   case X86::ADD64ri8_DB:  Desc = &II->get(X86::OR64ri8);MI.setDesc(*Desc);break;
 | |
|   }
 | |
|   
 | |
| 
 | |
|   MCE.processDebugLoc(MI.getDebugLoc(), true);
 | |
| 
 | |
|   unsigned Opcode = Desc->Opcode;
 | |
| 
 | |
|   // Emit the lock opcode prefix as needed.
 | |
|   if (Desc->TSFlags & X86II::LOCK)
 | |
|     MCE.emitByte(0xF0);
 | |
| 
 | |
|   // Emit segment override opcode prefix as needed.
 | |
|   switch (Desc->TSFlags & X86II::SegOvrMask) {
 | |
|   case X86II::FS:
 | |
|     MCE.emitByte(0x64);
 | |
|     break;
 | |
|   case X86II::GS:
 | |
|     MCE.emitByte(0x65);
 | |
|     break;
 | |
|   default: llvm_unreachable("Invalid segment!");
 | |
|   case 0: break;  // No segment override!
 | |
|   }
 | |
| 
 | |
|   // Emit the repeat opcode prefix as needed.
 | |
|   if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
 | |
|     MCE.emitByte(0xF3);
 | |
| 
 | |
|   // Emit the operand size opcode prefix as needed.
 | |
|   if (Desc->TSFlags & X86II::OpSize)
 | |
|     MCE.emitByte(0x66);
 | |
| 
 | |
|   // Emit the address size opcode prefix as needed.
 | |
|   if (Desc->TSFlags & X86II::AdSize)
 | |
|     MCE.emitByte(0x67);
 | |
| 
 | |
|   bool Need0FPrefix = false;
 | |
|   switch (Desc->TSFlags & X86II::Op0Mask) {
 | |
|   case X86II::TB:  // Two-byte opcode prefix
 | |
|   case X86II::T8:  // 0F 38
 | |
|   case X86II::TA:  // 0F 3A
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::TF: // F2 0F 38
 | |
|     MCE.emitByte(0xF2);
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::REP: break; // already handled.
 | |
|   case X86II::XS:   // F3 0F
 | |
|     MCE.emitByte(0xF3);
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::XD:   // F2 0F
 | |
|     MCE.emitByte(0xF2);
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
 | |
|   case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
 | |
|     MCE.emitByte(0xD8+
 | |
|                  (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
 | |
|                                    >> X86II::Op0Shift));
 | |
|     break; // Two-byte opcode prefix
 | |
|   default: llvm_unreachable("Invalid prefix!");
 | |
|   case 0: break;  // No prefix!
 | |
|   }
 | |
| 
 | |
|   // Handle REX prefix.
 | |
|   if (Is64BitMode) {
 | |
|     if (unsigned REX = determineREX(MI))
 | |
|       MCE.emitByte(0x40 | REX);
 | |
|   }
 | |
| 
 | |
|   // 0x0F escape code must be emitted just before the opcode.
 | |
|   if (Need0FPrefix)
 | |
|     MCE.emitByte(0x0F);
 | |
| 
 | |
|   switch (Desc->TSFlags & X86II::Op0Mask) {
 | |
|   case X86II::TF:    // F2 0F 38
 | |
|   case X86II::T8:    // 0F 38
 | |
|     MCE.emitByte(0x38);
 | |
|     break;
 | |
|   case X86II::TA:    // 0F 3A
 | |
|     MCE.emitByte(0x3A);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If this is a two-address instruction, skip one of the register operands.
 | |
|   unsigned NumOps = Desc->getNumOperands();
 | |
|   unsigned CurOp = 0;
 | |
|   if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
 | |
|     ++CurOp;
 | |
|   else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
 | |
|     // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
 | |
|     --NumOps;
 | |
| 
 | |
|   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
 | |
|   switch (Desc->TSFlags & X86II::FormMask) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
 | |
|   case X86II::Pseudo:
 | |
|     // Remember the current PC offset, this is the PIC relocation
 | |
|     // base address.
 | |
|     switch (Opcode) {
 | |
|     default: 
 | |
|       llvm_unreachable("pseudo instructions should be removed before code"
 | |
|                        " emission");
 | |
|       break;
 | |
|     // Do nothing for Int_MemBarrier - it's just a comment.  Add a debug
 | |
|     // to make it slightly easier to see.
 | |
|     case X86::Int_MemBarrier:
 | |
|       DEBUG(dbgs() << "#MEMBARRIER\n");
 | |
|       break;
 | |
|     
 | |
|     case TargetOpcode::INLINEASM:
 | |
|       // We allow inline assembler nodes with empty bodies - they can
 | |
|       // implicitly define registers, which is ok for JIT.
 | |
|       if (MI.getOperand(0).getSymbolName()[0])
 | |
|         report_fatal_error("JIT does not support inline asm!");
 | |
|       break;
 | |
|     case TargetOpcode::PROLOG_LABEL:
 | |
|     case TargetOpcode::GC_LABEL:
 | |
|     case TargetOpcode::EH_LABEL:
 | |
|       MCE.emitLabel(MI.getOperand(0).getMCSymbol());
 | |
|       break;
 | |
|     
 | |
|     case TargetOpcode::IMPLICIT_DEF:
 | |
|     case TargetOpcode::KILL:
 | |
|       break;
 | |
|     case X86::MOVPC32r: {
 | |
|       // This emits the "call" portion of this pseudo instruction.
 | |
|       MCE.emitByte(BaseOpcode);
 | |
|       emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
 | |
|       // Remember PIC base.
 | |
|       PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
 | |
|       X86JITInfo *JTI = TM.getJITInfo();
 | |
|       JTI->setPICBase(MCE.getCurrentPCValue());
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     CurOp = NumOps;
 | |
|     break;
 | |
|   case X86II::RawFrm: {
 | |
|     MCE.emitByte(BaseOpcode);
 | |
| 
 | |
|     if (CurOp == NumOps)
 | |
|       break;
 | |
|       
 | |
|     const MachineOperand &MO = MI.getOperand(CurOp++);
 | |
| 
 | |
|     DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
 | |
|     DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
 | |
|     DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
 | |
|     DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
 | |
|     DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
 | |
| 
 | |
|     if (MO.isMBB()) {
 | |
|       emitPCRelativeBlockAddress(MO.getMBB());
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (MO.isGlobal()) {
 | |
|       emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
 | |
|                         MO.getOffset(), 0);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (MO.isSymbol()) {
 | |
|       emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
 | |
|     if (MO.isJTI()) {
 | |
|       emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     assert(MO.isImm() && "Unknown RawFrm operand!");
 | |
|     if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32 ||
 | |
|         Opcode == X86::WINCALL64pcrel32) {
 | |
|       // Fix up immediate operand for pc relative calls.
 | |
|       intptr_t Imm = (intptr_t)MO.getImm();
 | |
|       Imm = Imm - MCE.getCurrentPCValue() - 4;
 | |
|       emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     } else
 | |
|       emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     break;
 | |
|   }
 | |
|       
 | |
|   case X86II::AddRegFrm: {
 | |
|     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
 | |
|     
 | |
|     if (CurOp == NumOps)
 | |
|       break;
 | |
|       
 | |
|     const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | |
|     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
 | |
|     if (MO1.isImm()) {
 | |
|       emitConstant(MO1.getImm(), Size);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | |
|       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | |
|     if (Opcode == X86::MOV64ri64i32)
 | |
|       rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
 | |
|     // This should not occur on Darwin for relocatable objects.
 | |
|     if (Opcode == X86::MOV64ri)
 | |
|       rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
 | |
|     if (MO1.isGlobal()) {
 | |
|       bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
 | |
|       emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
 | |
|                         Indirect);
 | |
|     } else if (MO1.isSymbol())
 | |
|       emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | |
|     else if (MO1.isCPI())
 | |
|       emitConstPoolAddress(MO1.getIndex(), rt);
 | |
|     else if (MO1.isJTI())
 | |
|       emitJumpTableAddress(MO1.getIndex(), rt);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMDestReg: {
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(CurOp).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(CurOp+1).getReg()));
 | |
|     CurOp += 2;
 | |
|     if (CurOp != NumOps)
 | |
|       emitConstant(MI.getOperand(CurOp++).getImm(),
 | |
|                    X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     break;
 | |
|   }
 | |
|   case X86II::MRMDestMem: {
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, CurOp,
 | |
|                      getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)
 | |
|                                   .getReg()));
 | |
|     CurOp +=  X86::AddrNumOperands + 1;
 | |
|     if (CurOp != NumOps)
 | |
|       emitConstant(MI.getOperand(CurOp++).getImm(),
 | |
|                    X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMSrcReg:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(CurOp).getReg()));
 | |
|     CurOp += 2;
 | |
|     if (CurOp != NumOps)
 | |
|       emitConstant(MI.getOperand(CurOp++).getImm(),
 | |
|                    X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMSrcMem: {
 | |
|     int AddrOperands = X86::AddrNumOperands;
 | |
| 
 | |
|     intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
 | |
|       X86II::getSizeOfImm(Desc->TSFlags) : 0;
 | |
| 
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
 | |
|                      PCAdj);
 | |
|     CurOp += AddrOperands + 1;
 | |
|     if (CurOp != NumOps)
 | |
|       emitConstant(MI.getOperand(CurOp++).getImm(),
 | |
|                    X86II::getSizeOfImm(Desc->TSFlags));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRM0r: case X86II::MRM1r:
 | |
|   case X86II::MRM2r: case X86II::MRM3r:
 | |
|   case X86II::MRM4r: case X86II::MRM5r:
 | |
|   case X86II::MRM6r: case X86II::MRM7r: {
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
 | |
|                      (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
 | |
| 
 | |
|     if (CurOp == NumOps)
 | |
|       break;
 | |
|     
 | |
|     const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | |
|     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
 | |
|     if (MO1.isImm()) {
 | |
|       emitConstant(MO1.getImm(), Size);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | |
|       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | |
|     if (Opcode == X86::MOV64ri32)
 | |
|       rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
 | |
|     if (MO1.isGlobal()) {
 | |
|       bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
 | |
|       emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
 | |
|                         Indirect);
 | |
|     } else if (MO1.isSymbol())
 | |
|       emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | |
|     else if (MO1.isCPI())
 | |
|       emitConstPoolAddress(MO1.getIndex(), rt);
 | |
|     else if (MO1.isJTI())
 | |
|       emitJumpTableAddress(MO1.getIndex(), rt);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRM0m: case X86II::MRM1m:
 | |
|   case X86II::MRM2m: case X86II::MRM3m:
 | |
|   case X86II::MRM4m: case X86II::MRM5m:
 | |
|   case X86II::MRM6m: case X86II::MRM7m: {
 | |
|     intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
 | |
|       (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ? 
 | |
|           X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
 | |
| 
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
 | |
|                      PCAdj);
 | |
|     CurOp += X86::AddrNumOperands;
 | |
| 
 | |
|     if (CurOp == NumOps)
 | |
|       break;
 | |
|     
 | |
|     const MachineOperand &MO = MI.getOperand(CurOp++);
 | |
|     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
 | |
|     if (MO.isImm()) {
 | |
|       emitConstant(MO.getImm(), Size);
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | |
|       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | |
|     if (Opcode == X86::MOV64mi32)
 | |
|       rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
 | |
|     if (MO.isGlobal()) {
 | |
|       bool Indirect = gvNeedsNonLazyPtr(MO, TM);
 | |
|       emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
 | |
|                         Indirect);
 | |
|     } else if (MO.isSymbol())
 | |
|       emitExternalSymbolAddress(MO.getSymbolName(), rt);
 | |
|     else if (MO.isCPI())
 | |
|       emitConstPoolAddress(MO.getIndex(), rt);
 | |
|     else if (MO.isJTI())
 | |
|       emitJumpTableAddress(MO.getIndex(), rt);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMInitReg:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
 | |
|     emitRegModRMByte(MI.getOperand(CurOp).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(CurOp).getReg()));
 | |
|     ++CurOp;
 | |
|     break;
 | |
|       
 | |
|   case X86II::MRM_C1:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     MCE.emitByte(0xC1);
 | |
|     break;
 | |
|   case X86II::MRM_C8:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     MCE.emitByte(0xC8);
 | |
|     break;
 | |
|   case X86II::MRM_C9:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     MCE.emitByte(0xC9);
 | |
|     break;
 | |
|   case X86II::MRM_E8:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     MCE.emitByte(0xE8);
 | |
|     break;
 | |
|   case X86II::MRM_F0:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     MCE.emitByte(0xF0);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!Desc->isVariadic() && CurOp != NumOps) {
 | |
| #ifndef NDEBUG
 | |
|     dbgs() << "Cannot encode all operands of: " << MI << "\n";
 | |
| #endif
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| 
 | |
|   MCE.processDebugLoc(MI.getDebugLoc(), false);
 | |
| }
 |