forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			377 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			377 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the X86 specific subclass of TargetSubtarget.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "subtarget"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86GenSubtarget.inc"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Host.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #include <intrin.h>
 | |
| #endif
 | |
| 
 | |
| /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
 | |
| /// current subtarget according to how we should reference it in a non-pcrel
 | |
| /// context.
 | |
| unsigned char X86Subtarget::
 | |
| ClassifyBlockAddressReference() const {
 | |
|   if (isPICStyleGOT())    // 32-bit ELF targets.
 | |
|     return X86II::MO_GOTOFF;
 | |
|   
 | |
|   if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
 | |
|     return X86II::MO_PIC_BASE_OFFSET;
 | |
|   
 | |
|   // Direct static reference to label.
 | |
|   return X86II::MO_NO_FLAG;
 | |
| }
 | |
| 
 | |
| /// ClassifyGlobalReference - Classify a global variable reference for the
 | |
| /// current subtarget according to how we should reference it in a non-pcrel
 | |
| /// context.
 | |
| unsigned char X86Subtarget::
 | |
| ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
 | |
|   // DLLImport only exists on windows, it is implemented as a load from a
 | |
|   // DLLIMPORT stub.
 | |
|   if (GV->hasDLLImportLinkage())
 | |
|     return X86II::MO_DLLIMPORT;
 | |
| 
 | |
|   // Determine whether this is a reference to a definition or a declaration.
 | |
|   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
 | |
|   // load from stub.
 | |
|   bool isDecl = GV->hasAvailableExternallyLinkage();
 | |
|   if (GV->isDeclaration() && !GV->isMaterializable())
 | |
|     isDecl = true;
 | |
| 
 | |
|   // X86-64 in PIC mode.
 | |
|   if (isPICStyleRIPRel()) {
 | |
|     // Large model never uses stubs.
 | |
|     if (TM.getCodeModel() == CodeModel::Large)
 | |
|       return X86II::MO_NO_FLAG;
 | |
|       
 | |
|     if (isTargetDarwin()) {
 | |
|       // If symbol visibility is hidden, the extra load is not needed if
 | |
|       // target is x86-64 or the symbol is definitely defined in the current
 | |
|       // translation unit.
 | |
|       if (GV->hasDefaultVisibility() &&
 | |
|           (isDecl || GV->isWeakForLinker()))
 | |
|         return X86II::MO_GOTPCREL;
 | |
|     } else if (!isTargetWin64()) {
 | |
|       assert(isTargetELF() && "Unknown rip-relative target");
 | |
| 
 | |
|       // Extra load is needed for all externally visible.
 | |
|       if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
 | |
|         return X86II::MO_GOTPCREL;
 | |
|     }
 | |
| 
 | |
|     return X86II::MO_NO_FLAG;
 | |
|   }
 | |
|   
 | |
|   if (isPICStyleGOT()) {   // 32-bit ELF targets.
 | |
|     // Extra load is needed for all externally visible.
 | |
|     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
 | |
|       return X86II::MO_GOTOFF;
 | |
|     return X86II::MO_GOT;
 | |
|   }
 | |
|   
 | |
|   if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
 | |
|     // Determine whether we have a stub reference and/or whether the reference
 | |
|     // is relative to the PIC base or not.
 | |
|     
 | |
|     // If this is a strong reference to a definition, it is definitely not
 | |
|     // through a stub.
 | |
|     if (!isDecl && !GV->isWeakForLinker())
 | |
|       return X86II::MO_PIC_BASE_OFFSET;
 | |
| 
 | |
|     // Unless we have a symbol with hidden visibility, we have to go through a
 | |
|     // normal $non_lazy_ptr stub because this symbol might be resolved late.
 | |
|     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
 | |
|       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
 | |
|     
 | |
|     // If symbol visibility is hidden, we have a stub for common symbol
 | |
|     // references and external declarations.
 | |
|     if (isDecl || GV->hasCommonLinkage()) {
 | |
|       // Hidden $non_lazy_ptr reference.
 | |
|       return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, no stub.
 | |
|     return X86II::MO_PIC_BASE_OFFSET;
 | |
|   }
 | |
|   
 | |
|   if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
 | |
|     // Determine whether we have a stub reference.
 | |
|     
 | |
|     // If this is a strong reference to a definition, it is definitely not
 | |
|     // through a stub.
 | |
|     if (!isDecl && !GV->isWeakForLinker())
 | |
|       return X86II::MO_NO_FLAG;
 | |
|     
 | |
|     // Unless we have a symbol with hidden visibility, we have to go through a
 | |
|     // normal $non_lazy_ptr stub because this symbol might be resolved late.
 | |
|     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
 | |
|       return X86II::MO_DARWIN_NONLAZY;
 | |
| 
 | |
|     // Otherwise, no stub.
 | |
|     return X86II::MO_NO_FLAG;
 | |
|   }
 | |
|   
 | |
|   // Direct static reference to global.
 | |
|   return X86II::MO_NO_FLAG;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getBZeroEntry - This function returns the name of a function which has an
 | |
| /// interface like the non-standard bzero function, if such a function exists on
 | |
| /// the current subtarget and it is considered prefereable over memset with zero
 | |
| /// passed as the second argument. Otherwise it returns null.
 | |
| const char *X86Subtarget::getBZeroEntry() const {
 | |
|   // Darwin 10 has a __bzero entry point for this purpose.
 | |
|   if (getDarwinVers() >= 10)
 | |
|     return "__bzero";
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
 | |
| /// to immediate address.
 | |
| bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
 | |
|   if (Is64Bit)
 | |
|     return false;
 | |
|   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
 | |
| }
 | |
| 
 | |
| /// getSpecialAddressLatency - For targets where it is beneficial to
 | |
| /// backschedule instructions that compute addresses, return a value
 | |
| /// indicating the number of scheduling cycles of backscheduling that
 | |
| /// should be attempted.
 | |
| unsigned X86Subtarget::getSpecialAddressLatency() const {
 | |
|   // For x86 out-of-order targets, back-schedule address computations so
 | |
|   // that loads and stores aren't blocked.
 | |
|   // This value was chosen arbitrarily.
 | |
|   return 200;
 | |
| }
 | |
| 
 | |
| /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
 | |
| /// specified arguments.  If we can't run cpuid on the host, return true.
 | |
| static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
 | |
|                             unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
 | |
| #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
 | |
|   #if defined(__GNUC__)
 | |
|     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
 | |
|     asm ("movq\t%%rbx, %%rsi\n\t"
 | |
|          "cpuid\n\t"
 | |
|          "xchgq\t%%rbx, %%rsi\n\t"
 | |
|          : "=a" (*rEAX),
 | |
|            "=S" (*rEBX),
 | |
|            "=c" (*rECX),
 | |
|            "=d" (*rEDX)
 | |
|          :  "a" (value));
 | |
|     return false;
 | |
|   #elif defined(_MSC_VER)
 | |
|     int registers[4];
 | |
|     __cpuid(registers, value);
 | |
|     *rEAX = registers[0];
 | |
|     *rEBX = registers[1];
 | |
|     *rECX = registers[2];
 | |
|     *rEDX = registers[3];
 | |
|     return false;
 | |
|   #endif
 | |
| #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
 | |
|   #if defined(__GNUC__)
 | |
|     asm ("movl\t%%ebx, %%esi\n\t"
 | |
|          "cpuid\n\t"
 | |
|          "xchgl\t%%ebx, %%esi\n\t"
 | |
|          : "=a" (*rEAX),
 | |
|            "=S" (*rEBX),
 | |
|            "=c" (*rECX),
 | |
|            "=d" (*rEDX)
 | |
|          :  "a" (value));
 | |
|     return false;
 | |
|   #elif defined(_MSC_VER)
 | |
|     __asm {
 | |
|       mov   eax,value
 | |
|       cpuid
 | |
|       mov   esi,rEAX
 | |
|       mov   dword ptr [esi],eax
 | |
|       mov   esi,rEBX
 | |
|       mov   dword ptr [esi],ebx
 | |
|       mov   esi,rECX
 | |
|       mov   dword ptr [esi],ecx
 | |
|       mov   esi,rEDX
 | |
|       mov   dword ptr [esi],edx
 | |
|     }
 | |
|     return false;
 | |
|   #endif
 | |
| #endif
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
 | |
|   Family = (EAX >> 8) & 0xf; // Bits 8 - 11
 | |
|   Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
 | |
|   if (Family == 6 || Family == 0xf) {
 | |
|     if (Family == 0xf)
 | |
|       // Examine extended family ID if family ID is F.
 | |
|       Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
 | |
|     // Examine extended model ID if family ID is 6 or F.
 | |
|     Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86Subtarget::AutoDetectSubtargetFeatures() {
 | |
|   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
 | |
|   union {
 | |
|     unsigned u[3];
 | |
|     char     c[12];
 | |
|   } text;
 | |
|   
 | |
|   if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
 | |
|     return;
 | |
| 
 | |
|   GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
 | |
|   
 | |
|   if ((EDX >> 15) & 1) HasCMov = true;
 | |
|   if ((EDX >> 23) & 1) X86SSELevel = MMX;
 | |
|   if ((EDX >> 25) & 1) X86SSELevel = SSE1;
 | |
|   if ((EDX >> 26) & 1) X86SSELevel = SSE2;
 | |
|   if (ECX & 0x1)       X86SSELevel = SSE3;
 | |
|   if ((ECX >> 9)  & 1) X86SSELevel = SSSE3;
 | |
|   if ((ECX >> 19) & 1) X86SSELevel = SSE41;
 | |
|   if ((ECX >> 20) & 1) X86SSELevel = SSE42;
 | |
|   // FIXME: AVX codegen support is not ready.
 | |
|   //if ((ECX >> 28) & 1) { HasAVX = true; X86SSELevel = NoMMXSSE; }
 | |
| 
 | |
|   bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
 | |
|   bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
 | |
| 
 | |
|   HasCLMUL = IsIntel && ((ECX >> 1) & 0x1);
 | |
|   HasFMA3  = IsIntel && ((ECX >> 12) & 0x1);
 | |
|   HasAES   = IsIntel && ((ECX >> 25) & 0x1);
 | |
| 
 | |
|   if (IsIntel || IsAMD) {
 | |
|     // Determine if bit test memory instructions are slow.
 | |
|     unsigned Family = 0;
 | |
|     unsigned Model  = 0;
 | |
|     DetectFamilyModel(EAX, Family, Model);
 | |
|     IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
 | |
|     // If it's Nehalem, unaligned memory access is fast.
 | |
|     if (Family == 15 && Model == 26)
 | |
|       IsUAMemFast = true;
 | |
| 
 | |
|     GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
 | |
|     HasX86_64 = (EDX >> 29) & 0x1;
 | |
|     HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
 | |
|     HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS, 
 | |
|                            bool is64Bit)
 | |
|   : PICStyle(PICStyles::None)
 | |
|   , X86SSELevel(NoMMXSSE)
 | |
|   , X863DNowLevel(NoThreeDNow)
 | |
|   , HasCMov(false)
 | |
|   , HasX86_64(false)
 | |
|   , HasPOPCNT(false)
 | |
|   , HasSSE4A(false)
 | |
|   , HasAVX(false)
 | |
|   , HasAES(false)
 | |
|   , HasCLMUL(false)
 | |
|   , HasFMA3(false)
 | |
|   , HasFMA4(false)
 | |
|   , IsBTMemSlow(false)
 | |
|   , IsUAMemFast(false)
 | |
|   , HasVectorUAMem(false)
 | |
|   , stackAlignment(8)
 | |
|   // FIXME: this is a known good value for Yonah. How about others?
 | |
|   , MaxInlineSizeThreshold(128)
 | |
|   , TargetTriple(TT)
 | |
|   , Is64Bit(is64Bit) {
 | |
| 
 | |
|   // default to hard float ABI
 | |
|   if (FloatABIType == FloatABI::Default)
 | |
|     FloatABIType = FloatABI::Hard;
 | |
|     
 | |
|   // Determine default and user specified characteristics
 | |
|   if (!FS.empty()) {
 | |
|     // If feature string is not empty, parse features string.
 | |
|     std::string CPU = sys::getHostCPUName();
 | |
|     ParseSubtargetFeatures(FS, CPU);
 | |
|     // All X86-64 CPUs also have SSE2, however user might request no SSE via 
 | |
|     // -mattr, so don't force SSELevel here.
 | |
|     if (HasAVX)
 | |
|       X86SSELevel = NoMMXSSE;
 | |
|   } else {
 | |
|     // Otherwise, use CPUID to auto-detect feature set.
 | |
|     AutoDetectSubtargetFeatures();
 | |
|     // Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
 | |
|     if (Is64Bit && !HasAVX && X86SSELevel < SSE2)
 | |
|       X86SSELevel = SSE2;
 | |
|   }
 | |
| 
 | |
|   // If requesting codegen for X86-64, make sure that 64-bit features
 | |
|   // are enabled.
 | |
|   if (Is64Bit) {
 | |
|     HasX86_64 = true;
 | |
| 
 | |
|     // All 64-bit cpus have cmov support.
 | |
|     HasCMov = true;
 | |
|   }
 | |
|     
 | |
|   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
 | |
|                << ", 3DNowLevel " << X863DNowLevel
 | |
|                << ", 64bit " << HasX86_64 << "\n");
 | |
|   assert((!Is64Bit || HasX86_64) &&
 | |
|          "64-bit code requested on a subtarget that doesn't support it!");
 | |
| 
 | |
|   // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
 | |
|   // 32 and 64 bit) and for all 64-bit targets.
 | |
|   if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
 | |
|       isTargetSolaris() || Is64Bit)
 | |
|     stackAlignment = 16;
 | |
| 
 | |
|   if (StackAlignment)
 | |
|     stackAlignment = StackAlignment;
 | |
| }
 | |
| 
 | |
| /// IsCalleePop - Determines whether the callee is required to pop its
 | |
| /// own arguments. Callee pop is necessary to support tail calls.
 | |
| bool X86Subtarget::IsCalleePop(bool IsVarArg,
 | |
|                                CallingConv::ID CallingConv) const {
 | |
|   if (IsVarArg)
 | |
|     return false;
 | |
| 
 | |
|   switch (CallingConv) {
 | |
|   default:
 | |
|     return false;
 | |
|   case CallingConv::X86_StdCall:
 | |
|     return !is64Bit();
 | |
|   case CallingConv::X86_FastCall:
 | |
|     return !is64Bit();
 | |
|   case CallingConv::X86_ThisCall:
 | |
|     return !is64Bit();
 | |
|   case CallingConv::Fast:
 | |
|     return GuaranteedTailCallOpt;
 | |
|   case CallingConv::GHC:
 | |
|     return GuaranteedTailCallOpt;
 | |
|   }
 | |
| }
 |