forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			890 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			890 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombinePHI.cpp -------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitPHINode function.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
 | |
| /// and if a/b/c and the add's all have a single use, turn this into a phi
 | |
| /// and a single binop.
 | |
| Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
 | |
|   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | |
|   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
 | |
|   unsigned Opc = FirstInst->getOpcode();
 | |
|   Value *LHSVal = FirstInst->getOperand(0);
 | |
|   Value *RHSVal = FirstInst->getOperand(1);
 | |
|     
 | |
|   const Type *LHSType = LHSVal->getType();
 | |
|   const Type *RHSType = RHSVal->getType();
 | |
|   
 | |
|   bool isNUW = false, isNSW = false, isExact = false;
 | |
|   if (OverflowingBinaryOperator *BO =
 | |
|         dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
 | |
|     isNUW = BO->hasNoUnsignedWrap();
 | |
|     isNSW = BO->hasNoSignedWrap();
 | |
|   } else if (PossiblyExactOperator *PEO =
 | |
|                dyn_cast<PossiblyExactOperator>(FirstInst))
 | |
|     isExact = PEO->isExact();
 | |
|   
 | |
|   // Scan to see if all operands are the same opcode, and all have one use.
 | |
|   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
 | |
|     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
 | |
|     if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
 | |
|         // Verify type of the LHS matches so we don't fold cmp's of different
 | |
|         // types.
 | |
|         I->getOperand(0)->getType() != LHSType ||
 | |
|         I->getOperand(1)->getType() != RHSType)
 | |
|       return 0;
 | |
| 
 | |
|     // If they are CmpInst instructions, check their predicates
 | |
|     if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
 | |
|         return 0;
 | |
|     
 | |
|     if (isNUW)
 | |
|       isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
 | |
|     if (isNSW)
 | |
|       isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
 | |
|     if (isExact)
 | |
|       isExact = cast<PossiblyExactOperator>(I)->isExact();
 | |
|     
 | |
|     // Keep track of which operand needs a phi node.
 | |
|     if (I->getOperand(0) != LHSVal) LHSVal = 0;
 | |
|     if (I->getOperand(1) != RHSVal) RHSVal = 0;
 | |
|   }
 | |
| 
 | |
|   // If both LHS and RHS would need a PHI, don't do this transformation,
 | |
|   // because it would increase the number of PHIs entering the block,
 | |
|   // which leads to higher register pressure. This is especially
 | |
|   // bad when the PHIs are in the header of a loop.
 | |
|   if (!LHSVal && !RHSVal)
 | |
|     return 0;
 | |
|   
 | |
|   // Otherwise, this is safe to transform!
 | |
|   
 | |
|   Value *InLHS = FirstInst->getOperand(0);
 | |
|   Value *InRHS = FirstInst->getOperand(1);
 | |
|   PHINode *NewLHS = 0, *NewRHS = 0;
 | |
|   if (LHSVal == 0) {
 | |
|     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
 | |
|                              FirstInst->getOperand(0)->getName() + ".pn");
 | |
|     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
 | |
|     InsertNewInstBefore(NewLHS, PN);
 | |
|     LHSVal = NewLHS;
 | |
|   }
 | |
|   
 | |
|   if (RHSVal == 0) {
 | |
|     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
 | |
|                              FirstInst->getOperand(1)->getName() + ".pn");
 | |
|     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
 | |
|     InsertNewInstBefore(NewRHS, PN);
 | |
|     RHSVal = NewRHS;
 | |
|   }
 | |
|   
 | |
|   // Add all operands to the new PHIs.
 | |
|   if (NewLHS || NewRHS) {
 | |
|     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|       Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
 | |
|       if (NewLHS) {
 | |
|         Value *NewInLHS = InInst->getOperand(0);
 | |
|         NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
 | |
|       }
 | |
|       if (NewRHS) {
 | |
|         Value *NewInRHS = InInst->getOperand(1);
 | |
|         NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
 | |
|     return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
 | |
|                            LHSVal, RHSVal);
 | |
|   
 | |
|   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
 | |
|   BinaryOperator *NewBinOp =
 | |
|     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
 | |
|   if (isNUW) NewBinOp->setHasNoUnsignedWrap();
 | |
|   if (isNSW) NewBinOp->setHasNoSignedWrap();
 | |
|   if (isExact) NewBinOp->setIsExact();
 | |
|   return NewBinOp;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
 | |
|   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
 | |
|   
 | |
|   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 
 | |
|                                         FirstInst->op_end());
 | |
|   // This is true if all GEP bases are allocas and if all indices into them are
 | |
|   // constants.
 | |
|   bool AllBasePointersAreAllocas = true;
 | |
| 
 | |
|   // We don't want to replace this phi if the replacement would require
 | |
|   // more than one phi, which leads to higher register pressure. This is
 | |
|   // especially bad when the PHIs are in the header of a loop.
 | |
|   bool NeededPhi = false;
 | |
|   
 | |
|   bool AllInBounds = true;
 | |
|   
 | |
|   // Scan to see if all operands are the same opcode, and all have one use.
 | |
|   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
 | |
|     GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
 | |
|     if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
 | |
|       GEP->getNumOperands() != FirstInst->getNumOperands())
 | |
|       return 0;
 | |
| 
 | |
|     AllInBounds &= GEP->isInBounds();
 | |
|     
 | |
|     // Keep track of whether or not all GEPs are of alloca pointers.
 | |
|     if (AllBasePointersAreAllocas &&
 | |
|         (!isa<AllocaInst>(GEP->getOperand(0)) ||
 | |
|          !GEP->hasAllConstantIndices()))
 | |
|       AllBasePointersAreAllocas = false;
 | |
|     
 | |
|     // Compare the operand lists.
 | |
|     for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
 | |
|       if (FirstInst->getOperand(op) == GEP->getOperand(op))
 | |
|         continue;
 | |
|       
 | |
|       // Don't merge two GEPs when two operands differ (introducing phi nodes)
 | |
|       // if one of the PHIs has a constant for the index.  The index may be
 | |
|       // substantially cheaper to compute for the constants, so making it a
 | |
|       // variable index could pessimize the path.  This also handles the case
 | |
|       // for struct indices, which must always be constant.
 | |
|       if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
 | |
|           isa<ConstantInt>(GEP->getOperand(op)))
 | |
|         return 0;
 | |
|       
 | |
|       if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
 | |
|         return 0;
 | |
| 
 | |
|       // If we already needed a PHI for an earlier operand, and another operand
 | |
|       // also requires a PHI, we'd be introducing more PHIs than we're
 | |
|       // eliminating, which increases register pressure on entry to the PHI's
 | |
|       // block.
 | |
|       if (NeededPhi)
 | |
|         return 0;
 | |
| 
 | |
|       FixedOperands[op] = 0;  // Needs a PHI.
 | |
|       NeededPhi = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
 | |
|   // bother doing this transformation.  At best, this will just save a bit of
 | |
|   // offset calculation, but all the predecessors will have to materialize the
 | |
|   // stack address into a register anyway.  We'd actually rather *clone* the
 | |
|   // load up into the predecessors so that we have a load of a gep of an alloca,
 | |
|   // which can usually all be folded into the load.
 | |
|   if (AllBasePointersAreAllocas)
 | |
|     return 0;
 | |
|   
 | |
|   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
 | |
|   // that is variable.
 | |
|   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
 | |
|   
 | |
|   bool HasAnyPHIs = false;
 | |
|   for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
 | |
|     if (FixedOperands[i]) continue;  // operand doesn't need a phi.
 | |
|     Value *FirstOp = FirstInst->getOperand(i);
 | |
|     PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
 | |
|                                      FirstOp->getName()+".pn");
 | |
|     InsertNewInstBefore(NewPN, PN);
 | |
|     
 | |
|     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
 | |
|     OperandPhis[i] = NewPN;
 | |
|     FixedOperands[i] = NewPN;
 | |
|     HasAnyPHIs = true;
 | |
|   }
 | |
| 
 | |
|   
 | |
|   // Add all operands to the new PHIs.
 | |
|   if (HasAnyPHIs) {
 | |
|     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|       GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
 | |
|       BasicBlock *InBB = PN.getIncomingBlock(i);
 | |
|       
 | |
|       for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
 | |
|         if (PHINode *OpPhi = OperandPhis[op])
 | |
|           OpPhi->addIncoming(InGEP->getOperand(op), InBB);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Value *Base = FixedOperands[0];
 | |
|   GetElementPtrInst *NewGEP = 
 | |
|     GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
 | |
|                               FixedOperands.end());
 | |
|   if (AllInBounds) NewGEP->setIsInBounds();
 | |
|   return NewGEP;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
 | |
| /// sink the load out of the block that defines it.  This means that it must be
 | |
| /// obvious the value of the load is not changed from the point of the load to
 | |
| /// the end of the block it is in.
 | |
| ///
 | |
| /// Finally, it is safe, but not profitable, to sink a load targetting a
 | |
| /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
 | |
| /// to a register.
 | |
| static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
 | |
|   BasicBlock::iterator BBI = L, E = L->getParent()->end();
 | |
|   
 | |
|   for (++BBI; BBI != E; ++BBI)
 | |
|     if (BBI->mayWriteToMemory())
 | |
|       return false;
 | |
|   
 | |
|   // Check for non-address taken alloca.  If not address-taken already, it isn't
 | |
|   // profitable to do this xform.
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
 | |
|     bool isAddressTaken = false;
 | |
|     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       User *U = *UI;
 | |
|       if (isa<LoadInst>(U)) continue;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|         // If storing TO the alloca, then the address isn't taken.
 | |
|         if (SI->getOperand(1) == AI) continue;
 | |
|       }
 | |
|       isAddressTaken = true;
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (!isAddressTaken && AI->isStaticAlloca())
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   // If this load is a load from a GEP with a constant offset from an alloca,
 | |
|   // then we don't want to sink it.  In its present form, it will be
 | |
|   // load [constant stack offset].  Sinking it will cause us to have to
 | |
|   // materialize the stack addresses in each predecessor in a register only to
 | |
|   // do a shared load from register in the successor.
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
 | |
|       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
 | |
|         return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
 | |
|   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
 | |
|   
 | |
|   // When processing loads, we need to propagate two bits of information to the
 | |
|   // sunk load: whether it is volatile, and what its alignment is.  We currently
 | |
|   // don't sink loads when some have their alignment specified and some don't.
 | |
|   // visitLoadInst will propagate an alignment onto the load when TD is around,
 | |
|   // and if TD isn't around, we can't handle the mixed case.
 | |
|   bool isVolatile = FirstLI->isVolatile();
 | |
|   unsigned LoadAlignment = FirstLI->getAlignment();
 | |
|   unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
 | |
|   
 | |
|   // We can't sink the load if the loaded value could be modified between the
 | |
|   // load and the PHI.
 | |
|   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
 | |
|       !isSafeAndProfitableToSinkLoad(FirstLI))
 | |
|     return 0;
 | |
|   
 | |
|   // If the PHI is of volatile loads and the load block has multiple
 | |
|   // successors, sinking it would remove a load of the volatile value from
 | |
|   // the path through the other successor.
 | |
|   if (isVolatile && 
 | |
|       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
 | |
|     return 0;
 | |
|   
 | |
|   // Check to see if all arguments are the same operation.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
 | |
|     if (!LI || !LI->hasOneUse())
 | |
|       return 0;
 | |
|     
 | |
|     // We can't sink the load if the loaded value could be modified between 
 | |
|     // the load and the PHI.
 | |
|     if (LI->isVolatile() != isVolatile ||
 | |
|         LI->getParent() != PN.getIncomingBlock(i) ||
 | |
|         LI->getPointerAddressSpace() != LoadAddrSpace ||
 | |
|         !isSafeAndProfitableToSinkLoad(LI))
 | |
|       return 0;
 | |
|       
 | |
|     // If some of the loads have an alignment specified but not all of them,
 | |
|     // we can't do the transformation.
 | |
|     if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
 | |
|       return 0;
 | |
|     
 | |
|     LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
 | |
|     
 | |
|     // If the PHI is of volatile loads and the load block has multiple
 | |
|     // successors, sinking it would remove a load of the volatile value from
 | |
|     // the path through the other successor.
 | |
|     if (isVolatile &&
 | |
|         LI->getParent()->getTerminator()->getNumSuccessors() != 1)
 | |
|       return 0;
 | |
|   }
 | |
|   
 | |
|   // Okay, they are all the same operation.  Create a new PHI node of the
 | |
|   // correct type, and PHI together all of the LHS's of the instructions.
 | |
|   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
 | |
|                                    PN.getNumIncomingValues(),
 | |
|                                    PN.getName()+".in");
 | |
|   
 | |
|   Value *InVal = FirstLI->getOperand(0);
 | |
|   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | |
|   
 | |
|   // Add all operands to the new PHI.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
 | |
|     if (NewInVal != InVal)
 | |
|       InVal = 0;
 | |
|     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | |
|   }
 | |
|   
 | |
|   Value *PhiVal;
 | |
|   if (InVal) {
 | |
|     // The new PHI unions all of the same values together.  This is really
 | |
|     // common, so we handle it intelligently here for compile-time speed.
 | |
|     PhiVal = InVal;
 | |
|     delete NewPN;
 | |
|   } else {
 | |
|     InsertNewInstBefore(NewPN, PN);
 | |
|     PhiVal = NewPN;
 | |
|   }
 | |
|   
 | |
|   // If this was a volatile load that we are merging, make sure to loop through
 | |
|   // and mark all the input loads as non-volatile.  If we don't do this, we will
 | |
|   // insert a new volatile load and the old ones will not be deletable.
 | |
|   if (isVolatile)
 | |
|     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|       cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
 | |
|   
 | |
|   return new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | |
| /// operator and they all are only used by the PHI, PHI together their
 | |
| /// inputs, and do the operation once, to the result of the PHI.
 | |
| Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
 | |
|   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | |
| 
 | |
|   if (isa<GetElementPtrInst>(FirstInst))
 | |
|     return FoldPHIArgGEPIntoPHI(PN);
 | |
|   if (isa<LoadInst>(FirstInst))
 | |
|     return FoldPHIArgLoadIntoPHI(PN);
 | |
|   
 | |
|   // Scan the instruction, looking for input operations that can be folded away.
 | |
|   // If all input operands to the phi are the same instruction (e.g. a cast from
 | |
|   // the same type or "+42") we can pull the operation through the PHI, reducing
 | |
|   // code size and simplifying code.
 | |
|   Constant *ConstantOp = 0;
 | |
|   const Type *CastSrcTy = 0;
 | |
|   bool isNUW = false, isNSW = false, isExact = false;
 | |
|   
 | |
|   if (isa<CastInst>(FirstInst)) {
 | |
|     CastSrcTy = FirstInst->getOperand(0)->getType();
 | |
| 
 | |
|     // Be careful about transforming integer PHIs.  We don't want to pessimize
 | |
|     // the code by turning an i32 into an i1293.
 | |
|     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
 | |
|       if (!ShouldChangeType(PN.getType(), CastSrcTy))
 | |
|         return 0;
 | |
|     }
 | |
|   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
 | |
|     // Can fold binop, compare or shift here if the RHS is a constant, 
 | |
|     // otherwise call FoldPHIArgBinOpIntoPHI.
 | |
|     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
 | |
|     if (ConstantOp == 0)
 | |
|       return FoldPHIArgBinOpIntoPHI(PN);
 | |
|     
 | |
|     if (OverflowingBinaryOperator *BO =
 | |
|         dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
 | |
|       isNUW = BO->hasNoUnsignedWrap();
 | |
|       isNSW = BO->hasNoSignedWrap();
 | |
|     } else if (PossiblyExactOperator *PEO =
 | |
|                dyn_cast<PossiblyExactOperator>(FirstInst))
 | |
|       isExact = PEO->isExact();
 | |
|   } else {
 | |
|     return 0;  // Cannot fold this operation.
 | |
|   }
 | |
| 
 | |
|   // Check to see if all arguments are the same operation.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
 | |
|     if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
 | |
|       return 0;
 | |
|     if (CastSrcTy) {
 | |
|       if (I->getOperand(0)->getType() != CastSrcTy)
 | |
|         return 0;  // Cast operation must match.
 | |
|     } else if (I->getOperand(1) != ConstantOp) {
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     if (isNUW)
 | |
|       isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
 | |
|     if (isNSW)
 | |
|       isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
 | |
|     if (isExact)
 | |
|       isExact = cast<PossiblyExactOperator>(I)->isExact();
 | |
|   }
 | |
| 
 | |
|   // Okay, they are all the same operation.  Create a new PHI node of the
 | |
|   // correct type, and PHI together all of the LHS's of the instructions.
 | |
|   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
 | |
|                                    PN.getNumIncomingValues(),
 | |
|                                    PN.getName()+".in");
 | |
| 
 | |
|   Value *InVal = FirstInst->getOperand(0);
 | |
|   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | |
| 
 | |
|   // Add all operands to the new PHI.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
 | |
|     if (NewInVal != InVal)
 | |
|       InVal = 0;
 | |
|     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | |
|   }
 | |
| 
 | |
|   Value *PhiVal;
 | |
|   if (InVal) {
 | |
|     // The new PHI unions all of the same values together.  This is really
 | |
|     // common, so we handle it intelligently here for compile-time speed.
 | |
|     PhiVal = InVal;
 | |
|     delete NewPN;
 | |
|   } else {
 | |
|     InsertNewInstBefore(NewPN, PN);
 | |
|     PhiVal = NewPN;
 | |
|   }
 | |
| 
 | |
|   // Insert and return the new operation.
 | |
|   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst))
 | |
|     return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
 | |
|   
 | |
|   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
 | |
|     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
 | |
|     if (isNUW) BinOp->setHasNoUnsignedWrap();
 | |
|     if (isNSW) BinOp->setHasNoSignedWrap();
 | |
|     if (isExact) BinOp->setIsExact();
 | |
|     return BinOp;
 | |
|   }
 | |
|   
 | |
|   CmpInst *CIOp = cast<CmpInst>(FirstInst);
 | |
|   return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
 | |
|                          PhiVal, ConstantOp);
 | |
| }
 | |
| 
 | |
| /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
 | |
| /// that is dead.
 | |
| static bool DeadPHICycle(PHINode *PN,
 | |
|                          SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
 | |
|   if (PN->use_empty()) return true;
 | |
|   if (!PN->hasOneUse()) return false;
 | |
| 
 | |
|   // Remember this node, and if we find the cycle, return.
 | |
|   if (!PotentiallyDeadPHIs.insert(PN))
 | |
|     return true;
 | |
|   
 | |
|   // Don't scan crazily complex things.
 | |
|   if (PotentiallyDeadPHIs.size() == 16)
 | |
|     return false;
 | |
| 
 | |
|   if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
 | |
|     return DeadPHICycle(PU, PotentiallyDeadPHIs);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// PHIsEqualValue - Return true if this phi node is always equal to
 | |
| /// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
 | |
| ///   z = some value; x = phi (y, z); y = phi (x, z)
 | |
| static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 
 | |
|                            SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
 | |
|   // See if we already saw this PHI node.
 | |
|   if (!ValueEqualPHIs.insert(PN))
 | |
|     return true;
 | |
|   
 | |
|   // Don't scan crazily complex things.
 | |
|   if (ValueEqualPHIs.size() == 16)
 | |
|     return false;
 | |
|  
 | |
|   // Scan the operands to see if they are either phi nodes or are equal to
 | |
|   // the value.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Op = PN->getIncomingValue(i);
 | |
|     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
 | |
|       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
 | |
|         return false;
 | |
|     } else if (Op != NonPhiInVal)
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| struct PHIUsageRecord {
 | |
|   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
 | |
|   unsigned Shift;     // The amount shifted.
 | |
|   Instruction *Inst;  // The trunc instruction.
 | |
|   
 | |
|   PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
 | |
|     : PHIId(pn), Shift(Sh), Inst(User) {}
 | |
|   
 | |
|   bool operator<(const PHIUsageRecord &RHS) const {
 | |
|     if (PHIId < RHS.PHIId) return true;
 | |
|     if (PHIId > RHS.PHIId) return false;
 | |
|     if (Shift < RHS.Shift) return true;
 | |
|     if (Shift > RHS.Shift) return false;
 | |
|     return Inst->getType()->getPrimitiveSizeInBits() <
 | |
|            RHS.Inst->getType()->getPrimitiveSizeInBits();
 | |
|   }
 | |
| };
 | |
|   
 | |
| struct LoweredPHIRecord {
 | |
|   PHINode *PN;        // The PHI that was lowered.
 | |
|   unsigned Shift;     // The amount shifted.
 | |
|   unsigned Width;     // The width extracted.
 | |
|   
 | |
|   LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty)
 | |
|     : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
 | |
|   
 | |
|   // Ctor form used by DenseMap.
 | |
|   LoweredPHIRecord(PHINode *pn, unsigned Sh)
 | |
|     : PN(pn), Shift(Sh), Width(0) {}
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct DenseMapInfo<LoweredPHIRecord> {
 | |
|     static inline LoweredPHIRecord getEmptyKey() {
 | |
|       return LoweredPHIRecord(0, 0);
 | |
|     }
 | |
|     static inline LoweredPHIRecord getTombstoneKey() {
 | |
|       return LoweredPHIRecord(0, 1);
 | |
|     }
 | |
|     static unsigned getHashValue(const LoweredPHIRecord &Val) {
 | |
|       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
 | |
|              (Val.Width>>3);
 | |
|     }
 | |
|     static bool isEqual(const LoweredPHIRecord &LHS,
 | |
|                         const LoweredPHIRecord &RHS) {
 | |
|       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
 | |
|              LHS.Width == RHS.Width;
 | |
|     }
 | |
|   };
 | |
|   template <>
 | |
|   struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
 | |
| /// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If
 | |
| /// so, we split the PHI into the various pieces being extracted.  This sort of
 | |
| /// thing is introduced when SROA promotes an aggregate to large integer values.
 | |
| ///
 | |
| /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
 | |
| /// inttoptr.  We should produce new PHIs in the right type.
 | |
| ///
 | |
| Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
 | |
|   // PHIUsers - Keep track of all of the truncated values extracted from a set
 | |
|   // of PHIs, along with their offset.  These are the things we want to rewrite.
 | |
|   SmallVector<PHIUsageRecord, 16> PHIUsers;
 | |
|   
 | |
|   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
 | |
|   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
 | |
|   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
 | |
|   // check the uses of (to ensure they are all extracts).
 | |
|   SmallVector<PHINode*, 8> PHIsToSlice;
 | |
|   SmallPtrSet<PHINode*, 8> PHIsInspected;
 | |
|   
 | |
|   PHIsToSlice.push_back(&FirstPhi);
 | |
|   PHIsInspected.insert(&FirstPhi);
 | |
|   
 | |
|   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
 | |
|     PHINode *PN = PHIsToSlice[PHIId];
 | |
|     
 | |
|     // Scan the input list of the PHI.  If any input is an invoke, and if the
 | |
|     // input is defined in the predecessor, then we won't be split the critical
 | |
|     // edge which is required to insert a truncate.  Because of this, we have to
 | |
|     // bail out.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
 | |
|       if (II == 0) continue;
 | |
|       if (II->getParent() != PN->getIncomingBlock(i))
 | |
|         continue;
 | |
|      
 | |
|       // If we have a phi, and if it's directly in the predecessor, then we have
 | |
|       // a critical edge where we need to put the truncate.  Since we can't
 | |
|       // split the edge in instcombine, we have to bail out.
 | |
|       return 0;
 | |
|     }
 | |
|       
 | |
|     
 | |
|     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       Instruction *User = cast<Instruction>(*UI);
 | |
|       
 | |
|       // If the user is a PHI, inspect its uses recursively.
 | |
|       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | |
|         if (PHIsInspected.insert(UserPN))
 | |
|           PHIsToSlice.push_back(UserPN);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Truncates are always ok.
 | |
|       if (isa<TruncInst>(User)) {
 | |
|         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Otherwise it must be a lshr which can only be used by one trunc.
 | |
|       if (User->getOpcode() != Instruction::LShr ||
 | |
|           !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
 | |
|           !isa<ConstantInt>(User->getOperand(1)))
 | |
|         return 0;
 | |
|       
 | |
|       unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
 | |
|       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we have no users, they must be all self uses, just nuke the PHI.
 | |
|   if (PHIUsers.empty())
 | |
|     return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
 | |
|   
 | |
|   // If this phi node is transformable, create new PHIs for all the pieces
 | |
|   // extracted out of it.  First, sort the users by their offset and size.
 | |
|   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
 | |
|   
 | |
|   DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
 | |
|             for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
 | |
|               errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
 | |
|         );
 | |
|   
 | |
|   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
 | |
|   // hoisted out here to avoid construction/destruction thrashing.
 | |
|   DenseMap<BasicBlock*, Value*> PredValues;
 | |
|   
 | |
|   // ExtractedVals - Each new PHI we introduce is saved here so we don't
 | |
|   // introduce redundant PHIs.
 | |
|   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
 | |
|   
 | |
|   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
 | |
|     unsigned PHIId = PHIUsers[UserI].PHIId;
 | |
|     PHINode *PN = PHIsToSlice[PHIId];
 | |
|     unsigned Offset = PHIUsers[UserI].Shift;
 | |
|     const Type *Ty = PHIUsers[UserI].Inst->getType();
 | |
|     
 | |
|     PHINode *EltPHI;
 | |
|     
 | |
|     // If we've already lowered a user like this, reuse the previously lowered
 | |
|     // value.
 | |
|     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
 | |
|       
 | |
|       // Otherwise, Create the new PHI node for this user.
 | |
|       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
 | |
|                                PN->getName()+".off"+Twine(Offset), PN);
 | |
|       assert(EltPHI->getType() != PN->getType() &&
 | |
|              "Truncate didn't shrink phi?");
 | |
|     
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         BasicBlock *Pred = PN->getIncomingBlock(i);
 | |
|         Value *&PredVal = PredValues[Pred];
 | |
|         
 | |
|         // If we already have a value for this predecessor, reuse it.
 | |
|         if (PredVal) {
 | |
|           EltPHI->addIncoming(PredVal, Pred);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Handle the PHI self-reuse case.
 | |
|         Value *InVal = PN->getIncomingValue(i);
 | |
|         if (InVal == PN) {
 | |
|           PredVal = EltPHI;
 | |
|           EltPHI->addIncoming(PredVal, Pred);
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
 | |
|           // If the incoming value was a PHI, and if it was one of the PHIs we
 | |
|           // already rewrote it, just use the lowered value.
 | |
|           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
 | |
|             PredVal = Res;
 | |
|             EltPHI->addIncoming(PredVal, Pred);
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         // Otherwise, do an extract in the predecessor.
 | |
|         Builder->SetInsertPoint(Pred, Pred->getTerminator());
 | |
|         Value *Res = InVal;
 | |
|         if (Offset)
 | |
|           Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
 | |
|                                                           Offset), "extract");
 | |
|         Res = Builder->CreateTrunc(Res, Ty, "extract.t");
 | |
|         PredVal = Res;
 | |
|         EltPHI->addIncoming(Res, Pred);
 | |
|         
 | |
|         // If the incoming value was a PHI, and if it was one of the PHIs we are
 | |
|         // rewriting, we will ultimately delete the code we inserted.  This
 | |
|         // means we need to revisit that PHI to make sure we extract out the
 | |
|         // needed piece.
 | |
|         if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
 | |
|           if (PHIsInspected.count(OldInVal)) {
 | |
|             unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
 | |
|                                           OldInVal)-PHIsToSlice.begin();
 | |
|             PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 
 | |
|                                               cast<Instruction>(Res)));
 | |
|             ++UserE;
 | |
|           }
 | |
|       }
 | |
|       PredValues.clear();
 | |
|       
 | |
|       DEBUG(errs() << "  Made element PHI for offset " << Offset << ": "
 | |
|                    << *EltPHI << '\n');
 | |
|       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
 | |
|     }
 | |
|     
 | |
|     // Replace the use of this piece with the PHI node.
 | |
|     ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
 | |
|   }
 | |
|   
 | |
|   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
 | |
|   // with undefs.
 | |
|   Value *Undef = UndefValue::get(FirstPhi.getType());
 | |
|   for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
 | |
|     ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
 | |
|   return ReplaceInstUsesWith(FirstPhi, Undef);
 | |
| }
 | |
| 
 | |
| // PHINode simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | |
|   // If LCSSA is around, don't mess with Phi nodes
 | |
|   if (MustPreserveLCSSA) return 0;
 | |
| 
 | |
|   if (Value *V = SimplifyInstruction(&PN, TD))
 | |
|     return ReplaceInstUsesWith(PN, V);
 | |
| 
 | |
|   // If all PHI operands are the same operation, pull them through the PHI,
 | |
|   // reducing code size.
 | |
|   if (isa<Instruction>(PN.getIncomingValue(0)) &&
 | |
|       isa<Instruction>(PN.getIncomingValue(1)) &&
 | |
|       cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
 | |
|       cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
 | |
|       // FIXME: The hasOneUse check will fail for PHIs that use the value more
 | |
|       // than themselves more than once.
 | |
|       PN.getIncomingValue(0)->hasOneUse())
 | |
|     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
 | |
|       return Result;
 | |
| 
 | |
|   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
 | |
|   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
 | |
|   // PHI)... break the cycle.
 | |
|   if (PN.hasOneUse()) {
 | |
|     Instruction *PHIUser = cast<Instruction>(PN.use_back());
 | |
|     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
 | |
|       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
 | |
|       PotentiallyDeadPHIs.insert(&PN);
 | |
|       if (DeadPHICycle(PU, PotentiallyDeadPHIs))
 | |
|         return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | |
|     }
 | |
|    
 | |
|     // If this phi has a single use, and if that use just computes a value for
 | |
|     // the next iteration of a loop, delete the phi.  This occurs with unused
 | |
|     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
 | |
|     // common case here is good because the only other things that catch this
 | |
|     // are induction variable analysis (sometimes) and ADCE, which is only run
 | |
|     // late.
 | |
|     if (PHIUser->hasOneUse() &&
 | |
|         (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
 | |
|         PHIUser->use_back() == &PN) {
 | |
|       return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We sometimes end up with phi cycles that non-obviously end up being the
 | |
|   // same value, for example:
 | |
|   //   z = some value; x = phi (y, z); y = phi (x, z)
 | |
|   // where the phi nodes don't necessarily need to be in the same block.  Do a
 | |
|   // quick check to see if the PHI node only contains a single non-phi value, if
 | |
|   // so, scan to see if the phi cycle is actually equal to that value.
 | |
|   {
 | |
|     unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
 | |
|     // Scan for the first non-phi operand.
 | |
|     while (InValNo != NumOperandVals && 
 | |
|            isa<PHINode>(PN.getIncomingValue(InValNo)))
 | |
|       ++InValNo;
 | |
| 
 | |
|     if (InValNo != NumOperandVals) {
 | |
|       Value *NonPhiInVal = PN.getOperand(InValNo);
 | |
|       
 | |
|       // Scan the rest of the operands to see if there are any conflicts, if so
 | |
|       // there is no need to recursively scan other phis.
 | |
|       for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
 | |
|         Value *OpVal = PN.getIncomingValue(InValNo);
 | |
|         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
 | |
|           break;
 | |
|       }
 | |
|       
 | |
|       // If we scanned over all operands, then we have one unique value plus
 | |
|       // phi values.  Scan PHI nodes to see if they all merge in each other or
 | |
|       // the value.
 | |
|       if (InValNo == NumOperandVals) {
 | |
|         SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
 | |
|         if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
 | |
|           return ReplaceInstUsesWith(PN, NonPhiInVal);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are multiple PHIs, sort their operands so that they all list
 | |
|   // the blocks in the same order. This will help identical PHIs be eliminated
 | |
|   // by other passes. Other passes shouldn't depend on this for correctness
 | |
|   // however.
 | |
|   PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
 | |
|   if (&PN != FirstPN)
 | |
|     for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
 | |
|       BasicBlock *BBA = PN.getIncomingBlock(i);
 | |
|       BasicBlock *BBB = FirstPN->getIncomingBlock(i);
 | |
|       if (BBA != BBB) {
 | |
|         Value *VA = PN.getIncomingValue(i);
 | |
|         unsigned j = PN.getBasicBlockIndex(BBB);
 | |
|         Value *VB = PN.getIncomingValue(j);
 | |
|         PN.setIncomingBlock(i, BBB);
 | |
|         PN.setIncomingValue(i, VB);
 | |
|         PN.setIncomingBlock(j, BBA);
 | |
|         PN.setIncomingValue(j, VA);
 | |
|         // NOTE: Instcombine normally would want us to "return &PN" if we
 | |
|         // modified any of the operands of an instruction.  However, since we
 | |
|         // aren't adding or removing uses (just rearranging them) we don't do
 | |
|         // this in this case.
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // If this is an integer PHI and we know that it has an illegal type, see if
 | |
|   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
 | |
|   // PHI into the various pieces being extracted.  This sort of thing is
 | |
|   // introduced when SROA promotes an aggregate to a single large integer type.
 | |
|   if (PN.getType()->isIntegerTy() && TD &&
 | |
|       !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
 | |
|     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
 | |
|       return Res;
 | |
|   
 | |
|   return 0;
 | |
| }
 |