forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			846 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			846 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines various helper methods and classes used by
 | |
| // LLVMContextImpl for creating and managing constants.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CONSTANTSCONTEXT_H
 | |
| #define LLVM_CONSTANTSCONTEXT_H
 | |
| 
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <map>
 | |
| 
 | |
| namespace llvm {
 | |
| template<class ValType>
 | |
| struct ConstantTraits;
 | |
| 
 | |
| /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement unary constant exprs.
 | |
| class UnaryConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 1);
 | |
|   }
 | |
|   UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
 | |
|     : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
 | |
|     Op<0>() = C;
 | |
|   }
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement binary constant exprs.
 | |
| class BinaryConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
 | |
|                      unsigned Flags)
 | |
|     : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     SubclassOptionalData = Flags;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// SelectConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement select constant exprs.
 | |
| class SelectConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ExtractElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractelement constant exprs.
 | |
| class ExtractElementConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   ExtractElementConstantExpr(Constant *C1, Constant *C2)
 | |
|     : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
 | |
|                    Instruction::ExtractElement, &Op<0>(), 2) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// InsertElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertelement constant exprs.
 | |
| class InsertElementConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C1->getType(), Instruction::InsertElement, 
 | |
|                    &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ShuffleVectorConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// shufflevector constant exprs.
 | |
| class ShuffleVectorConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|   : ConstantExpr(VectorType::get(
 | |
|                    cast<VectorType>(C1->getType())->getElementType(),
 | |
|                    cast<VectorType>(C3->getType())->getNumElements()),
 | |
|                  Instruction::ShuffleVector, 
 | |
|                  &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ExtractValueConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractvalue constant exprs.
 | |
| class ExtractValueConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 1);
 | |
|   }
 | |
|   ExtractValueConstantExpr(Constant *Agg,
 | |
|                            const SmallVector<unsigned, 4> &IdxList,
 | |
|                            const Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
 | |
|       Indices(IdxList) {
 | |
|     Op<0>() = Agg;
 | |
|   }
 | |
| 
 | |
|   /// Indices - These identify which value to extract.
 | |
|   const SmallVector<unsigned, 4> Indices;
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// InsertValueConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertvalue constant exprs.
 | |
| class InsertValueConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   InsertValueConstantExpr(Constant *Agg, Constant *Val,
 | |
|                           const SmallVector<unsigned, 4> &IdxList,
 | |
|                           const Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
 | |
|       Indices(IdxList) {
 | |
|     Op<0>() = Agg;
 | |
|     Op<1>() = Val;
 | |
|   }
 | |
| 
 | |
|   /// Indices - These identify the position for the insertion.
 | |
|   const SmallVector<unsigned, 4> Indices;
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| 
 | |
| /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
 | |
| /// used behind the scenes to implement getelementpr constant exprs.
 | |
| class GetElementPtrConstantExpr : public ConstantExpr {
 | |
|   GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
 | |
|                             const Type *DestTy);
 | |
| public:
 | |
|   static GetElementPtrConstantExpr *Create(Constant *C,
 | |
|                                            const std::vector<Constant*>&IdxList,
 | |
|                                            const Type *DestTy,
 | |
|                                            unsigned Flags) {
 | |
|     GetElementPtrConstantExpr *Result =
 | |
|       new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
 | |
|     Result->SubclassOptionalData = Flags;
 | |
|     return Result;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| // CompareConstantExpr - This class is private to Constants.cpp, and is used
 | |
| // behind the scenes to implement ICmp and FCmp constant expressions. This is
 | |
| // needed in order to store the predicate value for these instructions.
 | |
| struct CompareConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   unsigned short predicate;
 | |
|   CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
 | |
|                       unsigned short pred,  Constant* LHS, Constant* RHS)
 | |
|     : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
 | |
|     Op<0>() = LHS;
 | |
|     Op<1>() = RHS;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<UnaryConstantExpr> :
 | |
|   public FixedNumOperandTraits<UnaryConstantExpr, 1> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<BinaryConstantExpr> :
 | |
|   public FixedNumOperandTraits<BinaryConstantExpr, 2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<SelectConstantExpr> :
 | |
|   public FixedNumOperandTraits<SelectConstantExpr, 3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ExtractElementConstantExpr> :
 | |
|   public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<InsertElementConstantExpr> :
 | |
|   public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ShuffleVectorConstantExpr> :
 | |
|     public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ExtractValueConstantExpr> :
 | |
|   public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<InsertValueConstantExpr> :
 | |
|   public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<GetElementPtrConstantExpr> :
 | |
|   public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
 | |
| };
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
 | |
| 
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<CompareConstantExpr> :
 | |
|   public FixedNumOperandTraits<CompareConstantExpr, 2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
 | |
| 
 | |
| struct ExprMapKeyType {
 | |
|   typedef SmallVector<unsigned, 4> IndexList;
 | |
| 
 | |
|   ExprMapKeyType(unsigned opc,
 | |
|       const std::vector<Constant*> &ops,
 | |
|       unsigned short flags = 0,
 | |
|       unsigned short optionalflags = 0,
 | |
|       const IndexList &inds = IndexList())
 | |
|         : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
 | |
|         operands(ops), indices(inds) {}
 | |
|   uint8_t opcode;
 | |
|   uint8_t subclassoptionaldata;
 | |
|   uint16_t subclassdata;
 | |
|   std::vector<Constant*> operands;
 | |
|   IndexList indices;
 | |
|   bool operator==(const ExprMapKeyType& that) const {
 | |
|     return this->opcode == that.opcode &&
 | |
|            this->subclassdata == that.subclassdata &&
 | |
|            this->subclassoptionaldata == that.subclassoptionaldata &&
 | |
|            this->operands == that.operands &&
 | |
|            this->indices == that.indices;
 | |
|   }
 | |
|   bool operator<(const ExprMapKeyType & that) const {
 | |
|     if (this->opcode != that.opcode) return this->opcode < that.opcode;
 | |
|     if (this->operands != that.operands) return this->operands < that.operands;
 | |
|     if (this->subclassdata != that.subclassdata)
 | |
|       return this->subclassdata < that.subclassdata;
 | |
|     if (this->subclassoptionaldata != that.subclassoptionaldata)
 | |
|       return this->subclassoptionaldata < that.subclassoptionaldata;
 | |
|     if (this->indices != that.indices) return this->indices < that.indices;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const ExprMapKeyType& that) const {
 | |
|     return !(*this == that);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct InlineAsmKeyType {
 | |
|   InlineAsmKeyType(StringRef AsmString,
 | |
|                    StringRef Constraints, bool hasSideEffects,
 | |
|                    bool isAlignStack)
 | |
|     : asm_string(AsmString), constraints(Constraints),
 | |
|       has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {}
 | |
|   std::string asm_string;
 | |
|   std::string constraints;
 | |
|   bool has_side_effects;
 | |
|   bool is_align_stack;
 | |
|   bool operator==(const InlineAsmKeyType& that) const {
 | |
|     return this->asm_string == that.asm_string &&
 | |
|            this->constraints == that.constraints &&
 | |
|            this->has_side_effects == that.has_side_effects &&
 | |
|            this->is_align_stack == that.is_align_stack;
 | |
|   }
 | |
|   bool operator<(const InlineAsmKeyType& that) const {
 | |
|     if (this->asm_string != that.asm_string)
 | |
|       return this->asm_string < that.asm_string;
 | |
|     if (this->constraints != that.constraints)
 | |
|       return this->constraints < that.constraints;
 | |
|     if (this->has_side_effects != that.has_side_effects)
 | |
|       return this->has_side_effects < that.has_side_effects;
 | |
|     if (this->is_align_stack != that.is_align_stack)
 | |
|       return this->is_align_stack < that.is_align_stack;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const InlineAsmKeyType& that) const {
 | |
|     return !(*this == that);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // The number of operands for each ConstantCreator::create method is
 | |
| // determined by the ConstantTraits template.
 | |
| // ConstantCreator - A class that is used to create constants by
 | |
| // ConstantUniqueMap*.  This class should be partially specialized if there is
 | |
| // something strange that needs to be done to interface to the ctor for the
 | |
| // constant.
 | |
| //
 | |
| template<typename T, typename Alloc>
 | |
| struct ConstantTraits< std::vector<T, Alloc> > {
 | |
|   static unsigned uses(const std::vector<T, Alloc>& v) {
 | |
|     return v.size();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantTraits<Constant *> {
 | |
|   static unsigned uses(Constant * const & v) {
 | |
|     return 1;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ConstantClass, class TypeClass, class ValType>
 | |
| struct ConstantCreator {
 | |
|   static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
 | |
|     return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ConstantClass>
 | |
| struct ConstantKeyData {
 | |
|   typedef void ValType;
 | |
|   static ValType getValType(ConstantClass *C) {
 | |
|     llvm_unreachable("Unknown Constant type!");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
 | |
|   static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
 | |
|       unsigned short pred = 0) {
 | |
|     if (Instruction::isCast(V.opcode))
 | |
|       return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
 | |
|     if ((V.opcode >= Instruction::BinaryOpsBegin &&
 | |
|          V.opcode < Instruction::BinaryOpsEnd))
 | |
|       return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
 | |
|                                     V.subclassoptionaldata);
 | |
|     if (V.opcode == Instruction::Select)
 | |
|       return new SelectConstantExpr(V.operands[0], V.operands[1], 
 | |
|                                     V.operands[2]);
 | |
|     if (V.opcode == Instruction::ExtractElement)
 | |
|       return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
 | |
|     if (V.opcode == Instruction::InsertElement)
 | |
|       return new InsertElementConstantExpr(V.operands[0], V.operands[1],
 | |
|                                            V.operands[2]);
 | |
|     if (V.opcode == Instruction::ShuffleVector)
 | |
|       return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
 | |
|                                            V.operands[2]);
 | |
|     if (V.opcode == Instruction::InsertValue)
 | |
|       return new InsertValueConstantExpr(V.operands[0], V.operands[1],
 | |
|                                          V.indices, Ty);
 | |
|     if (V.opcode == Instruction::ExtractValue)
 | |
|       return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
 | |
|     if (V.opcode == Instruction::GetElementPtr) {
 | |
|       std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
 | |
|       return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
 | |
|                                                V.subclassoptionaldata);
 | |
|     }
 | |
| 
 | |
|     // The compare instructions are weird. We have to encode the predicate
 | |
|     // value and it is combined with the instruction opcode by multiplying
 | |
|     // the opcode by one hundred. We must decode this to get the predicate.
 | |
|     if (V.opcode == Instruction::ICmp)
 | |
|       return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
 | |
|                                      V.operands[0], V.operands[1]);
 | |
|     if (V.opcode == Instruction::FCmp) 
 | |
|       return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
 | |
|                                      V.operands[0], V.operands[1]);
 | |
|     llvm_unreachable("Invalid ConstantExpr!");
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<ConstantExpr> {
 | |
|   typedef ExprMapKeyType ValType;
 | |
|   static ValType getValType(ConstantExpr *CE) {
 | |
|     std::vector<Constant*> Operands;
 | |
|     Operands.reserve(CE->getNumOperands());
 | |
|     for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | |
|       Operands.push_back(cast<Constant>(CE->getOperand(i)));
 | |
|     return ExprMapKeyType(CE->getOpcode(), Operands,
 | |
|         CE->isCompare() ? CE->getPredicate() : 0,
 | |
|         CE->getRawSubclassOptionalData(),
 | |
|         CE->hasIndices() ?
 | |
|           CE->getIndices() : SmallVector<unsigned, 4>());
 | |
|   }
 | |
| };
 | |
| 
 | |
| // ConstantAggregateZero does not take extra "value" argument...
 | |
| template<class ValType>
 | |
| struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
 | |
|   static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
 | |
|     return new ConstantAggregateZero(Ty);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<ConstantVector> {
 | |
|   typedef std::vector<Constant*> ValType;
 | |
|   static ValType getValType(ConstantVector *CP) {
 | |
|     std::vector<Constant*> Elements;
 | |
|     Elements.reserve(CP->getNumOperands());
 | |
|     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|       Elements.push_back(CP->getOperand(i));
 | |
|     return Elements;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<ConstantAggregateZero> {
 | |
|   typedef char ValType;
 | |
|   static ValType getValType(ConstantAggregateZero *C) {
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<ConstantArray> {
 | |
|   typedef std::vector<Constant*> ValType;
 | |
|   static ValType getValType(ConstantArray *CA) {
 | |
|     std::vector<Constant*> Elements;
 | |
|     Elements.reserve(CA->getNumOperands());
 | |
|     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
 | |
|       Elements.push_back(cast<Constant>(CA->getOperand(i)));
 | |
|     return Elements;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<ConstantStruct> {
 | |
|   typedef std::vector<Constant*> ValType;
 | |
|   static ValType getValType(ConstantStruct *CS) {
 | |
|     std::vector<Constant*> Elements;
 | |
|     Elements.reserve(CS->getNumOperands());
 | |
|     for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
 | |
|       Elements.push_back(cast<Constant>(CS->getOperand(i)));
 | |
|     return Elements;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // ConstantPointerNull does not take extra "value" argument...
 | |
| template<class ValType>
 | |
| struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
 | |
|   static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
 | |
|     return new ConstantPointerNull(Ty);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<ConstantPointerNull> {
 | |
|   typedef char ValType;
 | |
|   static ValType getValType(ConstantPointerNull *C) {
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // UndefValue does not take extra "value" argument...
 | |
| template<class ValType>
 | |
| struct ConstantCreator<UndefValue, Type, ValType> {
 | |
|   static UndefValue *create(const Type *Ty, const ValType &V) {
 | |
|     return new UndefValue(Ty);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<UndefValue> {
 | |
|   typedef char ValType;
 | |
|   static ValType getValType(UndefValue *C) {
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
 | |
|   static InlineAsm *create(const PointerType *Ty, const InlineAsmKeyType &Key) {
 | |
|     return new InlineAsm(Ty, Key.asm_string, Key.constraints,
 | |
|                          Key.has_side_effects, Key.is_align_stack);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<InlineAsm> {
 | |
|   typedef InlineAsmKeyType ValType;
 | |
|   static ValType getValType(InlineAsm *Asm) {
 | |
|     return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
 | |
|                             Asm->hasSideEffects(), Asm->isAlignStack());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ValType, class TypeClass, class ConstantClass,
 | |
|          bool HasLargeKey = false /*true for arrays and structs*/ >
 | |
| class ConstantUniqueMap : public AbstractTypeUser {
 | |
| public:
 | |
|   typedef std::pair<const TypeClass*, ValType> MapKey;
 | |
|   typedef std::map<MapKey, ConstantClass *> MapTy;
 | |
|   typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
 | |
|   typedef std::map<const DerivedType*, typename MapTy::iterator>
 | |
|     AbstractTypeMapTy;
 | |
| private:
 | |
|   /// Map - This is the main map from the element descriptor to the Constants.
 | |
|   /// This is the primary way we avoid creating two of the same shape
 | |
|   /// constant.
 | |
|   MapTy Map;
 | |
|     
 | |
|   /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
 | |
|   /// from the constants to their element in Map.  This is important for
 | |
|   /// removal of constants from the array, which would otherwise have to scan
 | |
|   /// through the map with very large keys.
 | |
|   InverseMapTy InverseMap;
 | |
| 
 | |
|   /// AbstractTypeMap - Map for abstract type constants.
 | |
|   ///
 | |
|   AbstractTypeMapTy AbstractTypeMap;
 | |
|     
 | |
| public:
 | |
|   typename MapTy::iterator map_begin() { return Map.begin(); }
 | |
|   typename MapTy::iterator map_end() { return Map.end(); }
 | |
| 
 | |
|   void freeConstants() {
 | |
|     for (typename MapTy::iterator I=Map.begin(), E=Map.end();
 | |
|          I != E; ++I) {
 | |
|       // Asserts that use_empty().
 | |
|       delete I->second;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   /// InsertOrGetItem - Return an iterator for the specified element.
 | |
|   /// If the element exists in the map, the returned iterator points to the
 | |
|   /// entry and Exists=true.  If not, the iterator points to the newly
 | |
|   /// inserted entry and returns Exists=false.  Newly inserted entries have
 | |
|   /// I->second == 0, and should be filled in.
 | |
|   typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
 | |
|                                  &InsertVal,
 | |
|                                  bool &Exists) {
 | |
|     std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
 | |
|     Exists = !IP.second;
 | |
|     return IP.first;
 | |
|   }
 | |
|     
 | |
| private:
 | |
|   typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
 | |
|     if (HasLargeKey) {
 | |
|       typename InverseMapTy::iterator IMI = InverseMap.find(CP);
 | |
|       assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
 | |
|              IMI->second->second == CP &&
 | |
|              "InverseMap corrupt!");
 | |
|       return IMI->second;
 | |
|     }
 | |
|       
 | |
|     typename MapTy::iterator I =
 | |
|       Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
 | |
|                       ConstantKeyData<ConstantClass>::getValType(CP)));
 | |
|     if (I == Map.end() || I->second != CP) {
 | |
|       // FIXME: This should not use a linear scan.  If this gets to be a
 | |
|       // performance problem, someone should look at this.
 | |
|       for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
 | |
|         /* empty */;
 | |
|     }
 | |
|     return I;
 | |
|   }
 | |
|     
 | |
|   void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) {
 | |
|     // If the type of the constant is abstract, make sure that an entry
 | |
|     // exists for it in the AbstractTypeMap.
 | |
|     if (Ty->isAbstract()) {
 | |
|       const DerivedType *DTy = static_cast<const DerivedType *>(Ty);
 | |
|       typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy);
 | |
| 
 | |
|       if (TI == AbstractTypeMap.end()) {
 | |
|         // Add ourselves to the ATU list of the type.
 | |
|         cast<DerivedType>(DTy)->addAbstractTypeUser(this);
 | |
| 
 | |
|         AbstractTypeMap.insert(TI, std::make_pair(DTy, I));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConstantClass* Create(const TypeClass *Ty, const ValType &V,
 | |
|                         typename MapTy::iterator I) {
 | |
|     ConstantClass* Result =
 | |
|       ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
 | |
| 
 | |
|     assert(Result->getType() == Ty && "Type specified is not correct!");
 | |
|     I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
 | |
| 
 | |
|     if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|       InverseMap.insert(std::make_pair(Result, I));
 | |
| 
 | |
|     AddAbstractTypeUser(Ty, I);
 | |
|       
 | |
|     return Result;
 | |
|   }
 | |
| public:
 | |
|     
 | |
|   /// getOrCreate - Return the specified constant from the map, creating it if
 | |
|   /// necessary.
 | |
|   ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
 | |
|     MapKey Lookup(Ty, V);
 | |
|     ConstantClass* Result = 0;
 | |
|     
 | |
|     typename MapTy::iterator I = Map.find(Lookup);
 | |
|     // Is it in the map?  
 | |
|     if (I != Map.end())
 | |
|       Result = I->second;
 | |
|         
 | |
|     if (!Result) {
 | |
|       // If no preexisting value, create one now...
 | |
|       Result = Create(Ty, V, I);
 | |
|     }
 | |
|         
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   void UpdateAbstractTypeMap(const DerivedType *Ty,
 | |
|                              typename MapTy::iterator I) {
 | |
|     assert(AbstractTypeMap.count(Ty) &&
 | |
|            "Abstract type not in AbstractTypeMap?");
 | |
|     typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
 | |
|     if (ATMEntryIt == I) {
 | |
|       // Yes, we are removing the representative entry for this type.
 | |
|       // See if there are any other entries of the same type.
 | |
|       typename MapTy::iterator TmpIt = ATMEntryIt;
 | |
| 
 | |
|       // First check the entry before this one...
 | |
|       if (TmpIt != Map.begin()) {
 | |
|         --TmpIt;
 | |
|         if (TmpIt->first.first != Ty) // Not the same type, move back...
 | |
|           ++TmpIt;
 | |
|       }
 | |
| 
 | |
|       // If we didn't find the same type, try to move forward...
 | |
|       if (TmpIt == ATMEntryIt) {
 | |
|         ++TmpIt;
 | |
|         if (TmpIt == Map.end() || TmpIt->first.first != Ty)
 | |
|           --TmpIt;   // No entry afterwards with the same type
 | |
|       }
 | |
| 
 | |
|       // If there is another entry in the map of the same abstract type,
 | |
|       // update the AbstractTypeMap entry now.
 | |
|       if (TmpIt != ATMEntryIt) {
 | |
|         ATMEntryIt = TmpIt;
 | |
|       } else {
 | |
|         // Otherwise, we are removing the last instance of this type
 | |
|         // from the table.  Remove from the ATM, and from user list.
 | |
|         cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
 | |
|         AbstractTypeMap.erase(Ty);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void remove(ConstantClass *CP) {
 | |
|     typename MapTy::iterator I = FindExistingElement(CP);
 | |
|     assert(I != Map.end() && "Constant not found in constant table!");
 | |
|     assert(I->second == CP && "Didn't find correct element?");
 | |
| 
 | |
|     if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|       InverseMap.erase(CP);
 | |
|       
 | |
|     // Now that we found the entry, make sure this isn't the entry that
 | |
|     // the AbstractTypeMap points to.
 | |
|     const TypeClass *Ty = I->first.first;
 | |
|     if (Ty->isAbstract())
 | |
|       UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I);
 | |
| 
 | |
|     Map.erase(I);
 | |
|   }
 | |
| 
 | |
|   /// MoveConstantToNewSlot - If we are about to change C to be the element
 | |
|   /// specified by I, update our internal data structures to reflect this
 | |
|   /// fact.
 | |
|   void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
 | |
|     // First, remove the old location of the specified constant in the map.
 | |
|     typename MapTy::iterator OldI = FindExistingElement(C);
 | |
|     assert(OldI != Map.end() && "Constant not found in constant table!");
 | |
|     assert(OldI->second == C && "Didn't find correct element?");
 | |
|       
 | |
|     // If this constant is the representative element for its abstract type,
 | |
|     // update the AbstractTypeMap so that the representative element is I.
 | |
|     //
 | |
|     // This must use getRawType() because if the type is under refinement, we
 | |
|     // will get the refineAbstractType callback below, and we don't want to
 | |
|     // kick union find in on the constant.
 | |
|     if (C->getRawType()->isAbstract()) {
 | |
|       typename AbstractTypeMapTy::iterator ATI =
 | |
|           AbstractTypeMap.find(cast<DerivedType>(C->getRawType()));
 | |
|       assert(ATI != AbstractTypeMap.end() &&
 | |
|              "Abstract type not in AbstractTypeMap?");
 | |
|       if (ATI->second == OldI)
 | |
|         ATI->second = I;
 | |
|     }
 | |
|       
 | |
|     // Remove the old entry from the map.
 | |
|     Map.erase(OldI);
 | |
|     
 | |
|     // Update the inverse map so that we know that this constant is now
 | |
|     // located at descriptor I.
 | |
|     if (HasLargeKey) {
 | |
|       assert(I->second == C && "Bad inversemap entry!");
 | |
|       InverseMap[C] = I;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | |
|     typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy);
 | |
| 
 | |
|     assert(I != AbstractTypeMap.end() &&
 | |
|            "Abstract type not in AbstractTypeMap?");
 | |
| 
 | |
|     // Convert a constant at a time until the last one is gone.  The last one
 | |
|     // leaving will remove() itself, causing the AbstractTypeMapEntry to be
 | |
|     // eliminated eventually.
 | |
|     do {
 | |
|       ConstantClass *C = I->second->second;
 | |
|       MapKey Key(cast<TypeClass>(NewTy),
 | |
|                  ConstantKeyData<ConstantClass>::getValType(C));
 | |
| 
 | |
|       std::pair<typename MapTy::iterator, bool> IP =
 | |
|         Map.insert(std::make_pair(Key, C));
 | |
|       if (IP.second) {
 | |
|         // The map didn't previously have an appropriate constant in the
 | |
|         // new type.
 | |
|         
 | |
|         // Remove the old entry.
 | |
|         typename MapTy::iterator OldI =
 | |
|           Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second));
 | |
|         assert(OldI != Map.end() && "Constant not in map!");
 | |
|         UpdateAbstractTypeMap(OldTy, OldI);
 | |
|         Map.erase(OldI);
 | |
| 
 | |
|         // Set the constant's type. This is done in place!
 | |
|         setType(C, NewTy);
 | |
| 
 | |
|         // Update the inverse map so that we know that this constant is now
 | |
|         // located at descriptor I.
 | |
|         if (HasLargeKey)
 | |
|           InverseMap[C] = IP.first;
 | |
| 
 | |
|         AddAbstractTypeUser(NewTy, IP.first);
 | |
|       } else {
 | |
|         // The map already had an appropriate constant in the new type, so
 | |
|         // there's no longer a need for the old constant.
 | |
|         C->uncheckedReplaceAllUsesWith(IP.first->second);
 | |
|         C->destroyConstant();    // This constant is now dead, destroy it.
 | |
|       }
 | |
|       I = AbstractTypeMap.find(OldTy);
 | |
|     } while (I != AbstractTypeMap.end());
 | |
|   }
 | |
| 
 | |
|   // If the type became concrete without being refined to any other existing
 | |
|   // type, we just remove ourselves from the ATU list.
 | |
|   void typeBecameConcrete(const DerivedType *AbsTy) {
 | |
|     AbsTy->removeAbstractTypeUser(this);
 | |
|   }
 | |
| 
 | |
|   void dump() const {
 | |
|     DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |