forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			905 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			905 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Miscompilation.cpp - Debug program miscompilations -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements optimizer and code generation miscompilation debugging
 | |
| // support.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "BugDriver.h"
 | |
| #include "ListReducer.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Linker.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Support/Mangler.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/FileUtilities.h"
 | |
| #include "llvm/Config/config.h"   // for HAVE_LINK_R
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
|   extern cl::list<std::string> InputArgv;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
 | |
|     BugDriver &BD;
 | |
|   public:
 | |
|     ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
 | |
| 
 | |
|     virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
 | |
|                               std::vector<const PassInfo*> &Suffix);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// TestResult - After passes have been split into a test group and a control
 | |
| /// group, see if they still break the program.
 | |
| ///
 | |
| ReduceMiscompilingPasses::TestResult
 | |
| ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
 | |
|                                  std::vector<const PassInfo*> &Suffix) {
 | |
|   // First, run the program with just the Suffix passes.  If it is still broken
 | |
|   // with JUST the kept passes, discard the prefix passes.
 | |
|   std::cout << "Checking to see if '" << getPassesString(Suffix)
 | |
|             << "' compile correctly: ";
 | |
| 
 | |
|   std::string BytecodeResult;
 | |
|   if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
 | |
|     std::cerr << " Error running this sequence of passes"
 | |
|               << " on the input program!\n";
 | |
|     BD.setPassesToRun(Suffix);
 | |
|     BD.EmitProgressBytecode("pass-error",  false);
 | |
|     exit(BD.debugOptimizerCrash());
 | |
|   }
 | |
| 
 | |
|   // Check to see if the finished program matches the reference output...
 | |
|   if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
 | |
|     std::cout << " nope.\n";
 | |
|     if (Suffix.empty()) {
 | |
|       std::cerr << BD.getToolName() << ": I'm confused: the test fails when "
 | |
|                 << "no passes are run, nondeterministic program?\n";
 | |
|       exit(1);
 | |
|     }
 | |
|     return KeepSuffix;         // Miscompilation detected!
 | |
|   }
 | |
|   std::cout << " yup.\n";      // No miscompilation!
 | |
| 
 | |
|   if (Prefix.empty()) return NoFailure;
 | |
| 
 | |
|   // Next, see if the program is broken if we run the "prefix" passes first,
 | |
|   // then separately run the "kept" passes.
 | |
|   std::cout << "Checking to see if '" << getPassesString(Prefix)
 | |
|             << "' compile correctly: ";
 | |
| 
 | |
|   // If it is not broken with the kept passes, it's possible that the prefix
 | |
|   // passes must be run before the kept passes to break it.  If the program
 | |
|   // WORKS after the prefix passes, but then fails if running the prefix AND
 | |
|   // kept passes, we can update our bytecode file to include the result of the
 | |
|   // prefix passes, then discard the prefix passes.
 | |
|   //
 | |
|   if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
 | |
|     std::cerr << " Error running this sequence of passes"
 | |
|               << " on the input program!\n";
 | |
|     BD.setPassesToRun(Prefix);
 | |
|     BD.EmitProgressBytecode("pass-error",  false);
 | |
|     exit(BD.debugOptimizerCrash());
 | |
|   }
 | |
| 
 | |
|   // If the prefix maintains the predicate by itself, only keep the prefix!
 | |
|   if (BD.diffProgram(BytecodeResult)) {
 | |
|     std::cout << " nope.\n";
 | |
|     sys::Path(BytecodeResult).eraseFromDisk();
 | |
|     return KeepPrefix;
 | |
|   }
 | |
|   std::cout << " yup.\n";      // No miscompilation!
 | |
| 
 | |
|   // Ok, so now we know that the prefix passes work, try running the suffix
 | |
|   // passes on the result of the prefix passes.
 | |
|   //
 | |
|   Module *PrefixOutput = ParseInputFile(BytecodeResult);
 | |
|   if (PrefixOutput == 0) {
 | |
|     std::cerr << BD.getToolName() << ": Error reading bytecode file '"
 | |
|               << BytecodeResult << "'!\n";
 | |
|     exit(1);
 | |
|   }
 | |
|   sys::Path(BytecodeResult).eraseFromDisk();  // No longer need the file on disk
 | |
| 
 | |
|   // Don't check if there are no passes in the suffix.
 | |
|   if (Suffix.empty())
 | |
|     return NoFailure;
 | |
| 
 | |
|   std::cout << "Checking to see if '" << getPassesString(Suffix)
 | |
|             << "' passes compile correctly after the '"
 | |
|             << getPassesString(Prefix) << "' passes: ";
 | |
| 
 | |
|   Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
 | |
|   if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
 | |
|     std::cerr << " Error running this sequence of passes"
 | |
|               << " on the input program!\n";
 | |
|     BD.setPassesToRun(Suffix);
 | |
|     BD.EmitProgressBytecode("pass-error",  false);
 | |
|     exit(BD.debugOptimizerCrash());
 | |
|   }
 | |
| 
 | |
|   // Run the result...
 | |
|   if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
 | |
|     std::cout << " nope.\n";
 | |
|     delete OriginalInput;     // We pruned down the original input...
 | |
|     return KeepSuffix;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we must not be running the bad pass anymore.
 | |
|   std::cout << " yup.\n";      // No miscompilation!
 | |
|   delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
 | |
|   return NoFailure;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class ReduceMiscompilingFunctions : public ListReducer<Function*> {
 | |
|     BugDriver &BD;
 | |
|     bool (*TestFn)(BugDriver &, Module *, Module *);
 | |
|   public:
 | |
|     ReduceMiscompilingFunctions(BugDriver &bd,
 | |
|                                 bool (*F)(BugDriver &, Module *, Module *))
 | |
|       : BD(bd), TestFn(F) {}
 | |
| 
 | |
|     virtual TestResult doTest(std::vector<Function*> &Prefix,
 | |
|                               std::vector<Function*> &Suffix) {
 | |
|       if (!Suffix.empty() && TestFuncs(Suffix))
 | |
|         return KeepSuffix;
 | |
|       if (!Prefix.empty() && TestFuncs(Prefix))
 | |
|         return KeepPrefix;
 | |
|       return NoFailure;
 | |
|     }
 | |
| 
 | |
|     bool TestFuncs(const std::vector<Function*> &Prefix);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// TestMergedProgram - Given two modules, link them together and run the
 | |
| /// program, checking to see if the program matches the diff.  If the diff
 | |
| /// matches, return false, otherwise return true.  If the DeleteInputs argument
 | |
| /// is set to true then this function deletes both input modules before it
 | |
| /// returns.
 | |
| ///
 | |
| static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
 | |
|                               bool DeleteInputs) {
 | |
|   // Link the two portions of the program back to together.
 | |
|   std::string ErrorMsg;
 | |
|   if (!DeleteInputs) {
 | |
|     M1 = CloneModule(M1);
 | |
|     M2 = CloneModule(M2);
 | |
|   }
 | |
|   if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
 | |
|     std::cerr << BD.getToolName() << ": Error linking modules together:"
 | |
|               << ErrorMsg << '\n';
 | |
|     exit(1);
 | |
|   }
 | |
|   delete M2;   // We are done with this module.
 | |
| 
 | |
|   Module *OldProgram = BD.swapProgramIn(M1);
 | |
| 
 | |
|   // Execute the program.  If it does not match the expected output, we must
 | |
|   // return true.
 | |
|   bool Broken = BD.diffProgram();
 | |
| 
 | |
|   // Delete the linked module & restore the original
 | |
|   BD.swapProgramIn(OldProgram);
 | |
|   delete M1;
 | |
|   return Broken;
 | |
| }
 | |
| 
 | |
| /// TestFuncs - split functions in a Module into two groups: those that are
 | |
| /// under consideration for miscompilation vs. those that are not, and test
 | |
| /// accordingly. Each group of functions becomes a separate Module.
 | |
| ///
 | |
| bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
 | |
|   // Test to see if the function is misoptimized if we ONLY run it on the
 | |
|   // functions listed in Funcs.
 | |
|   std::cout << "Checking to see if the program is misoptimized when "
 | |
|             << (Funcs.size()==1 ? "this function is" : "these functions are")
 | |
|             << " run through the pass"
 | |
|             << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
 | |
|   PrintFunctionList(Funcs);
 | |
|   std::cout << '\n';
 | |
| 
 | |
|   // Split the module into the two halves of the program we want.
 | |
|   Module *ToNotOptimize = CloneModule(BD.getProgram());
 | |
|   Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
 | |
| 
 | |
|   // Run the predicate, not that the predicate will delete both input modules.
 | |
|   return TestFn(BD, ToOptimize, ToNotOptimize);
 | |
| }
 | |
| 
 | |
| /// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
 | |
| /// modifying predominantly internal symbols rather than external ones.
 | |
| ///
 | |
| static void DisambiguateGlobalSymbols(Module *M) {
 | |
|   // Try not to cause collisions by minimizing chances of renaming an
 | |
|   // already-external symbol, so take in external globals and functions as-is.
 | |
|   // The code should work correctly without disambiguation (assuming the same
 | |
|   // mangler is used by the two code generators), but having symbols with the
 | |
|   // same name causes warnings to be emitted by the code generator.
 | |
|   Mangler Mang(*M);
 | |
|   // Agree with the CBE on symbol naming
 | |
|   Mang.markCharUnacceptable('.');
 | |
|   Mang.setPreserveAsmNames(true);
 | |
|   for (Module::global_iterator I = M->global_begin(), E = M->global_end();
 | |
|        I != E; ++I)
 | |
|     I->setName(Mang.getValueName(I));
 | |
|   for (Module::iterator  I = M->begin(),  E = M->end();  I != E; ++I)
 | |
|     I->setName(Mang.getValueName(I));
 | |
| }
 | |
| 
 | |
| /// ExtractLoops - Given a reduced list of functions that still exposed the bug,
 | |
| /// check to see if we can extract the loops in the region without obscuring the
 | |
| /// bug.  If so, it reduces the amount of code identified.
 | |
| ///
 | |
| static bool ExtractLoops(BugDriver &BD,
 | |
|                          bool (*TestFn)(BugDriver &, Module *, Module *),
 | |
|                          std::vector<Function*> &MiscompiledFunctions) {
 | |
|   bool MadeChange = false;
 | |
|   while (1) {
 | |
|     if (BugpointIsInterrupted) return MadeChange;
 | |
|     
 | |
|     Module *ToNotOptimize = CloneModule(BD.getProgram());
 | |
|     Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
 | |
|                                                    MiscompiledFunctions);
 | |
|     Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
 | |
|     if (!ToOptimizeLoopExtracted) {
 | |
|       // If the loop extractor crashed or if there were no extractible loops,
 | |
|       // then this chapter of our odyssey is over with.
 | |
|       delete ToNotOptimize;
 | |
|       delete ToOptimize;
 | |
|       return MadeChange;
 | |
|     }
 | |
| 
 | |
|     std::cerr << "Extracted a loop from the breaking portion of the program.\n";
 | |
| 
 | |
|     // Bugpoint is intentionally not very trusting of LLVM transformations.  In
 | |
|     // particular, we're not going to assume that the loop extractor works, so
 | |
|     // we're going to test the newly loop extracted program to make sure nothing
 | |
|     // has broken.  If something broke, then we'll inform the user and stop
 | |
|     // extraction.
 | |
|     AbstractInterpreter *AI = BD.switchToCBE();
 | |
|     if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
 | |
|       BD.switchToInterpreter(AI);
 | |
| 
 | |
|       // Merged program doesn't work anymore!
 | |
|       std::cerr << "  *** ERROR: Loop extraction broke the program. :("
 | |
|                 << " Please report a bug!\n";
 | |
|       std::cerr << "      Continuing on with un-loop-extracted version.\n";
 | |
| 
 | |
|       BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize);
 | |
|       BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize);
 | |
|       BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc",
 | |
|                             ToOptimizeLoopExtracted);
 | |
| 
 | |
|       std::cerr << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n";
 | |
|       delete ToOptimize;
 | |
|       delete ToNotOptimize;
 | |
|       delete ToOptimizeLoopExtracted;
 | |
|       return MadeChange;
 | |
|     }
 | |
|     delete ToOptimize;
 | |
|     BD.switchToInterpreter(AI);
 | |
| 
 | |
|     std::cout << "  Testing after loop extraction:\n";
 | |
|     // Clone modules, the tester function will free them.
 | |
|     Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
 | |
|     Module *TNOBackup  = CloneModule(ToNotOptimize);
 | |
|     if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
 | |
|       std::cout << "*** Loop extraction masked the problem.  Undoing.\n";
 | |
|       // If the program is not still broken, then loop extraction did something
 | |
|       // that masked the error.  Stop loop extraction now.
 | |
|       delete TOLEBackup;
 | |
|       delete TNOBackup;
 | |
|       return MadeChange;
 | |
|     }
 | |
|     ToOptimizeLoopExtracted = TOLEBackup;
 | |
|     ToNotOptimize = TNOBackup;
 | |
| 
 | |
|     std::cout << "*** Loop extraction successful!\n";
 | |
| 
 | |
|     std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
 | |
|     for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
 | |
|            E = ToOptimizeLoopExtracted->end(); I != E; ++I)
 | |
|       if (!I->isExternal())
 | |
|         MisCompFunctions.push_back(std::make_pair(I->getName(),
 | |
|                                                   I->getFunctionType()));
 | |
| 
 | |
|     // Okay, great!  Now we know that we extracted a loop and that loop
 | |
|     // extraction both didn't break the program, and didn't mask the problem.
 | |
|     // Replace the current program with the loop extracted version, and try to
 | |
|     // extract another loop.
 | |
|     std::string ErrorMsg;
 | |
|     if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
 | |
|       std::cerr << BD.getToolName() << ": Error linking modules together:"
 | |
|                 << ErrorMsg << '\n';
 | |
|       exit(1);
 | |
|     }
 | |
|     delete ToOptimizeLoopExtracted;
 | |
| 
 | |
|     // All of the Function*'s in the MiscompiledFunctions list are in the old
 | |
|     // module.  Update this list to include all of the functions in the
 | |
|     // optimized and loop extracted module.
 | |
|     MiscompiledFunctions.clear();
 | |
|     for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
 | |
|       Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first,
 | |
|                                                   MisCompFunctions[i].second);
 | |
|       assert(NewF && "Function not found??");
 | |
|       MiscompiledFunctions.push_back(NewF);
 | |
|     }
 | |
| 
 | |
|     BD.setNewProgram(ToNotOptimize);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
 | |
|     BugDriver &BD;
 | |
|     bool (*TestFn)(BugDriver &, Module *, Module *);
 | |
|     std::vector<Function*> FunctionsBeingTested;
 | |
|   public:
 | |
|     ReduceMiscompiledBlocks(BugDriver &bd,
 | |
|                             bool (*F)(BugDriver &, Module *, Module *),
 | |
|                             const std::vector<Function*> &Fns)
 | |
|       : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
 | |
| 
 | |
|     virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
 | |
|                               std::vector<BasicBlock*> &Suffix) {
 | |
|       if (!Suffix.empty() && TestFuncs(Suffix))
 | |
|         return KeepSuffix;
 | |
|       if (TestFuncs(Prefix))
 | |
|         return KeepPrefix;
 | |
|       return NoFailure;
 | |
|     }
 | |
| 
 | |
|     bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// TestFuncs - Extract all blocks for the miscompiled functions except for the
 | |
| /// specified blocks.  If the problem still exists, return true.
 | |
| ///
 | |
| bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
 | |
|   // Test to see if the function is misoptimized if we ONLY run it on the
 | |
|   // functions listed in Funcs.
 | |
|   std::cout << "Checking to see if the program is misoptimized when all ";
 | |
|   if (!BBs.empty()) {
 | |
|     std::cout << "but these " << BBs.size() << " blocks are extracted: ";
 | |
|     for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
 | |
|       std::cout << BBs[i]->getName() << " ";
 | |
|     if (BBs.size() > 10) std::cout << "...";
 | |
|   } else {
 | |
|     std::cout << "blocks are extracted.";
 | |
|   }
 | |
|   std::cout << '\n';
 | |
| 
 | |
|   // Split the module into the two halves of the program we want.
 | |
|   Module *ToNotOptimize = CloneModule(BD.getProgram());
 | |
|   Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
 | |
|                                                  FunctionsBeingTested);
 | |
| 
 | |
|   // Try the extraction.  If it doesn't work, then the block extractor crashed
 | |
|   // or something, in which case bugpoint can't chase down this possibility.
 | |
|   if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
 | |
|     delete ToOptimize;
 | |
|     // Run the predicate, not that the predicate will delete both input modules.
 | |
|     return TestFn(BD, New, ToNotOptimize);
 | |
|   }
 | |
|   delete ToOptimize;
 | |
|   delete ToNotOptimize;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ExtractBlocks - Given a reduced list of functions that still expose the bug,
 | |
| /// extract as many basic blocks from the region as possible without obscuring
 | |
| /// the bug.
 | |
| ///
 | |
| static bool ExtractBlocks(BugDriver &BD,
 | |
|                           bool (*TestFn)(BugDriver &, Module *, Module *),
 | |
|                           std::vector<Function*> &MiscompiledFunctions) {
 | |
|   if (BugpointIsInterrupted) return false;
 | |
|   
 | |
|   std::vector<BasicBlock*> Blocks;
 | |
|   for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
 | |
|     for (Function::iterator I = MiscompiledFunctions[i]->begin(),
 | |
|            E = MiscompiledFunctions[i]->end(); I != E; ++I)
 | |
|       Blocks.push_back(I);
 | |
| 
 | |
|   // Use the list reducer to identify blocks that can be extracted without
 | |
|   // obscuring the bug.  The Blocks list will end up containing blocks that must
 | |
|   // be retained from the original program.
 | |
|   unsigned OldSize = Blocks.size();
 | |
| 
 | |
|   // Check to see if all blocks are extractible first.
 | |
|   if (ReduceMiscompiledBlocks(BD, TestFn,
 | |
|                   MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
 | |
|     Blocks.clear();
 | |
|   } else {
 | |
|     ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
 | |
|     if (Blocks.size() == OldSize)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   Module *ProgClone = CloneModule(BD.getProgram());
 | |
|   Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
 | |
|                                                 MiscompiledFunctions);
 | |
|   Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
 | |
|   if (Extracted == 0) {
 | |
|     // Weird, extraction should have worked.
 | |
|     std::cerr << "Nondeterministic problem extracting blocks??\n";
 | |
|     delete ProgClone;
 | |
|     delete ToExtract;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, block extraction succeeded.  Link the two program fragments back
 | |
|   // together.
 | |
|   delete ToExtract;
 | |
| 
 | |
|   std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
 | |
|   for (Module::iterator I = Extracted->begin(), E = Extracted->end();
 | |
|        I != E; ++I)
 | |
|     if (!I->isExternal())
 | |
|       MisCompFunctions.push_back(std::make_pair(I->getName(),
 | |
|                                                 I->getFunctionType()));
 | |
| 
 | |
|   std::string ErrorMsg;
 | |
|   if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
 | |
|     std::cerr << BD.getToolName() << ": Error linking modules together:"
 | |
|               << ErrorMsg << '\n';
 | |
|     exit(1);
 | |
|   }
 | |
|   delete Extracted;
 | |
| 
 | |
|   // Set the new program and delete the old one.
 | |
|   BD.setNewProgram(ProgClone);
 | |
| 
 | |
|   // Update the list of miscompiled functions.
 | |
|   MiscompiledFunctions.clear();
 | |
| 
 | |
|   for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
 | |
|     Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first,
 | |
|                                             MisCompFunctions[i].second);
 | |
|     assert(NewF && "Function not found??");
 | |
|     MiscompiledFunctions.push_back(NewF);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DebugAMiscompilation - This is a generic driver to narrow down
 | |
| /// miscompilations, either in an optimization or a code generator.
 | |
| ///
 | |
| static std::vector<Function*>
 | |
| DebugAMiscompilation(BugDriver &BD,
 | |
|                      bool (*TestFn)(BugDriver &, Module *, Module *)) {
 | |
|   // Okay, now that we have reduced the list of passes which are causing the
 | |
|   // failure, see if we can pin down which functions are being
 | |
|   // miscompiled... first build a list of all of the non-external functions in
 | |
|   // the program.
 | |
|   std::vector<Function*> MiscompiledFunctions;
 | |
|   Module *Prog = BD.getProgram();
 | |
|   for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
 | |
|     if (!I->isExternal())
 | |
|       MiscompiledFunctions.push_back(I);
 | |
| 
 | |
|   // Do the reduction...
 | |
|   if (!BugpointIsInterrupted)
 | |
|     ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
 | |
| 
 | |
|   std::cout << "\n*** The following function"
 | |
|             << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
 | |
|             << " being miscompiled: ";
 | |
|   PrintFunctionList(MiscompiledFunctions);
 | |
|   std::cout << '\n';
 | |
| 
 | |
|   // See if we can rip any loops out of the miscompiled functions and still
 | |
|   // trigger the problem.
 | |
|   if (!BugpointIsInterrupted && 
 | |
|       ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
 | |
|     // Okay, we extracted some loops and the problem still appears.  See if we
 | |
|     // can eliminate some of the created functions from being candidates.
 | |
| 
 | |
|     // Loop extraction can introduce functions with the same name (foo_code).
 | |
|     // Make sure to disambiguate the symbols so that when the program is split
 | |
|     // apart that we can link it back together again.
 | |
|     DisambiguateGlobalSymbols(BD.getProgram());
 | |
| 
 | |
|     // Do the reduction...
 | |
|     if (!BugpointIsInterrupted)
 | |
|       ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
 | |
| 
 | |
|     std::cout << "\n*** The following function"
 | |
|               << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
 | |
|               << " being miscompiled: ";
 | |
|     PrintFunctionList(MiscompiledFunctions);
 | |
|     std::cout << '\n';
 | |
|   }
 | |
| 
 | |
|   if (!BugpointIsInterrupted &&
 | |
|       ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
 | |
|     // Okay, we extracted some blocks and the problem still appears.  See if we
 | |
|     // can eliminate some of the created functions from being candidates.
 | |
| 
 | |
|     // Block extraction can introduce functions with the same name (foo_code).
 | |
|     // Make sure to disambiguate the symbols so that when the program is split
 | |
|     // apart that we can link it back together again.
 | |
|     DisambiguateGlobalSymbols(BD.getProgram());
 | |
| 
 | |
|     // Do the reduction...
 | |
|     ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
 | |
| 
 | |
|     std::cout << "\n*** The following function"
 | |
|               << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
 | |
|               << " being miscompiled: ";
 | |
|     PrintFunctionList(MiscompiledFunctions);
 | |
|     std::cout << '\n';
 | |
|   }
 | |
| 
 | |
|   return MiscompiledFunctions;
 | |
| }
 | |
| 
 | |
| /// TestOptimizer - This is the predicate function used to check to see if the
 | |
| /// "Test" portion of the program is misoptimized.  If so, return true.  In any
 | |
| /// case, both module arguments are deleted.
 | |
| ///
 | |
| static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
 | |
|   // Run the optimization passes on ToOptimize, producing a transformed version
 | |
|   // of the functions being tested.
 | |
|   std::cout << "  Optimizing functions being tested: ";
 | |
|   Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
 | |
|                                      /*AutoDebugCrashes*/true);
 | |
|   std::cout << "done.\n";
 | |
|   delete Test;
 | |
| 
 | |
|   std::cout << "  Checking to see if the merged program executes correctly: ";
 | |
|   bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
 | |
|   std::cout << (Broken ? " nope.\n" : " yup.\n");
 | |
|   return Broken;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// debugMiscompilation - This method is used when the passes selected are not
 | |
| /// crashing, but the generated output is semantically different from the
 | |
| /// input.
 | |
| ///
 | |
| bool BugDriver::debugMiscompilation() {
 | |
|   // Make sure something was miscompiled...
 | |
|   if (!BugpointIsInterrupted)
 | |
|     if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
 | |
|       std::cerr << "*** Optimized program matches reference output!  No problem"
 | |
|                 << " detected...\nbugpoint can't help you with your problem!\n";
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   std::cout << "\n*** Found miscompiling pass"
 | |
|             << (getPassesToRun().size() == 1 ? "" : "es") << ": "
 | |
|             << getPassesString(getPassesToRun()) << '\n';
 | |
|   EmitProgressBytecode("passinput");
 | |
| 
 | |
|   std::vector<Function*> MiscompiledFunctions =
 | |
|     DebugAMiscompilation(*this, TestOptimizer);
 | |
| 
 | |
|   // Output a bunch of bytecode files for the user...
 | |
|   std::cout << "Outputting reduced bytecode files which expose the problem:\n";
 | |
|   Module *ToNotOptimize = CloneModule(getProgram());
 | |
|   Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
 | |
|                                                  MiscompiledFunctions);
 | |
| 
 | |
|   std::cout << "  Non-optimized portion: ";
 | |
|   ToNotOptimize = swapProgramIn(ToNotOptimize);
 | |
|   EmitProgressBytecode("tonotoptimize", true);
 | |
|   setNewProgram(ToNotOptimize);   // Delete hacked module.
 | |
| 
 | |
|   std::cout << "  Portion that is input to optimizer: ";
 | |
|   ToOptimize = swapProgramIn(ToOptimize);
 | |
|   EmitProgressBytecode("tooptimize");
 | |
|   setNewProgram(ToOptimize);      // Delete hacked module.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CleanupAndPrepareModules - Get the specified modules ready for code
 | |
| /// generator testing.
 | |
| ///
 | |
| static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
 | |
|                                      Module *Safe) {
 | |
|   // Clean up the modules, removing extra cruft that we don't need anymore...
 | |
|   Test = BD.performFinalCleanups(Test);
 | |
| 
 | |
|   // If we are executing the JIT, we have several nasty issues to take care of.
 | |
|   if (!BD.isExecutingJIT()) return;
 | |
| 
 | |
|   // First, if the main function is in the Safe module, we must add a stub to
 | |
|   // the Test module to call into it.  Thus, we create a new function `main'
 | |
|   // which just calls the old one.
 | |
|   if (Function *oldMain = Safe->getNamedFunction("main"))
 | |
|     if (!oldMain->isExternal()) {
 | |
|       // Rename it
 | |
|       oldMain->setName("llvm_bugpoint_old_main");
 | |
|       // Create a NEW `main' function with same type in the test module.
 | |
|       Function *newMain = new Function(oldMain->getFunctionType(),
 | |
|                                        GlobalValue::ExternalLinkage,
 | |
|                                        "main", Test);
 | |
|       // Create an `oldmain' prototype in the test module, which will
 | |
|       // corresponds to the real main function in the same module.
 | |
|       Function *oldMainProto = new Function(oldMain->getFunctionType(),
 | |
|                                             GlobalValue::ExternalLinkage,
 | |
|                                             oldMain->getName(), Test);
 | |
|       // Set up and remember the argument list for the main function.
 | |
|       std::vector<Value*> args;
 | |
|       for (Function::arg_iterator
 | |
|              I = newMain->arg_begin(), E = newMain->arg_end(),
 | |
|              OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
 | |
|         I->setName(OI->getName());    // Copy argument names from oldMain
 | |
|         args.push_back(I);
 | |
|       }
 | |
| 
 | |
|       // Call the old main function and return its result
 | |
|       BasicBlock *BB = new BasicBlock("entry", newMain);
 | |
|       CallInst *call = new CallInst(oldMainProto, args, "", BB);
 | |
| 
 | |
|       // If the type of old function wasn't void, return value of call
 | |
|       new ReturnInst(call, BB);
 | |
|     }
 | |
| 
 | |
|   // The second nasty issue we must deal with in the JIT is that the Safe
 | |
|   // module cannot directly reference any functions defined in the test
 | |
|   // module.  Instead, we use a JIT API call to dynamically resolve the
 | |
|   // symbol.
 | |
| 
 | |
|   // Add the resolver to the Safe module.
 | |
|   // Prototype: void *getPointerToNamedFunction(const char* Name)
 | |
|   Function *resolverFunc =
 | |
|     Safe->getOrInsertFunction("getPointerToNamedFunction",
 | |
|                               PointerType::get(Type::SByteTy),
 | |
|                               PointerType::get(Type::SByteTy), (Type *)0);
 | |
| 
 | |
|   // Use the function we just added to get addresses of functions we need.
 | |
|   for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
 | |
|     if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
 | |
|         F->getIntrinsicID() == 0 /* ignore intrinsics */) {
 | |
|       Function *TestFn = Test->getNamedFunction(F->getName());
 | |
| 
 | |
|       // Don't forward functions which are external in the test module too.
 | |
|       if (TestFn && !TestFn->isExternal()) {
 | |
|         // 1. Add a string constant with its name to the global file
 | |
|         Constant *InitArray = ConstantArray::get(F->getName());
 | |
|         GlobalVariable *funcName =
 | |
|           new GlobalVariable(InitArray->getType(), true /*isConstant*/,
 | |
|                              GlobalValue::InternalLinkage, InitArray,
 | |
|                              F->getName() + "_name", Safe);
 | |
| 
 | |
|         // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
 | |
|         // sbyte* so it matches the signature of the resolver function.
 | |
| 
 | |
|         // GetElementPtr *funcName, ulong 0, ulong 0
 | |
|         std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
 | |
|         Value *GEP =
 | |
|           ConstantExpr::getGetElementPtr(funcName, GEPargs);
 | |
|         std::vector<Value*> ResolverArgs;
 | |
|         ResolverArgs.push_back(GEP);
 | |
| 
 | |
|         // Rewrite uses of F in global initializers, etc. to uses of a wrapper
 | |
|         // function that dynamically resolves the calls to F via our JIT API
 | |
|         if (!F->use_empty()) {
 | |
|           // Create a new global to hold the cached function pointer.
 | |
|           Constant *NullPtr = ConstantPointerNull::get(F->getType());
 | |
|           GlobalVariable *Cache =
 | |
|             new GlobalVariable(F->getType(), false,GlobalValue::InternalLinkage,
 | |
|                                NullPtr,F->getName()+".fpcache", F->getParent());
 | |
| 
 | |
|           // Construct a new stub function that will re-route calls to F
 | |
|           const FunctionType *FuncTy = F->getFunctionType();
 | |
|           Function *FuncWrapper = new Function(FuncTy,
 | |
|                                                GlobalValue::InternalLinkage,
 | |
|                                                F->getName() + "_wrapper",
 | |
|                                                F->getParent());
 | |
|           BasicBlock *EntryBB  = new BasicBlock("entry", FuncWrapper);
 | |
|           BasicBlock *DoCallBB = new BasicBlock("usecache", FuncWrapper);
 | |
|           BasicBlock *LookupBB = new BasicBlock("lookupfp", FuncWrapper);
 | |
| 
 | |
|           // Check to see if we already looked up the value.
 | |
|           Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
 | |
|           Value *IsNull = new SetCondInst(Instruction::SetEQ, CachedVal,
 | |
|                                           NullPtr, "isNull", EntryBB);
 | |
|           new BranchInst(LookupBB, DoCallBB, IsNull, EntryBB);
 | |
| 
 | |
|           // Resolve the call to function F via the JIT API:
 | |
|           //
 | |
|           // call resolver(GetElementPtr...)
 | |
|           CallInst *Resolver = new CallInst(resolverFunc, ResolverArgs,
 | |
|                                             "resolver", LookupBB);
 | |
|           // cast the result from the resolver to correctly-typed function
 | |
|           CastInst *CastedResolver =
 | |
|             new CastInst(Resolver, PointerType::get(F->getFunctionType()),
 | |
|                          "resolverCast", LookupBB);
 | |
|           // Save the value in our cache.
 | |
|           new StoreInst(CastedResolver, Cache, LookupBB);
 | |
|           new BranchInst(DoCallBB, LookupBB);
 | |
| 
 | |
|           PHINode *FuncPtr = new PHINode(NullPtr->getType(), "fp", DoCallBB);
 | |
|           FuncPtr->addIncoming(CastedResolver, LookupBB);
 | |
|           FuncPtr->addIncoming(CachedVal, EntryBB);
 | |
| 
 | |
|           // Save the argument list.
 | |
|           std::vector<Value*> Args;
 | |
|           for (Function::arg_iterator i = FuncWrapper->arg_begin(),
 | |
|                  e = FuncWrapper->arg_end(); i != e; ++i)
 | |
|             Args.push_back(i);
 | |
| 
 | |
|           // Pass on the arguments to the real function, return its result
 | |
|           if (F->getReturnType() == Type::VoidTy) {
 | |
|             new CallInst(FuncPtr, Args, "", DoCallBB);
 | |
|             new ReturnInst(DoCallBB);
 | |
|           } else {
 | |
|             CallInst *Call = new CallInst(FuncPtr, Args, "retval", DoCallBB);
 | |
|             new ReturnInst(Call, DoCallBB);
 | |
|           }
 | |
| 
 | |
|           // Use the wrapper function instead of the old function
 | |
|           F->replaceAllUsesWith(FuncWrapper);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (verifyModule(*Test) || verifyModule(*Safe)) {
 | |
|     std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// TestCodeGenerator - This is the predicate function used to check to see if
 | |
| /// the "Test" portion of the program is miscompiled by the code generator under
 | |
| /// test.  If so, return true.  In any case, both module arguments are deleted.
 | |
| ///
 | |
| static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
 | |
|   CleanupAndPrepareModules(BD, Test, Safe);
 | |
| 
 | |
|   sys::Path TestModuleBC("bugpoint.test.bc");
 | |
|   std::string ErrMsg;
 | |
|   if (TestModuleBC.makeUnique(true, &ErrMsg)) {
 | |
|     std::cerr << BD.getToolName() << "Error making unique filename: "
 | |
|               << ErrMsg << "\n";
 | |
|     exit(1);
 | |
|   }
 | |
|   if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
 | |
|     std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
 | |
|     exit(1);
 | |
|   }
 | |
|   delete Test;
 | |
| 
 | |
|   // Make the shared library
 | |
|   sys::Path SafeModuleBC("bugpoint.safe.bc");
 | |
|   if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
 | |
|     std::cerr << BD.getToolName() << "Error making unique filename: "
 | |
|               << ErrMsg << "\n";
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
 | |
|     std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
 | |
|     exit(1);
 | |
|   }
 | |
|   std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
 | |
|   delete Safe;
 | |
| 
 | |
|   // Run the code generator on the `Test' code, loading the shared library.
 | |
|   // The function returns whether or not the new output differs from reference.
 | |
|   int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
 | |
| 
 | |
|   if (Result)
 | |
|     std::cerr << ": still failing!\n";
 | |
|   else
 | |
|     std::cerr << ": didn't fail.\n";
 | |
|   TestModuleBC.eraseFromDisk();
 | |
|   SafeModuleBC.eraseFromDisk();
 | |
|   sys::Path(SharedObject).eraseFromDisk();
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
 | |
| ///
 | |
| bool BugDriver::debugCodeGenerator() {
 | |
|   if ((void*)cbe == (void*)Interpreter) {
 | |
|     std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
 | |
|     std::cout << "\n*** The C backend cannot match the reference diff, but it "
 | |
|               << "is used as the 'known good'\n    code generator, so I can't"
 | |
|               << " debug it.  Perhaps you have a front-end problem?\n    As a"
 | |
|               << " sanity check, I left the result of executing the program "
 | |
|               << "with the C backend\n    in this file for you: '"
 | |
|               << Result << "'.\n";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   DisambiguateGlobalSymbols(Program);
 | |
| 
 | |
|   std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
 | |
| 
 | |
|   // Split the module into the two halves of the program we want.
 | |
|   Module *ToNotCodeGen = CloneModule(getProgram());
 | |
|   Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
 | |
| 
 | |
|   // Condition the modules
 | |
|   CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
 | |
| 
 | |
|   sys::Path TestModuleBC("bugpoint.test.bc");
 | |
|   std::string ErrMsg;
 | |
|   if (TestModuleBC.makeUnique(true, &ErrMsg)) {
 | |
|     std::cerr << getToolName() << "Error making unique filename: "
 | |
|               << ErrMsg << "\n";
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
 | |
|     std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
 | |
|     exit(1);
 | |
|   }
 | |
|   delete ToCodeGen;
 | |
| 
 | |
|   // Make the shared library
 | |
|   sys::Path SafeModuleBC("bugpoint.safe.bc");
 | |
|   if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
 | |
|     std::cerr << getToolName() << "Error making unique filename: "
 | |
|               << ErrMsg << "\n";
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
 | |
|     std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
 | |
|     exit(1);
 | |
|   }
 | |
|   std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
 | |
|   delete ToNotCodeGen;
 | |
| 
 | |
|   std::cout << "You can reproduce the problem with the command line: \n";
 | |
|   if (isExecutingJIT()) {
 | |
|     std::cout << "  lli -load " << SharedObject << " " << TestModuleBC;
 | |
|   } else {
 | |
|     std::cout << "  llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
 | |
|     std::cout << "  gcc " << SharedObject << " " << TestModuleBC
 | |
|               << ".s -o " << TestModuleBC << ".exe";
 | |
| #if defined (HAVE_LINK_R)
 | |
|     std::cout << " -Wl,-R.";
 | |
| #endif
 | |
|     std::cout << "\n";
 | |
|     std::cout << "  " << TestModuleBC << ".exe";
 | |
|   }
 | |
|   for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
 | |
|     std::cout << " " << InputArgv[i];
 | |
|   std::cout << '\n';
 | |
|   std::cout << "The shared object was created with:\n  llc -march=c "
 | |
|             << SafeModuleBC << " -o temporary.c\n"
 | |
|             << "  gcc -xc temporary.c -O2 -o " << SharedObject
 | |
| #if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
 | |
|             << " -G"            // Compile a shared library, `-G' for Sparc
 | |
| #else
 | |
|             << " -shared"       // `-shared' for Linux/X86, maybe others
 | |
| #endif
 | |
|             << " -fno-strict-aliasing\n";
 | |
| 
 | |
|   return false;
 | |
| }
 |