forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2699 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2699 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements convenience types for working with super-vectorization
 | 
						|
// operations, in particular super-vector loads and stores.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "mlir/Dialect/Vector/VectorOps.h"
 | 
						|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
 | 
						|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
 | 
						|
#include "mlir/Dialect/Vector/VectorUtils.h"
 | 
						|
#include "mlir/IR/AffineExpr.h"
 | 
						|
#include "mlir/IR/AffineMap.h"
 | 
						|
#include "mlir/IR/Builders.h"
 | 
						|
#include "mlir/IR/Function.h"
 | 
						|
#include "mlir/IR/OpImplementation.h"
 | 
						|
#include "mlir/IR/PatternMatch.h"
 | 
						|
#include "mlir/IR/TypeUtilities.h"
 | 
						|
#include "mlir/Support/LLVM.h"
 | 
						|
#include "mlir/Support/MathExtras.h"
 | 
						|
#include "llvm/ADT/StringSet.h"
 | 
						|
#include <numeric>
 | 
						|
 | 
						|
using namespace mlir;
 | 
						|
using namespace mlir::vector;
 | 
						|
 | 
						|
/// Helper enum to classify mask value.
 | 
						|
enum class MaskFormat {
 | 
						|
  AllTrue = 0,
 | 
						|
  AllFalse = 1,
 | 
						|
  Unknown = 2,
 | 
						|
};
 | 
						|
 | 
						|
/// Helper method to classify a 1-D mask value. Currently, the method
 | 
						|
/// looks "under the hood" of a constant value with dense attributes
 | 
						|
/// and a constant mask operation (since the client may be called at
 | 
						|
/// various stages during progressive lowering).
 | 
						|
static MaskFormat get1DMaskFormat(Value mask) {
 | 
						|
  if (auto c = mask.getDefiningOp<ConstantOp>()) {
 | 
						|
    // Inspect constant dense values. We count up for bits that
 | 
						|
    // are set, count down for bits that are cleared, and bail
 | 
						|
    // when a mix is detected.
 | 
						|
    if (auto denseElts = c.value().dyn_cast<DenseIntElementsAttr>()) {
 | 
						|
      int64_t val = 0;
 | 
						|
      for (bool b : denseElts.getValues<bool>())
 | 
						|
        if (b && val >= 0)
 | 
						|
          val++;
 | 
						|
        else if (!b && val <= 0)
 | 
						|
          val--;
 | 
						|
        else
 | 
						|
          return MaskFormat::Unknown;
 | 
						|
      if (val > 0)
 | 
						|
        return MaskFormat::AllTrue;
 | 
						|
      if (val < 0)
 | 
						|
        return MaskFormat::AllFalse;
 | 
						|
    }
 | 
						|
  } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
 | 
						|
    // Inspect constant mask index. If the index exceeds the
 | 
						|
    // dimension size, all bits are set. If the index is zero
 | 
						|
    // or less, no bits are set.
 | 
						|
    ArrayAttr masks = m.mask_dim_sizes();
 | 
						|
    assert(masks.size() == 1);
 | 
						|
    int64_t i = masks[0].cast<IntegerAttr>().getInt();
 | 
						|
    int64_t u = m.getType().cast<VectorType>().getDimSize(0);
 | 
						|
    if (i >= u)
 | 
						|
      return MaskFormat::AllTrue;
 | 
						|
    if (i <= 0)
 | 
						|
      return MaskFormat::AllFalse;
 | 
						|
  }
 | 
						|
  return MaskFormat::Unknown;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper method to cast a 1-D memref<10xf32> "base" into a
 | 
						|
/// memref<vector<10xf32>> in the output parameter "newBase",
 | 
						|
/// using the 'element' vector type "vt". Returns true on success.
 | 
						|
static bool castedToMemRef(Location loc, Value base, MemRefType mt,
 | 
						|
                           VectorType vt, PatternRewriter &rewriter,
 | 
						|
                           Value &newBase) {
 | 
						|
  // The vector.type_cast operation does not accept unknown memref<?xf32>.
 | 
						|
  // TODO: generalize the cast and accept this case too
 | 
						|
  if (!mt.hasStaticShape())
 | 
						|
    return false;
 | 
						|
  newBase = rewriter.create<TypeCastOp>(loc, MemRefType::get({}, vt), base);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// VectorDialect
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void VectorDialect::initialize() {
 | 
						|
  addOperations<
 | 
						|
#define GET_OP_LIST
 | 
						|
#include "mlir/Dialect/Vector/VectorOps.cpp.inc"
 | 
						|
      >();
 | 
						|
}
 | 
						|
 | 
						|
/// Materialize a single constant operation from a given attribute value with
 | 
						|
/// the desired resultant type.
 | 
						|
Operation *VectorDialect::materializeConstant(OpBuilder &builder,
 | 
						|
                                              Attribute value, Type type,
 | 
						|
                                              Location loc) {
 | 
						|
  return builder.create<ConstantOp>(loc, type, value);
 | 
						|
}
 | 
						|
 | 
						|
IntegerType vector::getVectorSubscriptType(Builder &builder) {
 | 
						|
  return builder.getIntegerType(64);
 | 
						|
}
 | 
						|
 | 
						|
ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
 | 
						|
                                         ArrayRef<int64_t> values) {
 | 
						|
  return builder.getI64ArrayAttr(values);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ReductionOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(ReductionOp op) {
 | 
						|
  // Verify for 1-D vector.
 | 
						|
  int64_t rank = op.getVectorType().getRank();
 | 
						|
  if (rank != 1)
 | 
						|
    return op.emitOpError("unsupported reduction rank: ") << rank;
 | 
						|
 | 
						|
  // Verify supported reduction kind.
 | 
						|
  auto kind = op.kind();
 | 
						|
  Type eltType = op.dest().getType();
 | 
						|
  if (kind == "add" || kind == "mul" || kind == "min" || kind == "max") {
 | 
						|
    if (!eltType.isF32() && !eltType.isF64() &&
 | 
						|
        !eltType.isSignlessInteger(32) && !eltType.isSignlessInteger(64))
 | 
						|
      return op.emitOpError("unsupported reduction type");
 | 
						|
  } else if (kind == "and" || kind == "or" || kind == "xor") {
 | 
						|
    if (!eltType.isSignlessInteger(32) && !eltType.isSignlessInteger(64))
 | 
						|
      return op.emitOpError("unsupported reduction type");
 | 
						|
  } else {
 | 
						|
    return op.emitOpError("unknown reduction kind: ") << kind;
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify optional accumulator.
 | 
						|
  if (!op.acc().empty()) {
 | 
						|
    if (kind != "add" && kind != "mul")
 | 
						|
      return op.emitOpError("no accumulator for reduction kind: ") << kind;
 | 
						|
    if (!eltType.isF32() && !eltType.isF64())
 | 
						|
      return op.emitOpError("no accumulator for type: ") << eltType;
 | 
						|
  }
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static ParseResult parseReductionOp(OpAsmParser &parser,
 | 
						|
                                    OperationState &result) {
 | 
						|
  SmallVector<OpAsmParser::OperandType, 2> operandsInfo;
 | 
						|
  Type redType;
 | 
						|
  Type resType;
 | 
						|
  Attribute attr;
 | 
						|
  if (parser.parseAttribute(attr, "kind", result.attributes) ||
 | 
						|
      parser.parseComma() || parser.parseOperandList(operandsInfo) ||
 | 
						|
      parser.parseColonType(redType) ||
 | 
						|
      parser.parseKeywordType("into", resType) ||
 | 
						|
      (operandsInfo.size() > 0 &&
 | 
						|
       parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
 | 
						|
      (operandsInfo.size() > 1 &&
 | 
						|
       parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
 | 
						|
      parser.addTypeToList(resType, result.types))
 | 
						|
    return failure();
 | 
						|
  if (operandsInfo.size() < 1 || operandsInfo.size() > 2)
 | 
						|
    return parser.emitError(parser.getNameLoc(),
 | 
						|
                            "unsupported number of operands");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, ReductionOp op) {
 | 
						|
  p << op.getOperationName() << " \"" << op.kind() << "\", " << op.vector();
 | 
						|
  if (!op.acc().empty())
 | 
						|
    p << ", " << op.acc();
 | 
						|
  p << " : " << op.vector().getType() << " into " << op.dest().getType();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ContractionOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                                  Value lhs, Value rhs, Value acc,
 | 
						|
                                  ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
 | 
						|
                                  ArrayRef<StringRef> iteratorTypes) {
 | 
						|
  result.addOperands({lhs, rhs, acc});
 | 
						|
  result.addTypes(acc.getType());
 | 
						|
  result.addAttribute(getIndexingMapsAttrName(),
 | 
						|
                      builder.getAffineMapArrayAttr(
 | 
						|
                          AffineMap::inferFromExprList(indexingExprs)));
 | 
						|
  result.addAttribute(getIteratorTypesAttrName(),
 | 
						|
                      builder.getStrArrayAttr(iteratorTypes));
 | 
						|
}
 | 
						|
 | 
						|
void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                                  Value lhs, Value rhs, Value acc,
 | 
						|
                                  ArrayAttr indexingMaps,
 | 
						|
                                  ArrayAttr iteratorTypes) {
 | 
						|
  result.addOperands({lhs, rhs, acc});
 | 
						|
  result.addTypes(acc.getType());
 | 
						|
  result.addAttribute(getIndexingMapsAttrName(), indexingMaps);
 | 
						|
  result.addAttribute(getIteratorTypesAttrName(), iteratorTypes);
 | 
						|
}
 | 
						|
 | 
						|
static ParseResult parseContractionOp(OpAsmParser &parser,
 | 
						|
                                      OperationState &result) {
 | 
						|
  OpAsmParser::OperandType lhsInfo;
 | 
						|
  OpAsmParser::OperandType rhsInfo;
 | 
						|
  OpAsmParser::OperandType accInfo;
 | 
						|
  SmallVector<OpAsmParser::OperandType, 2> masksInfo;
 | 
						|
  SmallVector<Type, 2> types;
 | 
						|
  Type resultType;
 | 
						|
  auto loc = parser.getCurrentLocation();
 | 
						|
  DictionaryAttr dictAttr;
 | 
						|
  // TODO: Unify linalg op attribute parsing.
 | 
						|
  if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
 | 
						|
      parser.parseOperand(lhsInfo) || parser.parseComma() ||
 | 
						|
      parser.parseOperand(rhsInfo) || parser.parseComma() ||
 | 
						|
      parser.parseOperand(accInfo) ||
 | 
						|
      parser.parseTrailingOperandList(masksInfo) ||
 | 
						|
      parser.parseOptionalAttrDict(result.attributes) ||
 | 
						|
      parser.parseColonTypeList(types) ||
 | 
						|
      parser.parseKeywordType("into", resultType) ||
 | 
						|
      parser.resolveOperand(lhsInfo, types[0], result.operands) ||
 | 
						|
      parser.resolveOperand(rhsInfo, types[1], result.operands) ||
 | 
						|
      parser.resolveOperand(accInfo, resultType, result.operands) ||
 | 
						|
      parser.addTypeToList(resultType, result.types))
 | 
						|
    return failure();
 | 
						|
  result.attributes.assign(dictAttr.getValue().begin(),
 | 
						|
                           dictAttr.getValue().end());
 | 
						|
  if (masksInfo.empty())
 | 
						|
    return success();
 | 
						|
  if (masksInfo.size() != 2)
 | 
						|
    return parser.emitError(parser.getNameLoc(),
 | 
						|
                            "expected zero or exactly 2 vector mask operands");
 | 
						|
  auto lhsType = types[0].cast<VectorType>();
 | 
						|
  auto rhsType = types[1].cast<VectorType>();
 | 
						|
  auto maskElementType = parser.getBuilder().getI1Type();
 | 
						|
  std::array<Type, 2> maskTypes = {
 | 
						|
      VectorType::get(lhsType.getShape(), maskElementType),
 | 
						|
      VectorType::get(rhsType.getShape(), maskElementType)};
 | 
						|
  if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
 | 
						|
    return failure();
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, ContractionOp op) {
 | 
						|
  // TODO: Unify printing code with linalg ops.
 | 
						|
  auto attrNames = op.getTraitAttrNames();
 | 
						|
  llvm::StringSet<> traitAttrsSet;
 | 
						|
  traitAttrsSet.insert(attrNames.begin(), attrNames.end());
 | 
						|
  SmallVector<NamedAttribute, 8> attrs;
 | 
						|
  for (auto attr : op.getAttrs())
 | 
						|
    if (traitAttrsSet.count(attr.first.strref()) > 0)
 | 
						|
      attrs.push_back(attr);
 | 
						|
 | 
						|
  auto dictAttr = DictionaryAttr::get(attrs, op.getContext());
 | 
						|
  p << op.getOperationName() << " " << dictAttr << " " << op.lhs() << ", ";
 | 
						|
  p << op.rhs() << ", " << op.acc();
 | 
						|
  if (op.masks().size() == 2)
 | 
						|
    p << ", " << op.masks();
 | 
						|
 | 
						|
  p.printOptionalAttrDict(op.getAttrs(), attrNames);
 | 
						|
  p << " : " << op.lhs().getType() << ", " << op.rhs().getType() << " into "
 | 
						|
    << op.getResultType();
 | 
						|
}
 | 
						|
 | 
						|
static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
 | 
						|
                         const std::vector<std::pair<int64_t, int64_t>> &map) {
 | 
						|
  for (auto &dimPair : map) {
 | 
						|
    if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
 | 
						|
        dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
 | 
						|
        lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verifyOutputShape(
 | 
						|
    ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
 | 
						|
    Type resType,
 | 
						|
    const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
 | 
						|
    const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
 | 
						|
  DenseSet<int64_t> lhsContractingDimSet;
 | 
						|
  DenseSet<int64_t> rhsContractingDimSet;
 | 
						|
  for (auto &dimPair : contractingDimMap) {
 | 
						|
    lhsContractingDimSet.insert(dimPair.first);
 | 
						|
    rhsContractingDimSet.insert(dimPair.second);
 | 
						|
  }
 | 
						|
  DenseSet<int64_t> rhsBatchDimSet;
 | 
						|
  for (auto &dimPair : batchDimMap)
 | 
						|
    rhsBatchDimSet.insert(dimPair.second);
 | 
						|
 | 
						|
  // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
 | 
						|
  SmallVector<int64_t, 4> expectedResultDims;
 | 
						|
  for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
 | 
						|
    if (lhsContractingDimSet.count(i) > 0)
 | 
						|
      continue;
 | 
						|
    expectedResultDims.push_back(lhsType.getDimSize(i));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add free dimensions from 'rhsType' to 'expectedResultDims'.
 | 
						|
  for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
 | 
						|
    if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
 | 
						|
      continue;
 | 
						|
    expectedResultDims.push_back(rhsType.getDimSize(i));
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify 'expectedResultDims'.
 | 
						|
  if (expectedResultDims.size() == 0) {
 | 
						|
    // No batch or free dimension implies a scalar result.
 | 
						|
    if (resType.isa<VectorType>() || accType.isa<VectorType>())
 | 
						|
      return op.emitOpError("invalid accumulator/result vector shape");
 | 
						|
  } else {
 | 
						|
    // At least one batch or free dimension implies a vector result.
 | 
						|
    auto resVectorType = resType.dyn_cast<VectorType>();
 | 
						|
    auto accVectorType = accType.dyn_cast<VectorType>();
 | 
						|
    if (!resVectorType || !accVectorType)
 | 
						|
      return op.emitOpError("invalid accumulator/result vector shape");
 | 
						|
 | 
						|
    // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
 | 
						|
    // types fully define the result vector type. This assumes the affine maps
 | 
						|
    // are well-formed, which must have been verified already.
 | 
						|
    MLIRContext *ctx = op.getContext();
 | 
						|
    AffineMap lhsMap = op.getIndexingMaps()[0];
 | 
						|
    AffineMap rhsMap = op.getIndexingMaps()[1];
 | 
						|
    SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
 | 
						|
    for (auto pair :
 | 
						|
         {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
 | 
						|
      VectorType v = pair.first;
 | 
						|
      auto map = pair.second;
 | 
						|
      for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
 | 
						|
        unsigned pos = map.getResult(idx).cast<AffineDimExpr>().getPosition();
 | 
						|
        if (!extents[pos])
 | 
						|
          extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
 | 
						|
           "expected extent along all dimensions.");
 | 
						|
 | 
						|
    AffineMap resMap = op.getIndexingMaps()[2];
 | 
						|
    auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
 | 
						|
                                     /*symCount=*/0, extents, ctx);
 | 
						|
    // Compose the resMap with the extentsMap, which is a constant map.
 | 
						|
    AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
 | 
						|
    assert(llvm::all_of(
 | 
						|
               expectedMap.getResults(),
 | 
						|
               [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
 | 
						|
           "expected constant extent along all dimensions.");
 | 
						|
    // Extract the expected shape and build the type.
 | 
						|
    auto expectedShape = llvm::to_vector<4>(
 | 
						|
        llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
 | 
						|
          return e.cast<AffineConstantExpr>().getValue();
 | 
						|
        }));
 | 
						|
    auto expected =
 | 
						|
        VectorType::get(expectedShape, resVectorType.getElementType());
 | 
						|
    if (resVectorType != expected || accVectorType != expected)
 | 
						|
      return op.emitOpError(
 | 
						|
                 "invalid accumulator/result vector shape, expected: ")
 | 
						|
             << expected;
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(ContractionOp op) {
 | 
						|
  auto lhsType = op.getLhsType();
 | 
						|
  auto rhsType = op.getRhsType();
 | 
						|
  auto accType = op.getAccType();
 | 
						|
  auto resType = op.getResultType();
 | 
						|
 | 
						|
  // Verify that an indexing map was specified for each vector operand.
 | 
						|
  if (op.indexing_maps().size() != 3)
 | 
						|
    return op.emitOpError("expected an indexing map for each vector operand");
 | 
						|
 | 
						|
  // Verify that each index map has 'numIterators' inputs, no symbols, and
 | 
						|
  // that the number of map outputs equals the rank of its associated
 | 
						|
  // vector operand.
 | 
						|
  unsigned numIterators = op.iterator_types().getValue().size();
 | 
						|
  for (auto it : llvm::enumerate(op.indexing_maps())) {
 | 
						|
    auto index = it.index();
 | 
						|
    auto map = it.value().cast<AffineMapAttr>().getValue();
 | 
						|
    if (map.getNumSymbols() != 0)
 | 
						|
      return op.emitOpError("expected indexing map ")
 | 
						|
             << index << " to have no symbols";
 | 
						|
    auto vectorType = op.getOperand(index).getType().dyn_cast<VectorType>();
 | 
						|
    unsigned rank = vectorType ? vectorType.getShape().size() : 0;
 | 
						|
    // Verify that the map has the right number of inputs, outputs, and indices.
 | 
						|
    // This also correctly accounts for (..) -> () for rank-0 results.
 | 
						|
    if (map.getNumDims() != numIterators)
 | 
						|
      return op.emitOpError("expected indexing map ")
 | 
						|
             << index << " to have " << numIterators << " number of inputs";
 | 
						|
    if (map.getNumResults() != rank)
 | 
						|
      return op.emitOpError("expected indexing map ")
 | 
						|
             << index << " to have " << rank << " number of outputs";
 | 
						|
    if (!map.isProjectedPermutation())
 | 
						|
      return op.emitOpError("expected indexing map ")
 | 
						|
             << index << " to be a projected permutation of its inputs";
 | 
						|
  }
 | 
						|
 | 
						|
  auto contractingDimMap = op.getContractingDimMap();
 | 
						|
  auto batchDimMap = op.getBatchDimMap();
 | 
						|
 | 
						|
  // Verify at least one contracting dimension pair was specified.
 | 
						|
  if (contractingDimMap.empty())
 | 
						|
    return op.emitOpError("expected at least one contracting dimension pair");
 | 
						|
 | 
						|
  // Verify contracting dimension map was properly constructed.
 | 
						|
  if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
 | 
						|
    return op.emitOpError("invalid contracting dimension map");
 | 
						|
 | 
						|
  // Verify batch dimension map was properly constructed.
 | 
						|
  if (!verifyDimMap(lhsType, rhsType, batchDimMap))
 | 
						|
    return op.emitOpError("invalid batch dimension map");
 | 
						|
 | 
						|
  // Verify 'accType' and 'resType' shape.
 | 
						|
  if (failed(verifyOutputShape(op, lhsType, rhsType, accType, resType,
 | 
						|
                               contractingDimMap, batchDimMap)))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  // Verify that either two vector masks are set or none are set.
 | 
						|
  auto lhsMaskType = op.getLHSVectorMaskType();
 | 
						|
  auto rhsMaskType = op.getRHSVectorMaskType();
 | 
						|
  if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
 | 
						|
    return op.emitOpError("invalid number of vector masks specified");
 | 
						|
  if (lhsMaskType && rhsMaskType) {
 | 
						|
    // Verify mask rank == argument rank.
 | 
						|
    if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
 | 
						|
        rhsMaskType.getShape().size() != rhsType.getShape().size())
 | 
						|
      return op.emitOpError("invalid vector mask rank");
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
 | 
						|
  static constexpr StringRef names[2] = {getIndexingMapsAttrName(),
 | 
						|
                                         getIteratorTypesAttrName()};
 | 
						|
  return llvm::makeArrayRef(names);
 | 
						|
}
 | 
						|
 | 
						|
static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
 | 
						|
  for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
 | 
						|
    if (targetExpr == map.getResult(i))
 | 
						|
      return i;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
static std::vector<std::pair<int64_t, int64_t>>
 | 
						|
getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
 | 
						|
          StringRef targetIteratorTypeName, MLIRContext *context) {
 | 
						|
  std::vector<std::pair<int64_t, int64_t>> dimMap;
 | 
						|
  for (auto it : llvm::enumerate(iteratorTypes)) {
 | 
						|
    auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
 | 
						|
    if (iteratorTypeName != targetIteratorTypeName)
 | 
						|
      continue;
 | 
						|
    // Search lhs/rhs map results for 'targetExpr'.
 | 
						|
    auto targetExpr = getAffineDimExpr(it.index(), context);
 | 
						|
    int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
 | 
						|
    int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
 | 
						|
    if (lhsDim >= 0 && rhsDim >= 0)
 | 
						|
      dimMap.push_back({lhsDim, rhsDim});
 | 
						|
  }
 | 
						|
  return dimMap;
 | 
						|
}
 | 
						|
 | 
						|
void ContractionOp::getIterationBounds(
 | 
						|
    SmallVectorImpl<int64_t> &iterationBounds) {
 | 
						|
  auto lhsShape = getLhsType().getShape();
 | 
						|
  auto resVectorType = getResultType().dyn_cast<VectorType>();
 | 
						|
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
 | 
						|
  SmallVector<int64_t, 2> iterationShape;
 | 
						|
  for (auto it : llvm::enumerate(iterator_types())) {
 | 
						|
    // Search lhs/rhs map results for 'targetExpr'.
 | 
						|
    auto targetExpr = getAffineDimExpr(it.index(), getContext());
 | 
						|
    auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
 | 
						|
    if (iteratorTypeName == getReductionIteratorTypeName()) {
 | 
						|
      // Get reduction dim size from lhs shape (same size in rhsShape).
 | 
						|
      int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
 | 
						|
      assert(lhsDimIndex >= 0);
 | 
						|
      iterationBounds.push_back(lhsShape[lhsDimIndex]);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Get parallel dimension size from result shape.
 | 
						|
    int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
 | 
						|
    assert(resDimIndex >= 0);
 | 
						|
    assert(resVectorType != nullptr);
 | 
						|
    iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ContractionOp::getIterationIndexMap(
 | 
						|
    std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
 | 
						|
  unsigned numMaps = indexing_maps().getValue().size();
 | 
						|
  iterationIndexMap.resize(numMaps);
 | 
						|
  for (auto it : llvm::enumerate(indexing_maps())) {
 | 
						|
    auto index = it.index();
 | 
						|
    auto map = it.value().cast<AffineMapAttr>().getValue();
 | 
						|
    for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
 | 
						|
      auto dim = map.getResult(i).cast<AffineDimExpr>();
 | 
						|
      iterationIndexMap[index][dim.getPosition()] = i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
 | 
						|
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
 | 
						|
  return getDimMap(indexingMaps, iterator_types(),
 | 
						|
                   getReductionIteratorTypeName(), getContext());
 | 
						|
}
 | 
						|
 | 
						|
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
 | 
						|
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
 | 
						|
  return getDimMap(indexingMaps, iterator_types(),
 | 
						|
                   getParallelIteratorTypeName(), getContext());
 | 
						|
}
 | 
						|
 | 
						|
SmallVector<AffineMap, 4> ContractionOp::getIndexingMaps() {
 | 
						|
  return llvm::to_vector<4>(
 | 
						|
      llvm::map_range(indexing_maps().getValue(), [](Attribute mapAttr) {
 | 
						|
        return mapAttr.cast<AffineMapAttr>().getValue();
 | 
						|
      }));
 | 
						|
}
 | 
						|
 | 
						|
Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
 | 
						|
  SmallVector<int64_t, 4> shape;
 | 
						|
  getIterationBounds(shape);
 | 
						|
  return shape;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ExtractElementOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                                     Value source, Value position) {
 | 
						|
  result.addOperands({source, position});
 | 
						|
  result.addTypes(source.getType().cast<VectorType>().getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                                     Value source, int64_t position) {
 | 
						|
  Value pos = builder.create<ConstantIntOp>(result.location, position, 32);
 | 
						|
  build(builder, result, source, pos);
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(vector::ExtractElementOp op) {
 | 
						|
  VectorType vectorType = op.getVectorType();
 | 
						|
  if (vectorType.getRank() != 1)
 | 
						|
    return op.emitOpError("expected 1-D vector");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ExtractOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Type inferExtractOpResultType(VectorType vectorType,
 | 
						|
                                     ArrayAttr position) {
 | 
						|
  if (static_cast<int64_t>(position.size()) == vectorType.getRank())
 | 
						|
    return vectorType.getElementType();
 | 
						|
  return VectorType::get(vectorType.getShape().drop_front(position.size()),
 | 
						|
                         vectorType.getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                              Value source, ArrayRef<int64_t> position) {
 | 
						|
  result.addOperands(source);
 | 
						|
  auto positionAttr = getVectorSubscriptAttr(builder, position);
 | 
						|
  result.addTypes(inferExtractOpResultType(source.getType().cast<VectorType>(),
 | 
						|
                                           positionAttr));
 | 
						|
  result.addAttribute(getPositionAttrName(), positionAttr);
 | 
						|
}
 | 
						|
 | 
						|
// Convenience builder which assumes the values are constant indices.
 | 
						|
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                              Value source, ValueRange position) {
 | 
						|
  SmallVector<int64_t, 4> positionConstants =
 | 
						|
      llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
 | 
						|
        return pos.getDefiningOp<ConstantIndexOp>().getValue();
 | 
						|
      }));
 | 
						|
  build(builder, result, source, positionConstants);
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, vector::ExtractOp op) {
 | 
						|
  p << op.getOperationName() << " " << op.vector() << op.position();
 | 
						|
  p.printOptionalAttrDict(op.getAttrs(), {"position"});
 | 
						|
  p << " : " << op.vector().getType();
 | 
						|
}
 | 
						|
 | 
						|
static ParseResult parseExtractOp(OpAsmParser &parser, OperationState &result) {
 | 
						|
  llvm::SMLoc attributeLoc, typeLoc;
 | 
						|
  NamedAttrList attrs;
 | 
						|
  OpAsmParser::OperandType vector;
 | 
						|
  Type type;
 | 
						|
  Attribute attr;
 | 
						|
  if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) ||
 | 
						|
      parser.parseAttribute(attr, "position", attrs) ||
 | 
						|
      parser.parseOptionalAttrDict(attrs) ||
 | 
						|
      parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  auto vectorType = type.dyn_cast<VectorType>();
 | 
						|
  if (!vectorType)
 | 
						|
    return parser.emitError(typeLoc, "expected vector type");
 | 
						|
 | 
						|
  auto positionAttr = attr.dyn_cast<ArrayAttr>();
 | 
						|
  if (!positionAttr ||
 | 
						|
      static_cast<int64_t>(positionAttr.size()) > vectorType.getRank())
 | 
						|
    return parser.emitError(
 | 
						|
        attributeLoc,
 | 
						|
        "expected position attribute of rank smaller than vector rank");
 | 
						|
 | 
						|
  Type resType = inferExtractOpResultType(vectorType, positionAttr);
 | 
						|
  result.attributes = attrs;
 | 
						|
  return failure(parser.resolveOperand(vector, type, result.operands) ||
 | 
						|
                 parser.addTypeToList(resType, result.types));
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(vector::ExtractOp op) {
 | 
						|
  auto positionAttr = op.position().getValue();
 | 
						|
  if (positionAttr.empty())
 | 
						|
    return op.emitOpError("expected non-empty position attribute");
 | 
						|
  if (positionAttr.size() > static_cast<unsigned>(op.getVectorType().getRank()))
 | 
						|
    return op.emitOpError(
 | 
						|
        "expected position attribute of rank smaller than vector rank");
 | 
						|
  for (auto en : llvm::enumerate(positionAttr)) {
 | 
						|
    auto attr = en.value().dyn_cast<IntegerAttr>();
 | 
						|
    if (!attr || attr.getInt() < 0 ||
 | 
						|
        attr.getInt() >= op.getVectorType().getDimSize(en.index()))
 | 
						|
      return op.emitOpError("expected position attribute #")
 | 
						|
             << (en.index() + 1)
 | 
						|
             << " to be a non-negative integer smaller than the corresponding "
 | 
						|
                "vector dimension";
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
template <typename IntType>
 | 
						|
static SmallVector<IntType, 4> extractVector(ArrayAttr arrayAttr) {
 | 
						|
  return llvm::to_vector<4>(llvm::map_range(
 | 
						|
      arrayAttr.getAsRange<IntegerAttr>(),
 | 
						|
      [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
 | 
						|
}
 | 
						|
 | 
						|
/// Fold the result of chains of ExtractOp in place by simply concatenating the
 | 
						|
/// positions.
 | 
						|
static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
 | 
						|
  if (!extractOp.vector().getDefiningOp<ExtractOp>())
 | 
						|
    return failure();
 | 
						|
 | 
						|
  SmallVector<int64_t, 4> globalPosition;
 | 
						|
  ExtractOp currentOp = extractOp;
 | 
						|
  auto extractedPos = extractVector<int64_t>(currentOp.position());
 | 
						|
  globalPosition.append(extractedPos.rbegin(), extractedPos.rend());
 | 
						|
  while (ExtractOp nextOp = currentOp.vector().getDefiningOp<ExtractOp>()) {
 | 
						|
    currentOp = nextOp;
 | 
						|
    auto extractedPos = extractVector<int64_t>(currentOp.position());
 | 
						|
    globalPosition.append(extractedPos.rbegin(), extractedPos.rend());
 | 
						|
  }
 | 
						|
  extractOp.setOperand(currentOp.vector());
 | 
						|
  // OpBuilder is only used as a helper to build an I64ArrayAttr.
 | 
						|
  OpBuilder b(extractOp.getContext());
 | 
						|
  std::reverse(globalPosition.begin(), globalPosition.end());
 | 
						|
  extractOp.setAttr(ExtractOp::getPositionAttrName(),
 | 
						|
                    b.getI64ArrayAttr(globalPosition));
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Fold the result of an ExtractOp in place when it comes from a TransposeOp.
 | 
						|
static LogicalResult foldExtractOpFromTranspose(ExtractOp extractOp) {
 | 
						|
  auto transposeOp = extractOp.vector().getDefiningOp<TransposeOp>();
 | 
						|
  if (!transposeOp)
 | 
						|
    return failure();
 | 
						|
 | 
						|
  auto permutation = extractVector<unsigned>(transposeOp.transp());
 | 
						|
  auto extractedPos = extractVector<int64_t>(extractOp.position());
 | 
						|
 | 
						|
  // If transposition permutation is larger than the ExtractOp, all minor
 | 
						|
  // dimensions must be an identity for folding to occur. If not, individual
 | 
						|
  // elements within the extracted value are transposed and this is not just a
 | 
						|
  // simple folding.
 | 
						|
  unsigned minorRank = permutation.size() - extractedPos.size();
 | 
						|
  MLIRContext *ctx = extractOp.getContext();
 | 
						|
  AffineMap permutationMap = AffineMap::getPermutationMap(permutation, ctx);
 | 
						|
  AffineMap minorMap = permutationMap.getMinorSubMap(minorRank);
 | 
						|
  if (minorMap && !minorMap.isMinorIdentity())
 | 
						|
    return failure();
 | 
						|
 | 
						|
  //   %1 = transpose %0[x, y, z] : vector<axbxcxf32>
 | 
						|
  //   %2 = extract %1[u, v] : vector<..xf32>
 | 
						|
  // may turn into:
 | 
						|
  //   %2 = extract %0[w, x] : vector<..xf32>
 | 
						|
  // iff z == 2 and [w, x] = [x, y]^-1 o [u, v] here o denotes composition and
 | 
						|
  // -1 denotes the inverse.
 | 
						|
  permutationMap = permutationMap.getMajorSubMap(extractedPos.size());
 | 
						|
  // The major submap has fewer results but the same number of dims. To compose
 | 
						|
  // cleanly, we need to drop dims to form a "square matrix". This is possible
 | 
						|
  // because:
 | 
						|
  //   (a) this is a permutation map and
 | 
						|
  //   (b) the minor map has already been checked to be identity.
 | 
						|
  // Therefore, the major map cannot contain dims of position greater or equal
 | 
						|
  // than the number of results.
 | 
						|
  assert(llvm::all_of(permutationMap.getResults(),
 | 
						|
                      [&](AffineExpr e) {
 | 
						|
                        auto dim = e.dyn_cast<AffineDimExpr>();
 | 
						|
                        return dim && dim.getPosition() <
 | 
						|
                                          permutationMap.getNumResults();
 | 
						|
                      }) &&
 | 
						|
         "Unexpected map results depend on higher rank positions");
 | 
						|
  // Project on the first domain dimensions to allow composition.
 | 
						|
  permutationMap = AffineMap::get(permutationMap.getNumResults(), 0,
 | 
						|
                                  permutationMap.getResults(), ctx);
 | 
						|
 | 
						|
  extractOp.setOperand(transposeOp.vector());
 | 
						|
  // Compose the inverse permutation map with the extractedPos.
 | 
						|
  auto newExtractedPos =
 | 
						|
      inversePermutation(permutationMap).compose(extractedPos);
 | 
						|
  // OpBuilder is only used as a helper to build an I64ArrayAttr.
 | 
						|
  OpBuilder b(extractOp.getContext());
 | 
						|
  extractOp.setAttr(ExtractOp::getPositionAttrName(),
 | 
						|
                    b.getI64ArrayAttr(newExtractedPos));
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. The
 | 
						|
/// result is always the input to some InsertOp.
 | 
						|
static Value foldExtractOpFromInsertChainAndTranspose(ExtractOp extractOp) {
 | 
						|
  MLIRContext *context = extractOp.getContext();
 | 
						|
  AffineMap permutationMap;
 | 
						|
  auto extractedPos = extractVector<unsigned>(extractOp.position());
 | 
						|
  // Walk back a chain of InsertOp/TransposeOp until we hit a match.
 | 
						|
  // Compose TransposeOp permutations as we walk back.
 | 
						|
  auto insertOp = extractOp.vector().getDefiningOp<vector::InsertOp>();
 | 
						|
  auto transposeOp = extractOp.vector().getDefiningOp<vector::TransposeOp>();
 | 
						|
  while (insertOp || transposeOp) {
 | 
						|
    if (transposeOp) {
 | 
						|
      // If it is transposed, compose the map and iterate.
 | 
						|
      auto permutation = extractVector<unsigned>(transposeOp.transp());
 | 
						|
      AffineMap newMap = AffineMap::getPermutationMap(permutation, context);
 | 
						|
      if (!permutationMap)
 | 
						|
        permutationMap = newMap;
 | 
						|
      else if (newMap.getNumInputs() != permutationMap.getNumResults())
 | 
						|
        return Value();
 | 
						|
      else
 | 
						|
        permutationMap = newMap.compose(permutationMap);
 | 
						|
      // Compute insert/transpose for the next iteration.
 | 
						|
      Value transposed = transposeOp.vector();
 | 
						|
      insertOp = transposed.getDefiningOp<vector::InsertOp>();
 | 
						|
      transposeOp = transposed.getDefiningOp<vector::TransposeOp>();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(insertOp);
 | 
						|
    Value insertionDest = insertOp.dest();
 | 
						|
    // If it is inserted into, either the position matches and we have a
 | 
						|
    // successful folding; or we iterate until we run out of
 | 
						|
    // InsertOp/TransposeOp. This is because `vector.insert %scalar, %vector`
 | 
						|
    // produces a new vector with 1 modified value/slice in exactly the static
 | 
						|
    // position we need to match.
 | 
						|
    auto insertedPos = extractVector<unsigned>(insertOp.position());
 | 
						|
    // Trivial permutations are solved with position equality checks.
 | 
						|
    if (!permutationMap || permutationMap.isIdentity()) {
 | 
						|
      if (extractedPos == insertedPos)
 | 
						|
        return insertOp.source();
 | 
						|
      // Fallthrough: if the position does not match, just skip to the next
 | 
						|
      // producing `vector.insert` / `vector.transpose`.
 | 
						|
      // Compute insert/transpose for the next iteration.
 | 
						|
      insertOp = insertionDest.getDefiningOp<vector::InsertOp>();
 | 
						|
      transposeOp = insertionDest.getDefiningOp<vector::TransposeOp>();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // More advanced permutations require application of the permutation.
 | 
						|
    // However, the rank of `insertedPos` may be different from that of the
 | 
						|
    // `permutationMap`. To support such case, we need to:
 | 
						|
    //   1. apply on the `insertedPos.size()` major dimensions
 | 
						|
    //   2. check the other dimensions of the permutation form a minor identity.
 | 
						|
    assert(permutationMap.isPermutation() && "expected a permutation");
 | 
						|
    if (insertedPos.size() == extractedPos.size()) {
 | 
						|
      bool fold = true;
 | 
						|
      for (unsigned idx = 0, sz = extractedPos.size(); idx < sz; ++idx) {
 | 
						|
        auto pos =
 | 
						|
            permutationMap.getResult(idx).cast<AffineDimExpr>().getPosition();
 | 
						|
        if (pos >= sz || insertedPos[pos] != extractedPos[idx]) {
 | 
						|
          fold = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (fold) {
 | 
						|
        assert(permutationMap.getNumResults() >= insertedPos.size() &&
 | 
						|
               "expected map of rank larger than insert indexing");
 | 
						|
        unsigned minorRank =
 | 
						|
            permutationMap.getNumResults() - insertedPos.size();
 | 
						|
        AffineMap minorMap = permutationMap.getMinorSubMap(minorRank);
 | 
						|
        if (!minorMap || minorMap.isMinorIdentity())
 | 
						|
          return insertOp.source();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we haven't found a match, just continue to the next producing
 | 
						|
    // `vector.insert` / `vector.transpose`.
 | 
						|
    // Compute insert/transpose for the next iteration.
 | 
						|
    insertOp = insertionDest.getDefiningOp<vector::InsertOp>();
 | 
						|
    transposeOp = insertionDest.getDefiningOp<vector::TransposeOp>();
 | 
						|
  }
 | 
						|
  return Value();
 | 
						|
}
 | 
						|
 | 
						|
OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
 | 
						|
  if (succeeded(foldExtractOpFromExtractChain(*this)))
 | 
						|
    return getResult();
 | 
						|
  if (succeeded(foldExtractOpFromTranspose(*this)))
 | 
						|
    return getResult();
 | 
						|
  if (auto val = foldExtractOpFromInsertChainAndTranspose(*this))
 | 
						|
    return val;
 | 
						|
  return OpFoldResult();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ExtractSlicesOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void ExtractSlicesOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                            TupleType tupleType, Value vector,
 | 
						|
                            ArrayRef<int64_t> sizes,
 | 
						|
                            ArrayRef<int64_t> strides) {
 | 
						|
  result.addOperands(vector);
 | 
						|
  auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
 | 
						|
  auto stridesAttr = getVectorSubscriptAttr(builder, strides);
 | 
						|
  result.addTypes(tupleType);
 | 
						|
  result.addAttribute(getSizesAttrName(), sizesAttr);
 | 
						|
  result.addAttribute(getStridesAttrName(), stridesAttr);
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult
 | 
						|
isValidExtractOrInsertSlicesType(Operation *op, VectorType vectorType,
 | 
						|
                                 TupleType tupleType, ArrayRef<int64_t> sizes,
 | 
						|
                                 ArrayRef<int64_t> strides) {
 | 
						|
  // Check for non-unit strides.
 | 
						|
  // TODO: Support non-1 strides.
 | 
						|
  if (llvm::any_of(strides, [](int64_t s) { return s != 1; }))
 | 
						|
    return op->emitError("requires unit strides");
 | 
						|
  // Check that 'vectorType' rank matches rank of tuple element vectors.
 | 
						|
  unsigned rank = vectorType.getRank();
 | 
						|
  auto is_vector_type_of_rank = [&](Type t) {
 | 
						|
    return t.isa<VectorType>() && t.cast<VectorType>().getRank() == rank;
 | 
						|
  };
 | 
						|
  if (!llvm::all_of(tupleType.getTypes(), is_vector_type_of_rank))
 | 
						|
    return op->emitError("requires vector tuple elements of rank ") << rank;
 | 
						|
  // Check that 'sizes' and 'strides' are of size == 'rank'.
 | 
						|
  if (sizes.size() != rank || strides.size() != rank)
 | 
						|
    return op->emitError("requires sizes and strides of rank ") << rank;
 | 
						|
 | 
						|
  // Generate each slice shape based on 'sizes', 'strides' and 'vectorType',
 | 
						|
  // and verify that the same matches the corresponding tuple element 'i'.
 | 
						|
  auto shape = vectorType.getShape();
 | 
						|
  auto sliceStrides = computeStrides(shape, sizes);
 | 
						|
  for (int64_t i = 0, e = tupleType.size(); i < e; ++i) {
 | 
						|
    auto vectorOffsets = delinearize(sliceStrides, i);
 | 
						|
    auto elementOffsets =
 | 
						|
        computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
 | 
						|
    auto sliceSizes = computeSliceSizes(shape, sizes, elementOffsets);
 | 
						|
    // Create slice VectorType type.
 | 
						|
    auto sliceVectorType =
 | 
						|
        VectorType::get(sliceSizes, vectorType.getElementType());
 | 
						|
    // Verify that 'sliceVectorType' matches tupleType.getTypes(i)
 | 
						|
    if (sliceVectorType != tupleType.getType(i))
 | 
						|
      return op->emitError("invalid tuple element type ") << sliceVectorType;
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(ExtractSlicesOp op) {
 | 
						|
  SmallVector<int64_t, 4> sizes;
 | 
						|
  op.getSizes(sizes);
 | 
						|
  SmallVector<int64_t, 4> strides;
 | 
						|
  op.getStrides(strides);
 | 
						|
  return isValidExtractOrInsertSlicesType(
 | 
						|
      op.getOperation(), op.getSourceVectorType(), op.getResultTupleType(),
 | 
						|
      sizes, strides);
 | 
						|
}
 | 
						|
 | 
						|
static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
 | 
						|
                                       SmallVectorImpl<int64_t> &results) {
 | 
						|
  for (auto attr : arrayAttr)
 | 
						|
    results.push_back(attr.cast<IntegerAttr>().getInt());
 | 
						|
}
 | 
						|
 | 
						|
void ExtractSlicesOp::getSizes(SmallVectorImpl<int64_t> &results) {
 | 
						|
  populateFromInt64AttrArray(sizes(), results);
 | 
						|
}
 | 
						|
 | 
						|
void ExtractSlicesOp::getStrides(SmallVectorImpl<int64_t> &results) {
 | 
						|
  populateFromInt64AttrArray(strides(), results);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// BroadcastOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(BroadcastOp op) {
 | 
						|
  VectorType srcVectorType = op.getSourceType().dyn_cast<VectorType>();
 | 
						|
  VectorType dstVectorType = op.getVectorType();
 | 
						|
  // Scalar to vector broadcast is always valid. A vector
 | 
						|
  // to vector broadcast needs some additional checking.
 | 
						|
  if (srcVectorType) {
 | 
						|
    int64_t srcRank = srcVectorType.getRank();
 | 
						|
    int64_t dstRank = dstVectorType.getRank();
 | 
						|
    if (srcRank > dstRank)
 | 
						|
      return op.emitOpError("source rank higher than destination rank");
 | 
						|
    // Source has an exact match or singleton value for all trailing dimensions
 | 
						|
    // (all leading dimensions are simply duplicated).
 | 
						|
    int64_t lead = dstRank - srcRank;
 | 
						|
    for (int64_t r = 0; r < srcRank; ++r) {
 | 
						|
      int64_t srcDim = srcVectorType.getDimSize(r);
 | 
						|
      int64_t dstDim = dstVectorType.getDimSize(lead + r);
 | 
						|
      if (srcDim != 1 && srcDim != dstDim)
 | 
						|
        return op.emitOpError("dimension mismatch (")
 | 
						|
               << srcDim << " vs. " << dstDim << ")";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ShuffleOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
 | 
						|
                      Value v2, ArrayRef<int64_t> mask) {
 | 
						|
  result.addOperands({v1, v2});
 | 
						|
  auto maskAttr = getVectorSubscriptAttr(builder, mask);
 | 
						|
  result.addTypes(v1.getType());
 | 
						|
  result.addAttribute(getMaskAttrName(), maskAttr);
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, ShuffleOp op) {
 | 
						|
  p << op.getOperationName() << " " << op.v1() << ", " << op.v2() << " "
 | 
						|
    << op.mask();
 | 
						|
  p.printOptionalAttrDict(op.getAttrs(), {ShuffleOp::getMaskAttrName()});
 | 
						|
  p << " : " << op.v1().getType() << ", " << op.v2().getType();
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(ShuffleOp op) {
 | 
						|
  VectorType resultType = op.getVectorType();
 | 
						|
  VectorType v1Type = op.getV1VectorType();
 | 
						|
  VectorType v2Type = op.getV2VectorType();
 | 
						|
  // Verify ranks.
 | 
						|
  int64_t resRank = resultType.getRank();
 | 
						|
  int64_t v1Rank = v1Type.getRank();
 | 
						|
  int64_t v2Rank = v2Type.getRank();
 | 
						|
  if (resRank != v1Rank || v1Rank != v2Rank)
 | 
						|
    return op.emitOpError("rank mismatch");
 | 
						|
  // Verify all but leading dimension sizes.
 | 
						|
  for (int64_t r = 1; r < v1Rank; ++r) {
 | 
						|
    int64_t resDim = resultType.getDimSize(r);
 | 
						|
    int64_t v1Dim = v1Type.getDimSize(r);
 | 
						|
    int64_t v2Dim = v2Type.getDimSize(r);
 | 
						|
    if (resDim != v1Dim || v1Dim != v2Dim)
 | 
						|
      return op.emitOpError("dimension mismatch");
 | 
						|
  }
 | 
						|
  // Verify mask length.
 | 
						|
  auto maskAttr = op.mask().getValue();
 | 
						|
  int64_t maskLength = maskAttr.size();
 | 
						|
  if (maskLength != resultType.getDimSize(0))
 | 
						|
    return op.emitOpError("mask length mismatch");
 | 
						|
  // Verify all indices.
 | 
						|
  int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
 | 
						|
  for (auto en : llvm::enumerate(maskAttr)) {
 | 
						|
    auto attr = en.value().dyn_cast<IntegerAttr>();
 | 
						|
    if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
 | 
						|
      return op.emitOpError("mask index #")
 | 
						|
             << (en.index() + 1) << " out of range";
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &result) {
 | 
						|
  OpAsmParser::OperandType v1, v2;
 | 
						|
  Attribute attr;
 | 
						|
  VectorType v1Type, v2Type;
 | 
						|
  if (parser.parseOperand(v1) || parser.parseComma() ||
 | 
						|
      parser.parseOperand(v2) ||
 | 
						|
      parser.parseAttribute(attr, ShuffleOp::getMaskAttrName(),
 | 
						|
                            result.attributes) ||
 | 
						|
      parser.parseOptionalAttrDict(result.attributes) ||
 | 
						|
      parser.parseColonType(v1Type) || parser.parseComma() ||
 | 
						|
      parser.parseType(v2Type) ||
 | 
						|
      parser.resolveOperand(v1, v1Type, result.operands) ||
 | 
						|
      parser.resolveOperand(v2, v2Type, result.operands))
 | 
						|
    return failure();
 | 
						|
  // Construct resulting type: leading dimension matches mask length,
 | 
						|
  // all trailing dimensions match the operands.
 | 
						|
  auto maskAttr = attr.dyn_cast<ArrayAttr>();
 | 
						|
  if (!maskAttr)
 | 
						|
    return parser.emitError(parser.getNameLoc(), "missing mask attribute");
 | 
						|
  int64_t maskLength = maskAttr.size();
 | 
						|
  if (maskLength <= 0)
 | 
						|
    return parser.emitError(parser.getNameLoc(), "invalid mask length");
 | 
						|
  int64_t v1Rank = v1Type.getRank();
 | 
						|
  SmallVector<int64_t, 4> shape;
 | 
						|
  shape.reserve(v1Rank);
 | 
						|
  shape.push_back(maskLength);
 | 
						|
  for (int64_t r = 1; r < v1Rank; ++r)
 | 
						|
    shape.push_back(v1Type.getDimSize(r));
 | 
						|
  VectorType resType = VectorType::get(shape, v1Type.getElementType());
 | 
						|
  parser.addTypeToList(resType, result.types);
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// InsertElementOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void InsertElementOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                            Value source, Value dest, Value position) {
 | 
						|
  result.addOperands({source, dest, position});
 | 
						|
  result.addTypes(dest.getType());
 | 
						|
}
 | 
						|
 | 
						|
void InsertElementOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                            Value source, Value dest, int64_t position) {
 | 
						|
  Value pos = builder.create<ConstantIntOp>(result.location, position, 32);
 | 
						|
  build(builder, result, source, dest, pos);
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(InsertElementOp op) {
 | 
						|
  auto dstVectorType = op.getDestVectorType();
 | 
						|
  if (dstVectorType.getRank() != 1)
 | 
						|
    return op.emitOpError("expected 1-D vector");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// InsertOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
 | 
						|
                     Value dest, ArrayRef<int64_t> position) {
 | 
						|
  result.addOperands({source, dest});
 | 
						|
  auto positionAttr = getVectorSubscriptAttr(builder, position);
 | 
						|
  result.addTypes(dest.getType());
 | 
						|
  result.addAttribute(getPositionAttrName(), positionAttr);
 | 
						|
}
 | 
						|
 | 
						|
// Convenience builder which assumes the values are constant indices.
 | 
						|
void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
 | 
						|
                     Value dest, ValueRange position) {
 | 
						|
  SmallVector<int64_t, 4> positionConstants =
 | 
						|
      llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
 | 
						|
        return pos.getDefiningOp<ConstantIndexOp>().getValue();
 | 
						|
      }));
 | 
						|
  build(builder, result, source, dest, positionConstants);
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(InsertOp op) {
 | 
						|
  auto positionAttr = op.position().getValue();
 | 
						|
  if (positionAttr.empty())
 | 
						|
    return op.emitOpError("expected non-empty position attribute");
 | 
						|
  auto destVectorType = op.getDestVectorType();
 | 
						|
  if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
 | 
						|
    return op.emitOpError(
 | 
						|
        "expected position attribute of rank smaller than dest vector rank");
 | 
						|
  auto srcVectorType = op.getSourceType().dyn_cast<VectorType>();
 | 
						|
  if (srcVectorType &&
 | 
						|
      (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
 | 
						|
       static_cast<unsigned>(destVectorType.getRank())))
 | 
						|
    return op.emitOpError("expected position attribute rank + source rank to "
 | 
						|
                          "match dest vector rank");
 | 
						|
  else if (!srcVectorType && (positionAttr.size() !=
 | 
						|
                              static_cast<unsigned>(destVectorType.getRank())))
 | 
						|
    return op.emitOpError(
 | 
						|
        "expected position attribute rank to match the dest vector rank");
 | 
						|
  for (auto en : llvm::enumerate(positionAttr)) {
 | 
						|
    auto attr = en.value().dyn_cast<IntegerAttr>();
 | 
						|
    if (!attr || attr.getInt() < 0 ||
 | 
						|
        attr.getInt() >= destVectorType.getDimSize(en.index()))
 | 
						|
      return op.emitOpError("expected position attribute #")
 | 
						|
             << (en.index() + 1)
 | 
						|
             << " to be a non-negative integer smaller than the corresponding "
 | 
						|
                "dest vector dimension";
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// InsertSlicesOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(InsertSlicesOp op) {
 | 
						|
  SmallVector<int64_t, 4> sizes;
 | 
						|
  op.getSizes(sizes);
 | 
						|
  SmallVector<int64_t, 4> strides;
 | 
						|
  op.getStrides(strides);
 | 
						|
  return isValidExtractOrInsertSlicesType(
 | 
						|
      op.getOperation(), op.getResultVectorType(), op.getSourceTupleType(),
 | 
						|
      sizes, strides);
 | 
						|
}
 | 
						|
 | 
						|
void InsertSlicesOp::getSizes(SmallVectorImpl<int64_t> &results) {
 | 
						|
  populateFromInt64AttrArray(sizes(), results);
 | 
						|
}
 | 
						|
 | 
						|
void InsertSlicesOp::getStrides(SmallVectorImpl<int64_t> &results) {
 | 
						|
  populateFromInt64AttrArray(strides(), results);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// InsertStridedSliceOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                                 Value source, Value dest,
 | 
						|
                                 ArrayRef<int64_t> offsets,
 | 
						|
                                 ArrayRef<int64_t> strides) {
 | 
						|
  result.addOperands({source, dest});
 | 
						|
  auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
 | 
						|
  auto stridesAttr = getVectorSubscriptAttr(builder, strides);
 | 
						|
  result.addTypes(dest.getType());
 | 
						|
  result.addAttribute(getOffsetsAttrName(), offsetsAttr);
 | 
						|
  result.addAttribute(getStridesAttrName(), stridesAttr);
 | 
						|
}
 | 
						|
 | 
						|
// TODO: Should be moved to Tablegen Confined attributes.
 | 
						|
template <typename OpType>
 | 
						|
static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
 | 
						|
                                                        ArrayAttr arrayAttr,
 | 
						|
                                                        ArrayRef<int64_t> shape,
 | 
						|
                                                        StringRef attrName) {
 | 
						|
  if (arrayAttr.size() > shape.size())
 | 
						|
    return op.emitOpError("expected ")
 | 
						|
           << attrName << " attribute of rank smaller than vector rank";
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
 | 
						|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
 | 
						|
// Otherwise, the admissible interval is [min, max].
 | 
						|
template <typename OpType>
 | 
						|
static LogicalResult
 | 
						|
isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
 | 
						|
                                  int64_t max, StringRef attrName,
 | 
						|
                                  bool halfOpen = true) {
 | 
						|
  for (auto attr : arrayAttr) {
 | 
						|
    auto val = attr.cast<IntegerAttr>().getInt();
 | 
						|
    auto upper = max;
 | 
						|
    if (!halfOpen)
 | 
						|
      upper += 1;
 | 
						|
    if (val < min || val >= upper)
 | 
						|
      return op.emitOpError("expected ") << attrName << " to be confined to ["
 | 
						|
                                         << min << ", " << upper << ")";
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
 | 
						|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
 | 
						|
// Otherwise, the admissible interval is [min, max].
 | 
						|
template <typename OpType>
 | 
						|
static LogicalResult
 | 
						|
isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
 | 
						|
                                  ArrayRef<int64_t> shape, StringRef attrName,
 | 
						|
                                  bool halfOpen = true, int64_t min = 0) {
 | 
						|
  assert(arrayAttr.size() <= shape.size());
 | 
						|
  unsigned index = 0;
 | 
						|
  for (auto it : llvm::zip(arrayAttr, shape)) {
 | 
						|
    auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
 | 
						|
    auto max = std::get<1>(it);
 | 
						|
    if (!halfOpen)
 | 
						|
      max += 1;
 | 
						|
    if (val < min || val >= max)
 | 
						|
      return op.emitOpError("expected ")
 | 
						|
             << attrName << " dimension " << index << " to be confined to ["
 | 
						|
             << min << ", " << max << ")";
 | 
						|
    ++index;
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if all integers in `arrayAttr` are in the interval [min, max}.
 | 
						|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
 | 
						|
// Otherwise, the admissible interval is [min, max].
 | 
						|
template <typename OpType>
 | 
						|
static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
 | 
						|
    OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
 | 
						|
    ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
 | 
						|
    bool halfOpen = true, int64_t min = 1) {
 | 
						|
  assert(arrayAttr1.size() <= shape.size());
 | 
						|
  assert(arrayAttr2.size() <= shape.size());
 | 
						|
  unsigned index = 0;
 | 
						|
  for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
 | 
						|
    auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
 | 
						|
    auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
 | 
						|
    auto max = std::get<2>(it);
 | 
						|
    if (!halfOpen)
 | 
						|
      max += 1;
 | 
						|
    if (val1 + val2 < 0 || val1 + val2 >= max)
 | 
						|
      return op.emitOpError("expected sum(")
 | 
						|
             << attrName1 << ", " << attrName2 << ") dimension " << index
 | 
						|
             << " to be confined to [" << min << ", " << max << ")";
 | 
						|
    ++index;
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
 | 
						|
                                  MLIRContext *context) {
 | 
						|
  auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
 | 
						|
    return IntegerAttr::get(IntegerType::get(64, context), APInt(64, v));
 | 
						|
  });
 | 
						|
  return ArrayAttr::get(llvm::to_vector<8>(attrs), context);
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(InsertStridedSliceOp op) {
 | 
						|
  auto sourceVectorType = op.getSourceVectorType();
 | 
						|
  auto destVectorType = op.getDestVectorType();
 | 
						|
  auto offsets = op.offsets();
 | 
						|
  auto strides = op.strides();
 | 
						|
  if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
 | 
						|
    return op.emitOpError(
 | 
						|
        "expected offsets of same size as destination vector rank");
 | 
						|
  if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
 | 
						|
    return op.emitOpError(
 | 
						|
        "expected strides of same size as source vector rank");
 | 
						|
  if (sourceVectorType.getRank() > destVectorType.getRank())
 | 
						|
    return op.emitOpError(
 | 
						|
        "expected source rank to be smaller than destination rank");
 | 
						|
 | 
						|
  auto sourceShape = sourceVectorType.getShape();
 | 
						|
  auto destShape = destVectorType.getShape();
 | 
						|
  SmallVector<int64_t, 4> sourceShapeAsDestShape(
 | 
						|
      destShape.size() - sourceShape.size(), 0);
 | 
						|
  sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
 | 
						|
  auto offName = InsertStridedSliceOp::getOffsetsAttrName();
 | 
						|
  auto stridesName = InsertStridedSliceOp::getStridesAttrName();
 | 
						|
  if (failed(
 | 
						|
          isIntegerArrayAttrConfinedToShape(op, offsets, destShape, offName)) ||
 | 
						|
      failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
 | 
						|
                                               /*halfOpen=*/false)) ||
 | 
						|
      failed(isSumOfIntegerArrayAttrConfinedToShape(
 | 
						|
          op, offsets,
 | 
						|
          makeI64ArrayAttr(sourceShapeAsDestShape, op.getContext()), destShape,
 | 
						|
          offName, "source vector shape",
 | 
						|
          /*halfOpen=*/false, /*min=*/1)))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// OuterProductOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Build an op without mask, use the type of `acc` as the return type.
 | 
						|
void OuterProductOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                           Value lhs, Value rhs, Value acc) {
 | 
						|
  result.addOperands({lhs, rhs, acc});
 | 
						|
  result.addTypes(acc.getType());
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, OuterProductOp op) {
 | 
						|
  p << op.getOperationName() << " " << op.lhs() << ", " << op.rhs();
 | 
						|
  if (!op.acc().empty())
 | 
						|
    p << ", " << op.acc();
 | 
						|
  p << " : " << op.lhs().getType() << ", " << op.rhs().getType();
 | 
						|
}
 | 
						|
 | 
						|
static ParseResult parseOuterProductOp(OpAsmParser &parser,
 | 
						|
                                       OperationState &result) {
 | 
						|
  SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
 | 
						|
  Type tLHS, tRHS;
 | 
						|
  if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) ||
 | 
						|
      parser.parseComma() || parser.parseType(tRHS))
 | 
						|
    return failure();
 | 
						|
  if (operandsInfo.size() < 2)
 | 
						|
    return parser.emitError(parser.getNameLoc(),
 | 
						|
                            "expected at least 2 operands");
 | 
						|
  VectorType vLHS = tLHS.dyn_cast<VectorType>();
 | 
						|
  VectorType vRHS = tRHS.dyn_cast<VectorType>();
 | 
						|
  if (!vLHS)
 | 
						|
    return parser.emitError(parser.getNameLoc(),
 | 
						|
                            "expected vector type for operand #1");
 | 
						|
  VectorType resType =
 | 
						|
      vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
 | 
						|
                             vLHS.getElementType())
 | 
						|
           : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
 | 
						|
  return failure(
 | 
						|
      parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
 | 
						|
      parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
 | 
						|
      (operandsInfo.size() > 2 &&
 | 
						|
       parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
 | 
						|
      parser.addTypeToList(resType, result.types));
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(OuterProductOp op) {
 | 
						|
  Type tRHS = op.getOperandTypeRHS();
 | 
						|
  VectorType vLHS = op.getOperandVectorTypeLHS(),
 | 
						|
             vRHS = tRHS.dyn_cast<VectorType>(),
 | 
						|
             vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType();
 | 
						|
 | 
						|
  if (vLHS.getRank() != 1)
 | 
						|
    return op.emitOpError("expected 1-d vector for operand #1");
 | 
						|
 | 
						|
  if (vRHS) {
 | 
						|
    // Proper OUTER operation.
 | 
						|
    if (vRHS.getRank() != 1)
 | 
						|
      return op.emitOpError("expected 1-d vector for operand #2");
 | 
						|
    if (vRES.getRank() != 2)
 | 
						|
      return op.emitOpError("expected 2-d vector result");
 | 
						|
    if (vLHS.getDimSize(0) != vRES.getDimSize(0))
 | 
						|
      return op.emitOpError("expected #1 operand dim to match result dim #1");
 | 
						|
    if (vRHS.getDimSize(0) != vRES.getDimSize(1))
 | 
						|
      return op.emitOpError("expected #2 operand dim to match result dim #2");
 | 
						|
  } else {
 | 
						|
    // An AXPY operation.
 | 
						|
    if (vRES.getRank() != 1)
 | 
						|
      return op.emitOpError("expected 1-d vector result");
 | 
						|
    if (vLHS.getDimSize(0) != vRES.getDimSize(0))
 | 
						|
      return op.emitOpError("expected #1 operand dim to match result dim #1");
 | 
						|
  }
 | 
						|
 | 
						|
  if (vACC && vACC != vRES)
 | 
						|
    return op.emitOpError("expected operand #3 of same type as result type");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ReshapeOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(ReshapeOp op) {
 | 
						|
  // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
 | 
						|
  auto inputVectorType = op.getInputVectorType();
 | 
						|
  auto outputVectorType = op.getOutputVectorType();
 | 
						|
  int64_t inputShapeRank = op.getNumInputShapeSizes();
 | 
						|
  int64_t outputShapeRank = op.getNumOutputShapeSizes();
 | 
						|
  SmallVector<int64_t, 4> fixedVectorSizes;
 | 
						|
  op.getFixedVectorSizes(fixedVectorSizes);
 | 
						|
  int64_t numFixedVectorSizes = fixedVectorSizes.size();
 | 
						|
 | 
						|
  if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
 | 
						|
    return op.emitError("invalid input shape for vector type ")
 | 
						|
           << inputVectorType;
 | 
						|
 | 
						|
  if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
 | 
						|
    return op.emitError("invalid output shape for vector type ")
 | 
						|
           << outputVectorType;
 | 
						|
 | 
						|
  // Verify that the 'fixedVectorSizes' match an input/output vector shape
 | 
						|
  // suffix.
 | 
						|
  unsigned inputVectorRank = inputVectorType.getRank();
 | 
						|
  for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
 | 
						|
    unsigned index = inputVectorRank - numFixedVectorSizes - i;
 | 
						|
    if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
 | 
						|
      return op.emitError("fixed vector size must match input vector for dim ")
 | 
						|
             << i;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned outputVectorRank = outputVectorType.getRank();
 | 
						|
  for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
 | 
						|
    unsigned index = outputVectorRank - numFixedVectorSizes - i;
 | 
						|
    if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
 | 
						|
      return op.emitError("fixed vector size must match output vector for dim ")
 | 
						|
             << i;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all shape operands are produced by constant ops, verify that product
 | 
						|
  // of dimensions for input/output shape match.
 | 
						|
  auto isDefByConstant = [](Value operand) {
 | 
						|
    return isa_and_nonnull<ConstantIndexOp>(operand.getDefiningOp());
 | 
						|
  };
 | 
						|
  if (llvm::all_of(op.input_shape(), isDefByConstant) &&
 | 
						|
      llvm::all_of(op.output_shape(), isDefByConstant)) {
 | 
						|
    int64_t numInputElements = 1;
 | 
						|
    for (auto operand : op.input_shape())
 | 
						|
      numInputElements *=
 | 
						|
          cast<ConstantIndexOp>(operand.getDefiningOp()).getValue();
 | 
						|
    int64_t numOutputElements = 1;
 | 
						|
    for (auto operand : op.output_shape())
 | 
						|
      numOutputElements *=
 | 
						|
          cast<ConstantIndexOp>(operand.getDefiningOp()).getValue();
 | 
						|
    if (numInputElements != numOutputElements)
 | 
						|
      return op.emitError("product of input and output shape sizes must match");
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
 | 
						|
  populateFromInt64AttrArray(fixed_vector_sizes(), results);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ExtractStridedSliceOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Inference works as follows:
 | 
						|
//   1. Add 'sizes' from prefix of dims in 'offsets'.
 | 
						|
//   2. Add sizes from 'vectorType' for remaining dims.
 | 
						|
static Type inferStridedSliceOpResultType(VectorType vectorType,
 | 
						|
                                          ArrayAttr offsets, ArrayAttr sizes,
 | 
						|
                                          ArrayAttr strides) {
 | 
						|
  assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
 | 
						|
  SmallVector<int64_t, 4> shape;
 | 
						|
  shape.reserve(vectorType.getRank());
 | 
						|
  unsigned idx = 0;
 | 
						|
  for (unsigned e = offsets.size(); idx < e; ++idx)
 | 
						|
    shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
 | 
						|
  for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
 | 
						|
    shape.push_back(vectorType.getShape()[idx]);
 | 
						|
 | 
						|
  return VectorType::get(shape, vectorType.getElementType());
 | 
						|
}
 | 
						|
 | 
						|
void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                                  Value source, ArrayRef<int64_t> offsets,
 | 
						|
                                  ArrayRef<int64_t> sizes,
 | 
						|
                                  ArrayRef<int64_t> strides) {
 | 
						|
  result.addOperands(source);
 | 
						|
  auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
 | 
						|
  auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
 | 
						|
  auto stridesAttr = getVectorSubscriptAttr(builder, strides);
 | 
						|
  result.addTypes(
 | 
						|
      inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
 | 
						|
                                    offsetsAttr, sizesAttr, stridesAttr));
 | 
						|
  result.addAttribute(getOffsetsAttrName(), offsetsAttr);
 | 
						|
  result.addAttribute(getSizesAttrName(), sizesAttr);
 | 
						|
  result.addAttribute(getStridesAttrName(), stridesAttr);
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(ExtractStridedSliceOp op) {
 | 
						|
  auto type = op.getVectorType();
 | 
						|
  auto offsets = op.offsets();
 | 
						|
  auto sizes = op.sizes();
 | 
						|
  auto strides = op.strides();
 | 
						|
  if (offsets.size() != sizes.size() || offsets.size() != strides.size()) {
 | 
						|
    op.emitOpError(
 | 
						|
        "expected offsets, sizes and strides attributes of same size");
 | 
						|
    return failure();
 | 
						|
  }
 | 
						|
 | 
						|
  auto shape = type.getShape();
 | 
						|
  auto offName = ExtractStridedSliceOp::getOffsetsAttrName();
 | 
						|
  auto sizesName = ExtractStridedSliceOp::getSizesAttrName();
 | 
						|
  auto stridesName = ExtractStridedSliceOp::getStridesAttrName();
 | 
						|
  if (failed(isIntegerArrayAttrSmallerThanShape(op, offsets, shape, offName)) ||
 | 
						|
      failed(isIntegerArrayAttrSmallerThanShape(op, sizes, shape, sizesName)) ||
 | 
						|
      failed(isIntegerArrayAttrSmallerThanShape(op, strides, shape,
 | 
						|
                                                stridesName)) ||
 | 
						|
      failed(isIntegerArrayAttrConfinedToShape(op, offsets, shape, offName)) ||
 | 
						|
      failed(isIntegerArrayAttrConfinedToShape(op, sizes, shape, sizesName,
 | 
						|
                                               /*halfOpen=*/false,
 | 
						|
                                               /*min=*/1)) ||
 | 
						|
      failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
 | 
						|
                                               /*halfOpen=*/false)) ||
 | 
						|
      failed(isSumOfIntegerArrayAttrConfinedToShape(op, offsets, sizes, shape,
 | 
						|
                                                    offName, sizesName,
 | 
						|
                                                    /*halfOpen=*/false)))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  auto resultType = inferStridedSliceOpResultType(
 | 
						|
      op.getVectorType(), op.offsets(), op.sizes(), op.strides());
 | 
						|
  if (op.getResult().getType() != resultType) {
 | 
						|
    op.emitOpError("expected result type to be ") << resultType;
 | 
						|
    return failure();
 | 
						|
  }
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
 | 
						|
  populateFromInt64AttrArray(offsets(), results);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> ConstantMaskOp.
 | 
						|
class StridedSliceConstantMaskFolder final
 | 
						|
    : public OpRewritePattern<ExtractStridedSliceOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
 | 
						|
 | 
						|
  LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    // Return if 'extractStridedSliceOp' operand is not defined by a
 | 
						|
    // ConstantMaskOp.
 | 
						|
    auto defOp = extractStridedSliceOp.vector().getDefiningOp();
 | 
						|
    auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
 | 
						|
    if (!constantMaskOp)
 | 
						|
      return failure();
 | 
						|
    // Return if 'extractStridedSliceOp' has non-unit strides.
 | 
						|
    if (llvm::any_of(extractStridedSliceOp.strides(), [](Attribute attr) {
 | 
						|
          return attr.cast<IntegerAttr>().getInt() != 1;
 | 
						|
        }))
 | 
						|
      return failure();
 | 
						|
    // Gather constant mask dimension sizes.
 | 
						|
    SmallVector<int64_t, 4> maskDimSizes;
 | 
						|
    populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes);
 | 
						|
    // Gather strided slice offsets and sizes.
 | 
						|
    SmallVector<int64_t, 4> sliceOffsets;
 | 
						|
    populateFromInt64AttrArray(extractStridedSliceOp.offsets(), sliceOffsets);
 | 
						|
    SmallVector<int64_t, 4> sliceSizes;
 | 
						|
    populateFromInt64AttrArray(extractStridedSliceOp.sizes(), sliceSizes);
 | 
						|
 | 
						|
    // Compute slice of vector mask region.
 | 
						|
    SmallVector<int64_t, 4> sliceMaskDimSizes;
 | 
						|
    assert(sliceOffsets.size() == maskDimSizes.size());
 | 
						|
    for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
 | 
						|
      int64_t maskDimSize = std::get<0>(it);
 | 
						|
      int64_t sliceOffset = std::get<1>(it);
 | 
						|
      int64_t sliceSize = std::get<2>(it);
 | 
						|
      int64_t sliceMaskDimSize = std::max(
 | 
						|
          static_cast<int64_t>(0),
 | 
						|
          std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
 | 
						|
      sliceMaskDimSizes.push_back(sliceMaskDimSize);
 | 
						|
    }
 | 
						|
    // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
 | 
						|
    // region is a conjunction of mask dim intervals).
 | 
						|
    if (llvm::any_of(sliceMaskDimSizes, [](int64_t sz) { return sz == 0; }))
 | 
						|
      sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
 | 
						|
 | 
						|
    // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
 | 
						|
    // region.
 | 
						|
    rewriter.replaceOpWithNewOp<ConstantMaskOp>(
 | 
						|
        extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
 | 
						|
        vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void ExtractStridedSliceOp::getCanonicalizationPatterns(
 | 
						|
    OwningRewritePatternList &results, MLIRContext *context) {
 | 
						|
  // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
 | 
						|
  // ConstantMaskOp.
 | 
						|
  results.insert<StridedSliceConstantMaskFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TransferReadOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
template <typename EmitFun>
 | 
						|
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
 | 
						|
                                          EmitFun emitOpError) {
 | 
						|
  SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
 | 
						|
  for (auto expr : permutationMap.getResults()) {
 | 
						|
    auto dim = expr.dyn_cast<AffineDimExpr>();
 | 
						|
    auto zero = expr.dyn_cast<AffineConstantExpr>();
 | 
						|
    if (zero) {
 | 
						|
      if (zero.getValue() != 0) {
 | 
						|
        return emitOpError(
 | 
						|
            "requires a projected permutation_map (at most one dim or the zero "
 | 
						|
            "constant can appear in each result)");
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (!dim) {
 | 
						|
      return emitOpError("requires a projected permutation_map (at most one "
 | 
						|
                         "dim or the zero constant can appear in each result)");
 | 
						|
    }
 | 
						|
    if (seen[dim.getPosition()]) {
 | 
						|
      return emitOpError(
 | 
						|
          "requires a permutation_map that is a permutation (found one dim "
 | 
						|
          "used more than once)");
 | 
						|
    }
 | 
						|
    seen[dim.getPosition()] = true;
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verifyTransferOp(Operation *op, MemRefType memrefType,
 | 
						|
                                      VectorType vectorType,
 | 
						|
                                      AffineMap permutationMap,
 | 
						|
                                      ArrayAttr optionalMasked) {
 | 
						|
  auto memrefElementType = memrefType.getElementType();
 | 
						|
  if (auto memrefVectorElementType = memrefElementType.dyn_cast<VectorType>()) {
 | 
						|
    // Memref has vector element type.
 | 
						|
 | 
						|
    unsigned memrefVecSize = memrefVectorElementType.getElementTypeBitWidth() *
 | 
						|
                             memrefVectorElementType.getShape().back();
 | 
						|
    unsigned resultVecSize =
 | 
						|
        vectorType.getElementTypeBitWidth() * vectorType.getShape().back();
 | 
						|
    if (resultVecSize % memrefVecSize != 0)
 | 
						|
      return op->emitOpError(
 | 
						|
          "requires the bitwidth of the minor 1-D vector to be an integral "
 | 
						|
          "multiple of the bitwidth of the minor 1-D vector of the memref");
 | 
						|
 | 
						|
    unsigned memrefVecEltRank = memrefVectorElementType.getRank();
 | 
						|
    unsigned resultVecRank = vectorType.getRank();
 | 
						|
    if (memrefVecEltRank > resultVecRank)
 | 
						|
      return op->emitOpError(
 | 
						|
          "requires memref vector element and vector result ranks to match.");
 | 
						|
    unsigned rankOffset = resultVecRank - memrefVecEltRank;
 | 
						|
    // Check that permutation map results match 'rankOffset' of vector type.
 | 
						|
    if (permutationMap.getNumResults() != rankOffset)
 | 
						|
      return op->emitOpError("requires a permutation_map with result dims of "
 | 
						|
                             "the same rank as the vector type");
 | 
						|
  } else {
 | 
						|
    // Memref has scalar element type.
 | 
						|
    unsigned resultVecSize =
 | 
						|
        vectorType.getElementTypeBitWidth() * vectorType.getShape().back();
 | 
						|
    if (resultVecSize % memrefElementType.getIntOrFloatBitWidth() != 0)
 | 
						|
      return op->emitOpError(
 | 
						|
          "requires the bitwidth of the minor 1-D vector to be an integral "
 | 
						|
          "multiple of the bitwidth of the memref element type");
 | 
						|
 | 
						|
    // Check that permutation map results match rank of vector type.
 | 
						|
    if (permutationMap.getNumResults() != vectorType.getRank())
 | 
						|
      return op->emitOpError("requires a permutation_map with result dims of "
 | 
						|
                             "the same rank as the vector type");
 | 
						|
  }
 | 
						|
 | 
						|
  if (permutationMap.getNumSymbols() != 0)
 | 
						|
    return op->emitOpError("requires permutation_map without symbols");
 | 
						|
  if (permutationMap.getNumInputs() != memrefType.getRank())
 | 
						|
    return op->emitOpError("requires a permutation_map with input dims of the "
 | 
						|
                           "same rank as the memref type");
 | 
						|
 | 
						|
  if (optionalMasked) {
 | 
						|
    if (permutationMap.getNumResults() !=
 | 
						|
        static_cast<int64_t>(optionalMasked.size()))
 | 
						|
      return op->emitOpError("expects the optional masked attr of same rank as "
 | 
						|
                             "permutation_map results: ")
 | 
						|
             << AffineMapAttr::get(permutationMap);
 | 
						|
  }
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Builder that sets padding to zero.
 | 
						|
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                           VectorType vector, Value memref, ValueRange indices,
 | 
						|
                           AffineMap permutationMap,
 | 
						|
                           ArrayRef<bool> maybeMasked) {
 | 
						|
  Type elemType = memref.getType().cast<MemRefType>().getElementType();
 | 
						|
  Value padding = builder.create<ConstantOp>(result.location, elemType,
 | 
						|
                                             builder.getZeroAttr(elemType));
 | 
						|
  if (maybeMasked.empty())
 | 
						|
    return build(builder, result, vector, memref, indices, permutationMap,
 | 
						|
                 padding, ArrayAttr());
 | 
						|
  ArrayAttr maskedArrayAttr = builder.getBoolArrayAttr(maybeMasked);
 | 
						|
  build(builder, result, vector, memref, indices, permutationMap, padding,
 | 
						|
        maskedArrayAttr);
 | 
						|
}
 | 
						|
 | 
						|
/// Builder that sets permutation map (resp. padding) to 'getMinorIdentityMap'
 | 
						|
/// (resp. zero).
 | 
						|
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                           VectorType vectorType, Value memref,
 | 
						|
                           ValueRange indices, ArrayRef<bool> maybeMasked) {
 | 
						|
  auto permMap = getTransferMinorIdentityMap(
 | 
						|
      memref.getType().cast<MemRefType>(), vectorType);
 | 
						|
  build(builder, result, vectorType, memref, indices, permMap, maybeMasked);
 | 
						|
}
 | 
						|
 | 
						|
static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
 | 
						|
  SmallVector<StringRef, 2> elidedAttrs;
 | 
						|
  if (op.permutation_map() ==
 | 
						|
      getTransferMinorIdentityMap(op.getMemRefType(), op.getVectorType()))
 | 
						|
    elidedAttrs.push_back(op.getPermutationMapAttrName());
 | 
						|
  bool elideMasked = true;
 | 
						|
  if (auto maybeMasked = op.masked()) {
 | 
						|
    for (auto attr : *maybeMasked) {
 | 
						|
      if (!attr.template cast<BoolAttr>().getValue()) {
 | 
						|
        elideMasked = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (elideMasked)
 | 
						|
    elidedAttrs.push_back(op.getMaskedAttrName());
 | 
						|
  p.printOptionalAttrDict(op.getAttrs(), elidedAttrs);
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, TransferReadOp op) {
 | 
						|
  p << op.getOperationName() << " " << op.memref() << "[" << op.indices()
 | 
						|
    << "], " << op.padding();
 | 
						|
  printTransferAttrs(p, cast<VectorTransferOpInterface>(op.getOperation()));
 | 
						|
  p << " : " << op.getMemRefType() << ", " << op.getVectorType();
 | 
						|
}
 | 
						|
 | 
						|
static ParseResult parseTransferReadOp(OpAsmParser &parser,
 | 
						|
                                       OperationState &result) {
 | 
						|
  llvm::SMLoc typesLoc;
 | 
						|
  OpAsmParser::OperandType memrefInfo;
 | 
						|
  SmallVector<OpAsmParser::OperandType, 8> indexInfo;
 | 
						|
  OpAsmParser::OperandType paddingInfo;
 | 
						|
  SmallVector<Type, 2> types;
 | 
						|
  // Parsing with support for paddingValue.
 | 
						|
  if (parser.parseOperand(memrefInfo) ||
 | 
						|
      parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
 | 
						|
      parser.parseComma() || parser.parseOperand(paddingInfo) ||
 | 
						|
      parser.parseOptionalAttrDict(result.attributes) ||
 | 
						|
      parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
 | 
						|
    return failure();
 | 
						|
  if (types.size() != 2)
 | 
						|
    return parser.emitError(typesLoc, "requires two types");
 | 
						|
  auto indexType = parser.getBuilder().getIndexType();
 | 
						|
  MemRefType memRefType = types[0].dyn_cast<MemRefType>();
 | 
						|
  if (!memRefType)
 | 
						|
    return parser.emitError(typesLoc, "requires memref type");
 | 
						|
  VectorType vectorType = types[1].dyn_cast<VectorType>();
 | 
						|
  if (!vectorType)
 | 
						|
    return parser.emitError(typesLoc, "requires vector type");
 | 
						|
  auto permutationAttrName = TransferReadOp::getPermutationMapAttrName();
 | 
						|
  auto attr = result.attributes.get(permutationAttrName);
 | 
						|
  if (!attr) {
 | 
						|
    auto permMap = getTransferMinorIdentityMap(memRefType, vectorType);
 | 
						|
    result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
 | 
						|
  }
 | 
						|
  return failure(
 | 
						|
      parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
 | 
						|
      parser.resolveOperands(indexInfo, indexType, result.operands) ||
 | 
						|
      parser.resolveOperand(paddingInfo, memRefType.getElementType(),
 | 
						|
                            result.operands) ||
 | 
						|
      parser.addTypeToList(vectorType, result.types));
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(TransferReadOp op) {
 | 
						|
  // Consistency of elemental types in memref and vector.
 | 
						|
  MemRefType memrefType = op.getMemRefType();
 | 
						|
  VectorType vectorType = op.getVectorType();
 | 
						|
  auto paddingType = op.padding().getType();
 | 
						|
  auto permutationMap = op.permutation_map();
 | 
						|
  auto memrefElementType = memrefType.getElementType();
 | 
						|
 | 
						|
  if (static_cast<int64_t>(op.indices().size()) != memrefType.getRank())
 | 
						|
    return op.emitOpError("requires ") << memrefType.getRank() << " indices";
 | 
						|
 | 
						|
  if (failed(verifyTransferOp(op.getOperation(), memrefType, vectorType,
 | 
						|
                              permutationMap,
 | 
						|
                              op.masked() ? *op.masked() : ArrayAttr())))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  if (auto memrefVectorElementType = memrefElementType.dyn_cast<VectorType>()) {
 | 
						|
    // Memref has vector element type.
 | 
						|
    // Check that 'memrefVectorElementType' and 'paddingType' types match.
 | 
						|
    if (memrefVectorElementType != paddingType)
 | 
						|
      return op.emitOpError(
 | 
						|
          "requires memref element type and padding type to match.");
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Check that 'paddingType' is valid to store in a vector type.
 | 
						|
    if (!VectorType::isValidElementType(paddingType))
 | 
						|
      return op.emitOpError("requires valid padding vector elemental type");
 | 
						|
 | 
						|
    // Check that padding type and vector element types match.
 | 
						|
    if (paddingType != memrefElementType)
 | 
						|
      return op.emitOpError(
 | 
						|
          "requires formal padding and memref of the same elemental type");
 | 
						|
  }
 | 
						|
 | 
						|
  return verifyPermutationMap(permutationMap,
 | 
						|
                              [&op](Twine t) { return op.emitOpError(t); });
 | 
						|
}
 | 
						|
 | 
						|
/// This is a common class used for patterns of the form
 | 
						|
/// ```
 | 
						|
///    someop(memrefcast) -> someop
 | 
						|
/// ```
 | 
						|
/// It folds the source of the memref_cast into the root operation directly.
 | 
						|
static LogicalResult foldMemRefCast(Operation *op) {
 | 
						|
  bool folded = false;
 | 
						|
  for (OpOperand &operand : op->getOpOperands()) {
 | 
						|
    auto castOp = operand.get().getDefiningOp<MemRefCastOp>();
 | 
						|
    if (castOp && canFoldIntoConsumerOp(castOp)) {
 | 
						|
      operand.set(castOp.getOperand());
 | 
						|
      folded = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return success(folded);
 | 
						|
}
 | 
						|
 | 
						|
template <typename TransferOp>
 | 
						|
static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
 | 
						|
  // TODO: support more aggressive createOrFold on:
 | 
						|
  // `op.indices()[indicesIdx] + vectorType < dim(op.memref(), indicesIdx)`
 | 
						|
  if (op.getMemRefType().isDynamicDim(indicesIdx))
 | 
						|
    return false;
 | 
						|
  Value index = op.indices()[indicesIdx];
 | 
						|
  auto cstOp = index.getDefiningOp<ConstantIndexOp>();
 | 
						|
  if (!cstOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  int64_t memrefSize = op.getMemRefType().getDimSize(indicesIdx);
 | 
						|
  int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
 | 
						|
 | 
						|
  return cstOp.getValue() + vectorSize <= memrefSize;
 | 
						|
}
 | 
						|
 | 
						|
template <typename TransferOp>
 | 
						|
static LogicalResult foldTransferMaskAttribute(TransferOp op) {
 | 
						|
  AffineMap permutationMap = op.permutation_map();
 | 
						|
  if (!permutationMap.isMinorIdentity())
 | 
						|
    return failure();
 | 
						|
  bool changed = false;
 | 
						|
  SmallVector<bool, 4> isMasked;
 | 
						|
  isMasked.reserve(op.getTransferRank());
 | 
						|
  op.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) {
 | 
						|
    // Already marked unmasked, nothing to see here.
 | 
						|
    if (!op.isMaskedDim(resultIdx)) {
 | 
						|
      isMasked.push_back(false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // Currently masked, check whether we can statically determine it is
 | 
						|
    // inBounds.
 | 
						|
    auto inBounds = isInBounds(op, resultIdx, indicesIdx);
 | 
						|
    isMasked.push_back(!inBounds);
 | 
						|
    // We commit the pattern if it is "more inbounds".
 | 
						|
    changed |= inBounds;
 | 
						|
  });
 | 
						|
  if (!changed)
 | 
						|
    return failure();
 | 
						|
  // OpBuilder is only used as a helper to build an I64ArrayAttr.
 | 
						|
  OpBuilder b(op.getContext());
 | 
						|
  op.setAttr(TransferOp::getMaskedAttrName(), b.getBoolArrayAttr(isMasked));
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
 | 
						|
  /// transfer_read(memrefcast) -> transfer_read
 | 
						|
  if (succeeded(foldTransferMaskAttribute(*this)))
 | 
						|
    return getResult();
 | 
						|
  if (succeeded(foldMemRefCast(*this)))
 | 
						|
    return getResult();
 | 
						|
  return OpFoldResult();
 | 
						|
}
 | 
						|
 | 
						|
Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
 | 
						|
  auto s = getVectorType().getShape();
 | 
						|
  return SmallVector<int64_t, 4>{s.begin(), s.end()};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TransferWriteOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Builder that sets permutation map to 'getMinorIdentityMap'.
 | 
						|
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                            Value vector, Value memref, ValueRange indices,
 | 
						|
                            ArrayRef<bool> maybeMasked) {
 | 
						|
  auto vectorType = vector.getType().cast<VectorType>();
 | 
						|
  auto permMap = getTransferMinorIdentityMap(
 | 
						|
      memref.getType().cast<MemRefType>(), vectorType);
 | 
						|
  if (maybeMasked.empty())
 | 
						|
    return build(builder, result, vector, memref, indices, permMap,
 | 
						|
                 ArrayAttr());
 | 
						|
  ArrayAttr maskedArrayAttr = builder.getBoolArrayAttr(maybeMasked);
 | 
						|
  build(builder, result, vector, memref, indices, permMap, maskedArrayAttr);
 | 
						|
}
 | 
						|
 | 
						|
/// Builder that sets permutation map to 'getMinorIdentityMap'.
 | 
						|
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                            Value vector, Value memref, ValueRange indices,
 | 
						|
                            AffineMap permutationMap) {
 | 
						|
  build(builder, result, vector, memref, indices,
 | 
						|
        /*maybeMasked=*/ArrayRef<bool>{});
 | 
						|
}
 | 
						|
 | 
						|
static ParseResult parseTransferWriteOp(OpAsmParser &parser,
 | 
						|
                                        OperationState &result) {
 | 
						|
  llvm::SMLoc typesLoc;
 | 
						|
  OpAsmParser::OperandType vectorInfo, memrefInfo;
 | 
						|
  SmallVector<OpAsmParser::OperandType, 8> indexInfo;
 | 
						|
  SmallVector<Type, 2> types;
 | 
						|
  if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
 | 
						|
      parser.parseOperand(memrefInfo) ||
 | 
						|
      parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
 | 
						|
      parser.parseOptionalAttrDict(result.attributes) ||
 | 
						|
      parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
 | 
						|
    return failure();
 | 
						|
  if (types.size() != 2)
 | 
						|
    return parser.emitError(typesLoc, "requires two types");
 | 
						|
  auto indexType = parser.getBuilder().getIndexType();
 | 
						|
  VectorType vectorType = types[0].dyn_cast<VectorType>();
 | 
						|
  if (!vectorType)
 | 
						|
    return parser.emitError(typesLoc, "requires vector type");
 | 
						|
  MemRefType memRefType = types[1].dyn_cast<MemRefType>();
 | 
						|
  if (!memRefType)
 | 
						|
    return parser.emitError(typesLoc, "requires memref type");
 | 
						|
  auto permutationAttrName = TransferWriteOp::getPermutationMapAttrName();
 | 
						|
  auto attr = result.attributes.get(permutationAttrName);
 | 
						|
  if (!attr) {
 | 
						|
    auto permMap = getTransferMinorIdentityMap(memRefType, vectorType);
 | 
						|
    result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
 | 
						|
  }
 | 
						|
  return failure(
 | 
						|
      parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
 | 
						|
      parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
 | 
						|
      parser.resolveOperands(indexInfo, indexType, result.operands));
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, TransferWriteOp op) {
 | 
						|
  p << op.getOperationName() << " " << op.vector() << ", " << op.memref() << "["
 | 
						|
    << op.indices() << "]";
 | 
						|
  printTransferAttrs(p, cast<VectorTransferOpInterface>(op.getOperation()));
 | 
						|
  p << " : " << op.getVectorType() << ", " << op.getMemRefType();
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(TransferWriteOp op) {
 | 
						|
  // Consistency of elemental types in memref and vector.
 | 
						|
  MemRefType memrefType = op.getMemRefType();
 | 
						|
  VectorType vectorType = op.getVectorType();
 | 
						|
  auto permutationMap = op.permutation_map();
 | 
						|
 | 
						|
  if (llvm::size(op.indices()) != memrefType.getRank())
 | 
						|
    return op.emitOpError("requires ") << memrefType.getRank() << " indices";
 | 
						|
 | 
						|
  if (failed(verifyTransferOp(op.getOperation(), memrefType, vectorType,
 | 
						|
                              permutationMap,
 | 
						|
                              op.masked() ? *op.masked() : ArrayAttr())))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  return verifyPermutationMap(permutationMap,
 | 
						|
                              [&op](Twine t) { return op.emitOpError(t); });
 | 
						|
}
 | 
						|
 | 
						|
LogicalResult TransferWriteOp::fold(ArrayRef<Attribute>,
 | 
						|
                                    SmallVectorImpl<OpFoldResult> &) {
 | 
						|
  if (succeeded(foldTransferMaskAttribute(*this)))
 | 
						|
    return success();
 | 
						|
  return foldMemRefCast(*this);
 | 
						|
}
 | 
						|
 | 
						|
Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
 | 
						|
  return llvm::to_vector<4>(getVectorType().getShape());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// MaskedLoadOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(MaskedLoadOp op) {
 | 
						|
  VectorType maskVType = op.getMaskVectorType();
 | 
						|
  VectorType passVType = op.getPassThruVectorType();
 | 
						|
  VectorType resVType = op.getResultVectorType();
 | 
						|
 | 
						|
  if (resVType.getElementType() != op.getMemRefType().getElementType())
 | 
						|
    return op.emitOpError("base and result element type should match");
 | 
						|
 | 
						|
  if (resVType.getDimSize(0) != maskVType.getDimSize(0))
 | 
						|
    return op.emitOpError("expected result dim to match mask dim");
 | 
						|
  if (resVType != passVType)
 | 
						|
    return op.emitOpError("expected pass_thru of same type as result type");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
 | 
						|
  LogicalResult matchAndRewrite(MaskedLoadOp load,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    Value newBase;
 | 
						|
    switch (get1DMaskFormat(load.mask())) {
 | 
						|
    case MaskFormat::AllTrue:
 | 
						|
      if (!castedToMemRef(load.getLoc(), load.base(), load.getMemRefType(),
 | 
						|
                          load.getResultVectorType(), rewriter, newBase))
 | 
						|
        return failure();
 | 
						|
      rewriter.replaceOpWithNewOp<LoadOp>(load, newBase);
 | 
						|
      return success();
 | 
						|
    case MaskFormat::AllFalse:
 | 
						|
      rewriter.replaceOp(load, load.pass_thru());
 | 
						|
      return success();
 | 
						|
    case MaskFormat::Unknown:
 | 
						|
      return failure();
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void MaskedLoadOp::getCanonicalizationPatterns(
 | 
						|
    OwningRewritePatternList &results, MLIRContext *context) {
 | 
						|
  results.insert<MaskedLoadFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// MaskedStoreOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(MaskedStoreOp op) {
 | 
						|
  VectorType maskVType = op.getMaskVectorType();
 | 
						|
  VectorType valueVType = op.getValueVectorType();
 | 
						|
 | 
						|
  if (valueVType.getElementType() != op.getMemRefType().getElementType())
 | 
						|
    return op.emitOpError("base and value element type should match");
 | 
						|
 | 
						|
  if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
 | 
						|
    return op.emitOpError("expected value dim to match mask dim");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
 | 
						|
  LogicalResult matchAndRewrite(MaskedStoreOp store,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    Value newBase;
 | 
						|
    switch (get1DMaskFormat(store.mask())) {
 | 
						|
    case MaskFormat::AllTrue:
 | 
						|
      if (!castedToMemRef(store.getLoc(), store.base(), store.getMemRefType(),
 | 
						|
                          store.getValueVectorType(), rewriter, newBase))
 | 
						|
        return failure();
 | 
						|
      rewriter.replaceOpWithNewOp<StoreOp>(store, store.value(), newBase);
 | 
						|
      return success();
 | 
						|
    case MaskFormat::AllFalse:
 | 
						|
      rewriter.eraseOp(store);
 | 
						|
      return success();
 | 
						|
    case MaskFormat::Unknown:
 | 
						|
      return failure();
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void MaskedStoreOp::getCanonicalizationPatterns(
 | 
						|
    OwningRewritePatternList &results, MLIRContext *context) {
 | 
						|
  results.insert<MaskedStoreFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// GatherOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(GatherOp op) {
 | 
						|
  VectorType indicesVType = op.getIndicesVectorType();
 | 
						|
  VectorType maskVType = op.getMaskVectorType();
 | 
						|
  VectorType resVType = op.getResultVectorType();
 | 
						|
 | 
						|
  if (resVType.getElementType() != op.getMemRefType().getElementType())
 | 
						|
    return op.emitOpError("base and result element type should match");
 | 
						|
 | 
						|
  if (resVType.getDimSize(0) != indicesVType.getDimSize(0))
 | 
						|
    return op.emitOpError("expected result dim to match indices dim");
 | 
						|
  if (resVType.getDimSize(0) != maskVType.getDimSize(0))
 | 
						|
    return op.emitOpError("expected result dim to match mask dim");
 | 
						|
  if (llvm::size(op.pass_thru()) != 0) {
 | 
						|
    VectorType passVType = op.getPassThruVectorType();
 | 
						|
    if (resVType != passVType)
 | 
						|
      return op.emitOpError("expected pass_thru of same type as result type");
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class GatherFolder final : public OpRewritePattern<GatherOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<GatherOp>::OpRewritePattern;
 | 
						|
  LogicalResult matchAndRewrite(GatherOp gather,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    switch (get1DMaskFormat(gather.mask())) {
 | 
						|
    case MaskFormat::AllTrue:
 | 
						|
      return failure(); // no unmasked equivalent
 | 
						|
    case MaskFormat::AllFalse:
 | 
						|
      rewriter.replaceOp(gather, gather.pass_thru());
 | 
						|
      return success();
 | 
						|
    case MaskFormat::Unknown:
 | 
						|
      return failure();
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void GatherOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
 | 
						|
                                           MLIRContext *context) {
 | 
						|
  results.insert<GatherFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ScatterOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(ScatterOp op) {
 | 
						|
  VectorType indicesVType = op.getIndicesVectorType();
 | 
						|
  VectorType maskVType = op.getMaskVectorType();
 | 
						|
  VectorType valueVType = op.getValueVectorType();
 | 
						|
 | 
						|
  if (valueVType.getElementType() != op.getMemRefType().getElementType())
 | 
						|
    return op.emitOpError("base and value element type should match");
 | 
						|
 | 
						|
  if (valueVType.getDimSize(0) != indicesVType.getDimSize(0))
 | 
						|
    return op.emitOpError("expected value dim to match indices dim");
 | 
						|
  if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
 | 
						|
    return op.emitOpError("expected value dim to match mask dim");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class ScatterFolder final : public OpRewritePattern<ScatterOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<ScatterOp>::OpRewritePattern;
 | 
						|
  LogicalResult matchAndRewrite(ScatterOp scatter,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    switch (get1DMaskFormat(scatter.mask())) {
 | 
						|
    case MaskFormat::AllTrue:
 | 
						|
      return failure(); // no unmasked equivalent
 | 
						|
    case MaskFormat::AllFalse:
 | 
						|
      rewriter.eraseOp(scatter);
 | 
						|
      return success();
 | 
						|
    case MaskFormat::Unknown:
 | 
						|
      return failure();
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void ScatterOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
 | 
						|
                                            MLIRContext *context) {
 | 
						|
  results.insert<ScatterFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ExpandLoadOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(ExpandLoadOp op) {
 | 
						|
  VectorType maskVType = op.getMaskVectorType();
 | 
						|
  VectorType passVType = op.getPassThruVectorType();
 | 
						|
  VectorType resVType = op.getResultVectorType();
 | 
						|
 | 
						|
  if (resVType.getElementType() != op.getMemRefType().getElementType())
 | 
						|
    return op.emitOpError("base and result element type should match");
 | 
						|
 | 
						|
  if (resVType.getDimSize(0) != maskVType.getDimSize(0))
 | 
						|
    return op.emitOpError("expected result dim to match mask dim");
 | 
						|
  if (resVType != passVType)
 | 
						|
    return op.emitOpError("expected pass_thru of same type as result type");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
 | 
						|
  LogicalResult matchAndRewrite(ExpandLoadOp expand,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    Value newBase;
 | 
						|
    switch (get1DMaskFormat(expand.mask())) {
 | 
						|
    case MaskFormat::AllTrue:
 | 
						|
      if (!castedToMemRef(expand.getLoc(), expand.base(),
 | 
						|
                          expand.getMemRefType(), expand.getResultVectorType(),
 | 
						|
                          rewriter, newBase))
 | 
						|
        return failure();
 | 
						|
      rewriter.replaceOpWithNewOp<LoadOp>(expand, newBase);
 | 
						|
      return success();
 | 
						|
    case MaskFormat::AllFalse:
 | 
						|
      rewriter.replaceOp(expand, expand.pass_thru());
 | 
						|
      return success();
 | 
						|
    case MaskFormat::Unknown:
 | 
						|
      return failure();
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void ExpandLoadOp::getCanonicalizationPatterns(
 | 
						|
    OwningRewritePatternList &results, MLIRContext *context) {
 | 
						|
  results.insert<ExpandLoadFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// CompressStoreOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(CompressStoreOp op) {
 | 
						|
  VectorType maskVType = op.getMaskVectorType();
 | 
						|
  VectorType valueVType = op.getValueVectorType();
 | 
						|
 | 
						|
  if (valueVType.getElementType() != op.getMemRefType().getElementType())
 | 
						|
    return op.emitOpError("base and value element type should match");
 | 
						|
 | 
						|
  if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
 | 
						|
    return op.emitOpError("expected value dim to match mask dim");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
 | 
						|
  LogicalResult matchAndRewrite(CompressStoreOp compress,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    Value newBase;
 | 
						|
    switch (get1DMaskFormat(compress.mask())) {
 | 
						|
    case MaskFormat::AllTrue:
 | 
						|
      if (!castedToMemRef(compress.getLoc(), compress.base(),
 | 
						|
                          compress.getMemRefType(),
 | 
						|
                          compress.getValueVectorType(), rewriter, newBase))
 | 
						|
        return failure();
 | 
						|
      rewriter.replaceOpWithNewOp<StoreOp>(compress, compress.value(), newBase);
 | 
						|
      return success();
 | 
						|
    case MaskFormat::AllFalse:
 | 
						|
      rewriter.eraseOp(compress);
 | 
						|
      return success();
 | 
						|
    case MaskFormat::Unknown:
 | 
						|
      return failure();
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void CompressStoreOp::getCanonicalizationPatterns(
 | 
						|
    OwningRewritePatternList &results, MLIRContext *context) {
 | 
						|
  results.insert<CompressStoreFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ShapeCastOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Returns true if each element of 'a' is equal to the product of a contiguous
 | 
						|
/// sequence of the elements of 'b'. Returns false otherwise.
 | 
						|
static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
 | 
						|
  unsigned rankA = a.size();
 | 
						|
  unsigned rankB = b.size();
 | 
						|
  assert(rankA < rankB);
 | 
						|
 | 
						|
  unsigned i = 0;
 | 
						|
  unsigned j = 0;
 | 
						|
  while (i < rankA && j < rankB) {
 | 
						|
    int64_t dimA = a[i];
 | 
						|
    int64_t dimB = 1;
 | 
						|
    while (dimB < dimA && j < rankB)
 | 
						|
      dimB *= b[j++];
 | 
						|
    if (dimA != dimB)
 | 
						|
      break;
 | 
						|
    ++i;
 | 
						|
 | 
						|
    // Handle the case when trailing dimensions are of size 1.
 | 
						|
    // Include them into the contiguous sequence.
 | 
						|
    auto isOne = [](int64_t v) { return v == 1; };
 | 
						|
    if (i < rankA && llvm::all_of(a.slice(i), isOne))
 | 
						|
      i = rankA;
 | 
						|
    if (j < rankB && llvm::all_of(b.slice(j), isOne))
 | 
						|
      j = rankB;
 | 
						|
  }
 | 
						|
 | 
						|
  return i == rankA && j == rankB;
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verifyVectorShapeCast(Operation *op,
 | 
						|
                                           VectorType sourceVectorType,
 | 
						|
                                           VectorType resultVectorType) {
 | 
						|
  // Check that element type is the same.
 | 
						|
  if (sourceVectorType.getElementType() != resultVectorType.getElementType())
 | 
						|
    return op->emitOpError("source/result vectors must have same element type");
 | 
						|
  auto sourceShape = sourceVectorType.getShape();
 | 
						|
  auto resultShape = resultVectorType.getShape();
 | 
						|
 | 
						|
  // Check that product of source dim sizes matches product of result dim sizes.
 | 
						|
  int64_t sourceDimProduct = std::accumulate(
 | 
						|
      sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
 | 
						|
  int64_t resultDimProduct = std::accumulate(
 | 
						|
      resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
 | 
						|
  if (sourceDimProduct != resultDimProduct)
 | 
						|
    return op->emitOpError("source/result number of elements must match");
 | 
						|
 | 
						|
  // Check that expanding/contracting rank cases.
 | 
						|
  unsigned sourceRank = sourceVectorType.getRank();
 | 
						|
  unsigned resultRank = resultVectorType.getRank();
 | 
						|
  if (sourceRank < resultRank) {
 | 
						|
    if (!isValidShapeCast(sourceShape, resultShape))
 | 
						|
      return op->emitOpError("invalid shape cast");
 | 
						|
  } else if (sourceRank > resultRank) {
 | 
						|
    if (!isValidShapeCast(resultShape, sourceShape))
 | 
						|
      return op->emitOpError("invalid shape cast");
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(ShapeCastOp op) {
 | 
						|
  auto sourceVectorType = op.source().getType().dyn_cast_or_null<VectorType>();
 | 
						|
  auto resultVectorType = op.result().getType().dyn_cast_or_null<VectorType>();
 | 
						|
 | 
						|
  // Check if source/result are of vector type.
 | 
						|
  if (sourceVectorType && resultVectorType)
 | 
						|
    return verifyVectorShapeCast(op, sourceVectorType, resultVectorType);
 | 
						|
 | 
						|
  // Check if source/result are "tuple of vectors" type.
 | 
						|
  auto sourceTupleType = op.source().getType().dyn_cast_or_null<TupleType>();
 | 
						|
  auto resultTupleType = op.result().getType().dyn_cast_or_null<TupleType>();
 | 
						|
  if (!sourceTupleType || !resultTupleType)
 | 
						|
    return op.emitOpError("source/result must be of same type");
 | 
						|
 | 
						|
  // Check that source/result tuple sizes are the same.
 | 
						|
  if (sourceTupleType.size() != resultTupleType.size())
 | 
						|
    return op.emitOpError("source/result tuples must be the same size");
 | 
						|
 | 
						|
  // Check each source/result tuple element pair.
 | 
						|
  for (unsigned i = 0, e = sourceTupleType.size(); i < e; ++i)
 | 
						|
    if (failed(verifyVectorShapeCast(
 | 
						|
            op, sourceTupleType.getType(i).cast<VectorType>(),
 | 
						|
            resultTupleType.getType(i).cast<VectorType>())))
 | 
						|
      return failure();
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
 | 
						|
  // Nop shape cast.
 | 
						|
  if (source().getType() == result().getType())
 | 
						|
    return source();
 | 
						|
 | 
						|
  // Canceling shape casts.
 | 
						|
  if (auto otherOp = source().getDefiningOp<ShapeCastOp>())
 | 
						|
    if (result().getType() == otherOp.source().getType())
 | 
						|
      return otherOp.source();
 | 
						|
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// VectorBitCastOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(BitCastOp op) {
 | 
						|
  auto sourceVectorType = op.getSourceVectorType();
 | 
						|
  auto resultVectorType = op.getResultVectorType();
 | 
						|
 | 
						|
  for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
 | 
						|
    if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
 | 
						|
      return op.emitOpError("dimension size mismatch at: ") << i;
 | 
						|
  }
 | 
						|
 | 
						|
  if (sourceVectorType.getElementTypeBitWidth() *
 | 
						|
          sourceVectorType.getShape().back() !=
 | 
						|
      resultVectorType.getElementTypeBitWidth() *
 | 
						|
          resultVectorType.getShape().back())
 | 
						|
    return op.emitOpError(
 | 
						|
        "source/result bitwidth of the minor 1-D vectors must be equal");
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
 | 
						|
  // Nop cast.
 | 
						|
  if (source().getType() == result().getType())
 | 
						|
    return source();
 | 
						|
 | 
						|
  // Canceling bitcasts.
 | 
						|
  if (auto otherOp = source().getDefiningOp<BitCastOp>())
 | 
						|
    if (result().getType() == otherOp.source().getType())
 | 
						|
      return otherOp.source();
 | 
						|
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TypeCastOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
 | 
						|
  auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
 | 
						|
  SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
 | 
						|
                              memRefType.getShape().end());
 | 
						|
  if (vectorType)
 | 
						|
    res.append(vectorType.getShape().begin(), vectorType.getShape().end());
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/// Build the canonical memRefType with a single vector.
 | 
						|
/// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
 | 
						|
void TypeCastOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                       Value source) {
 | 
						|
  result.addOperands(source);
 | 
						|
  MemRefType memRefType = source.getType().cast<MemRefType>();
 | 
						|
  VectorType vectorType =
 | 
						|
      VectorType::get(extractShape(memRefType),
 | 
						|
                      getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
 | 
						|
  result.addTypes(
 | 
						|
      MemRefType::get({}, vectorType, {}, memRefType.getMemorySpace()));
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(TypeCastOp op) {
 | 
						|
  MemRefType canonicalType = canonicalizeStridedLayout(op.getMemRefType());
 | 
						|
  if (!canonicalType.getAffineMaps().empty())
 | 
						|
    return op.emitOpError("expects operand to be a memref with no layout");
 | 
						|
  if (!op.getResultMemRefType().getAffineMaps().empty())
 | 
						|
    return op.emitOpError("expects result to be a memref with no layout");
 | 
						|
  if (op.getResultMemRefType().getMemorySpace() !=
 | 
						|
      op.getMemRefType().getMemorySpace())
 | 
						|
    return op.emitOpError("expects result in same memory space");
 | 
						|
 | 
						|
  auto sourceType = op.getMemRefType();
 | 
						|
  auto resultType = op.getResultMemRefType();
 | 
						|
  if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
 | 
						|
      getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
 | 
						|
    return op.emitOpError(
 | 
						|
               "expects result and operand with same underlying scalar type: ")
 | 
						|
           << resultType;
 | 
						|
  if (extractShape(sourceType) != extractShape(resultType))
 | 
						|
    return op.emitOpError(
 | 
						|
               "expects concatenated result and operand shapes to be equal: ")
 | 
						|
           << resultType;
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TupleOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static ParseResult parseTupleOp(OpAsmParser &parser, OperationState &result) {
 | 
						|
  SmallVector<OpAsmParser::OperandType, 4> operandInfos;
 | 
						|
  SmallVector<Type, 4> types;
 | 
						|
  auto loc = parser.getCurrentLocation();
 | 
						|
  auto *ctx = parser.getBuilder().getContext();
 | 
						|
  return failure(
 | 
						|
      parser.parseOperandList(operandInfos) ||
 | 
						|
      parser.parseOptionalAttrDict(result.attributes) ||
 | 
						|
      parser.parseColonTypeList(types) ||
 | 
						|
      parser.resolveOperands(operandInfos, types, loc, result.operands) ||
 | 
						|
      parser.addTypeToList(TupleType::get(types, ctx), result.types));
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, TupleOp op) {
 | 
						|
  p << op.getOperationName() << ' ';
 | 
						|
  p.printOperands(op.getOperands());
 | 
						|
  p.printOptionalAttrDict(op.getAttrs());
 | 
						|
  p << " : ";
 | 
						|
  llvm::interleaveComma(op.getOperation()->getOperandTypes(), p);
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(TupleOp op) { return success(); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TransposeOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
 | 
						|
                                Value vector, ArrayRef<int64_t> transp) {
 | 
						|
  VectorType vt = vector.getType().cast<VectorType>();
 | 
						|
  SmallVector<int64_t, 4> transposedShape(vt.getRank());
 | 
						|
  for (unsigned i = 0; i < transp.size(); ++i)
 | 
						|
    transposedShape[i] = vt.getShape()[transp[i]];
 | 
						|
 | 
						|
  result.addOperands(vector);
 | 
						|
  result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
 | 
						|
  result.addAttribute(getTranspAttrName(), builder.getI64ArrayAttr(transp));
 | 
						|
}
 | 
						|
 | 
						|
// Eliminates transpose operations, which produce values identical to their
 | 
						|
// input values. This happens when the dimensions of the input vector remain in
 | 
						|
// their original order after the transpose operation.
 | 
						|
OpFoldResult TransposeOp::fold(ArrayRef<Attribute> operands) {
 | 
						|
  SmallVector<int64_t, 4> transp;
 | 
						|
  getTransp(transp);
 | 
						|
 | 
						|
  // Check if the permutation of the dimensions contains sequential values:
 | 
						|
  // {0, 1, 2, ...}.
 | 
						|
  for (int64_t i = 0, e = transp.size(); i < e; i++) {
 | 
						|
    if (transp[i] != i)
 | 
						|
      return {};
 | 
						|
  }
 | 
						|
 | 
						|
  return vector();
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(TransposeOp op) {
 | 
						|
  VectorType vectorType = op.getVectorType();
 | 
						|
  VectorType resultType = op.getResultType();
 | 
						|
  int64_t rank = resultType.getRank();
 | 
						|
  if (vectorType.getRank() != rank)
 | 
						|
    return op.emitOpError("vector result rank mismatch: ") << rank;
 | 
						|
  // Verify transposition array.
 | 
						|
  auto transpAttr = op.transp().getValue();
 | 
						|
  int64_t size = transpAttr.size();
 | 
						|
  if (rank != size)
 | 
						|
    return op.emitOpError("transposition length mismatch: ") << size;
 | 
						|
  SmallVector<bool, 8> seen(rank, false);
 | 
						|
  for (auto ta : llvm::enumerate(transpAttr)) {
 | 
						|
    int64_t i = ta.value().cast<IntegerAttr>().getInt();
 | 
						|
    if (i < 0 || i >= rank)
 | 
						|
      return op.emitOpError("transposition index out of range: ") << i;
 | 
						|
    if (seen[i])
 | 
						|
      return op.emitOpError("duplicate position index: ") << i;
 | 
						|
    seen[i] = true;
 | 
						|
    if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
 | 
						|
      return op.emitOpError("dimension size mismatch at: ") << i;
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
 | 
						|
class TransposeFolder final : public OpRewritePattern<TransposeOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<TransposeOp>::OpRewritePattern;
 | 
						|
 | 
						|
  LogicalResult matchAndRewrite(TransposeOp transposeOp,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    // Wrapper around TransposeOp::getTransp() for cleaner code.
 | 
						|
    auto getPermutation = [](TransposeOp transpose) {
 | 
						|
      SmallVector<int64_t, 4> permutation;
 | 
						|
      transpose.getTransp(permutation);
 | 
						|
      return permutation;
 | 
						|
    };
 | 
						|
 | 
						|
    // Composes two permutations: result[i] = permutation1[permutation2[i]].
 | 
						|
    auto composePermutations = [](ArrayRef<int64_t> permutation1,
 | 
						|
                                  ArrayRef<int64_t> permutation2) {
 | 
						|
      SmallVector<int64_t, 4> result;
 | 
						|
      for (auto index : permutation2)
 | 
						|
        result.push_back(permutation1[index]);
 | 
						|
      return result;
 | 
						|
    };
 | 
						|
 | 
						|
    // Return if the input of 'transposeOp' is not defined by another transpose.
 | 
						|
    TransposeOp parentTransposeOp =
 | 
						|
        transposeOp.vector().getDefiningOp<TransposeOp>();
 | 
						|
    if (!parentTransposeOp)
 | 
						|
      return failure();
 | 
						|
 | 
						|
    SmallVector<int64_t, 4> permutation = composePermutations(
 | 
						|
        getPermutation(parentTransposeOp), getPermutation(transposeOp));
 | 
						|
    // Replace 'transposeOp' with a new transpose operation.
 | 
						|
    rewriter.replaceOpWithNewOp<TransposeOp>(
 | 
						|
        transposeOp, transposeOp.getResult().getType(),
 | 
						|
        parentTransposeOp.vector(),
 | 
						|
        vector::getVectorSubscriptAttr(rewriter, permutation));
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void TransposeOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
 | 
						|
                                              MLIRContext *context) {
 | 
						|
  results.insert<TransposeFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
void TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
 | 
						|
  populateFromInt64AttrArray(transp(), results);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TupleGetOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static ParseResult parseTupleGetOp(OpAsmParser &parser,
 | 
						|
                                   OperationState &result) {
 | 
						|
  OpAsmParser::OperandType operandInfo;
 | 
						|
  IntegerAttr indexAttr;
 | 
						|
  StringRef indexAttrName = TupleGetOp::getIndexAttrName();
 | 
						|
  Type indexType = parser.getBuilder().getIndexType();
 | 
						|
  TupleType tupleType;
 | 
						|
  if (parser.parseOperand(operandInfo) || parser.parseComma() ||
 | 
						|
      parser.parseAttribute(indexAttr, indexType, indexAttrName,
 | 
						|
                            result.attributes) ||
 | 
						|
      parser.parseOptionalAttrDict(result.attributes) ||
 | 
						|
      parser.parseColonType(tupleType) ||
 | 
						|
      parser.resolveOperand(operandInfo, tupleType, result.operands))
 | 
						|
    return failure();
 | 
						|
  if (indexAttr.getInt() < 0 ||
 | 
						|
      indexAttr.getInt() >= static_cast<int64_t>(tupleType.size()))
 | 
						|
    return failure();
 | 
						|
  parser.addTypeToList(tupleType.getType(indexAttr.getInt()), result.types);
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static void print(OpAsmPrinter &p, TupleGetOp op) {
 | 
						|
  p << op.getOperationName() << ' ' << op.getOperand() << ", " << op.index();
 | 
						|
  p.printOptionalAttrDict(op.getAttrs(),
 | 
						|
                          /*elidedAttrs=*/{TupleGetOp::getIndexAttrName()});
 | 
						|
  p << " : " << op.getOperand().getType();
 | 
						|
}
 | 
						|
 | 
						|
static LogicalResult verify(TupleGetOp op) {
 | 
						|
  auto tupleType = op.getOperand().getType().cast<TupleType>();
 | 
						|
  if (op.getIndex() < 0 ||
 | 
						|
      op.getIndex() >= static_cast<int64_t>(tupleType.size()))
 | 
						|
    return op.emitOpError("tuple get index out of range");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
OpFoldResult TupleGetOp::fold(ArrayRef<Attribute> operands) {
 | 
						|
  // Rewrite:
 | 
						|
  //    %t = vector.tuple .., %e_i, ..
 | 
						|
  //    %x = vector.tuple_get %t, i
 | 
						|
  // into:
 | 
						|
  //    %t = vector.tuple .., %e_i, ..  // one less use
 | 
						|
  //    %x = %e_i
 | 
						|
  if (auto tupleOp = getOperand().getDefiningOp<TupleOp>())
 | 
						|
    return tupleOp.getOperand(getIndex());
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ConstantMaskOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(ConstantMaskOp &op) {
 | 
						|
  // Verify that array attr size matches the rank of the vector result.
 | 
						|
  auto resultType = op.getResult().getType().cast<VectorType>();
 | 
						|
  if (static_cast<int64_t>(op.mask_dim_sizes().size()) != resultType.getRank())
 | 
						|
    return op.emitOpError(
 | 
						|
        "must specify array attr of size equal vector result rank");
 | 
						|
  // Verify that each array attr element is in bounds of corresponding vector
 | 
						|
  // result dimension size.
 | 
						|
  auto resultShape = resultType.getShape();
 | 
						|
  SmallVector<int64_t, 4> maskDimSizes;
 | 
						|
  for (auto it : llvm::enumerate(op.mask_dim_sizes())) {
 | 
						|
    int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
 | 
						|
    if (attrValue < 0 || attrValue > resultShape[it.index()])
 | 
						|
      return op.emitOpError(
 | 
						|
          "array attr of size out of bounds of vector result dimension size");
 | 
						|
    maskDimSizes.push_back(attrValue);
 | 
						|
  }
 | 
						|
  // Verify that if one mask dim size is zero, they all should be zero (because
 | 
						|
  // the mask region is a conjunction of each mask dimension interval).
 | 
						|
  bool any_zeros = llvm::is_contained(maskDimSizes, 0);
 | 
						|
  bool all_zeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
 | 
						|
  if (any_zeros && !all_zeros)
 | 
						|
    return op.emitOpError("expected all mask dim sizes to be zeros, "
 | 
						|
                          "as a result of conjunction with zero mask dim");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// CreateMaskOp
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static LogicalResult verify(CreateMaskOp op) {
 | 
						|
  // Verify that an operand was specified for each result vector each dimension.
 | 
						|
  if (op.getNumOperands() !=
 | 
						|
      op.getResult().getType().cast<VectorType>().getRank())
 | 
						|
    return op.emitOpError(
 | 
						|
        "must specify an operand for each result vector dimension");
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
 | 
						|
class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
 | 
						|
public:
 | 
						|
  using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
 | 
						|
 | 
						|
  LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
 | 
						|
                                PatternRewriter &rewriter) const override {
 | 
						|
    // Return if any of 'createMaskOp' operands are not defined by a constant.
 | 
						|
    auto is_not_def_by_constant = [](Value operand) {
 | 
						|
      return !isa_and_nonnull<ConstantIndexOp>(operand.getDefiningOp());
 | 
						|
    };
 | 
						|
    if (llvm::any_of(createMaskOp.operands(), is_not_def_by_constant))
 | 
						|
      return failure();
 | 
						|
    // Gather constant mask dimension sizes.
 | 
						|
    SmallVector<int64_t, 4> maskDimSizes;
 | 
						|
    for (auto operand : createMaskOp.operands()) {
 | 
						|
      auto defOp = operand.getDefiningOp();
 | 
						|
      maskDimSizes.push_back(cast<ConstantIndexOp>(defOp).getValue());
 | 
						|
    }
 | 
						|
    // Replace 'createMaskOp' with ConstantMaskOp.
 | 
						|
    rewriter.replaceOpWithNewOp<ConstantMaskOp>(
 | 
						|
        createMaskOp, createMaskOp.getResult().getType(),
 | 
						|
        vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void CreateMaskOp::getCanonicalizationPatterns(
 | 
						|
    OwningRewritePatternList &results, MLIRContext *context) {
 | 
						|
  results.insert<CreateMaskFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
 | 
						|
    OwningRewritePatternList &patterns, MLIRContext *context) {
 | 
						|
  patterns.insert<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder,
 | 
						|
                  GatherFolder, ScatterFolder, ExpandLoadFolder,
 | 
						|
                  CompressStoreFolder, StridedSliceConstantMaskFolder,
 | 
						|
                  TransposeFolder>(context);
 | 
						|
}
 | 
						|
 | 
						|
namespace mlir {
 | 
						|
namespace vector {
 | 
						|
 | 
						|
#define GET_OP_CLASSES
 | 
						|
#include "mlir/Dialect/Vector/VectorOps.cpp.inc"
 | 
						|
 | 
						|
} // namespace vector
 | 
						|
} // namespace mlir
 |