forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			898 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			898 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file promote memory references to be register references.  It promotes
 | 
						|
// alloca instructions which only have loads and stores as uses.  An alloca is
 | 
						|
// transformed by using dominator frontiers to place PHI nodes, then traversing
 | 
						|
// the function in depth-first order to rewrite loads and stores as appropriate.
 | 
						|
// This is just the standard SSA construction algorithm to construct "pruned"
 | 
						|
// SSA form.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "mem2reg"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
 | 
						|
STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
 | 
						|
STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
 | 
						|
 | 
						|
// Provide DenseMapKeyInfo for all pointers.
 | 
						|
namespace llvm {
 | 
						|
template<>
 | 
						|
struct DenseMapKeyInfo<std::pair<BasicBlock*, unsigned> > {
 | 
						|
  static inline std::pair<BasicBlock*, unsigned> getEmptyKey() {
 | 
						|
    return std::make_pair((BasicBlock*)-1, ~0U);
 | 
						|
  }
 | 
						|
  static inline std::pair<BasicBlock*, unsigned> getTombstoneKey() {
 | 
						|
    return std::make_pair((BasicBlock*)-2, 0U);
 | 
						|
  }
 | 
						|
  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
 | 
						|
    return DenseMapKeyInfo<void*>::getHashValue(Val.first) + Val.second*2;
 | 
						|
  }
 | 
						|
  static bool isPod() { return true; }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
 | 
						|
/// This is true if there are only loads and stores to the alloca.
 | 
						|
///
 | 
						|
bool llvm::isAllocaPromotable(const AllocaInst *AI) {
 | 
						|
  // FIXME: If the memory unit is of pointer or integer type, we can permit
 | 
						|
  // assignments to subsections of the memory unit.
 | 
						|
 | 
						|
  // Only allow direct loads and stores...
 | 
						|
  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
 | 
						|
       UI != UE; ++UI)     // Loop over all of the uses of the alloca
 | 
						|
    if (isa<LoadInst>(*UI)) {
 | 
						|
      // noop
 | 
						|
    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | 
						|
      if (SI->getOperand(0) == AI)
 | 
						|
        return false;   // Don't allow a store OF the AI, only INTO the AI.
 | 
						|
    } else {
 | 
						|
      return false;   // Not a load or store.
 | 
						|
    }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct AllocaInfo;
 | 
						|
 | 
						|
  // Data package used by RenamePass()
 | 
						|
  class VISIBILITY_HIDDEN RenamePassData {
 | 
						|
  public:
 | 
						|
    typedef std::vector<Value *> ValVector;
 | 
						|
    
 | 
						|
    RenamePassData() {}
 | 
						|
    RenamePassData(BasicBlock *B, BasicBlock *P,
 | 
						|
                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
 | 
						|
    BasicBlock *BB;
 | 
						|
    BasicBlock *Pred;
 | 
						|
    ValVector Values;
 | 
						|
    
 | 
						|
    void swap(RenamePassData &RHS) {
 | 
						|
      std::swap(BB, RHS.BB);
 | 
						|
      std::swap(Pred, RHS.Pred);
 | 
						|
      Values.swap(RHS.Values);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct VISIBILITY_HIDDEN PromoteMem2Reg {
 | 
						|
    /// Allocas - The alloca instructions being promoted.
 | 
						|
    ///
 | 
						|
    std::vector<AllocaInst*> Allocas;
 | 
						|
    SmallVector<AllocaInst*, 16> &RetryList;
 | 
						|
    DominatorTree &DT;
 | 
						|
    DominanceFrontier &DF;
 | 
						|
 | 
						|
    /// AST - An AliasSetTracker object to update.  If null, don't update it.
 | 
						|
    ///
 | 
						|
    AliasSetTracker *AST;
 | 
						|
 | 
						|
    /// AllocaLookup - Reverse mapping of Allocas.
 | 
						|
    ///
 | 
						|
    std::map<AllocaInst*, unsigned>  AllocaLookup;
 | 
						|
 | 
						|
    /// NewPhiNodes - The PhiNodes we're adding.
 | 
						|
    ///
 | 
						|
    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
 | 
						|
    
 | 
						|
    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
 | 
						|
    /// it corresponds to.
 | 
						|
    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
 | 
						|
    
 | 
						|
    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
 | 
						|
    /// each alloca that is of pointer type, we keep track of what to copyValue
 | 
						|
    /// to the inserted PHI nodes here.
 | 
						|
    ///
 | 
						|
    std::vector<Value*> PointerAllocaValues;
 | 
						|
 | 
						|
    /// Visited - The set of basic blocks the renamer has already visited.
 | 
						|
    ///
 | 
						|
    SmallPtrSet<BasicBlock*, 16> Visited;
 | 
						|
 | 
						|
    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
 | 
						|
    /// non-determinstic behavior.
 | 
						|
    DenseMap<BasicBlock*, unsigned> BBNumbers;
 | 
						|
 | 
						|
  public:
 | 
						|
    PromoteMem2Reg(const std::vector<AllocaInst*> &A,
 | 
						|
                   SmallVector<AllocaInst*, 16> &Retry, DominatorTree &dt,
 | 
						|
                   DominanceFrontier &df, AliasSetTracker *ast)
 | 
						|
      : Allocas(A), RetryList(Retry), DT(dt), DF(df), AST(ast) {}
 | 
						|
 | 
						|
    void run();
 | 
						|
 | 
						|
    /// properlyDominates - Return true if I1 properly dominates I2.
 | 
						|
    ///
 | 
						|
    bool properlyDominates(Instruction *I1, Instruction *I2) const {
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
 | 
						|
        I1 = II->getNormalDest()->begin();
 | 
						|
      return DT.properlyDominates(I1->getParent(), I2->getParent());
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
 | 
						|
    ///
 | 
						|
    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
 | 
						|
      return DT.dominates(BB1, BB2);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void RemoveFromAllocasList(unsigned &AllocaIdx) {
 | 
						|
      Allocas[AllocaIdx] = Allocas.back();
 | 
						|
      Allocas.pop_back();
 | 
						|
      --AllocaIdx;
 | 
						|
    }
 | 
						|
    
 | 
						|
    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info);
 | 
						|
 | 
						|
    void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
 | 
						|
                               SmallPtrSet<PHINode*, 16> &DeadPHINodes);
 | 
						|
    bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
 | 
						|
    void PromoteLocallyUsedAllocas(BasicBlock *BB,
 | 
						|
                                   const std::vector<AllocaInst*> &AIs);
 | 
						|
 | 
						|
    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
 | 
						|
                    RenamePassData::ValVector &IncVals,
 | 
						|
                    std::vector<RenamePassData> &Worklist);
 | 
						|
    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
 | 
						|
                      SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
 | 
						|
  };
 | 
						|
  
 | 
						|
  struct AllocaInfo {
 | 
						|
    std::vector<BasicBlock*> DefiningBlocks;
 | 
						|
    std::vector<BasicBlock*> UsingBlocks;
 | 
						|
    
 | 
						|
    StoreInst  *OnlyStore;
 | 
						|
    BasicBlock *OnlyBlock;
 | 
						|
    bool OnlyUsedInOneBlock;
 | 
						|
    
 | 
						|
    Value *AllocaPointerVal;
 | 
						|
    
 | 
						|
    void clear() {
 | 
						|
      DefiningBlocks.clear();
 | 
						|
      UsingBlocks.clear();
 | 
						|
      OnlyStore = 0;
 | 
						|
      OnlyBlock = 0;
 | 
						|
      OnlyUsedInOneBlock = true;
 | 
						|
      AllocaPointerVal = 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
 | 
						|
    /// ivars.
 | 
						|
    void AnalyzeAlloca(AllocaInst *AI) {
 | 
						|
      clear();
 | 
						|
      
 | 
						|
      // As we scan the uses of the alloca instruction, keep track of stores,
 | 
						|
      // and decide whether all of the loads and stores to the alloca are within
 | 
						|
      // the same basic block.
 | 
						|
      for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
 | 
						|
           U != E; ++U){
 | 
						|
        Instruction *User = cast<Instruction>(*U);
 | 
						|
        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
          // Remember the basic blocks which define new values for the alloca
 | 
						|
          DefiningBlocks.push_back(SI->getParent());
 | 
						|
          AllocaPointerVal = SI->getOperand(0);
 | 
						|
          OnlyStore = SI;
 | 
						|
        } else {
 | 
						|
          LoadInst *LI = cast<LoadInst>(User);
 | 
						|
          // Otherwise it must be a load instruction, keep track of variable reads
 | 
						|
          UsingBlocks.push_back(LI->getParent());
 | 
						|
          AllocaPointerVal = LI;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (OnlyUsedInOneBlock) {
 | 
						|
          if (OnlyBlock == 0)
 | 
						|
            OnlyBlock = User->getParent();
 | 
						|
          else if (OnlyBlock != User->getParent())
 | 
						|
            OnlyUsedInOneBlock = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
}  // end of anonymous namespace
 | 
						|
 | 
						|
 | 
						|
void PromoteMem2Reg::run() {
 | 
						|
  Function &F = *DF.getRoot()->getParent();
 | 
						|
 | 
						|
  // LocallyUsedAllocas - Keep track of all of the alloca instructions which are
 | 
						|
  // only used in a single basic block.  These instructions can be efficiently
 | 
						|
  // promoted by performing a single linear scan over that one block.  Since
 | 
						|
  // individual basic blocks are sometimes large, we group together all allocas
 | 
						|
  // that are live in a single basic block by the basic block they are live in.
 | 
						|
  std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
 | 
						|
 | 
						|
  if (AST) PointerAllocaValues.resize(Allocas.size());
 | 
						|
 | 
						|
  AllocaInfo Info;
 | 
						|
 | 
						|
  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
 | 
						|
    AllocaInst *AI = Allocas[AllocaNum];
 | 
						|
 | 
						|
    assert(isAllocaPromotable(AI) &&
 | 
						|
           "Cannot promote non-promotable alloca!");
 | 
						|
    assert(AI->getParent()->getParent() == &F &&
 | 
						|
           "All allocas should be in the same function, which is same as DF!");
 | 
						|
 | 
						|
    if (AI->use_empty()) {
 | 
						|
      // If there are no uses of the alloca, just delete it now.
 | 
						|
      if (AST) AST->deleteValue(AI);
 | 
						|
      AI->eraseFromParent();
 | 
						|
 | 
						|
      // Remove the alloca from the Allocas list, since it has been processed
 | 
						|
      RemoveFromAllocasList(AllocaNum);
 | 
						|
      ++NumDeadAlloca;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Calculate the set of read and write-locations for each alloca.  This is
 | 
						|
    // analogous to finding the 'uses' and 'definitions' of each variable.
 | 
						|
    Info.AnalyzeAlloca(AI);
 | 
						|
 | 
						|
    // If the alloca is only read and written in one basic block, just perform a
 | 
						|
    // linear sweep over the block to eliminate it.
 | 
						|
    if (Info.OnlyUsedInOneBlock) {
 | 
						|
      LocallyUsedAllocas[Info.OnlyBlock].push_back(AI);
 | 
						|
 | 
						|
      // Remove the alloca from the Allocas list, since it will be processed.
 | 
						|
      RemoveFromAllocasList(AllocaNum);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If there is only a single store to this value, replace any loads of
 | 
						|
    // it that are directly dominated by the definition with the value stored.
 | 
						|
    if (Info.DefiningBlocks.size() == 1) {
 | 
						|
      RewriteSingleStoreAlloca(AI, Info);
 | 
						|
 | 
						|
      // Finally, after the scan, check to see if the store is all that is left.
 | 
						|
      if (Info.UsingBlocks.empty()) {
 | 
						|
        ++NumSingleStore;
 | 
						|
        // The alloca has been processed, move on.
 | 
						|
        RemoveFromAllocasList(AllocaNum);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    if (AST)
 | 
						|
      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
 | 
						|
 | 
						|
    // If we haven't computed a numbering for the BB's in the function, do so
 | 
						|
    // now.
 | 
						|
    if (BBNumbers.empty()) {
 | 
						|
      unsigned ID = 0;
 | 
						|
      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | 
						|
        BBNumbers[I] = ID++;
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the locations where PhiNodes need to be inserted.  Look at the
 | 
						|
    // dominance frontier of EACH basic-block we have a write in.
 | 
						|
    //
 | 
						|
    unsigned CurrentVersion = 0;
 | 
						|
    SmallPtrSet<PHINode*, 16> InsertedPHINodes;
 | 
						|
    std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
 | 
						|
    while (!Info.DefiningBlocks.empty()) {
 | 
						|
      BasicBlock *BB = Info.DefiningBlocks.back();
 | 
						|
      Info.DefiningBlocks.pop_back();
 | 
						|
 | 
						|
      // Look up the DF for this write, add it to PhiNodes
 | 
						|
      DominanceFrontier::const_iterator it = DF.find(BB);
 | 
						|
      if (it != DF.end()) {
 | 
						|
        const DominanceFrontier::DomSetType &S = it->second;
 | 
						|
 | 
						|
        // In theory we don't need the indirection through the DFBlocks vector.
 | 
						|
        // In practice, the order of calling QueuePhiNode would depend on the
 | 
						|
        // (unspecified) ordering of basic blocks in the dominance frontier,
 | 
						|
        // which would give PHI nodes non-determinstic subscripts.  Fix this by
 | 
						|
        // processing blocks in order of the occurance in the function.
 | 
						|
        for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
 | 
						|
             PE = S.end(); P != PE; ++P)
 | 
						|
          DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
 | 
						|
 | 
						|
        // Sort by which the block ordering in the function.
 | 
						|
        std::sort(DFBlocks.begin(), DFBlocks.end());
 | 
						|
 | 
						|
        for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
 | 
						|
          BasicBlock *BB = DFBlocks[i].second;
 | 
						|
          if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
 | 
						|
            Info.DefiningBlocks.push_back(BB);
 | 
						|
        }
 | 
						|
        DFBlocks.clear();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have inserted PHI nodes along the Iterated Dominance Frontier
 | 
						|
    // of the writes to the variable, scan through the reads of the variable,
 | 
						|
    // marking PHI nodes which are actually necessary as alive (by removing them
 | 
						|
    // from the InsertedPHINodes set).  This is not perfect: there may PHI
 | 
						|
    // marked alive because of loads which are dominated by stores, but there
 | 
						|
    // will be no unmarked PHI nodes which are actually used.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i)
 | 
						|
      MarkDominatingPHILive(Info.UsingBlocks[i], AllocaNum, InsertedPHINodes);
 | 
						|
    Info.UsingBlocks.clear();
 | 
						|
 | 
						|
    // If there are any PHI nodes which are now known to be dead, remove them!
 | 
						|
    for (SmallPtrSet<PHINode*, 16>::iterator I = InsertedPHINodes.begin(),
 | 
						|
           E = InsertedPHINodes.end(); I != E; ++I) {
 | 
						|
      PHINode *PN = *I;
 | 
						|
      bool Erased=NewPhiNodes.erase(std::make_pair(PN->getParent(), AllocaNum));
 | 
						|
      Erased=Erased;
 | 
						|
      assert(Erased && "PHI already removed?");
 | 
						|
      
 | 
						|
      if (AST && isa<PointerType>(PN->getType()))
 | 
						|
        AST->deleteValue(PN);
 | 
						|
      PN->eraseFromParent();
 | 
						|
      PhiToAllocaMap.erase(PN);
 | 
						|
    }
 | 
						|
 | 
						|
    // Keep the reverse mapping of the 'Allocas' array.
 | 
						|
    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
 | 
						|
  }
 | 
						|
 | 
						|
  // Process all allocas which are only used in a single basic block.
 | 
						|
  for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
 | 
						|
         LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
 | 
						|
    const std::vector<AllocaInst*> &LocAllocas = I->second;
 | 
						|
    assert(!LocAllocas.empty() && "empty alloca list??");
 | 
						|
 | 
						|
    // It's common for there to only be one alloca in the list.  Handle it
 | 
						|
    // efficiently.
 | 
						|
    if (LocAllocas.size() == 1) {
 | 
						|
      // If we can do the quick promotion pass, do so now.
 | 
						|
      if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
 | 
						|
        RetryList.push_back(LocAllocas[0]);  // Failed, retry later.
 | 
						|
    } else {
 | 
						|
      // Locally promote anything possible.  Note that if this is unable to
 | 
						|
      // promote a particular alloca, it puts the alloca onto the Allocas vector
 | 
						|
      // for global processing.
 | 
						|
      PromoteLocallyUsedAllocas(I->first, LocAllocas);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Allocas.empty())
 | 
						|
    return; // All of the allocas must have been trivial!
 | 
						|
 | 
						|
  // Set the incoming values for the basic block to be null values for all of
 | 
						|
  // the alloca's.  We do this in case there is a load of a value that has not
 | 
						|
  // been stored yet.  In this case, it will get this null value.
 | 
						|
  //
 | 
						|
  RenamePassData::ValVector Values(Allocas.size());
 | 
						|
  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
 | 
						|
    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
 | 
						|
 | 
						|
  // Walks all basic blocks in the function performing the SSA rename algorithm
 | 
						|
  // and inserting the phi nodes we marked as necessary
 | 
						|
  //
 | 
						|
  std::vector<RenamePassData> RenamePassWorkList;
 | 
						|
  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
 | 
						|
  while (!RenamePassWorkList.empty()) {
 | 
						|
    RenamePassData RPD;
 | 
						|
    RPD.swap(RenamePassWorkList.back());
 | 
						|
    RenamePassWorkList.pop_back();
 | 
						|
    // RenamePass may add new worklist entries.
 | 
						|
    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
 | 
						|
  Visited.clear();
 | 
						|
 | 
						|
  // Remove the allocas themselves from the function.
 | 
						|
  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
 | 
						|
    Instruction *A = Allocas[i];
 | 
						|
 | 
						|
    // If there are any uses of the alloca instructions left, they must be in
 | 
						|
    // sections of dead code that were not processed on the dominance frontier.
 | 
						|
    // Just delete the users now.
 | 
						|
    //
 | 
						|
    if (!A->use_empty())
 | 
						|
      A->replaceAllUsesWith(UndefValue::get(A->getType()));
 | 
						|
    if (AST) AST->deleteValue(A);
 | 
						|
    A->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  
 | 
						|
  // Loop over all of the PHI nodes and see if there are any that we can get
 | 
						|
  // rid of because they merge all of the same incoming values.  This can
 | 
						|
  // happen due to undef values coming into the PHI nodes.  This process is
 | 
						|
  // iterative, because eliminating one PHI node can cause others to be removed.
 | 
						|
  bool EliminatedAPHI = true;
 | 
						|
  while (EliminatedAPHI) {
 | 
						|
    EliminatedAPHI = false;
 | 
						|
    
 | 
						|
    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
 | 
						|
           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
 | 
						|
      PHINode *PN = I->second;
 | 
						|
      
 | 
						|
      // If this PHI node merges one value and/or undefs, get the value.
 | 
						|
      if (Value *V = PN->hasConstantValue(true)) {
 | 
						|
        if (!isa<Instruction>(V) ||
 | 
						|
            properlyDominates(cast<Instruction>(V), PN)) {
 | 
						|
          if (AST && isa<PointerType>(PN->getType()))
 | 
						|
            AST->deleteValue(PN);
 | 
						|
          PN->replaceAllUsesWith(V);
 | 
						|
          PN->eraseFromParent();
 | 
						|
          NewPhiNodes.erase(I++);
 | 
						|
          EliminatedAPHI = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // At this point, the renamer has added entries to PHI nodes for all reachable
 | 
						|
  // code.  Unfortunately, there may be unreachable blocks which the renamer
 | 
						|
  // hasn't traversed.  If this is the case, the PHI nodes may not
 | 
						|
  // have incoming values for all predecessors.  Loop over all PHI nodes we have
 | 
						|
  // created, inserting undef values if they are missing any incoming values.
 | 
						|
  //
 | 
						|
  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
 | 
						|
         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
 | 
						|
    // We want to do this once per basic block.  As such, only process a block
 | 
						|
    // when we find the PHI that is the first entry in the block.
 | 
						|
    PHINode *SomePHI = I->second;
 | 
						|
    BasicBlock *BB = SomePHI->getParent();
 | 
						|
    if (&BB->front() != SomePHI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Count the number of preds for BB.
 | 
						|
    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
 | 
						|
 | 
						|
    // Only do work here if there the PHI nodes are missing incoming values.  We
 | 
						|
    // know that all PHI nodes that were inserted in a block will have the same
 | 
						|
    // number of incoming values, so we can just check any of them.
 | 
						|
    if (SomePHI->getNumIncomingValues() == Preds.size())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Ok, now we know that all of the PHI nodes are missing entries for some
 | 
						|
    // basic blocks.  Start by sorting the incoming predecessors for efficient
 | 
						|
    // access.
 | 
						|
    std::sort(Preds.begin(), Preds.end());
 | 
						|
    
 | 
						|
    // Now we loop through all BB's which have entries in SomePHI and remove
 | 
						|
    // them from the Preds list.
 | 
						|
    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      // Do a log(n) search of the Preds list for the entry we want.
 | 
						|
      SmallVector<BasicBlock*, 16>::iterator EntIt =
 | 
						|
        std::lower_bound(Preds.begin(), Preds.end(),
 | 
						|
                         SomePHI->getIncomingBlock(i));
 | 
						|
      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
 | 
						|
             "PHI node has entry for a block which is not a predecessor!");
 | 
						|
 | 
						|
      // Remove the entry
 | 
						|
      Preds.erase(EntIt);
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point, the blocks left in the preds list must have dummy
 | 
						|
    // entries inserted into every PHI nodes for the block.  Update all the phi
 | 
						|
    // nodes in this block that we are inserting (there could be phis before
 | 
						|
    // mem2reg runs).
 | 
						|
    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
 | 
						|
    BasicBlock::iterator BBI = BB->begin();
 | 
						|
    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
 | 
						|
           SomePHI->getNumIncomingValues() == NumBadPreds) {
 | 
						|
      Value *UndefVal = UndefValue::get(SomePHI->getType());
 | 
						|
      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
 | 
						|
        SomePHI->addIncoming(UndefVal, Preds[pred]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
        
 | 
						|
  NewPhiNodes.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// RewriteSingleStoreAlloca - If there is only a single store to this value,
 | 
						|
/// replace any loads of it that are directly dominated by the definition with
 | 
						|
/// the value stored.
 | 
						|
void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
 | 
						|
                                              AllocaInfo &Info) {
 | 
						|
  StoreInst *OnlyStore = Info.OnlyStore;
 | 
						|
  
 | 
						|
  // Be aware of loads before the store.
 | 
						|
  std::set<BasicBlock*> ProcessedBlocks;
 | 
						|
  for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i) {
 | 
						|
    // If the store dominates the block and if we haven't processed it yet,
 | 
						|
    // do so now.
 | 
						|
    if (!dominates(OnlyStore->getParent(), Info.UsingBlocks[i]))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    BasicBlock *UseBlock = Info.UsingBlocks[i];
 | 
						|
    if (!ProcessedBlocks.insert(UseBlock).second)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If the use and store are in the same block, do a quick scan to
 | 
						|
    // verify that there are no uses before the store.
 | 
						|
    if (UseBlock == OnlyStore->getParent()) {
 | 
						|
      BasicBlock::iterator I = UseBlock->begin();
 | 
						|
      for (; &*I != OnlyStore; ++I) { // scan block for store.
 | 
						|
        if (isa<LoadInst>(I) && I->getOperand(0) == AI)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      if (&*I != OnlyStore) break;  // Do not handle this case.
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, if this is a different block or if all uses happen
 | 
						|
    // after the store, do a simple linear scan to replace loads with
 | 
						|
    // the stored value.
 | 
						|
    for (BasicBlock::iterator I = UseBlock->begin(),E = UseBlock->end();
 | 
						|
         I != E; ) {
 | 
						|
      if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
 | 
						|
        if (LI->getOperand(0) == AI) {
 | 
						|
          LI->replaceAllUsesWith(OnlyStore->getOperand(0));
 | 
						|
          if (AST && isa<PointerType>(LI->getType()))
 | 
						|
            AST->deleteValue(LI);
 | 
						|
          LI->eraseFromParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Finally, remove this block from the UsingBlock set.
 | 
						|
    Info.UsingBlocks[i] = Info.UsingBlocks.back();
 | 
						|
    Info.UsingBlocks.pop_back();
 | 
						|
    --i; --e;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
 | 
						|
// "minimal" SSA form.  To do this, it inserts all of the PHI nodes on the IDF
 | 
						|
// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
 | 
						|
// each read of the variable.  For each block that reads the variable, this
 | 
						|
// function is called, which removes used PHI nodes from the DeadPHINodes set.
 | 
						|
// After all of the reads have been processed, any PHI nodes left in the
 | 
						|
// DeadPHINodes set are removed.
 | 
						|
//
 | 
						|
void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
 | 
						|
                                      SmallPtrSet<PHINode*, 16> &DeadPHINodes) {
 | 
						|
  // Scan the immediate dominators of this block looking for a block which has a
 | 
						|
  // PHI node for Alloca num.  If we find it, mark the PHI node as being alive!
 | 
						|
  DomTreeNode *IDomNode = DT.getNode(BB);
 | 
						|
  for (DomTreeNode *IDom = IDomNode; IDom; IDom = IDom->getIDom()) {
 | 
						|
    BasicBlock *DomBB = IDom->getBlock();
 | 
						|
    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator
 | 
						|
      I = NewPhiNodes.find(std::make_pair(DomBB, AllocaNum));
 | 
						|
    if (I != NewPhiNodes.end()) {
 | 
						|
      // Ok, we found an inserted PHI node which dominates this value.
 | 
						|
      PHINode *DominatingPHI = I->second;
 | 
						|
 | 
						|
      // Find out if we previously thought it was dead.  If so, mark it as being
 | 
						|
      // live by removing it from the DeadPHINodes set.
 | 
						|
      if (DeadPHINodes.erase(DominatingPHI)) {
 | 
						|
        // Now that we have marked the PHI node alive, also mark any PHI nodes
 | 
						|
        // which it might use as being alive as well.
 | 
						|
        for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
 | 
						|
             PI != PE; ++PI)
 | 
						|
          MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
 | 
						|
/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
 | 
						|
/// potentially useless PHI nodes by just performing a single linear pass over
 | 
						|
/// the basic block using the Alloca.
 | 
						|
///
 | 
						|
/// If we cannot promote this alloca (because it is read before it is written),
 | 
						|
/// return true.  This is necessary in cases where, due to control flow, the
 | 
						|
/// alloca is potentially undefined on some control flow paths.  e.g. code like
 | 
						|
/// this is potentially correct:
 | 
						|
///
 | 
						|
///   for (...) { if (c) { A = undef; undef = B; } }
 | 
						|
///
 | 
						|
/// ... so long as A is not used before undef is set.
 | 
						|
///
 | 
						|
bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
 | 
						|
  assert(!AI->use_empty() && "There are no uses of the alloca!");
 | 
						|
 | 
						|
  // Handle degenerate cases quickly.
 | 
						|
  if (AI->hasOneUse()) {
 | 
						|
    Instruction *U = cast<Instruction>(AI->use_back());
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | 
						|
      // Must be a load of uninitialized value.
 | 
						|
      LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
 | 
						|
      if (AST && isa<PointerType>(LI->getType()))
 | 
						|
        AST->deleteValue(LI);
 | 
						|
    } else {
 | 
						|
      // Otherwise it must be a store which is never read.
 | 
						|
      assert(isa<StoreInst>(U));
 | 
						|
    }
 | 
						|
    BB->getInstList().erase(U);
 | 
						|
  } else {
 | 
						|
    // Uses of the uninitialized memory location shall get undef.
 | 
						|
    Value *CurVal = 0;
 | 
						|
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | 
						|
      Instruction *Inst = I++;
 | 
						|
      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | 
						|
        if (LI->getOperand(0) == AI) {
 | 
						|
          if (!CurVal) return true;  // Could not locally promote!
 | 
						|
 | 
						|
          // Loads just returns the "current value"...
 | 
						|
          LI->replaceAllUsesWith(CurVal);
 | 
						|
          if (AST && isa<PointerType>(LI->getType()))
 | 
						|
            AST->deleteValue(LI);
 | 
						|
          BB->getInstList().erase(LI);
 | 
						|
        }
 | 
						|
      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
        if (SI->getOperand(1) == AI) {
 | 
						|
          // Store updates the "current value"...
 | 
						|
          CurVal = SI->getOperand(0);
 | 
						|
          BB->getInstList().erase(SI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // After traversing the basic block, there should be no more uses of the
 | 
						|
  // alloca, remove it now.
 | 
						|
  assert(AI->use_empty() && "Uses of alloca from more than one BB??");
 | 
						|
  if (AST) AST->deleteValue(AI);
 | 
						|
  AI->getParent()->getInstList().erase(AI);
 | 
						|
  
 | 
						|
  ++NumLocalPromoted;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteLocallyUsedAllocas - This method is just like
 | 
						|
/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
 | 
						|
/// instructions in parallel.  This is important in cases where we have large
 | 
						|
/// basic blocks, as we don't want to rescan the entire basic block for each
 | 
						|
/// alloca which is locally used in it (which might be a lot).
 | 
						|
void PromoteMem2Reg::
 | 
						|
PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
 | 
						|
  std::map<AllocaInst*, Value*> CurValues;
 | 
						|
  for (unsigned i = 0, e = AIs.size(); i != e; ++i)
 | 
						|
    CurValues[AIs[i]] = 0; // Insert with null value
 | 
						|
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | 
						|
    Instruction *Inst = I++;
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | 
						|
      // Is this a load of an alloca we are tracking?
 | 
						|
      if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
 | 
						|
        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
 | 
						|
        if (AIt != CurValues.end()) {
 | 
						|
          // If loading an uninitialized value, allow the inter-block case to
 | 
						|
          // handle it.  Due to control flow, this might actually be ok.
 | 
						|
          if (AIt->second == 0) {  // Use of locally uninitialized value??
 | 
						|
            RetryList.push_back(AI);   // Retry elsewhere.
 | 
						|
            CurValues.erase(AIt);   // Stop tracking this here.
 | 
						|
            if (CurValues.empty()) return;
 | 
						|
          } else {
 | 
						|
            // Loads just returns the "current value"...
 | 
						|
            LI->replaceAllUsesWith(AIt->second);
 | 
						|
            if (AST && isa<PointerType>(LI->getType()))
 | 
						|
              AST->deleteValue(LI);
 | 
						|
            BB->getInstList().erase(LI);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
 | 
						|
        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
 | 
						|
        if (AIt != CurValues.end()) {
 | 
						|
          // Store updates the "current value"...
 | 
						|
          AIt->second = SI->getOperand(0);
 | 
						|
          BB->getInstList().erase(SI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
 | 
						|
// Alloca returns true if there wasn't already a phi-node for that variable
 | 
						|
//
 | 
						|
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
 | 
						|
                                  unsigned &Version,
 | 
						|
                                  SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
 | 
						|
  // Look up the basic-block in question.
 | 
						|
  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
 | 
						|
 | 
						|
  // If the BB already has a phi node added for the i'th alloca then we're done!
 | 
						|
  if (PN) return false;
 | 
						|
 | 
						|
  // Create a PhiNode using the dereferenced type... and add the phi-node to the
 | 
						|
  // BasicBlock.
 | 
						|
  PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
 | 
						|
                   Allocas[AllocaNo]->getName() + "." +
 | 
						|
                   utostr(Version++), BB->begin());
 | 
						|
  PhiToAllocaMap[PN] = AllocaNo;
 | 
						|
  
 | 
						|
  InsertedPHINodes.insert(PN);
 | 
						|
 | 
						|
  if (AST && isa<PointerType>(PN->getType()))
 | 
						|
    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// RenamePass - Recursively traverse the CFG of the function, renaming loads and
 | 
						|
// stores to the allocas which we are promoting.  IncomingVals indicates what
 | 
						|
// value each Alloca contains on exit from the predecessor block Pred.
 | 
						|
//
 | 
						|
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
 | 
						|
                                RenamePassData::ValVector &IncomingVals,
 | 
						|
                                std::vector<RenamePassData> &Worklist) {
 | 
						|
  // If we are inserting any phi nodes into this BB, they will already be in the
 | 
						|
  // block.
 | 
						|
  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    // Pred may have multiple edges to BB.  If so, we want to add N incoming
 | 
						|
    // values to each PHI we are inserting on the first time we see the edge.
 | 
						|
    // Check to see if APN already has incoming values from Pred.  This also
 | 
						|
    // prevents us from modifying PHI nodes that are not currently being
 | 
						|
    // inserted.
 | 
						|
    bool HasPredEntries = false;
 | 
						|
    for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      if (APN->getIncomingBlock(i) == Pred) {
 | 
						|
        HasPredEntries = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we have PHI nodes to update, compute the number of edges from Pred to
 | 
						|
    // BB.
 | 
						|
    if (!HasPredEntries) {
 | 
						|
      TerminatorInst *PredTerm = Pred->getTerminator();
 | 
						|
      unsigned NumEdges = 0;
 | 
						|
      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
 | 
						|
        if (PredTerm->getSuccessor(i) == BB)
 | 
						|
          ++NumEdges;
 | 
						|
      }
 | 
						|
      assert(NumEdges && "Must be at least one edge from Pred to BB!");
 | 
						|
      
 | 
						|
      // Add entries for all the phis.
 | 
						|
      BasicBlock::iterator PNI = BB->begin();
 | 
						|
      do {
 | 
						|
        unsigned AllocaNo = PhiToAllocaMap[APN];
 | 
						|
        
 | 
						|
        // Add N incoming values to the PHI node.
 | 
						|
        for (unsigned i = 0; i != NumEdges; ++i)
 | 
						|
          APN->addIncoming(IncomingVals[AllocaNo], Pred);
 | 
						|
        
 | 
						|
        // The currently active variable for this block is now the PHI.
 | 
						|
        IncomingVals[AllocaNo] = APN;
 | 
						|
        
 | 
						|
        // Get the next phi node.
 | 
						|
        ++PNI;
 | 
						|
        APN = dyn_cast<PHINode>(PNI);
 | 
						|
        if (APN == 0) break;
 | 
						|
        
 | 
						|
        // Verify it doesn't already have entries for Pred.  If it does, it is
 | 
						|
        // not being inserted by this mem2reg invocation.
 | 
						|
        HasPredEntries = false;
 | 
						|
        for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
          if (APN->getIncomingBlock(i) == Pred) {
 | 
						|
            HasPredEntries = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } while (!HasPredEntries);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Don't revisit blocks.
 | 
						|
  if (!Visited.insert(BB)) return;
 | 
						|
 | 
						|
  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
 | 
						|
    Instruction *I = II++; // get the instruction, increment iterator
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
      if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
 | 
						|
        std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
 | 
						|
        if (AI != AllocaLookup.end()) {
 | 
						|
          Value *V = IncomingVals[AI->second];
 | 
						|
 | 
						|
          // walk the use list of this load and replace all uses with r
 | 
						|
          LI->replaceAllUsesWith(V);
 | 
						|
          if (AST && isa<PointerType>(LI->getType()))
 | 
						|
            AST->deleteValue(LI);
 | 
						|
          BB->getInstList().erase(LI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
      // Delete this instruction and mark the name as the current holder of the
 | 
						|
      // value
 | 
						|
      if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
 | 
						|
        std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
 | 
						|
        if (ai != AllocaLookup.end()) {
 | 
						|
          // what value were we writing?
 | 
						|
          IncomingVals[ai->second] = SI->getOperand(0);
 | 
						|
          BB->getInstList().erase(SI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Recurse to our successors.
 | 
						|
  TerminatorInst *TI = BB->getTerminator();
 | 
						|
  for (unsigned i = 0; i != TI->getNumSuccessors(); i++)
 | 
						|
    Worklist.push_back(RenamePassData(TI->getSuccessor(i), BB, IncomingVals));
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteMemToReg - Promote the specified list of alloca instructions into
 | 
						|
/// scalar registers, inserting PHI nodes as appropriate.  This function makes
 | 
						|
/// use of DominanceFrontier information.  This function does not modify the CFG
 | 
						|
/// of the function at all.  All allocas must be from the same function.
 | 
						|
///
 | 
						|
/// If AST is specified, the specified tracker is updated to reflect changes
 | 
						|
/// made to the IR.
 | 
						|
///
 | 
						|
void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
 | 
						|
                           DominatorTree &DT, DominanceFrontier &DF,
 | 
						|
                           AliasSetTracker *AST) {
 | 
						|
  // If there is nothing to do, bail out...
 | 
						|
  if (Allocas.empty()) return;
 | 
						|
 | 
						|
  SmallVector<AllocaInst*, 16> RetryList;
 | 
						|
  PromoteMem2Reg(Allocas, RetryList, DT, DF, AST).run();
 | 
						|
 | 
						|
  // PromoteMem2Reg may not have been able to promote all of the allocas in one
 | 
						|
  // pass, run it again if needed.
 | 
						|
  std::vector<AllocaInst*> NewAllocas;
 | 
						|
  while (!RetryList.empty()) {
 | 
						|
    // If we need to retry some allocas, this is due to there being no store
 | 
						|
    // before a read in a local block.  To counteract this, insert a store of
 | 
						|
    // undef into the alloca right after the alloca itself.
 | 
						|
    for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
 | 
						|
      BasicBlock::iterator BBI = RetryList[i];
 | 
						|
 | 
						|
      new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
 | 
						|
                    RetryList[i], ++BBI);
 | 
						|
    }
 | 
						|
 | 
						|
    NewAllocas.assign(RetryList.begin(), RetryList.end());
 | 
						|
    RetryList.clear();
 | 
						|
    PromoteMem2Reg(NewAllocas, RetryList, DT, DF, AST).run();
 | 
						|
    NewAllocas.clear();
 | 
						|
  }
 | 
						|
}
 |