forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1290 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1290 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopVectorizationLegality.cpp --------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file provides loop vectorization legality analysis. Original code
 | 
						|
// resided in LoopVectorize.cpp for a long time.
 | 
						|
//
 | 
						|
// At this point, it is implemented as a utility class, not as an analysis
 | 
						|
// pass. It should be easy to create an analysis pass around it if there
 | 
						|
// is a need (but D45420 needs to happen first).
 | 
						|
//
 | 
						|
 | 
						|
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Transforms/Utils/SizeOpts.h"
 | 
						|
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define LV_NAME "loop-vectorize"
 | 
						|
#define DEBUG_TYPE LV_NAME
 | 
						|
 | 
						|
extern cl::opt<bool> EnableVPlanPredication;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
 | 
						|
                       cl::desc("Enable if-conversion during vectorization."));
 | 
						|
 | 
						|
static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
 | 
						|
    "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
 | 
						|
    cl::desc("The maximum allowed number of runtime memory checks with a "
 | 
						|
             "vectorize(enable) pragma."));
 | 
						|
 | 
						|
static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
 | 
						|
    "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
 | 
						|
    cl::desc("The maximum number of SCEV checks allowed."));
 | 
						|
 | 
						|
static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
 | 
						|
    "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
 | 
						|
    cl::desc("The maximum number of SCEV checks allowed with a "
 | 
						|
             "vectorize(enable) pragma"));
 | 
						|
 | 
						|
/// Maximum vectorization interleave count.
 | 
						|
static const unsigned MaxInterleaveFactor = 16;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
bool LoopVectorizeHints::Hint::validate(unsigned Val) {
 | 
						|
  switch (Kind) {
 | 
						|
  case HK_WIDTH:
 | 
						|
    return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
 | 
						|
  case HK_UNROLL:
 | 
						|
    return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
 | 
						|
  case HK_FORCE:
 | 
						|
    return (Val <= 1);
 | 
						|
  case HK_ISVECTORIZED:
 | 
						|
  case HK_PREDICATE:
 | 
						|
  case HK_SCALABLE:
 | 
						|
    return (Val == 0 || Val == 1);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
 | 
						|
                                       bool InterleaveOnlyWhenForced,
 | 
						|
                                       OptimizationRemarkEmitter &ORE)
 | 
						|
    : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
 | 
						|
      Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
 | 
						|
      Force("vectorize.enable", FK_Undefined, HK_FORCE),
 | 
						|
      IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
 | 
						|
      Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
 | 
						|
      Scalable("vectorize.scalable.enable", false, HK_SCALABLE), TheLoop(L),
 | 
						|
      ORE(ORE) {
 | 
						|
  // Populate values with existing loop metadata.
 | 
						|
  getHintsFromMetadata();
 | 
						|
 | 
						|
  // force-vector-interleave overrides DisableInterleaving.
 | 
						|
  if (VectorizerParams::isInterleaveForced())
 | 
						|
    Interleave.Value = VectorizerParams::VectorizationInterleave;
 | 
						|
 | 
						|
  if (IsVectorized.Value != 1)
 | 
						|
    // If the vectorization width and interleaving count are both 1 then
 | 
						|
    // consider the loop to have been already vectorized because there's
 | 
						|
    // nothing more that we can do.
 | 
						|
    IsVectorized.Value =
 | 
						|
        getWidth() == ElementCount::getFixed(1) && Interleave.Value == 1;
 | 
						|
  LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
 | 
						|
             << "LV: Interleaving disabled by the pass manager\n");
 | 
						|
}
 | 
						|
 | 
						|
void LoopVectorizeHints::setAlreadyVectorized() {
 | 
						|
  LLVMContext &Context = TheLoop->getHeader()->getContext();
 | 
						|
 | 
						|
  MDNode *IsVectorizedMD = MDNode::get(
 | 
						|
      Context,
 | 
						|
      {MDString::get(Context, "llvm.loop.isvectorized"),
 | 
						|
       ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
 | 
						|
  MDNode *LoopID = TheLoop->getLoopID();
 | 
						|
  MDNode *NewLoopID =
 | 
						|
      makePostTransformationMetadata(Context, LoopID,
 | 
						|
                                     {Twine(Prefix(), "vectorize.").str(),
 | 
						|
                                      Twine(Prefix(), "interleave.").str()},
 | 
						|
                                     {IsVectorizedMD});
 | 
						|
  TheLoop->setLoopID(NewLoopID);
 | 
						|
 | 
						|
  // Update internal cache.
 | 
						|
  IsVectorized.Value = 1;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizeHints::allowVectorization(
 | 
						|
    Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
 | 
						|
  if (getForce() == LoopVectorizeHints::FK_Disabled) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
 | 
						|
    emitRemarkWithHints();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
 | 
						|
    emitRemarkWithHints();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getIsVectorized() == 1) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
 | 
						|
    // FIXME: Add interleave.disable metadata. This will allow
 | 
						|
    // vectorize.disable to be used without disabling the pass and errors
 | 
						|
    // to differentiate between disabled vectorization and a width of 1.
 | 
						|
    ORE.emit([&]() {
 | 
						|
      return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
 | 
						|
                                        "AllDisabled", L->getStartLoc(),
 | 
						|
                                        L->getHeader())
 | 
						|
             << "loop not vectorized: vectorization and interleaving are "
 | 
						|
                "explicitly disabled, or the loop has already been "
 | 
						|
                "vectorized";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopVectorizeHints::emitRemarkWithHints() const {
 | 
						|
  using namespace ore;
 | 
						|
 | 
						|
  ORE.emit([&]() {
 | 
						|
    if (Force.Value == LoopVectorizeHints::FK_Disabled)
 | 
						|
      return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
 | 
						|
                                      TheLoop->getStartLoc(),
 | 
						|
                                      TheLoop->getHeader())
 | 
						|
             << "loop not vectorized: vectorization is explicitly disabled";
 | 
						|
    else {
 | 
						|
      OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
 | 
						|
                                 TheLoop->getStartLoc(), TheLoop->getHeader());
 | 
						|
      R << "loop not vectorized";
 | 
						|
      if (Force.Value == LoopVectorizeHints::FK_Enabled) {
 | 
						|
        R << " (Force=" << NV("Force", true);
 | 
						|
        if (Width.Value != 0)
 | 
						|
          R << ", Vector Width=" << NV("VectorWidth", getWidth());
 | 
						|
        if (Interleave.Value != 0)
 | 
						|
          R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
 | 
						|
        R << ")";
 | 
						|
      }
 | 
						|
      return R;
 | 
						|
    }
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
 | 
						|
  if (getWidth() == ElementCount::getFixed(1))
 | 
						|
    return LV_NAME;
 | 
						|
  if (getForce() == LoopVectorizeHints::FK_Disabled)
 | 
						|
    return LV_NAME;
 | 
						|
  if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
 | 
						|
    return LV_NAME;
 | 
						|
  return OptimizationRemarkAnalysis::AlwaysPrint;
 | 
						|
}
 | 
						|
 | 
						|
void LoopVectorizeHints::getHintsFromMetadata() {
 | 
						|
  MDNode *LoopID = TheLoop->getLoopID();
 | 
						|
  if (!LoopID)
 | 
						|
    return;
 | 
						|
 | 
						|
  // First operand should refer to the loop id itself.
 | 
						|
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | 
						|
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | 
						|
 | 
						|
  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | 
						|
    const MDString *S = nullptr;
 | 
						|
    SmallVector<Metadata *, 4> Args;
 | 
						|
 | 
						|
    // The expected hint is either a MDString or a MDNode with the first
 | 
						|
    // operand a MDString.
 | 
						|
    if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
 | 
						|
      if (!MD || MD->getNumOperands() == 0)
 | 
						|
        continue;
 | 
						|
      S = dyn_cast<MDString>(MD->getOperand(0));
 | 
						|
      for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
 | 
						|
        Args.push_back(MD->getOperand(i));
 | 
						|
    } else {
 | 
						|
      S = dyn_cast<MDString>(LoopID->getOperand(i));
 | 
						|
      assert(Args.size() == 0 && "too many arguments for MDString");
 | 
						|
    }
 | 
						|
 | 
						|
    if (!S)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if the hint starts with the loop metadata prefix.
 | 
						|
    StringRef Name = S->getString();
 | 
						|
    if (Args.size() == 1)
 | 
						|
      setHint(Name, Args[0]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
 | 
						|
  if (!Name.startswith(Prefix()))
 | 
						|
    return;
 | 
						|
  Name = Name.substr(Prefix().size(), StringRef::npos);
 | 
						|
 | 
						|
  const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
 | 
						|
  if (!C)
 | 
						|
    return;
 | 
						|
  unsigned Val = C->getZExtValue();
 | 
						|
 | 
						|
  Hint *Hints[] = {&Width,        &Interleave, &Force,
 | 
						|
                   &IsVectorized, &Predicate,  &Scalable};
 | 
						|
  for (auto H : Hints) {
 | 
						|
    if (Name == H->Name) {
 | 
						|
      if (H->validate(Val))
 | 
						|
        H->Value = Val;
 | 
						|
      else
 | 
						|
        LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationRequirements::doesNotMeet(
 | 
						|
    Function *F, Loop *L, const LoopVectorizeHints &Hints) {
 | 
						|
  const char *PassName = Hints.vectorizeAnalysisPassName();
 | 
						|
  bool Failed = false;
 | 
						|
  if (UnsafeAlgebraInst && !Hints.allowReordering()) {
 | 
						|
    ORE.emit([&]() {
 | 
						|
      return OptimizationRemarkAnalysisFPCommute(
 | 
						|
                 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
 | 
						|
                 UnsafeAlgebraInst->getParent())
 | 
						|
             << "loop not vectorized: cannot prove it is safe to reorder "
 | 
						|
                "floating-point operations";
 | 
						|
    });
 | 
						|
    Failed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Test if runtime memcheck thresholds are exceeded.
 | 
						|
  bool PragmaThresholdReached =
 | 
						|
      NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
 | 
						|
  bool ThresholdReached =
 | 
						|
      NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
 | 
						|
  if ((ThresholdReached && !Hints.allowReordering()) ||
 | 
						|
      PragmaThresholdReached) {
 | 
						|
    ORE.emit([&]() {
 | 
						|
      return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
 | 
						|
                                                L->getStartLoc(),
 | 
						|
                                                L->getHeader())
 | 
						|
             << "loop not vectorized: cannot prove it is safe to reorder "
 | 
						|
                "memory operations";
 | 
						|
    });
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
 | 
						|
    Failed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Failed;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if the inner loop \p Lp is uniform with regard to the outer loop
 | 
						|
// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
 | 
						|
// executing the inner loop will execute the same iterations). This check is
 | 
						|
// very constrained for now but it will be relaxed in the future. \p Lp is
 | 
						|
// considered uniform if it meets all the following conditions:
 | 
						|
//   1) it has a canonical IV (starting from 0 and with stride 1),
 | 
						|
//   2) its latch terminator is a conditional branch and,
 | 
						|
//   3) its latch condition is a compare instruction whose operands are the
 | 
						|
//      canonical IV and an OuterLp invariant.
 | 
						|
// This check doesn't take into account the uniformity of other conditions not
 | 
						|
// related to the loop latch because they don't affect the loop uniformity.
 | 
						|
//
 | 
						|
// NOTE: We decided to keep all these checks and its associated documentation
 | 
						|
// together so that we can easily have a picture of the current supported loop
 | 
						|
// nests. However, some of the current checks don't depend on \p OuterLp and
 | 
						|
// would be redundantly executed for each \p Lp if we invoked this function for
 | 
						|
// different candidate outer loops. This is not the case for now because we
 | 
						|
// don't currently have the infrastructure to evaluate multiple candidate outer
 | 
						|
// loops and \p OuterLp will be a fixed parameter while we only support explicit
 | 
						|
// outer loop vectorization. It's also very likely that these checks go away
 | 
						|
// before introducing the aforementioned infrastructure. However, if this is not
 | 
						|
// the case, we should move the \p OuterLp independent checks to a separate
 | 
						|
// function that is only executed once for each \p Lp.
 | 
						|
static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
 | 
						|
  assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
 | 
						|
 | 
						|
  // If Lp is the outer loop, it's uniform by definition.
 | 
						|
  if (Lp == OuterLp)
 | 
						|
    return true;
 | 
						|
  assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
 | 
						|
 | 
						|
  // 1.
 | 
						|
  PHINode *IV = Lp->getCanonicalInductionVariable();
 | 
						|
  if (!IV) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // 2.
 | 
						|
  BasicBlock *Latch = Lp->getLoopLatch();
 | 
						|
  auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
  if (!LatchBr || LatchBr->isUnconditional()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // 3.
 | 
						|
  auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
 | 
						|
  if (!LatchCmp) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *CondOp0 = LatchCmp->getOperand(0);
 | 
						|
  Value *CondOp1 = LatchCmp->getOperand(1);
 | 
						|
  Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
 | 
						|
  if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
 | 
						|
      !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if \p Lp and all its nested loops are uniform with regard to \p
 | 
						|
// OuterLp.
 | 
						|
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
 | 
						|
  if (!isUniformLoop(Lp, OuterLp))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if nested loops are uniform.
 | 
						|
  for (Loop *SubLp : *Lp)
 | 
						|
    if (!isUniformLoopNest(SubLp, OuterLp))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether it is safe to if-convert this phi node.
 | 
						|
///
 | 
						|
/// Phi nodes with constant expressions that can trap are not safe to if
 | 
						|
/// convert.
 | 
						|
static bool canIfConvertPHINodes(BasicBlock *BB) {
 | 
						|
  for (PHINode &Phi : BB->phis()) {
 | 
						|
    for (Value *V : Phi.incoming_values())
 | 
						|
      if (auto *C = dyn_cast<Constant>(V))
 | 
						|
        if (C->canTrap())
 | 
						|
          return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
 | 
						|
  if (Ty->isPointerTy())
 | 
						|
    return DL.getIntPtrType(Ty);
 | 
						|
 | 
						|
  // It is possible that char's or short's overflow when we ask for the loop's
 | 
						|
  // trip count, work around this by changing the type size.
 | 
						|
  if (Ty->getScalarSizeInBits() < 32)
 | 
						|
    return Type::getInt32Ty(Ty->getContext());
 | 
						|
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
 | 
						|
  Ty0 = convertPointerToIntegerType(DL, Ty0);
 | 
						|
  Ty1 = convertPointerToIntegerType(DL, Ty1);
 | 
						|
  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
 | 
						|
    return Ty0;
 | 
						|
  return Ty1;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the instruction has outside loop users and is not an
 | 
						|
/// identified reduction variable.
 | 
						|
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
 | 
						|
                               SmallPtrSetImpl<Value *> &AllowedExit) {
 | 
						|
  // Reductions, Inductions and non-header phis are allowed to have exit users. All
 | 
						|
  // other instructions must not have external users.
 | 
						|
  if (!AllowedExit.count(Inst))
 | 
						|
    // Check that all of the users of the loop are inside the BB.
 | 
						|
    for (User *U : Inst->users()) {
 | 
						|
      Instruction *UI = cast<Instruction>(U);
 | 
						|
      // This user may be a reduction exit value.
 | 
						|
      if (!TheLoop->contains(UI)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
 | 
						|
  const ValueToValueMap &Strides =
 | 
						|
      getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
 | 
						|
 | 
						|
  Function *F = TheLoop->getHeader()->getParent();
 | 
						|
  bool OptForSize = F->hasOptSize() ||
 | 
						|
                    llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
 | 
						|
                                                PGSOQueryType::IRPass);
 | 
						|
  bool CanAddPredicate = !OptForSize;
 | 
						|
  int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
 | 
						|
  if (Stride == 1 || Stride == -1)
 | 
						|
    return Stride;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::isUniform(Value *V) {
 | 
						|
  return LAI->isUniform(V);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::canVectorizeOuterLoop() {
 | 
						|
  assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
 | 
						|
  // Store the result and return it at the end instead of exiting early, in case
 | 
						|
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
 | 
						|
  bool Result = true;
 | 
						|
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
 | 
						|
 | 
						|
  for (BasicBlock *BB : TheLoop->blocks()) {
 | 
						|
    // Check whether the BB terminator is a BranchInst. Any other terminator is
 | 
						|
    // not supported yet.
 | 
						|
    auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    if (!Br) {
 | 
						|
      reportVectorizationFailure("Unsupported basic block terminator",
 | 
						|
          "loop control flow is not understood by vectorizer",
 | 
						|
          "CFGNotUnderstood", ORE, TheLoop);
 | 
						|
      if (DoExtraAnalysis)
 | 
						|
        Result = false;
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check whether the BranchInst is a supported one. Only unconditional
 | 
						|
    // branches, conditional branches with an outer loop invariant condition or
 | 
						|
    // backedges are supported.
 | 
						|
    // FIXME: We skip these checks when VPlan predication is enabled as we
 | 
						|
    // want to allow divergent branches. This whole check will be removed
 | 
						|
    // once VPlan predication is on by default.
 | 
						|
    if (!EnableVPlanPredication && Br && Br->isConditional() &&
 | 
						|
        !TheLoop->isLoopInvariant(Br->getCondition()) &&
 | 
						|
        !LI->isLoopHeader(Br->getSuccessor(0)) &&
 | 
						|
        !LI->isLoopHeader(Br->getSuccessor(1))) {
 | 
						|
      reportVectorizationFailure("Unsupported conditional branch",
 | 
						|
          "loop control flow is not understood by vectorizer",
 | 
						|
          "CFGNotUnderstood", ORE, TheLoop);
 | 
						|
      if (DoExtraAnalysis)
 | 
						|
        Result = false;
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether inner loops are uniform. At this point, we only support
 | 
						|
  // simple outer loops scenarios with uniform nested loops.
 | 
						|
  if (!isUniformLoopNest(TheLoop /*loop nest*/,
 | 
						|
                         TheLoop /*context outer loop*/)) {
 | 
						|
    reportVectorizationFailure("Outer loop contains divergent loops",
 | 
						|
        "loop control flow is not understood by vectorizer",
 | 
						|
        "CFGNotUnderstood", ORE, TheLoop);
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether we are able to set up outer loop induction.
 | 
						|
  if (!setupOuterLoopInductions()) {
 | 
						|
    reportVectorizationFailure("Unsupported outer loop Phi(s)",
 | 
						|
                               "Unsupported outer loop Phi(s)",
 | 
						|
                               "UnsupportedPhi", ORE, TheLoop);
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void LoopVectorizationLegality::addInductionPhi(
 | 
						|
    PHINode *Phi, const InductionDescriptor &ID,
 | 
						|
    SmallPtrSetImpl<Value *> &AllowedExit) {
 | 
						|
  Inductions[Phi] = ID;
 | 
						|
 | 
						|
  // In case this induction also comes with casts that we know we can ignore
 | 
						|
  // in the vectorized loop body, record them here. All casts could be recorded
 | 
						|
  // here for ignoring, but suffices to record only the first (as it is the
 | 
						|
  // only one that may bw used outside the cast sequence).
 | 
						|
  const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
 | 
						|
  if (!Casts.empty())
 | 
						|
    InductionCastsToIgnore.insert(*Casts.begin());
 | 
						|
 | 
						|
  Type *PhiTy = Phi->getType();
 | 
						|
  const DataLayout &DL = Phi->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Get the widest type.
 | 
						|
  if (!PhiTy->isFloatingPointTy()) {
 | 
						|
    if (!WidestIndTy)
 | 
						|
      WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
 | 
						|
    else
 | 
						|
      WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Int inductions are special because we only allow one IV.
 | 
						|
  if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
 | 
						|
      ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
 | 
						|
      isa<Constant>(ID.getStartValue()) &&
 | 
						|
      cast<Constant>(ID.getStartValue())->isNullValue()) {
 | 
						|
 | 
						|
    // Use the phi node with the widest type as induction. Use the last
 | 
						|
    // one if there are multiple (no good reason for doing this other
 | 
						|
    // than it is expedient). We've checked that it begins at zero and
 | 
						|
    // steps by one, so this is a canonical induction variable.
 | 
						|
    if (!PrimaryInduction || PhiTy == WidestIndTy)
 | 
						|
      PrimaryInduction = Phi;
 | 
						|
  }
 | 
						|
 | 
						|
  // Both the PHI node itself, and the "post-increment" value feeding
 | 
						|
  // back into the PHI node may have external users.
 | 
						|
  // We can allow those uses, except if the SCEVs we have for them rely
 | 
						|
  // on predicates that only hold within the loop, since allowing the exit
 | 
						|
  // currently means re-using this SCEV outside the loop (see PR33706 for more
 | 
						|
  // details).
 | 
						|
  if (PSE.getUnionPredicate().isAlwaysTrue()) {
 | 
						|
    AllowedExit.insert(Phi);
 | 
						|
    AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::setupOuterLoopInductions() {
 | 
						|
  BasicBlock *Header = TheLoop->getHeader();
 | 
						|
 | 
						|
  // Returns true if a given Phi is a supported induction.
 | 
						|
  auto isSupportedPhi = [&](PHINode &Phi) -> bool {
 | 
						|
    InductionDescriptor ID;
 | 
						|
    if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
 | 
						|
        ID.getKind() == InductionDescriptor::IK_IntInduction) {
 | 
						|
      addInductionPhi(&Phi, ID, AllowedExit);
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      // Bail out for any Phi in the outer loop header that is not a supported
 | 
						|
      // induction.
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs()
 | 
						|
          << "LV: Found unsupported PHI for outer loop vectorization.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  if (llvm::all_of(Header->phis(), isSupportedPhi))
 | 
						|
    return true;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks if a function is scalarizable according to the TLI, in
 | 
						|
/// the sense that it should be vectorized and then expanded in
 | 
						|
/// multiple scalarcalls. This is represented in the
 | 
						|
/// TLI via mappings that do not specify a vector name, as in the
 | 
						|
/// following example:
 | 
						|
///
 | 
						|
///    const VecDesc VecIntrinsics[] = {
 | 
						|
///      {"llvm.phx.abs.i32", "", 4}
 | 
						|
///    };
 | 
						|
static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
 | 
						|
  const StringRef ScalarName = CI.getCalledFunction()->getName();
 | 
						|
  bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
 | 
						|
  // Check that all known VFs are not associated to a vector
 | 
						|
  // function, i.e. the vector name is emty.
 | 
						|
  if (Scalarize)
 | 
						|
    for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName);
 | 
						|
         VF <= WidestVF; VF *= 2) {
 | 
						|
      Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
 | 
						|
    }
 | 
						|
  return Scalarize;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::canVectorizeInstrs() {
 | 
						|
  BasicBlock *Header = TheLoop->getHeader();
 | 
						|
 | 
						|
  // Look for the attribute signaling the absence of NaNs.
 | 
						|
  Function &F = *Header->getParent();
 | 
						|
  HasFunNoNaNAttr =
 | 
						|
      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
 | 
						|
 | 
						|
  // For each block in the loop.
 | 
						|
  for (BasicBlock *BB : TheLoop->blocks()) {
 | 
						|
    // Scan the instructions in the block and look for hazards.
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (auto *Phi = dyn_cast<PHINode>(&I)) {
 | 
						|
        Type *PhiTy = Phi->getType();
 | 
						|
        // Check that this PHI type is allowed.
 | 
						|
        if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
 | 
						|
            !PhiTy->isPointerTy()) {
 | 
						|
          reportVectorizationFailure("Found a non-int non-pointer PHI",
 | 
						|
                                     "loop control flow is not understood by vectorizer",
 | 
						|
                                     "CFGNotUnderstood", ORE, TheLoop);
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this PHINode is not in the header block, then we know that we
 | 
						|
        // can convert it to select during if-conversion. No need to check if
 | 
						|
        // the PHIs in this block are induction or reduction variables.
 | 
						|
        if (BB != Header) {
 | 
						|
          // Non-header phi nodes that have outside uses can be vectorized. Add
 | 
						|
          // them to the list of allowed exits.
 | 
						|
          // Unsafe cyclic dependencies with header phis are identified during
 | 
						|
          // legalization for reduction, induction and first order
 | 
						|
          // recurrences.
 | 
						|
          AllowedExit.insert(&I);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // We only allow if-converted PHIs with exactly two incoming values.
 | 
						|
        if (Phi->getNumIncomingValues() != 2) {
 | 
						|
          reportVectorizationFailure("Found an invalid PHI",
 | 
						|
              "loop control flow is not understood by vectorizer",
 | 
						|
              "CFGNotUnderstood", ORE, TheLoop, Phi);
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        RecurrenceDescriptor RedDes;
 | 
						|
        if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
 | 
						|
                                                 DT)) {
 | 
						|
          if (RedDes.hasUnsafeAlgebra())
 | 
						|
            Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
 | 
						|
          AllowedExit.insert(RedDes.getLoopExitInstr());
 | 
						|
          Reductions[Phi] = RedDes;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // TODO: Instead of recording the AllowedExit, it would be good to record the
 | 
						|
        // complementary set: NotAllowedExit. These include (but may not be
 | 
						|
        // limited to):
 | 
						|
        // 1. Reduction phis as they represent the one-before-last value, which
 | 
						|
        // is not available when vectorized 
 | 
						|
        // 2. Induction phis and increment when SCEV predicates cannot be used
 | 
						|
        // outside the loop - see addInductionPhi
 | 
						|
        // 3. Non-Phis with outside uses when SCEV predicates cannot be used
 | 
						|
        // outside the loop - see call to hasOutsideLoopUser in the non-phi
 | 
						|
        // handling below
 | 
						|
        // 4. FirstOrderRecurrence phis that can possibly be handled by
 | 
						|
        // extraction.
 | 
						|
        // By recording these, we can then reason about ways to vectorize each
 | 
						|
        // of these NotAllowedExit. 
 | 
						|
        InductionDescriptor ID;
 | 
						|
        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
 | 
						|
          addInductionPhi(Phi, ID, AllowedExit);
 | 
						|
          if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
 | 
						|
            Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
 | 
						|
                                                         SinkAfter, DT)) {
 | 
						|
          AllowedExit.insert(Phi);
 | 
						|
          FirstOrderRecurrences.insert(Phi);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // As a last resort, coerce the PHI to a AddRec expression
 | 
						|
        // and re-try classifying it a an induction PHI.
 | 
						|
        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
 | 
						|
          addInductionPhi(Phi, ID, AllowedExit);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        reportVectorizationFailure("Found an unidentified PHI",
 | 
						|
            "value that could not be identified as "
 | 
						|
            "reduction is used outside the loop",
 | 
						|
            "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
 | 
						|
        return false;
 | 
						|
      } // end of PHI handling
 | 
						|
 | 
						|
      // We handle calls that:
 | 
						|
      //   * Are debug info intrinsics.
 | 
						|
      //   * Have a mapping to an IR intrinsic.
 | 
						|
      //   * Have a vector version available.
 | 
						|
      auto *CI = dyn_cast<CallInst>(&I);
 | 
						|
 | 
						|
      if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
 | 
						|
          !isa<DbgInfoIntrinsic>(CI) &&
 | 
						|
          !(CI->getCalledFunction() && TLI &&
 | 
						|
            (!VFDatabase::getMappings(*CI).empty() ||
 | 
						|
             isTLIScalarize(*TLI, *CI)))) {
 | 
						|
        // If the call is a recognized math libary call, it is likely that
 | 
						|
        // we can vectorize it given loosened floating-point constraints.
 | 
						|
        LibFunc Func;
 | 
						|
        bool IsMathLibCall =
 | 
						|
            TLI && CI->getCalledFunction() &&
 | 
						|
            CI->getType()->isFloatingPointTy() &&
 | 
						|
            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
 | 
						|
            TLI->hasOptimizedCodeGen(Func);
 | 
						|
 | 
						|
        if (IsMathLibCall) {
 | 
						|
          // TODO: Ideally, we should not use clang-specific language here,
 | 
						|
          // but it's hard to provide meaningful yet generic advice.
 | 
						|
          // Also, should this be guarded by allowExtraAnalysis() and/or be part
 | 
						|
          // of the returned info from isFunctionVectorizable()?
 | 
						|
          reportVectorizationFailure(
 | 
						|
              "Found a non-intrinsic callsite",
 | 
						|
              "library call cannot be vectorized. "
 | 
						|
              "Try compiling with -fno-math-errno, -ffast-math, "
 | 
						|
              "or similar flags",
 | 
						|
              "CantVectorizeLibcall", ORE, TheLoop, CI);
 | 
						|
        } else {
 | 
						|
          reportVectorizationFailure("Found a non-intrinsic callsite",
 | 
						|
                                     "call instruction cannot be vectorized",
 | 
						|
                                     "CantVectorizeLibcall", ORE, TheLoop, CI);
 | 
						|
        }
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Some intrinsics have scalar arguments and should be same in order for
 | 
						|
      // them to be vectorized (i.e. loop invariant).
 | 
						|
      if (CI) {
 | 
						|
        auto *SE = PSE.getSE();
 | 
						|
        Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
 | 
						|
        for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
 | 
						|
          if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
 | 
						|
            if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
 | 
						|
              reportVectorizationFailure("Found unvectorizable intrinsic",
 | 
						|
                  "intrinsic instruction cannot be vectorized",
 | 
						|
                  "CantVectorizeIntrinsic", ORE, TheLoop, CI);
 | 
						|
              return false;
 | 
						|
            }
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      // Check that the instruction return type is vectorizable.
 | 
						|
      // Also, we can't vectorize extractelement instructions.
 | 
						|
      if ((!VectorType::isValidElementType(I.getType()) &&
 | 
						|
           !I.getType()->isVoidTy()) ||
 | 
						|
          isa<ExtractElementInst>(I)) {
 | 
						|
        reportVectorizationFailure("Found unvectorizable type",
 | 
						|
            "instruction return type cannot be vectorized",
 | 
						|
            "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check that the stored type is vectorizable.
 | 
						|
      if (auto *ST = dyn_cast<StoreInst>(&I)) {
 | 
						|
        Type *T = ST->getValueOperand()->getType();
 | 
						|
        if (!VectorType::isValidElementType(T)) {
 | 
						|
          reportVectorizationFailure("Store instruction cannot be vectorized",
 | 
						|
                                     "store instruction cannot be vectorized",
 | 
						|
                                     "CantVectorizeStore", ORE, TheLoop, ST);
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        // For nontemporal stores, check that a nontemporal vector version is
 | 
						|
        // supported on the target.
 | 
						|
        if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
 | 
						|
          // Arbitrarily try a vector of 2 elements.
 | 
						|
          auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
 | 
						|
          assert(VecTy && "did not find vectorized version of stored type");
 | 
						|
          if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
 | 
						|
            reportVectorizationFailure(
 | 
						|
                "nontemporal store instruction cannot be vectorized",
 | 
						|
                "nontemporal store instruction cannot be vectorized",
 | 
						|
                "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
 | 
						|
        if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
 | 
						|
          // For nontemporal loads, check that a nontemporal vector version is
 | 
						|
          // supported on the target (arbitrarily try a vector of 2 elements).
 | 
						|
          auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
 | 
						|
          assert(VecTy && "did not find vectorized version of load type");
 | 
						|
          if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
 | 
						|
            reportVectorizationFailure(
 | 
						|
                "nontemporal load instruction cannot be vectorized",
 | 
						|
                "nontemporal load instruction cannot be vectorized",
 | 
						|
                "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // FP instructions can allow unsafe algebra, thus vectorizable by
 | 
						|
        // non-IEEE-754 compliant SIMD units.
 | 
						|
        // This applies to floating-point math operations and calls, not memory
 | 
						|
        // operations, shuffles, or casts, as they don't change precision or
 | 
						|
        // semantics.
 | 
						|
      } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
 | 
						|
                 !I.isFast()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
 | 
						|
        Hints->setPotentiallyUnsafe();
 | 
						|
      }
 | 
						|
 | 
						|
      // Reduction instructions are allowed to have exit users.
 | 
						|
      // All other instructions must not have external users.
 | 
						|
      if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
 | 
						|
        // We can safely vectorize loops where instructions within the loop are
 | 
						|
        // used outside the loop only if the SCEV predicates within the loop is
 | 
						|
        // same as outside the loop. Allowing the exit means reusing the SCEV
 | 
						|
        // outside the loop.
 | 
						|
        if (PSE.getUnionPredicate().isAlwaysTrue()) {
 | 
						|
          AllowedExit.insert(&I);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        reportVectorizationFailure("Value cannot be used outside the loop",
 | 
						|
                                   "value cannot be used outside the loop",
 | 
						|
                                   "ValueUsedOutsideLoop", ORE, TheLoop, &I);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } // next instr.
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PrimaryInduction) {
 | 
						|
    if (Inductions.empty()) {
 | 
						|
      reportVectorizationFailure("Did not find one integer induction var",
 | 
						|
          "loop induction variable could not be identified",
 | 
						|
          "NoInductionVariable", ORE, TheLoop);
 | 
						|
      return false;
 | 
						|
    } else if (!WidestIndTy) {
 | 
						|
      reportVectorizationFailure("Did not find one integer induction var",
 | 
						|
          "integer loop induction variable could not be identified",
 | 
						|
          "NoIntegerInductionVariable", ORE, TheLoop);
 | 
						|
      return false;
 | 
						|
    } else {
 | 
						|
      LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For first order recurrences, we use the previous value (incoming value from
 | 
						|
  // the latch) to check if it dominates all users of the recurrence. Bail out
 | 
						|
  // if we have to sink such an instruction for another recurrence, as the
 | 
						|
  // dominance requirement may not hold after sinking.
 | 
						|
  BasicBlock *LoopLatch = TheLoop->getLoopLatch();
 | 
						|
  if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
 | 
						|
        Instruction *V =
 | 
						|
            cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
 | 
						|
        return SinkAfter.find(V) != SinkAfter.end();
 | 
						|
      }))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now we know the widest induction type, check if our found induction
 | 
						|
  // is the same size. If it's not, unset it here and InnerLoopVectorizer
 | 
						|
  // will create another.
 | 
						|
  if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
 | 
						|
    PrimaryInduction = nullptr;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::canVectorizeMemory() {
 | 
						|
  LAI = &(*GetLAA)(*TheLoop);
 | 
						|
  const OptimizationRemarkAnalysis *LAR = LAI->getReport();
 | 
						|
  if (LAR) {
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
 | 
						|
                                        "loop not vectorized: ", *LAR);
 | 
						|
    });
 | 
						|
  }
 | 
						|
  if (!LAI->canVectorizeMemory())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
 | 
						|
    reportVectorizationFailure("Stores to a uniform address",
 | 
						|
        "write to a loop invariant address could not be vectorized",
 | 
						|
        "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
 | 
						|
  PSE.addPredicate(LAI->getPSE().getUnionPredicate());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
 | 
						|
  Value *In0 = const_cast<Value *>(V);
 | 
						|
  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
 | 
						|
  if (!PN)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return Inductions.count(PN);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
 | 
						|
  auto *Inst = dyn_cast<Instruction>(V);
 | 
						|
  return (Inst && InductionCastsToIgnore.count(Inst));
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
 | 
						|
  return isInductionPhi(V) || isCastedInductionVariable(V);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
 | 
						|
  return FirstOrderRecurrences.count(Phi);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
 | 
						|
  return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::blockCanBePredicated(
 | 
						|
    BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
 | 
						|
    SmallPtrSetImpl<const Instruction *> &MaskedOp,
 | 
						|
    SmallPtrSetImpl<Instruction *> &ConditionalAssumes,
 | 
						|
    bool PreserveGuards) const {
 | 
						|
  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
 | 
						|
 | 
						|
  for (Instruction &I : *BB) {
 | 
						|
    // Check that we don't have a constant expression that can trap as operand.
 | 
						|
    for (Value *Operand : I.operands()) {
 | 
						|
      if (auto *C = dyn_cast<Constant>(Operand))
 | 
						|
        if (C->canTrap())
 | 
						|
          return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // We can predicate blocks with calls to assume, as long as we drop them in
 | 
						|
    // case we flatten the CFG via predication.
 | 
						|
    if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
 | 
						|
      ConditionalAssumes.insert(&I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We might be able to hoist the load.
 | 
						|
    if (I.mayReadFromMemory()) {
 | 
						|
      auto *LI = dyn_cast<LoadInst>(&I);
 | 
						|
      if (!LI)
 | 
						|
        return false;
 | 
						|
      if (!SafePtrs.count(LI->getPointerOperand())) {
 | 
						|
        // !llvm.mem.parallel_loop_access implies if-conversion safety.
 | 
						|
        // Otherwise, record that the load needs (real or emulated) masking
 | 
						|
        // and let the cost model decide.
 | 
						|
        if (!IsAnnotatedParallel || PreserveGuards)
 | 
						|
          MaskedOp.insert(LI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (I.mayWriteToMemory()) {
 | 
						|
      auto *SI = dyn_cast<StoreInst>(&I);
 | 
						|
      if (!SI)
 | 
						|
        return false;
 | 
						|
      // Predicated store requires some form of masking:
 | 
						|
      // 1) masked store HW instruction,
 | 
						|
      // 2) emulation via load-blend-store (only if safe and legal to do so,
 | 
						|
      //    be aware on the race conditions), or
 | 
						|
      // 3) element-by-element predicate check and scalar store.
 | 
						|
      MaskedOp.insert(SI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (I.mayThrow())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
 | 
						|
  if (!EnableIfConversion) {
 | 
						|
    reportVectorizationFailure("If-conversion is disabled",
 | 
						|
                               "if-conversion is disabled",
 | 
						|
                               "IfConversionDisabled",
 | 
						|
                               ORE, TheLoop);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
 | 
						|
 | 
						|
  // A list of pointers which are known to be dereferenceable within scope of
 | 
						|
  // the loop body for each iteration of the loop which executes.  That is,
 | 
						|
  // the memory pointed to can be dereferenced (with the access size implied by
 | 
						|
  // the value's type) unconditionally within the loop header without
 | 
						|
  // introducing a new fault.
 | 
						|
  SmallPtrSet<Value *, 8> SafePointers;
 | 
						|
 | 
						|
  // Collect safe addresses.
 | 
						|
  for (BasicBlock *BB : TheLoop->blocks()) {
 | 
						|
    if (!blockNeedsPredication(BB)) {
 | 
						|
      for (Instruction &I : *BB)
 | 
						|
        if (auto *Ptr = getLoadStorePointerOperand(&I))
 | 
						|
          SafePointers.insert(Ptr);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // For a block which requires predication, a address may be safe to access
 | 
						|
    // in the loop w/o predication if we can prove dereferenceability facts
 | 
						|
    // sufficient to ensure it'll never fault within the loop. For the moment,
 | 
						|
    // we restrict this to loads; stores are more complicated due to
 | 
						|
    // concurrency restrictions.
 | 
						|
    ScalarEvolution &SE = *PSE.getSE();
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      LoadInst *LI = dyn_cast<LoadInst>(&I);
 | 
						|
      if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
 | 
						|
          isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
 | 
						|
        SafePointers.insert(LI->getPointerOperand());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect the blocks that need predication.
 | 
						|
  BasicBlock *Header = TheLoop->getHeader();
 | 
						|
  for (BasicBlock *BB : TheLoop->blocks()) {
 | 
						|
    // We don't support switch statements inside loops.
 | 
						|
    if (!isa<BranchInst>(BB->getTerminator())) {
 | 
						|
      reportVectorizationFailure("Loop contains a switch statement",
 | 
						|
                                 "loop contains a switch statement",
 | 
						|
                                 "LoopContainsSwitch", ORE, TheLoop,
 | 
						|
                                 BB->getTerminator());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // We must be able to predicate all blocks that need to be predicated.
 | 
						|
    if (blockNeedsPredication(BB)) {
 | 
						|
      if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
 | 
						|
                                ConditionalAssumes)) {
 | 
						|
        reportVectorizationFailure(
 | 
						|
            "Control flow cannot be substituted for a select",
 | 
						|
            "control flow cannot be substituted for a select",
 | 
						|
            "NoCFGForSelect", ORE, TheLoop,
 | 
						|
            BB->getTerminator());
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } else if (BB != Header && !canIfConvertPHINodes(BB)) {
 | 
						|
      reportVectorizationFailure(
 | 
						|
          "Control flow cannot be substituted for a select",
 | 
						|
          "control flow cannot be substituted for a select",
 | 
						|
          "NoCFGForSelect", ORE, TheLoop,
 | 
						|
          BB->getTerminator());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We can if-convert this loop.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Helper function to canVectorizeLoopNestCFG.
 | 
						|
bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
 | 
						|
                                                    bool UseVPlanNativePath) {
 | 
						|
  assert((UseVPlanNativePath || Lp->isInnermost()) &&
 | 
						|
         "VPlan-native path is not enabled.");
 | 
						|
 | 
						|
  // TODO: ORE should be improved to show more accurate information when an
 | 
						|
  // outer loop can't be vectorized because a nested loop is not understood or
 | 
						|
  // legal. Something like: "outer_loop_location: loop not vectorized:
 | 
						|
  // (inner_loop_location) loop control flow is not understood by vectorizer".
 | 
						|
 | 
						|
  // Store the result and return it at the end instead of exiting early, in case
 | 
						|
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
 | 
						|
  bool Result = true;
 | 
						|
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
 | 
						|
 | 
						|
  // We must have a loop in canonical form. Loops with indirectbr in them cannot
 | 
						|
  // be canonicalized.
 | 
						|
  if (!Lp->getLoopPreheader()) {
 | 
						|
    reportVectorizationFailure("Loop doesn't have a legal pre-header",
 | 
						|
        "loop control flow is not understood by vectorizer",
 | 
						|
        "CFGNotUnderstood", ORE, TheLoop);
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We must have a single backedge.
 | 
						|
  if (Lp->getNumBackEdges() != 1) {
 | 
						|
    reportVectorizationFailure("The loop must have a single backedge",
 | 
						|
        "loop control flow is not understood by vectorizer",
 | 
						|
        "CFGNotUnderstood", ORE, TheLoop);
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We currently must have a single "exit block" after the loop. Note that
 | 
						|
  // multiple "exiting blocks" inside the loop are allowed, provided they all
 | 
						|
  // reach the single exit block.
 | 
						|
  // TODO: This restriction can be relaxed in the near future, it's here solely
 | 
						|
  // to allow separation of changes for review. We need to generalize the phi
 | 
						|
  // update logic in a number of places.
 | 
						|
  if (!Lp->getUniqueExitBlock()) {
 | 
						|
    reportVectorizationFailure("The loop must have a unique exit block",
 | 
						|
        "loop control flow is not understood by vectorizer",
 | 
						|
        "CFGNotUnderstood", ORE, TheLoop);
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
 | 
						|
    Loop *Lp, bool UseVPlanNativePath) {
 | 
						|
  // Store the result and return it at the end instead of exiting early, in case
 | 
						|
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
 | 
						|
  bool Result = true;
 | 
						|
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
 | 
						|
  if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Recursively check whether the loop control flow of nested loops is
 | 
						|
  // understood.
 | 
						|
  for (Loop *SubLp : *Lp)
 | 
						|
    if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
 | 
						|
      if (DoExtraAnalysis)
 | 
						|
        Result = false;
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
 | 
						|
  // Store the result and return it at the end instead of exiting early, in case
 | 
						|
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
 | 
						|
  bool Result = true;
 | 
						|
 | 
						|
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
 | 
						|
  // Check whether the loop-related control flow in the loop nest is expected by
 | 
						|
  // vectorizer.
 | 
						|
  if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We need to have a loop header.
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
 | 
						|
                    << '\n');
 | 
						|
 | 
						|
  // Specific checks for outer loops. We skip the remaining legal checks at this
 | 
						|
  // point because they don't support outer loops.
 | 
						|
  if (!TheLoop->isInnermost()) {
 | 
						|
    assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
 | 
						|
 | 
						|
    if (!canVectorizeOuterLoop()) {
 | 
						|
      reportVectorizationFailure("Unsupported outer loop",
 | 
						|
                                 "unsupported outer loop",
 | 
						|
                                 "UnsupportedOuterLoop",
 | 
						|
                                 ORE, TheLoop);
 | 
						|
      // TODO: Implement DoExtraAnalysis when subsequent legal checks support
 | 
						|
      // outer loops.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(TheLoop->isInnermost() && "Inner loop expected.");
 | 
						|
  // Check if we can if-convert non-single-bb loops.
 | 
						|
  unsigned NumBlocks = TheLoop->getNumBlocks();
 | 
						|
  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we can vectorize the instructions and CFG in this loop.
 | 
						|
  if (!canVectorizeInstrs()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Go over each instruction and look at memory deps.
 | 
						|
  if (!canVectorizeMemory()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
 | 
						|
                    << (LAI->getRuntimePointerChecking()->Need
 | 
						|
                            ? " (with a runtime bound check)"
 | 
						|
                            : "")
 | 
						|
                    << "!\n");
 | 
						|
 | 
						|
  unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
 | 
						|
  if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
 | 
						|
    SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
 | 
						|
 | 
						|
  if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
 | 
						|
    reportVectorizationFailure("Too many SCEV checks needed",
 | 
						|
        "Too many SCEV assumptions need to be made and checked at runtime",
 | 
						|
        "TooManySCEVRunTimeChecks", ORE, TheLoop);
 | 
						|
    if (DoExtraAnalysis)
 | 
						|
      Result = false;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay! We've done all the tests. If any have failed, return false. Otherwise
 | 
						|
  // we can vectorize, and at this point we don't have any other mem analysis
 | 
						|
  // which may limit our maximum vectorization factor, so just return true with
 | 
						|
  // no restrictions.
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
 | 
						|
 | 
						|
  SmallPtrSet<const Value *, 8> ReductionLiveOuts;
 | 
						|
 | 
						|
  for (auto &Reduction : getReductionVars())
 | 
						|
    ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
 | 
						|
 | 
						|
  // TODO: handle non-reduction outside users when tail is folded by masking.
 | 
						|
  for (auto *AE : AllowedExit) {
 | 
						|
    // Check that all users of allowed exit values are inside the loop or
 | 
						|
    // are the live-out of a reduction.
 | 
						|
    if (ReductionLiveOuts.count(AE))
 | 
						|
      continue;
 | 
						|
    for (User *U : AE->users()) {
 | 
						|
      Instruction *UI = cast<Instruction>(U);
 | 
						|
      if (TheLoop->contains(UI))
 | 
						|
        continue;
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs()
 | 
						|
          << "LV: Cannot fold tail by masking, loop has an outside user for "
 | 
						|
          << *UI << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The list of pointers that we can safely read and write to remains empty.
 | 
						|
  SmallPtrSet<Value *, 8> SafePointers;
 | 
						|
 | 
						|
  SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
 | 
						|
  SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
 | 
						|
 | 
						|
  // Check and mark all blocks for predication, including those that ordinarily
 | 
						|
  // do not need predication such as the header block.
 | 
						|
  for (BasicBlock *BB : TheLoop->blocks()) {
 | 
						|
    if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
 | 
						|
                              TmpConditionalAssumes,
 | 
						|
                              /* MaskAllLoads= */ true)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
 | 
						|
 | 
						|
  MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
 | 
						|
  ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
 | 
						|
                            TmpConditionalAssumes.end());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace llvm
 |