forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			583 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			583 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the interface for lazy computation of value constraint
 | 
						|
// information.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "lazy-value-info"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/PointerIntPair.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
char LazyValueInfo::ID = 0;
 | 
						|
static RegisterPass<LazyValueInfo>
 | 
						|
X("lazy-value-info", "Lazy Value Information Analysis", false, true);
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               LVILatticeVal
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
 | 
						|
/// value.
 | 
						|
///
 | 
						|
/// FIXME: This is basically just for bringup, this can be made a lot more rich
 | 
						|
/// in the future.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
class LVILatticeVal {
 | 
						|
  enum LatticeValueTy {
 | 
						|
    /// undefined - This LLVM Value has no known value yet.
 | 
						|
    undefined,
 | 
						|
    /// constant - This LLVM Value has a specific constant value.
 | 
						|
    constant,
 | 
						|
    
 | 
						|
    /// notconstant - This LLVM value is known to not have the specified value.
 | 
						|
    notconstant,
 | 
						|
    
 | 
						|
    /// overdefined - This instruction is not known to be constant, and we know
 | 
						|
    /// it has a value.
 | 
						|
    overdefined
 | 
						|
  };
 | 
						|
  
 | 
						|
  /// Val: This stores the current lattice value along with the Constant* for
 | 
						|
  /// the constant if this is a 'constant' or 'notconstant' value.
 | 
						|
  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
 | 
						|
  
 | 
						|
public:
 | 
						|
  LVILatticeVal() : Val(0, undefined) {}
 | 
						|
 | 
						|
  static LVILatticeVal get(Constant *C) {
 | 
						|
    LVILatticeVal Res;
 | 
						|
    Res.markConstant(C);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  static LVILatticeVal getNot(Constant *C) {
 | 
						|
    LVILatticeVal Res;
 | 
						|
    Res.markNotConstant(C);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool isUndefined() const   { return Val.getInt() == undefined; }
 | 
						|
  bool isConstant() const    { return Val.getInt() == constant; }
 | 
						|
  bool isNotConstant() const { return Val.getInt() == notconstant; }
 | 
						|
  bool isOverdefined() const { return Val.getInt() == overdefined; }
 | 
						|
  
 | 
						|
  Constant *getConstant() const {
 | 
						|
    assert(isConstant() && "Cannot get the constant of a non-constant!");
 | 
						|
    return Val.getPointer();
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *getNotConstant() const {
 | 
						|
    assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
 | 
						|
    return Val.getPointer();
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// markOverdefined - Return true if this is a change in status.
 | 
						|
  bool markOverdefined() {
 | 
						|
    if (isOverdefined())
 | 
						|
      return false;
 | 
						|
    Val.setInt(overdefined);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// markConstant - Return true if this is a change in status.
 | 
						|
  bool markConstant(Constant *V) {
 | 
						|
    if (isConstant()) {
 | 
						|
      assert(getConstant() == V && "Marking constant with different value");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert(isUndefined());
 | 
						|
    Val.setInt(constant);
 | 
						|
    assert(V && "Marking constant with NULL");
 | 
						|
    Val.setPointer(V);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// markNotConstant - Return true if this is a change in status.
 | 
						|
  bool markNotConstant(Constant *V) {
 | 
						|
    if (isNotConstant()) {
 | 
						|
      assert(getNotConstant() == V && "Marking !constant with different value");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (isConstant())
 | 
						|
      assert(getConstant() != V && "Marking not constant with different value");
 | 
						|
    else
 | 
						|
      assert(isUndefined());
 | 
						|
 | 
						|
    Val.setInt(notconstant);
 | 
						|
    assert(V && "Marking constant with NULL");
 | 
						|
    Val.setPointer(V);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// mergeIn - Merge the specified lattice value into this one, updating this
 | 
						|
  /// one and returning true if anything changed.
 | 
						|
  bool mergeIn(const LVILatticeVal &RHS) {
 | 
						|
    if (RHS.isUndefined() || isOverdefined()) return false;
 | 
						|
    if (RHS.isOverdefined()) return markOverdefined();
 | 
						|
 | 
						|
    if (RHS.isNotConstant()) {
 | 
						|
      if (isNotConstant()) {
 | 
						|
        if (getNotConstant() != RHS.getNotConstant() ||
 | 
						|
            isa<ConstantExpr>(getNotConstant()) ||
 | 
						|
            isa<ConstantExpr>(RHS.getNotConstant()))
 | 
						|
          return markOverdefined();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (isConstant()) {
 | 
						|
        if (getConstant() == RHS.getNotConstant() ||
 | 
						|
            isa<ConstantExpr>(RHS.getNotConstant()) ||
 | 
						|
            isa<ConstantExpr>(getConstant()))
 | 
						|
          return markOverdefined();
 | 
						|
        return markNotConstant(RHS.getNotConstant());
 | 
						|
      }
 | 
						|
      
 | 
						|
      assert(isUndefined() && "Unexpected lattice");
 | 
						|
      return markNotConstant(RHS.getNotConstant());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // RHS must be a constant, we must be undef, constant, or notconstant.
 | 
						|
    if (isUndefined())
 | 
						|
      return markConstant(RHS.getConstant());
 | 
						|
    
 | 
						|
    if (isConstant()) {
 | 
						|
      if (getConstant() != RHS.getConstant())
 | 
						|
        return markOverdefined();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are known "!=4" and RHS is "==5", stay at "!=4".
 | 
						|
    if (getNotConstant() == RHS.getConstant() ||
 | 
						|
        isa<ConstantExpr>(getNotConstant()) ||
 | 
						|
        isa<ConstantExpr>(RHS.getConstant()))
 | 
						|
      return markOverdefined();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
};
 | 
						|
  
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
 | 
						|
  if (Val.isUndefined())
 | 
						|
    return OS << "undefined";
 | 
						|
  if (Val.isOverdefined())
 | 
						|
    return OS << "overdefined";
 | 
						|
 | 
						|
  if (Val.isNotConstant())
 | 
						|
    return OS << "notconstant<" << *Val.getNotConstant() << '>';
 | 
						|
  return OS << "constant<" << *Val.getConstant() << '>';
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          LazyValueInfoCache Decl
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
 | 
						|
  /// maintains information about queries across the clients' queries.
 | 
						|
  class LazyValueInfoCache {
 | 
						|
  public:
 | 
						|
    /// BlockCacheEntryTy - This is a computed lattice value at the end of the
 | 
						|
    /// specified basic block for a Value* that depends on context.
 | 
						|
    typedef std::pair<BasicBlock*, LVILatticeVal> BlockCacheEntryTy;
 | 
						|
    
 | 
						|
    /// ValueCacheEntryTy - This is all of the cached block information for
 | 
						|
    /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
 | 
						|
    /// entries, allowing us to do a lookup with a binary search.
 | 
						|
    typedef std::vector<BlockCacheEntryTy> ValueCacheEntryTy;
 | 
						|
 | 
						|
  private:
 | 
						|
    /// ValueCache - This is all of the cached information for all values,
 | 
						|
    /// mapped from Value* to key information.
 | 
						|
    DenseMap<Value*, ValueCacheEntryTy> ValueCache;
 | 
						|
  public:
 | 
						|
    
 | 
						|
    /// getValueInBlock - This is the query interface to determine the lattice
 | 
						|
    /// value for the specified Value* at the end of the specified block.
 | 
						|
    LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
 | 
						|
 | 
						|
    /// getValueOnEdge - This is the query interface to determine the lattice
 | 
						|
    /// value for the specified Value* that is true on the specified edge.
 | 
						|
    LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct BlockCacheEntryComparator {
 | 
						|
    static int Compare(const void *LHSv, const void *RHSv) {
 | 
						|
      const LazyValueInfoCache::BlockCacheEntryTy *LHS =
 | 
						|
        static_cast<const LazyValueInfoCache::BlockCacheEntryTy *>(LHSv);
 | 
						|
      const LazyValueInfoCache::BlockCacheEntryTy *RHS =
 | 
						|
        static_cast<const LazyValueInfoCache::BlockCacheEntryTy *>(RHSv);
 | 
						|
      if (LHS->first < RHS->first)
 | 
						|
        return -1;
 | 
						|
      if (LHS->first > RHS->first)
 | 
						|
        return 1;
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool operator()(const LazyValueInfoCache::BlockCacheEntryTy &LHS,
 | 
						|
                    const LazyValueInfoCache::BlockCacheEntryTy &RHS) const {
 | 
						|
      return LHS.first < RHS.first;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              LVIQuery Impl
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// LVIQuery - This is a transient object that exists while a query is
 | 
						|
  /// being performed.
 | 
						|
  ///
 | 
						|
  /// TODO: Reuse LVIQuery instead of recreating it for every query, this avoids
 | 
						|
  /// reallocation of the densemap on every query.
 | 
						|
  class LVIQuery {
 | 
						|
    typedef LazyValueInfoCache::BlockCacheEntryTy BlockCacheEntryTy;
 | 
						|
    typedef LazyValueInfoCache::ValueCacheEntryTy ValueCacheEntryTy;
 | 
						|
    
 | 
						|
    /// This is the current value being queried for.
 | 
						|
    Value *Val;
 | 
						|
    
 | 
						|
    /// This is all of the cached information about this value.
 | 
						|
    ValueCacheEntryTy &Cache;
 | 
						|
    
 | 
						|
    ///  NewBlocks - This is a mapping of the new BasicBlocks which have been
 | 
						|
    /// added to cache but that are not in sorted order.
 | 
						|
    DenseMap<BasicBlock*, LVILatticeVal> NewBlockInfo;
 | 
						|
  public:
 | 
						|
    
 | 
						|
    LVIQuery(Value *V, ValueCacheEntryTy &VC) : Val(V), Cache(VC) {
 | 
						|
    }
 | 
						|
 | 
						|
    ~LVIQuery() {
 | 
						|
      // When the query is done, insert the newly discovered facts into the
 | 
						|
      // cache in sorted order.
 | 
						|
      if (NewBlockInfo.empty()) return;
 | 
						|
 | 
						|
      // Grow the cache to exactly fit the new data.
 | 
						|
      Cache.reserve(Cache.size() + NewBlockInfo.size());
 | 
						|
      
 | 
						|
      // If we only have one new entry, insert it instead of doing a full-on
 | 
						|
      // sort.
 | 
						|
      if (NewBlockInfo.size() == 1) {
 | 
						|
        BlockCacheEntryTy Entry = *NewBlockInfo.begin();
 | 
						|
        ValueCacheEntryTy::iterator I =
 | 
						|
          std::lower_bound(Cache.begin(), Cache.end(), Entry,
 | 
						|
                           BlockCacheEntryComparator());
 | 
						|
        assert((I == Cache.end() || I->first != Entry.first) &&
 | 
						|
               "Entry already in map!");
 | 
						|
        
 | 
						|
        Cache.insert(I, Entry);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // TODO: If we only have two new elements, INSERT them both.
 | 
						|
      
 | 
						|
      Cache.insert(Cache.end(), NewBlockInfo.begin(), NewBlockInfo.end());
 | 
						|
      array_pod_sort(Cache.begin(), Cache.end(),
 | 
						|
                     BlockCacheEntryComparator::Compare);
 | 
						|
      
 | 
						|
    }
 | 
						|
 | 
						|
    LVILatticeVal getBlockValue(BasicBlock *BB);
 | 
						|
    LVILatticeVal getEdgeValue(BasicBlock *FromBB, BasicBlock *ToBB);
 | 
						|
 | 
						|
  private:
 | 
						|
    LVILatticeVal &getCachedEntryForBlock(BasicBlock *BB);
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// getCachedEntryForBlock - See if we already have a value for this block.  If
 | 
						|
/// so, return it, otherwise create a new entry in the NewBlockInfo map to use.
 | 
						|
LVILatticeVal &LVIQuery::getCachedEntryForBlock(BasicBlock *BB) {
 | 
						|
  
 | 
						|
  // Do a binary search to see if we already have an entry for this block in
 | 
						|
  // the cache set.  If so, find it.
 | 
						|
  if (!Cache.empty()) {
 | 
						|
    ValueCacheEntryTy::iterator Entry =
 | 
						|
      std::lower_bound(Cache.begin(), Cache.end(),
 | 
						|
                       BlockCacheEntryTy(BB, LVILatticeVal()),
 | 
						|
                       BlockCacheEntryComparator());
 | 
						|
    if (Entry != Cache.end() && Entry->first == BB)
 | 
						|
      return Entry->second;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, check to see if it's in NewBlockInfo or create a new entry if
 | 
						|
  // not.
 | 
						|
  return NewBlockInfo[BB];
 | 
						|
}
 | 
						|
 | 
						|
LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) {
 | 
						|
  // See if we already have a value for this block.
 | 
						|
  LVILatticeVal &BBLV = getCachedEntryForBlock(BB);
 | 
						|
  
 | 
						|
  // If we've already computed this block's value, return it.
 | 
						|
  if (!BBLV.isUndefined()) {
 | 
						|
    DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
 | 
						|
    return BBLV;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is the first time we're seeing this block.  Reset the
 | 
						|
  // lattice value to overdefined, so that cycles will terminate and be
 | 
						|
  // conservatively correct.
 | 
						|
  BBLV.markOverdefined();
 | 
						|
  
 | 
						|
  // If V is live into BB, see if our predecessors know anything about it.
 | 
						|
  Instruction *BBI = dyn_cast<Instruction>(Val);
 | 
						|
  if (BBI == 0 || BBI->getParent() != BB) {
 | 
						|
    LVILatticeVal Result;  // Start Undefined.
 | 
						|
    unsigned NumPreds = 0;
 | 
						|
    
 | 
						|
    // Loop over all of our predecessors, merging what we know from them into
 | 
						|
    // result.
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
      Result.mergeIn(getEdgeValue(*PI, BB));
 | 
						|
      
 | 
						|
      // If we hit overdefined, exit early.  The BlockVals entry is already set
 | 
						|
      // to overdefined.
 | 
						|
      if (Result.isOverdefined()) {
 | 
						|
        DEBUG(dbgs() << " compute BB '" << BB->getName()
 | 
						|
                     << "' - overdefined because of pred.\n");
 | 
						|
        return Result;
 | 
						|
      }
 | 
						|
      ++NumPreds;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is the entry block, we must be asking about an argument.  The
 | 
						|
    // value is overdefined.
 | 
						|
    if (NumPreds == 0 && BB == &BB->getParent()->front()) {
 | 
						|
      assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
 | 
						|
      Result.markOverdefined();
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Return the merged value, which is more precise than 'overdefined'.
 | 
						|
    assert(!Result.isOverdefined());
 | 
						|
    return getCachedEntryForBlock(BB) = Result;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this value is defined by an instruction in this block, we have to
 | 
						|
  // process it here somehow or return overdefined.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
 | 
						|
    (void)PN;
 | 
						|
    // TODO: PHI Translation in preds.
 | 
						|
  } else {
 | 
						|
    
 | 
						|
  }
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << " compute BB '" << BB->getName()
 | 
						|
               << "' - overdefined because inst def found.\n");
 | 
						|
 | 
						|
  LVILatticeVal Result;
 | 
						|
  Result.markOverdefined();
 | 
						|
  return getCachedEntryForBlock(BB) = Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getEdgeValue - This method attempts to infer more complex 
 | 
						|
LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) {
 | 
						|
  // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
 | 
						|
  // know that v != 0.
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
 | 
						|
    // If this is a conditional branch and only one successor goes to BBTo, then
 | 
						|
    // we maybe able to infer something from the condition. 
 | 
						|
    if (BI->isConditional() &&
 | 
						|
        BI->getSuccessor(0) != BI->getSuccessor(1)) {
 | 
						|
      bool isTrueDest = BI->getSuccessor(0) == BBTo;
 | 
						|
      assert(BI->getSuccessor(!isTrueDest) == BBTo &&
 | 
						|
             "BBTo isn't a successor of BBFrom");
 | 
						|
      
 | 
						|
      // If V is the condition of the branch itself, then we know exactly what
 | 
						|
      // it is.
 | 
						|
      if (BI->getCondition() == Val)
 | 
						|
        return LVILatticeVal::get(ConstantInt::get(
 | 
						|
                               Type::getInt1Ty(Val->getContext()), isTrueDest));
 | 
						|
      
 | 
						|
      // If the condition of the branch is an equality comparison, we may be
 | 
						|
      // able to infer the value.
 | 
						|
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
 | 
						|
        if (ICI->isEquality() && ICI->getOperand(0) == Val &&
 | 
						|
            isa<Constant>(ICI->getOperand(1))) {
 | 
						|
          // We know that V has the RHS constant if this is a true SETEQ or
 | 
						|
          // false SETNE. 
 | 
						|
          if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
 | 
						|
            return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
 | 
						|
          return LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the edge was formed by a switch on the value, then we may know exactly
 | 
						|
  // what it is.
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
 | 
						|
    // If BBTo is the default destination of the switch, we don't know anything.
 | 
						|
    // Given a more powerful range analysis we could know stuff.
 | 
						|
    if (SI->getCondition() == Val && SI->getDefaultDest() != BBTo) {
 | 
						|
      // We only know something if there is exactly one value that goes from
 | 
						|
      // BBFrom to BBTo.
 | 
						|
      unsigned NumEdges = 0;
 | 
						|
      ConstantInt *EdgeVal = 0;
 | 
						|
      for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
 | 
						|
        if (SI->getSuccessor(i) != BBTo) continue;
 | 
						|
        if (NumEdges++) break;
 | 
						|
        EdgeVal = SI->getCaseValue(i);
 | 
						|
      }
 | 
						|
      assert(EdgeVal && "Missing successor?");
 | 
						|
      if (NumEdges == 1)
 | 
						|
        return LVILatticeVal::get(EdgeVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise see if the value is known in the block.
 | 
						|
  return getBlockValue(BBFrom);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         LazyValueInfoCache Impl
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
 | 
						|
  // If already a constant, there is nothing to compute.
 | 
						|
  if (Constant *VC = dyn_cast<Constant>(V))
 | 
						|
    return LVILatticeVal::get(VC);
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
 | 
						|
        << BB->getName() << "'\n");
 | 
						|
  
 | 
						|
  LVILatticeVal Result = LVIQuery(V, ValueCache[V]).getBlockValue(BB);
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "  Result = " << Result << "\n");
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
LVILatticeVal LazyValueInfoCache::
 | 
						|
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
 | 
						|
  // If already a constant, there is nothing to compute.
 | 
						|
  if (Constant *VC = dyn_cast<Constant>(V))
 | 
						|
    return LVILatticeVal::get(VC);
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
 | 
						|
        << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
 | 
						|
  LVILatticeVal Result =
 | 
						|
    LVIQuery(V, ValueCache[V]).getEdgeValue(FromBB, ToBB);
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "  Result = " << Result << "\n");
 | 
						|
  
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            LazyValueInfo Impl
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool LazyValueInfo::runOnFunction(Function &F) {
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
  // Fully lazy.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getCache - This lazily constructs the LazyValueInfoCache.
 | 
						|
static LazyValueInfoCache &getCache(void *&PImpl) {
 | 
						|
  if (!PImpl)
 | 
						|
    PImpl = new LazyValueInfoCache();
 | 
						|
  return *static_cast<LazyValueInfoCache*>(PImpl);
 | 
						|
}
 | 
						|
 | 
						|
void LazyValueInfo::releaseMemory() {
 | 
						|
  // If the cache was allocated, free it.
 | 
						|
  if (PImpl) {
 | 
						|
    delete &getCache(PImpl);
 | 
						|
    PImpl = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
 | 
						|
  LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
 | 
						|
  
 | 
						|
  if (Result.isConstant())
 | 
						|
    return Result.getConstant();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantOnEdge - Determine whether the specified value is known to be a
 | 
						|
/// constant on the specified edge.  Return null if not.
 | 
						|
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
 | 
						|
                                           BasicBlock *ToBB) {
 | 
						|
  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
 | 
						|
  
 | 
						|
  if (Result.isConstant())
 | 
						|
    return Result.getConstant();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getPredicateOnEdge - Determine whether the specified value comparison
 | 
						|
/// with a constant is known to be true or false on the specified CFG edge.
 | 
						|
/// Pred is a CmpInst predicate.
 | 
						|
LazyValueInfo::Tristate
 | 
						|
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
 | 
						|
                                  BasicBlock *FromBB, BasicBlock *ToBB) {
 | 
						|
  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
 | 
						|
  
 | 
						|
  // If we know the value is a constant, evaluate the conditional.
 | 
						|
  Constant *Res = 0;
 | 
						|
  if (Result.isConstant()) {
 | 
						|
    Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
 | 
						|
    if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
 | 
						|
      return ResCI->isZero() ? False : True;
 | 
						|
    return Unknown;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Result.isNotConstant()) {
 | 
						|
    // If this is an equality comparison, we can try to fold it knowing that
 | 
						|
    // "V != C1".
 | 
						|
    if (Pred == ICmpInst::ICMP_EQ) {
 | 
						|
      // !C1 == C -> false iff C1 == C.
 | 
						|
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | 
						|
                                            Result.getNotConstant(), C, TD);
 | 
						|
      if (Res->isNullValue())
 | 
						|
        return False;
 | 
						|
    } else if (Pred == ICmpInst::ICMP_NE) {
 | 
						|
      // !C1 != C -> true iff C1 == C.
 | 
						|
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | 
						|
                                            Result.getNotConstant(), C, TD);
 | 
						|
      if (Res->isNullValue())
 | 
						|
        return True;
 | 
						|
    }
 | 
						|
    return Unknown;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Unknown;
 | 
						|
}
 | 
						|
 | 
						|
 |