forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			477 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			477 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass eliminates machine instruction PHI nodes by inserting copy
 | 
						|
// instructions.  This destroys SSA information, but is the desired input for
 | 
						|
// some register allocators.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "phielim"
 | 
						|
#include "PHIElimination.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumAtomic, "Number of atomic phis lowered");
 | 
						|
STATISTIC(NumSplits, "Number of critical edges split on demand");
 | 
						|
STATISTIC(NumReused, "Number of reused lowered phis");
 | 
						|
 | 
						|
char PHIElimination::ID = 0;
 | 
						|
static RegisterPass<PHIElimination>
 | 
						|
X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
 | 
						|
 | 
						|
const PassInfo *const llvm::PHIEliminationID = &X;
 | 
						|
 | 
						|
void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addPreserved<LiveVariables>();
 | 
						|
  AU.addPreserved<MachineDominatorTree>();
 | 
						|
  // rdar://7401784 This would be nice:
 | 
						|
  // AU.addPreservedID(MachineLoopInfoID);
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
  MRI = &Fn.getRegInfo();
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Split critical edges to help the coalescer
 | 
						|
  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
 | 
						|
    for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
      Changed |= SplitPHIEdges(Fn, *I, *LV);
 | 
						|
 | 
						|
  // Populate VRegPHIUseCount
 | 
						|
  analyzePHINodes(Fn);
 | 
						|
 | 
						|
  // Eliminate PHI instructions by inserting copies into predecessor blocks.
 | 
						|
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
    Changed |= EliminatePHINodes(Fn, *I);
 | 
						|
 | 
						|
  // Remove dead IMPLICIT_DEF instructions.
 | 
						|
  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
 | 
						|
         E = ImpDefs.end(); I != E; ++I) {
 | 
						|
    MachineInstr *DefMI = *I;
 | 
						|
    unsigned DefReg = DefMI->getOperand(0).getReg();
 | 
						|
    if (MRI->use_empty(DefReg))
 | 
						|
      DefMI->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Clean up the lowered PHI instructions.
 | 
						|
  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    Fn.DeleteMachineInstr(I->first);
 | 
						|
 | 
						|
  LoweredPHIs.clear();
 | 
						|
  ImpDefs.clear();
 | 
						|
  VRegPHIUseCount.clear();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 | 
						|
/// predecessor basic blocks.
 | 
						|
///
 | 
						|
bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
 | 
						|
                                             MachineBasicBlock &MBB) {
 | 
						|
  if (MBB.empty() || !MBB.front().isPHI())
 | 
						|
    return false;   // Quick exit for basic blocks without PHIs.
 | 
						|
 | 
						|
  // Get an iterator to the first instruction after the last PHI node (this may
 | 
						|
  // also be the end of the basic block).
 | 
						|
  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
 | 
						|
 | 
						|
  while (MBB.front().isPHI())
 | 
						|
    LowerAtomicPHINode(MBB, AfterPHIsIt);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
 | 
						|
/// are implicit_def's.
 | 
						|
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
 | 
						|
                                         const MachineRegisterInfo *MRI) {
 | 
						|
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
 | 
						|
    unsigned SrcReg = MPhi->getOperand(i).getReg();
 | 
						|
    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | 
						|
    if (!DefMI || !DefMI->isImplicitDef())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
 | 
						|
// when following the CFG edge to SuccMBB. This needs to be after any def of
 | 
						|
// SrcReg, but before any subsequent point where control flow might jump out of
 | 
						|
// the basic block.
 | 
						|
MachineBasicBlock::iterator
 | 
						|
llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
 | 
						|
                                          MachineBasicBlock &SuccMBB,
 | 
						|
                                          unsigned SrcReg) {
 | 
						|
  // Handle the trivial case trivially.
 | 
						|
  if (MBB.empty())
 | 
						|
    return MBB.begin();
 | 
						|
 | 
						|
  // Usually, we just want to insert the copy before the first terminator
 | 
						|
  // instruction. However, for the edge going to a landing pad, we must insert
 | 
						|
  // the copy before the call/invoke instruction.
 | 
						|
  if (!SuccMBB.isLandingPad())
 | 
						|
    return MBB.getFirstTerminator();
 | 
						|
 | 
						|
  // Discover any defs/uses in this basic block.
 | 
						|
  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
 | 
						|
         RE = MRI->reg_end(); RI != RE; ++RI) {
 | 
						|
    MachineInstr *DefUseMI = &*RI;
 | 
						|
    if (DefUseMI->getParent() == &MBB)
 | 
						|
      DefUsesInMBB.insert(DefUseMI);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock::iterator InsertPoint;
 | 
						|
  if (DefUsesInMBB.empty()) {
 | 
						|
    // No defs.  Insert the copy at the start of the basic block.
 | 
						|
    InsertPoint = MBB.begin();
 | 
						|
  } else if (DefUsesInMBB.size() == 1) {
 | 
						|
    // Insert the copy immediately after the def/use.
 | 
						|
    InsertPoint = *DefUsesInMBB.begin();
 | 
						|
    ++InsertPoint;
 | 
						|
  } else {
 | 
						|
    // Insert the copy immediately after the last def/use.
 | 
						|
    InsertPoint = MBB.end();
 | 
						|
    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
 | 
						|
    ++InsertPoint;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure the copy goes after any phi nodes however.
 | 
						|
  return SkipPHIsAndLabels(MBB, InsertPoint);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
 | 
						|
/// under the assuption that it needs to be lowered in a way that supports
 | 
						|
/// atomic execution of PHIs.  This lowering method is always correct all of the
 | 
						|
/// time.
 | 
						|
///
 | 
						|
void llvm::PHIElimination::LowerAtomicPHINode(
 | 
						|
                                      MachineBasicBlock &MBB,
 | 
						|
                                      MachineBasicBlock::iterator AfterPHIsIt) {
 | 
						|
  ++NumAtomic;
 | 
						|
  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
 | 
						|
  MachineInstr *MPhi = MBB.remove(MBB.begin());
 | 
						|
 | 
						|
  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
 | 
						|
  unsigned DestReg = MPhi->getOperand(0).getReg();
 | 
						|
  bool isDead = MPhi->getOperand(0).isDead();
 | 
						|
 | 
						|
  // Create a new register for the incoming PHI arguments.
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
 | 
						|
  unsigned IncomingReg = 0;
 | 
						|
  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
 | 
						|
 | 
						|
  // Insert a register to register copy at the top of the current block (but
 | 
						|
  // after any remaining phi nodes) which copies the new incoming register
 | 
						|
  // into the phi node destination.
 | 
						|
  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
 | 
						|
  if (isSourceDefinedByImplicitDef(MPhi, MRI))
 | 
						|
    // If all sources of a PHI node are implicit_def, just emit an
 | 
						|
    // implicit_def instead of a copy.
 | 
						|
    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
 | 
						|
            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
 | 
						|
  else {
 | 
						|
    // Can we reuse an earlier PHI node? This only happens for critical edges,
 | 
						|
    // typically those created by tail duplication.
 | 
						|
    unsigned &entry = LoweredPHIs[MPhi];
 | 
						|
    if (entry) {
 | 
						|
      // An identical PHI node was already lowered. Reuse the incoming register.
 | 
						|
      IncomingReg = entry;
 | 
						|
      reusedIncoming = true;
 | 
						|
      ++NumReused;
 | 
						|
      DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
 | 
						|
    } else {
 | 
						|
      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
 | 
						|
    }
 | 
						|
    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update live variable information if there is any.
 | 
						|
  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
 | 
						|
  if (LV) {
 | 
						|
    MachineInstr *PHICopy = prior(AfterPHIsIt);
 | 
						|
 | 
						|
    if (IncomingReg) {
 | 
						|
      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
 | 
						|
 | 
						|
      // Increment use count of the newly created virtual register.
 | 
						|
      VI.NumUses++;
 | 
						|
      LV->setPHIJoin(IncomingReg);
 | 
						|
 | 
						|
      // When we are reusing the incoming register, it may already have been
 | 
						|
      // killed in this block. The old kill will also have been inserted at
 | 
						|
      // AfterPHIsIt, so it appears before the current PHICopy.
 | 
						|
      if (reusedIncoming)
 | 
						|
        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
 | 
						|
          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
 | 
						|
          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
 | 
						|
          DEBUG(MBB.dump());
 | 
						|
        }
 | 
						|
 | 
						|
      // Add information to LiveVariables to know that the incoming value is
 | 
						|
      // killed.  Note that because the value is defined in several places (once
 | 
						|
      // each for each incoming block), the "def" block and instruction fields
 | 
						|
      // for the VarInfo is not filled in.
 | 
						|
      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
 | 
						|
    }
 | 
						|
 | 
						|
    // Since we are going to be deleting the PHI node, if it is the last use of
 | 
						|
    // any registers, or if the value itself is dead, we need to move this
 | 
						|
    // information over to the new copy we just inserted.
 | 
						|
    LV->removeVirtualRegistersKilled(MPhi);
 | 
						|
 | 
						|
    // If the result is dead, update LV.
 | 
						|
    if (isDead) {
 | 
						|
      LV->addVirtualRegisterDead(DestReg, PHICopy);
 | 
						|
      LV->removeVirtualRegisterDead(DestReg, MPhi);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
 | 
						|
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | 
						|
    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
 | 
						|
                                 MPhi->getOperand(i).getReg())];
 | 
						|
 | 
						|
  // Now loop over all of the incoming arguments, changing them to copy into the
 | 
						|
  // IncomingReg register in the corresponding predecessor basic block.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
 | 
						|
  for (int i = NumSrcs - 1; i >= 0; --i) {
 | 
						|
    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
 | 
						|
    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | 
						|
           "Machine PHI Operands must all be virtual registers!");
 | 
						|
 | 
						|
    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
 | 
						|
    // path the PHI.
 | 
						|
    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
 | 
						|
 | 
						|
    // If source is defined by an implicit def, there is no need to insert a
 | 
						|
    // copy.
 | 
						|
    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | 
						|
    if (DefMI->isImplicitDef()) {
 | 
						|
      ImpDefs.insert(DefMI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to make sure we haven't already emitted the copy for this block.
 | 
						|
    // This can happen because PHI nodes may have multiple entries for the same
 | 
						|
    // basic block.
 | 
						|
    if (!MBBsInsertedInto.insert(&opBlock))
 | 
						|
      continue;  // If the copy has already been emitted, we're done.
 | 
						|
 | 
						|
    // Find a safe location to insert the copy, this may be the first terminator
 | 
						|
    // in the block (or end()).
 | 
						|
    MachineBasicBlock::iterator InsertPos =
 | 
						|
      FindCopyInsertPoint(opBlock, MBB, SrcReg);
 | 
						|
 | 
						|
    // Insert the copy.
 | 
						|
    if (!reusedIncoming && IncomingReg)
 | 
						|
      TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
 | 
						|
 | 
						|
    // Now update live variable information if we have it.  Otherwise we're done
 | 
						|
    if (!LV) continue;
 | 
						|
 | 
						|
    // We want to be able to insert a kill of the register if this PHI (aka, the
 | 
						|
    // copy we just inserted) is the last use of the source value.  Live
 | 
						|
    // variable analysis conservatively handles this by saying that the value is
 | 
						|
    // live until the end of the block the PHI entry lives in.  If the value
 | 
						|
    // really is dead at the PHI copy, there will be no successor blocks which
 | 
						|
    // have the value live-in.
 | 
						|
 | 
						|
    // Also check to see if this register is in use by another PHI node which
 | 
						|
    // has not yet been eliminated.  If so, it will be killed at an appropriate
 | 
						|
    // point later.
 | 
						|
 | 
						|
    // Is it used by any PHI instructions in this block?
 | 
						|
    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
 | 
						|
 | 
						|
    // Okay, if we now know that the value is not live out of the block, we can
 | 
						|
    // add a kill marker in this block saying that it kills the incoming value!
 | 
						|
    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
 | 
						|
      // In our final twist, we have to decide which instruction kills the
 | 
						|
      // register.  In most cases this is the copy, however, the first
 | 
						|
      // terminator instruction at the end of the block may also use the value.
 | 
						|
      // In this case, we should mark *it* as being the killing block, not the
 | 
						|
      // copy.
 | 
						|
      MachineBasicBlock::iterator KillInst;
 | 
						|
      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
 | 
						|
      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
 | 
						|
        KillInst = Term;
 | 
						|
 | 
						|
        // Check that no other terminators use values.
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (MachineBasicBlock::iterator TI = llvm::next(Term);
 | 
						|
             TI != opBlock.end(); ++TI) {
 | 
						|
          assert(!TI->readsRegister(SrcReg) &&
 | 
						|
                 "Terminator instructions cannot use virtual registers unless"
 | 
						|
                 "they are the first terminator in a block!");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
      } else if (reusedIncoming || !IncomingReg) {
 | 
						|
        // We may have to rewind a bit if we didn't insert a copy this time.
 | 
						|
        KillInst = Term;
 | 
						|
        while (KillInst != opBlock.begin())
 | 
						|
          if ((--KillInst)->readsRegister(SrcReg))
 | 
						|
            break;
 | 
						|
      } else {
 | 
						|
        // We just inserted this copy.
 | 
						|
        KillInst = prior(InsertPos);
 | 
						|
      }
 | 
						|
      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
 | 
						|
 | 
						|
      // Finally, mark it killed.
 | 
						|
      LV->addVirtualRegisterKilled(SrcReg, KillInst);
 | 
						|
 | 
						|
      // This vreg no longer lives all of the way through opBlock.
 | 
						|
      unsigned opBlockNum = opBlock.getNumber();
 | 
						|
      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
 | 
						|
  if (reusedIncoming || !IncomingReg)
 | 
						|
    MF.DeleteMachineInstr(MPhi);
 | 
						|
}
 | 
						|
 | 
						|
/// analyzePHINodes - Gather information about the PHI nodes in here. In
 | 
						|
/// particular, we want to map the number of uses of a virtual register which is
 | 
						|
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
 | 
						|
/// used later to determine when the vreg is killed in the BB.
 | 
						|
///
 | 
						|
void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
 | 
						|
  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
 | 
						|
       I != E; ++I)
 | 
						|
    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
 | 
						|
         BBI != BBE && BBI->isPHI(); ++BBI)
 | 
						|
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
 | 
						|
        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
 | 
						|
                                     BBI->getOperand(i).getReg())];
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
 | 
						|
                                         MachineBasicBlock &MBB,
 | 
						|
                                         LiveVariables &LV) {
 | 
						|
  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
 | 
						|
    return false;   // Quick exit for basic blocks without PHIs.
 | 
						|
 | 
						|
  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
 | 
						|
       BBI != BBE && BBI->isPHI(); ++BBI) {
 | 
						|
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
 | 
						|
      unsigned Reg = BBI->getOperand(i).getReg();
 | 
						|
      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
 | 
						|
      // We break edges when registers are live out from the predecessor block
 | 
						|
      // (not considering PHI nodes). If the register is live in to this block
 | 
						|
      // anyway, we would gain nothing from splitting.
 | 
						|
      if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB))
 | 
						|
        SplitCriticalEdge(PreMBB, &MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
 | 
						|
                                                     MachineBasicBlock *B) {
 | 
						|
  assert(A && B && "Missing MBB end point");
 | 
						|
 | 
						|
  MachineFunction *MF = A->getParent();
 | 
						|
 | 
						|
  // We may need to update A's terminator, but we can't do that if AnalyzeBranch
 | 
						|
  // fails. If A uses a jump table, we won't touch it.
 | 
						|
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | 
						|
  MachineBasicBlock *TBB = 0, *FBB = 0;
 | 
						|
  SmallVector<MachineOperand, 4> Cond;
 | 
						|
  if (TII->AnalyzeBranch(*A, TBB, FBB, Cond))
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  ++NumSplits;
 | 
						|
 | 
						|
  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
 | 
						|
  MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB);
 | 
						|
  DEBUG(dbgs() << "PHIElimination splitting critical edge:"
 | 
						|
        " BB#" << A->getNumber()
 | 
						|
        << " -- BB#" << NMBB->getNumber()
 | 
						|
        << " -- BB#" << B->getNumber() << '\n');
 | 
						|
 | 
						|
  A->ReplaceUsesOfBlockWith(B, NMBB);
 | 
						|
  A->updateTerminator();
 | 
						|
 | 
						|
  // Insert unconditional "jump B" instruction in NMBB if necessary.
 | 
						|
  NMBB->addSuccessor(B);
 | 
						|
  if (!NMBB->isLayoutSuccessor(B)) {
 | 
						|
    Cond.clear();
 | 
						|
    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
 | 
						|
  }
 | 
						|
 | 
						|
  // Fix PHI nodes in B so they refer to NMBB instead of A
 | 
						|
  for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
 | 
						|
       i != e && i->isPHI(); ++i)
 | 
						|
    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
 | 
						|
      if (i->getOperand(ni+1).getMBB() == A)
 | 
						|
        i->getOperand(ni+1).setMBB(NMBB);
 | 
						|
 | 
						|
  if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
 | 
						|
    LV->addNewBlock(NMBB, A, B);
 | 
						|
 | 
						|
  if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
 | 
						|
    MDT->addNewBlock(NMBB, A);
 | 
						|
 | 
						|
  return NMBB;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
PHIElimination::PHINodeTraits::getHashValue(const MachineInstr *MI) {
 | 
						|
  if (!MI || MI==getEmptyKey() || MI==getTombstoneKey())
 | 
						|
    return DenseMapInfo<MachineInstr*>::getHashValue(MI);
 | 
						|
  unsigned hash = 0;
 | 
						|
  for (unsigned ni = 1, ne = MI->getNumOperands(); ni != ne; ni += 2)
 | 
						|
    hash = hash*37 + DenseMapInfo<BBVRegPair>::
 | 
						|
      getHashValue(BBVRegPair(MI->getOperand(ni+1).getMBB()->getNumber(),
 | 
						|
                              MI->getOperand(ni).getReg()));
 | 
						|
  return hash;
 | 
						|
}
 | 
						|
 | 
						|
bool PHIElimination::PHINodeTraits::isEqual(const MachineInstr *LHS,
 | 
						|
                                            const MachineInstr *RHS) {
 | 
						|
  const MachineInstr *EmptyKey = getEmptyKey();
 | 
						|
  const MachineInstr *TombstoneKey = getTombstoneKey();
 | 
						|
  if (!LHS || !RHS || LHS==EmptyKey || RHS==EmptyKey ||
 | 
						|
      LHS==TombstoneKey || RHS==TombstoneKey)
 | 
						|
    return LHS==RHS;
 | 
						|
 | 
						|
  unsigned ne = LHS->getNumOperands();
 | 
						|
  if (ne != RHS->getNumOperands())
 | 
						|
      return false;
 | 
						|
  // Ignore operand 0, the defined register.
 | 
						|
  for (unsigned ni = 1; ni != ne; ni += 2)
 | 
						|
    if (LHS->getOperand(ni).getReg() != RHS->getOperand(ni).getReg() ||
 | 
						|
        LHS->getOperand(ni+1).getMBB() != RHS->getOperand(ni+1).getMBB())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 |