forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1569 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1569 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the LiveInterval analysis pass which is used
 | 
						|
// by the Linear Scan Register allocator. This pass linearizes the
 | 
						|
// basic blocks of the function in DFS order and uses the
 | 
						|
// LiveVariables pass to conservatively compute live intervals for
 | 
						|
// each virtual and physical register.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "liveintervals"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(numIntervals, "Number of original intervals");
 | 
						|
STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
 | 
						|
STATISTIC(numJoins    , "Number of interval joins performed");
 | 
						|
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
 | 
						|
STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
 | 
						|
 | 
						|
namespace {
 | 
						|
  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
 | 
						|
 | 
						|
  static cl::opt<bool>
 | 
						|
  EnableJoining("join-liveintervals",
 | 
						|
                cl::desc("Coallesce copies (default=true)"),
 | 
						|
                cl::init(true));
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<LiveVariables>();
 | 
						|
  AU.addPreservedID(PHIEliminationID);
 | 
						|
  AU.addRequiredID(PHIEliminationID);
 | 
						|
  AU.addRequiredID(TwoAddressInstructionPassID);
 | 
						|
  AU.addRequired<LoopInfo>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::releaseMemory() {
 | 
						|
  mi2iMap_.clear();
 | 
						|
  i2miMap_.clear();
 | 
						|
  r2iMap_.clear();
 | 
						|
  r2rMap_.clear();
 | 
						|
  JoinedLIs.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool isZeroLengthInterval(LiveInterval *li) {
 | 
						|
  for (LiveInterval::Ranges::const_iterator
 | 
						|
         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
 | 
						|
    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// runOnMachineFunction - Register allocate the whole function
 | 
						|
///
 | 
						|
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | 
						|
  mf_ = &fn;
 | 
						|
  tm_ = &fn.getTarget();
 | 
						|
  mri_ = tm_->getRegisterInfo();
 | 
						|
  tii_ = tm_->getInstrInfo();
 | 
						|
  lv_ = &getAnalysis<LiveVariables>();
 | 
						|
  allocatableRegs_ = mri_->getAllocatableSet(fn);
 | 
						|
  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
 | 
						|
 | 
						|
  // Number MachineInstrs and MachineBasicBlocks.
 | 
						|
  // Initialize MBB indexes to a sentinal.
 | 
						|
  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
 | 
						|
  
 | 
						|
  unsigned MIIndex = 0;
 | 
						|
  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
 | 
						|
       MBB != E; ++MBB) {
 | 
						|
    // Set the MBB2IdxMap entry for this MBB.
 | 
						|
    MBB2IdxMap[MBB->getNumber()] = MIIndex;
 | 
						|
 | 
						|
    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
 | 
						|
      assert(inserted && "multiple MachineInstr -> index mappings");
 | 
						|
      i2miMap_.push_back(I);
 | 
						|
      MIIndex += InstrSlots::NUM;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  computeIntervals();
 | 
						|
 | 
						|
  numIntervals += getNumIntervals();
 | 
						|
 | 
						|
  DOUT << "********** INTERVALS **********\n";
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    I->second.print(DOUT, mri_);
 | 
						|
    DOUT << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Join (coallesce) intervals if requested.
 | 
						|
  if (EnableJoining) joinIntervals();
 | 
						|
 | 
						|
  numIntervalsAfter += getNumIntervals();
 | 
						|
  
 | 
						|
 | 
						|
  // perform a final pass over the instructions and compute spill
 | 
						|
  // weights, coalesce virtual registers and remove identity moves.
 | 
						|
  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | 
						|
       mbbi != mbbe; ++mbbi) {
 | 
						|
    MachineBasicBlock* mbb = mbbi;
 | 
						|
    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
 | 
						|
 | 
						|
    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
 | 
						|
         mii != mie; ) {
 | 
						|
      // if the move will be an identity move delete it
 | 
						|
      unsigned srcReg, dstReg, RegRep;
 | 
						|
      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
 | 
						|
          (RegRep = rep(srcReg)) == rep(dstReg)) {
 | 
						|
        // remove from def list
 | 
						|
        LiveInterval &RegInt = getOrCreateInterval(RegRep);
 | 
						|
        MachineOperand *MO = mii->findRegisterDefOperand(dstReg);
 | 
						|
        // If def of this move instruction is dead, remove its live range from
 | 
						|
        // the dstination register's live interval.
 | 
						|
        if (MO->isDead()) {
 | 
						|
          unsigned MoveIdx = getDefIndex(getInstructionIndex(mii));
 | 
						|
          LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx);
 | 
						|
          RegInt.removeRange(MLR->start, MoveIdx+1);
 | 
						|
          if (RegInt.empty())
 | 
						|
            removeInterval(RegRep);
 | 
						|
        }
 | 
						|
        RemoveMachineInstrFromMaps(mii);
 | 
						|
        mii = mbbi->erase(mii);
 | 
						|
        ++numPeep;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
 | 
						|
          const MachineOperand &mop = mii->getOperand(i);
 | 
						|
          if (mop.isRegister() && mop.getReg() &&
 | 
						|
              MRegisterInfo::isVirtualRegister(mop.getReg())) {
 | 
						|
            // replace register with representative register
 | 
						|
            unsigned reg = rep(mop.getReg());
 | 
						|
            mii->getOperand(i).setReg(reg);
 | 
						|
 | 
						|
            LiveInterval &RegInt = getInterval(reg);
 | 
						|
            RegInt.weight +=
 | 
						|
              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ++mii;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    LiveInterval &LI = I->second;
 | 
						|
    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
 | 
						|
      // If the live interval length is essentially zero, i.e. in every live
 | 
						|
      // range the use follows def immediately, it doesn't make sense to spill
 | 
						|
      // it and hope it will be easier to allocate for this li.
 | 
						|
      if (isZeroLengthInterval(&LI))
 | 
						|
        LI.weight = HUGE_VALF;
 | 
						|
      
 | 
						|
      // Divide the weight of the interval by its size.  This encourages 
 | 
						|
      // spilling of intervals that are large and have few uses, and
 | 
						|
      // discourages spilling of small intervals with many uses.
 | 
						|
      unsigned Size = 0;
 | 
						|
      for (LiveInterval::iterator II = LI.begin(), E = LI.end(); II != E;++II)
 | 
						|
        Size += II->end - II->start;
 | 
						|
      
 | 
						|
      LI.weight /= Size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dump());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// print - Implement the dump method.
 | 
						|
void LiveIntervals::print(std::ostream &O, const Module* ) const {
 | 
						|
  O << "********** INTERVALS **********\n";
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    I->second.print(DOUT, mri_);
 | 
						|
    DOUT << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  O << "********** MACHINEINSTRS **********\n";
 | 
						|
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | 
						|
       mbbi != mbbe; ++mbbi) {
 | 
						|
    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
 | 
						|
    for (MachineBasicBlock::iterator mii = mbbi->begin(),
 | 
						|
           mie = mbbi->end(); mii != mie; ++mii) {
 | 
						|
      O << getInstructionIndex(mii) << '\t' << *mii;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CreateNewLiveInterval - Create a new live interval with the given live
 | 
						|
/// ranges. The new live interval will have an infinite spill weight.
 | 
						|
LiveInterval&
 | 
						|
LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
 | 
						|
                                     const std::vector<LiveRange> &LRs) {
 | 
						|
  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
 | 
						|
 | 
						|
  // Create a new virtual register for the spill interval.
 | 
						|
  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
 | 
						|
 | 
						|
  // Replace the old virtual registers in the machine operands with the shiny
 | 
						|
  // new one.
 | 
						|
  for (std::vector<LiveRange>::const_iterator
 | 
						|
         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
 | 
						|
    unsigned Index = getBaseIndex(I->start);
 | 
						|
    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
 | 
						|
 | 
						|
    for (; Index != End; Index += InstrSlots::NUM) {
 | 
						|
      // Skip deleted instructions
 | 
						|
      while (Index != End && !getInstructionFromIndex(Index))
 | 
						|
        Index += InstrSlots::NUM;
 | 
						|
 | 
						|
      if (Index == End) break;
 | 
						|
 | 
						|
      MachineInstr *MI = getInstructionFromIndex(Index);
 | 
						|
 | 
						|
      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
 | 
						|
        MachineOperand &MOp = MI->getOperand(J);
 | 
						|
        if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
 | 
						|
          MOp.setReg(NewVReg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
 | 
						|
 | 
						|
  // The spill weight is now infinity as it cannot be spilled again
 | 
						|
  NewLI.weight = float(HUGE_VAL);
 | 
						|
 | 
						|
  for (std::vector<LiveRange>::const_iterator
 | 
						|
         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
 | 
						|
    DOUT << "  Adding live range " << *I << " to new interval\n";
 | 
						|
    NewLI.addRange(*I);
 | 
						|
  }
 | 
						|
            
 | 
						|
  DOUT << "Created new live interval " << NewLI << "\n";
 | 
						|
  return NewLI;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<LiveInterval*> LiveIntervals::
 | 
						|
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
 | 
						|
  // since this is called after the analysis is done we don't know if
 | 
						|
  // LiveVariables is available
 | 
						|
  lv_ = getAnalysisToUpdate<LiveVariables>();
 | 
						|
 | 
						|
  std::vector<LiveInterval*> added;
 | 
						|
 | 
						|
  assert(li.weight != HUGE_VALF &&
 | 
						|
         "attempt to spill already spilled interval!");
 | 
						|
 | 
						|
  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
 | 
						|
  li.print(DOUT, mri_);
 | 
						|
  DOUT << '\n';
 | 
						|
 | 
						|
  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
 | 
						|
 | 
						|
  for (LiveInterval::Ranges::const_iterator
 | 
						|
         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
 | 
						|
    unsigned index = getBaseIndex(i->start);
 | 
						|
    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
 | 
						|
    for (; index != end; index += InstrSlots::NUM) {
 | 
						|
      // skip deleted instructions
 | 
						|
      while (index != end && !getInstructionFromIndex(index))
 | 
						|
        index += InstrSlots::NUM;
 | 
						|
      if (index == end) break;
 | 
						|
 | 
						|
      MachineInstr *MI = getInstructionFromIndex(index);
 | 
						|
 | 
						|
    RestartInstruction:
 | 
						|
      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | 
						|
        MachineOperand& mop = MI->getOperand(i);
 | 
						|
        if (mop.isRegister() && mop.getReg() == li.reg) {
 | 
						|
          if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
 | 
						|
            // Attempt to fold the memory reference into the instruction.  If we
 | 
						|
            // can do this, we don't need to insert spill code.
 | 
						|
            if (lv_)
 | 
						|
              lv_->instructionChanged(MI, fmi);
 | 
						|
            MachineBasicBlock &MBB = *MI->getParent();
 | 
						|
            vrm.virtFolded(li.reg, MI, i, fmi);
 | 
						|
            mi2iMap_.erase(MI);
 | 
						|
            i2miMap_[index/InstrSlots::NUM] = fmi;
 | 
						|
            mi2iMap_[fmi] = index;
 | 
						|
            MI = MBB.insert(MBB.erase(MI), fmi);
 | 
						|
            ++numFolded;
 | 
						|
            // Folding the load/store can completely change the instruction in
 | 
						|
            // unpredictable ways, rescan it from the beginning.
 | 
						|
            goto RestartInstruction;
 | 
						|
          } else {
 | 
						|
            // Create a new virtual register for the spill interval.
 | 
						|
            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
 | 
						|
            
 | 
						|
            // Scan all of the operands of this instruction rewriting operands
 | 
						|
            // to use NewVReg instead of li.reg as appropriate.  We do this for
 | 
						|
            // two reasons:
 | 
						|
            //
 | 
						|
            //   1. If the instr reads the same spilled vreg multiple times, we
 | 
						|
            //      want to reuse the NewVReg.
 | 
						|
            //   2. If the instr is a two-addr instruction, we are required to
 | 
						|
            //      keep the src/dst regs pinned.
 | 
						|
            //
 | 
						|
            // Keep track of whether we replace a use and/or def so that we can
 | 
						|
            // create the spill interval with the appropriate range. 
 | 
						|
            mop.setReg(NewVReg);
 | 
						|
            
 | 
						|
            bool HasUse = mop.isUse();
 | 
						|
            bool HasDef = mop.isDef();
 | 
						|
            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
 | 
						|
              if (MI->getOperand(j).isReg() &&
 | 
						|
                  MI->getOperand(j).getReg() == li.reg) {
 | 
						|
                MI->getOperand(j).setReg(NewVReg);
 | 
						|
                HasUse |= MI->getOperand(j).isUse();
 | 
						|
                HasDef |= MI->getOperand(j).isDef();
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            // create a new register for this spill
 | 
						|
            vrm.grow();
 | 
						|
            vrm.assignVirt2StackSlot(NewVReg, slot);
 | 
						|
            LiveInterval &nI = getOrCreateInterval(NewVReg);
 | 
						|
            assert(nI.empty());
 | 
						|
 | 
						|
            // the spill weight is now infinity as it
 | 
						|
            // cannot be spilled again
 | 
						|
            nI.weight = HUGE_VALF;
 | 
						|
 | 
						|
            if (HasUse) {
 | 
						|
              LiveRange LR(getLoadIndex(index), getUseIndex(index),
 | 
						|
                           nI.getNextValue(~0U, 0));
 | 
						|
              DOUT << " +" << LR;
 | 
						|
              nI.addRange(LR);
 | 
						|
            }
 | 
						|
            if (HasDef) {
 | 
						|
              LiveRange LR(getDefIndex(index), getStoreIndex(index),
 | 
						|
                           nI.getNextValue(~0U, 0));
 | 
						|
              DOUT << " +" << LR;
 | 
						|
              nI.addRange(LR);
 | 
						|
            }
 | 
						|
            
 | 
						|
            added.push_back(&nI);
 | 
						|
 | 
						|
            // update live variables if it is available
 | 
						|
            if (lv_)
 | 
						|
              lv_->addVirtualRegisterKilled(NewVReg, MI);
 | 
						|
            
 | 
						|
            DOUT << "\t\t\t\tadded new interval: ";
 | 
						|
            nI.print(DOUT, mri_);
 | 
						|
            DOUT << '\n';
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return added;
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::printRegName(unsigned reg) const {
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(reg))
 | 
						|
    cerr << mri_->getName(reg);
 | 
						|
  else
 | 
						|
    cerr << "%reg" << reg;
 | 
						|
}
 | 
						|
 | 
						|
/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
 | 
						|
/// two addr elimination.
 | 
						|
static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
 | 
						|
                                const TargetInstrInfo *TII) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO1 = MI->getOperand(i);
 | 
						|
    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
 | 
						|
      for (unsigned j = i+1; j < e; ++j) {
 | 
						|
        MachineOperand &MO2 = MI->getOperand(j);
 | 
						|
        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
 | 
						|
            MI->getInstrDescriptor()->
 | 
						|
            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
 | 
						|
                                             MachineBasicBlock::iterator mi,
 | 
						|
                                             unsigned MIIdx,
 | 
						|
                                             LiveInterval &interval) {
 | 
						|
  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
 | 
						|
  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
 | 
						|
 | 
						|
  // Virtual registers may be defined multiple times (due to phi
 | 
						|
  // elimination and 2-addr elimination).  Much of what we do only has to be
 | 
						|
  // done once for the vreg.  We use an empty interval to detect the first
 | 
						|
  // time we see a vreg.
 | 
						|
  if (interval.empty()) {
 | 
						|
    // Get the Idx of the defining instructions.
 | 
						|
    unsigned defIndex = getDefIndex(MIIdx);
 | 
						|
 | 
						|
    unsigned ValNum;
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
 | 
						|
      ValNum = interval.getNextValue(~0U, 0);
 | 
						|
    else
 | 
						|
      ValNum = interval.getNextValue(defIndex, SrcReg);
 | 
						|
    
 | 
						|
    assert(ValNum == 0 && "First value in interval is not 0?");
 | 
						|
    ValNum = 0;  // Clue in the optimizer.
 | 
						|
 | 
						|
    // Loop over all of the blocks that the vreg is defined in.  There are
 | 
						|
    // two cases we have to handle here.  The most common case is a vreg
 | 
						|
    // whose lifetime is contained within a basic block.  In this case there
 | 
						|
    // will be a single kill, in MBB, which comes after the definition.
 | 
						|
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
 | 
						|
      // FIXME: what about dead vars?
 | 
						|
      unsigned killIdx;
 | 
						|
      if (vi.Kills[0] != mi)
 | 
						|
        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
 | 
						|
      else
 | 
						|
        killIdx = defIndex+1;
 | 
						|
 | 
						|
      // If the kill happens after the definition, we have an intra-block
 | 
						|
      // live range.
 | 
						|
      if (killIdx > defIndex) {
 | 
						|
        assert(vi.AliveBlocks.none() &&
 | 
						|
               "Shouldn't be alive across any blocks!");
 | 
						|
        LiveRange LR(defIndex, killIdx, ValNum);
 | 
						|
        interval.addRange(LR);
 | 
						|
        DOUT << " +" << LR << "\n";
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The other case we handle is when a virtual register lives to the end
 | 
						|
    // of the defining block, potentially live across some blocks, then is
 | 
						|
    // live into some number of blocks, but gets killed.  Start by adding a
 | 
						|
    // range that goes from this definition to the end of the defining block.
 | 
						|
    LiveRange NewLR(defIndex,
 | 
						|
                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
 | 
						|
                    ValNum);
 | 
						|
    DOUT << " +" << NewLR;
 | 
						|
    interval.addRange(NewLR);
 | 
						|
 | 
						|
    // Iterate over all of the blocks that the variable is completely
 | 
						|
    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
 | 
						|
    // live interval.
 | 
						|
    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
 | 
						|
      if (vi.AliveBlocks[i]) {
 | 
						|
        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
 | 
						|
        if (!MBB->empty()) {
 | 
						|
          LiveRange LR(getMBBStartIdx(i),
 | 
						|
                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
 | 
						|
                       ValNum);
 | 
						|
          interval.addRange(LR);
 | 
						|
          DOUT << " +" << LR;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, this virtual register is live from the start of any killing
 | 
						|
    // block to the 'use' slot of the killing instruction.
 | 
						|
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
 | 
						|
      MachineInstr *Kill = vi.Kills[i];
 | 
						|
      LiveRange LR(getMBBStartIdx(Kill->getParent()),
 | 
						|
                   getUseIndex(getInstructionIndex(Kill))+1,
 | 
						|
                   ValNum);
 | 
						|
      interval.addRange(LR);
 | 
						|
      DOUT << " +" << LR;
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // If this is the second time we see a virtual register definition, it
 | 
						|
    // must be due to phi elimination or two addr elimination.  If this is
 | 
						|
    // the result of two address elimination, then the vreg is one of the
 | 
						|
    // def-and-use register operand.
 | 
						|
    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
 | 
						|
      // If this is a two-address definition, then we have already processed
 | 
						|
      // the live range.  The only problem is that we didn't realize there
 | 
						|
      // are actually two values in the live interval.  Because of this we
 | 
						|
      // need to take the LiveRegion that defines this register and split it
 | 
						|
      // into two values.
 | 
						|
      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
 | 
						|
      unsigned RedefIndex = getDefIndex(MIIdx);
 | 
						|
 | 
						|
      // Delete the initial value, which should be short and continuous,
 | 
						|
      // because the 2-addr copy must be in the same MBB as the redef.
 | 
						|
      interval.removeRange(DefIndex, RedefIndex);
 | 
						|
 | 
						|
      // Two-address vregs should always only be redefined once.  This means
 | 
						|
      // that at this point, there should be exactly one value number in it.
 | 
						|
      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
 | 
						|
 | 
						|
      // The new value number (#1) is defined by the instruction we claimed
 | 
						|
      // defined value #0.
 | 
						|
      unsigned ValNo = interval.getNextValue(0, 0);
 | 
						|
      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
 | 
						|
      
 | 
						|
      // Value#0 is now defined by the 2-addr instruction.
 | 
						|
      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
 | 
						|
      
 | 
						|
      // Add the new live interval which replaces the range for the input copy.
 | 
						|
      LiveRange LR(DefIndex, RedefIndex, ValNo);
 | 
						|
      DOUT << " replace range with " << LR;
 | 
						|
      interval.addRange(LR);
 | 
						|
 | 
						|
      // If this redefinition is dead, we need to add a dummy unit live
 | 
						|
      // range covering the def slot.
 | 
						|
      if (lv_->RegisterDefIsDead(mi, interval.reg))
 | 
						|
        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
 | 
						|
 | 
						|
      DOUT << "RESULT: ";
 | 
						|
      interval.print(DOUT, mri_);
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Otherwise, this must be because of phi elimination.  If this is the
 | 
						|
      // first redefinition of the vreg that we have seen, go back and change
 | 
						|
      // the live range in the PHI block to be a different value number.
 | 
						|
      if (interval.containsOneValue()) {
 | 
						|
        assert(vi.Kills.size() == 1 &&
 | 
						|
               "PHI elimination vreg should have one kill, the PHI itself!");
 | 
						|
 | 
						|
        // Remove the old range that we now know has an incorrect number.
 | 
						|
        MachineInstr *Killer = vi.Kills[0];
 | 
						|
        unsigned Start = getMBBStartIdx(Killer->getParent());
 | 
						|
        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
 | 
						|
        DOUT << "Removing [" << Start << "," << End << "] from: ";
 | 
						|
        interval.print(DOUT, mri_); DOUT << "\n";
 | 
						|
        interval.removeRange(Start, End);
 | 
						|
        DOUT << "RESULT: "; interval.print(DOUT, mri_);
 | 
						|
 | 
						|
        // Replace the interval with one of a NEW value number.  Note that this
 | 
						|
        // value number isn't actually defined by an instruction, weird huh? :)
 | 
						|
        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
 | 
						|
        DOUT << " replace range with " << LR;
 | 
						|
        interval.addRange(LR);
 | 
						|
        DOUT << "RESULT: "; interval.print(DOUT, mri_);
 | 
						|
      }
 | 
						|
 | 
						|
      // In the case of PHI elimination, each variable definition is only
 | 
						|
      // live until the end of the block.  We've already taken care of the
 | 
						|
      // rest of the live range.
 | 
						|
      unsigned defIndex = getDefIndex(MIIdx);
 | 
						|
      
 | 
						|
      unsigned ValNum;
 | 
						|
      unsigned SrcReg, DstReg;
 | 
						|
      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
 | 
						|
        ValNum = interval.getNextValue(~0U, 0);
 | 
						|
      else
 | 
						|
        ValNum = interval.getNextValue(defIndex, SrcReg);
 | 
						|
      
 | 
						|
      LiveRange LR(defIndex,
 | 
						|
                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
 | 
						|
      interval.addRange(LR);
 | 
						|
      DOUT << " +" << LR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DOUT << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
 | 
						|
                                              MachineBasicBlock::iterator mi,
 | 
						|
                                              unsigned MIIdx,
 | 
						|
                                              LiveInterval &interval,
 | 
						|
                                              unsigned SrcReg) {
 | 
						|
  // A physical register cannot be live across basic block, so its
 | 
						|
  // lifetime must end somewhere in its defining basic block.
 | 
						|
  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
 | 
						|
 | 
						|
  unsigned baseIndex = MIIdx;
 | 
						|
  unsigned start = getDefIndex(baseIndex);
 | 
						|
  unsigned end = start;
 | 
						|
 | 
						|
  // If it is not used after definition, it is considered dead at
 | 
						|
  // the instruction defining it. Hence its interval is:
 | 
						|
  // [defSlot(def), defSlot(def)+1)
 | 
						|
  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
 | 
						|
    DOUT << " dead";
 | 
						|
    end = getDefIndex(start) + 1;
 | 
						|
    goto exit;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it is not dead on definition, it must be killed by a
 | 
						|
  // subsequent instruction. Hence its interval is:
 | 
						|
  // [defSlot(def), useSlot(kill)+1)
 | 
						|
  while (++mi != MBB->end()) {
 | 
						|
    baseIndex += InstrSlots::NUM;
 | 
						|
    if (lv_->KillsRegister(mi, interval.reg)) {
 | 
						|
      DOUT << " killed";
 | 
						|
      end = getUseIndex(baseIndex) + 1;
 | 
						|
      goto exit;
 | 
						|
    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
 | 
						|
      // Another instruction redefines the register before it is ever read.
 | 
						|
      // Then the register is essentially dead at the instruction that defines
 | 
						|
      // it. Hence its interval is:
 | 
						|
      // [defSlot(def), defSlot(def)+1)
 | 
						|
      DOUT << " dead";
 | 
						|
      end = getDefIndex(start) + 1;
 | 
						|
      goto exit;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // The only case we should have a dead physreg here without a killing or
 | 
						|
  // instruction where we know it's dead is if it is live-in to the function
 | 
						|
  // and never used.
 | 
						|
  assert(!SrcReg && "physreg was not killed in defining block!");
 | 
						|
  end = getDefIndex(start) + 1;  // It's dead.
 | 
						|
 | 
						|
exit:
 | 
						|
  assert(start < end && "did not find end of interval?");
 | 
						|
 | 
						|
  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
 | 
						|
                                                 SrcReg));
 | 
						|
  interval.addRange(LR);
 | 
						|
  DOUT << " +" << LR << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
 | 
						|
                                      MachineBasicBlock::iterator MI,
 | 
						|
                                      unsigned MIIdx,
 | 
						|
                                      unsigned reg) {
 | 
						|
  if (MRegisterInfo::isVirtualRegister(reg))
 | 
						|
    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
 | 
						|
  else if (allocatableRegs_[reg]) {
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
 | 
						|
      SrcReg = 0;
 | 
						|
    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
 | 
						|
    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
 | 
						|
      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
 | 
						|
                                         unsigned MIIdx,
 | 
						|
                                         LiveInterval &interval) {
 | 
						|
  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
 | 
						|
 | 
						|
  // Look for kills, if it reaches a def before it's killed, then it shouldn't
 | 
						|
  // be considered a livein.
 | 
						|
  MachineBasicBlock::iterator mi = MBB->begin();
 | 
						|
  unsigned baseIndex = MIIdx;
 | 
						|
  unsigned start = baseIndex;
 | 
						|
  unsigned end = start;
 | 
						|
  while (mi != MBB->end()) {
 | 
						|
    if (lv_->KillsRegister(mi, interval.reg)) {
 | 
						|
      DOUT << " killed";
 | 
						|
      end = getUseIndex(baseIndex) + 1;
 | 
						|
      goto exit;
 | 
						|
    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
 | 
						|
      // Another instruction redefines the register before it is ever read.
 | 
						|
      // Then the register is essentially dead at the instruction that defines
 | 
						|
      // it. Hence its interval is:
 | 
						|
      // [defSlot(def), defSlot(def)+1)
 | 
						|
      DOUT << " dead";
 | 
						|
      end = getDefIndex(start) + 1;
 | 
						|
      goto exit;
 | 
						|
    }
 | 
						|
 | 
						|
    baseIndex += InstrSlots::NUM;
 | 
						|
    ++mi;
 | 
						|
  }
 | 
						|
 | 
						|
exit:
 | 
						|
  assert(start < end && "did not find end of interval?");
 | 
						|
 | 
						|
  LiveRange LR(start, end, interval.getNextValue(~0U, 0));
 | 
						|
  DOUT << " +" << LR << '\n';
 | 
						|
  interval.addRange(LR);
 | 
						|
}
 | 
						|
 | 
						|
/// computeIntervals - computes the live intervals for virtual
 | 
						|
/// registers. for some ordering of the machine instructions [1,N] a
 | 
						|
/// live interval is an interval [i, j) where 1 <= i <= j < N for
 | 
						|
/// which a variable is live
 | 
						|
void LiveIntervals::computeIntervals() {
 | 
						|
  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
 | 
						|
       << "********** Function: "
 | 
						|
       << ((Value*)mf_->getFunction())->getName() << '\n';
 | 
						|
  // Track the index of the current machine instr.
 | 
						|
  unsigned MIIndex = 0;
 | 
						|
  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
 | 
						|
       MBBI != E; ++MBBI) {
 | 
						|
    MachineBasicBlock *MBB = MBBI;
 | 
						|
    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
 | 
						|
 | 
						|
    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
 | 
						|
 | 
						|
    if (MBB->livein_begin() != MBB->livein_end()) {
 | 
						|
      // Create intervals for live-ins to this BB first.
 | 
						|
      for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
 | 
						|
             LE = MBB->livein_end(); LI != LE; ++LI) {
 | 
						|
        handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
 | 
						|
        for (const unsigned* AS = mri_->getAliasSet(*LI); *AS; ++AS)
 | 
						|
          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (; MI != miEnd; ++MI) {
 | 
						|
      DOUT << MIIndex << "\t" << *MI;
 | 
						|
 | 
						|
      // Handle defs.
 | 
						|
      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
 | 
						|
        MachineOperand &MO = MI->getOperand(i);
 | 
						|
        // handle register defs - build intervals
 | 
						|
        if (MO.isRegister() && MO.getReg() && MO.isDef())
 | 
						|
          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
 | 
						|
      }
 | 
						|
      
 | 
						|
      MIIndex += InstrSlots::NUM;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
 | 
						|
/// being the source and IntB being the dest, thus this defines a value number
 | 
						|
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
 | 
						|
/// see if we can merge these two pieces of B into a single value number,
 | 
						|
/// eliminating a copy.  For example:
 | 
						|
///
 | 
						|
///  A3 = B0
 | 
						|
///    ...
 | 
						|
///  B1 = A3      <- this copy
 | 
						|
///
 | 
						|
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
 | 
						|
/// value number to be replaced with B0 (which simplifies the B liveinterval).
 | 
						|
///
 | 
						|
/// This returns true if an interval was modified.
 | 
						|
///
 | 
						|
bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
 | 
						|
                                         MachineInstr *CopyMI) {
 | 
						|
  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
 | 
						|
 | 
						|
  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
 | 
						|
  // the example above.
 | 
						|
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
 | 
						|
  unsigned BValNo = BLR->ValId;
 | 
						|
  
 | 
						|
  // Get the location that B is defined at.  Two options: either this value has
 | 
						|
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we 
 | 
						|
  // can't process it.
 | 
						|
  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
 | 
						|
  if (BValNoDefIdx == ~0U) return false;
 | 
						|
  assert(BValNoDefIdx == CopyIdx &&
 | 
						|
         "Copy doesn't define the value?");
 | 
						|
  
 | 
						|
  // AValNo is the value number in A that defines the copy, A0 in the example.
 | 
						|
  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
 | 
						|
  unsigned AValNo = AValLR->ValId;
 | 
						|
  
 | 
						|
  // If AValNo is defined as a copy from IntB, we can potentially process this.
 | 
						|
  
 | 
						|
  // Get the instruction that defines this value number.
 | 
						|
  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
 | 
						|
  if (!SrcReg) return false;  // Not defined by a copy.
 | 
						|
    
 | 
						|
  // If the value number is not defined by a copy instruction, ignore it.
 | 
						|
    
 | 
						|
  // If the source register comes from an interval other than IntB, we can't
 | 
						|
  // handle this.
 | 
						|
  if (rep(SrcReg) != IntB.reg) return false;
 | 
						|
  
 | 
						|
  // Get the LiveRange in IntB that this value number starts with.
 | 
						|
  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
 | 
						|
  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
 | 
						|
  
 | 
						|
  // Make sure that the end of the live range is inside the same block as
 | 
						|
  // CopyMI.
 | 
						|
  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
 | 
						|
  if (!ValLREndInst || 
 | 
						|
      ValLREndInst->getParent() != CopyMI->getParent()) return false;
 | 
						|
 | 
						|
  // Okay, we now know that ValLR ends in the same block that the CopyMI
 | 
						|
  // live-range starts.  If there are no intervening live ranges between them in
 | 
						|
  // IntB, we can merge them.
 | 
						|
  if (ValLR+1 != BLR) return false;
 | 
						|
  
 | 
						|
  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
 | 
						|
  
 | 
						|
  // We are about to delete CopyMI, so need to remove it as the 'instruction
 | 
						|
  // that defines this value #'.
 | 
						|
  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
 | 
						|
  
 | 
						|
  // Okay, we can merge them.  We need to insert a new liverange:
 | 
						|
  // [ValLR.end, BLR.begin) of either value number, then we merge the
 | 
						|
  // two value numbers.
 | 
						|
  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
 | 
						|
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
 | 
						|
 | 
						|
  // If the IntB live range is assigned to a physical register, and if that
 | 
						|
  // physreg has aliases, 
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
 | 
						|
    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
 | 
						|
      LiveInterval &AliasLI = getInterval(*AS);
 | 
						|
      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
 | 
						|
                                 AliasLI.getNextValue(~0U, 0)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, merge "B1" into the same value number as "B0".
 | 
						|
  if (BValNo != ValLR->ValId)
 | 
						|
    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
 | 
						|
  DOUT << "   result = "; IntB.print(DOUT, mri_);
 | 
						|
  DOUT << "\n";
 | 
						|
 | 
						|
  // If the source instruction was killing the source register before the
 | 
						|
  // merge, unset the isKill marker given the live range has been extended.
 | 
						|
  MachineOperand *MOK = ValLREndInst->findRegisterUseOperand(IntB.reg, true);
 | 
						|
  if (MOK)
 | 
						|
    MOK->unsetIsKill();
 | 
						|
  
 | 
						|
  // Finally, delete the copy instruction.
 | 
						|
  RemoveMachineInstrFromMaps(CopyMI);
 | 
						|
  CopyMI->eraseFromParent();
 | 
						|
  ++numPeep;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
 | 
						|
/// which are the src/dst of the copy instruction CopyMI.  This returns true
 | 
						|
/// if the copy was successfully coallesced away, or if it is never possible
 | 
						|
/// to coallesce these this copy, due to register constraints.  It returns
 | 
						|
/// false if it is not currently possible to coallesce this interval, but
 | 
						|
/// it may be possible if other things get coallesced.
 | 
						|
bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
 | 
						|
                             unsigned SrcReg, unsigned DstReg) {
 | 
						|
  DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI;
 | 
						|
 | 
						|
  // Get representative registers.
 | 
						|
  unsigned repSrcReg = rep(SrcReg);
 | 
						|
  unsigned repDstReg = rep(DstReg);
 | 
						|
  
 | 
						|
  // If they are already joined we continue.
 | 
						|
  if (repSrcReg == repDstReg) {
 | 
						|
    DOUT << "\tCopy already coallesced.\n";
 | 
						|
    return true;  // Not coallescable.
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If they are both physical registers, we cannot join them.
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(repSrcReg) &&
 | 
						|
      MRegisterInfo::isPhysicalRegister(repDstReg)) {
 | 
						|
    DOUT << "\tCan not coallesce physregs.\n";
 | 
						|
    return true;  // Not coallescable.
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We only join virtual registers with allocatable physical registers.
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(repSrcReg) &&
 | 
						|
      !allocatableRegs_[repSrcReg]) {
 | 
						|
    DOUT << "\tSrc reg is unallocatable physreg.\n";
 | 
						|
    return true;  // Not coallescable.
 | 
						|
  }
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(repDstReg) &&
 | 
						|
      !allocatableRegs_[repDstReg]) {
 | 
						|
    DOUT << "\tDst reg is unallocatable physreg.\n";
 | 
						|
    return true;  // Not coallescable.
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If they are not of the same register class, we cannot join them.
 | 
						|
  if (differingRegisterClasses(repSrcReg, repDstReg)) {
 | 
						|
    DOUT << "\tSrc/Dest are different register classes.\n";
 | 
						|
    return true;  // Not coallescable.
 | 
						|
  }
 | 
						|
  
 | 
						|
  LiveInterval &SrcInt = getInterval(repSrcReg);
 | 
						|
  LiveInterval &DestInt = getInterval(repDstReg);
 | 
						|
  assert(SrcInt.reg == repSrcReg && DestInt.reg == repDstReg &&
 | 
						|
         "Register mapping is horribly broken!");
 | 
						|
  
 | 
						|
  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
 | 
						|
  DOUT << " and "; DestInt.print(DOUT, mri_);
 | 
						|
  DOUT << ": ";
 | 
						|
 | 
						|
  // Check if it is necessary to propagate "isDead" property before intervals
 | 
						|
  // are joined.
 | 
						|
  MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg);
 | 
						|
  bool isDead = mopd->isDead();
 | 
						|
  bool isShorten = false;
 | 
						|
  unsigned SrcStart = 0;
 | 
						|
  unsigned SrcEnd = 0;
 | 
						|
  if (isDead) {
 | 
						|
    unsigned CopyIdx = getInstructionIndex(CopyMI);
 | 
						|
    LiveInterval::iterator SrcLR =
 | 
						|
      SrcInt.FindLiveRangeContaining(getUseIndex(CopyIdx));
 | 
						|
    SrcStart = SrcLR->start;
 | 
						|
    SrcEnd   = SrcLR->end;
 | 
						|
    // The instruction which defines the src is only truly dead if there are
 | 
						|
    // no intermediate uses and there isn't a use beyond the copy.
 | 
						|
    // FIXME: find the last use, mark is kill and shorten the live range.
 | 
						|
    if (SrcEnd > getDefIndex(CopyIdx))
 | 
						|
      isDead = false;
 | 
						|
    else {
 | 
						|
      MachineOperand *MOU;
 | 
						|
      MachineInstr *LastUse =
 | 
						|
        lastRegisterUse(repSrcReg, SrcStart, CopyIdx, MOU);
 | 
						|
      if (LastUse) {
 | 
						|
        // Shorten the liveinterval to the end of last use.
 | 
						|
        MOU->setIsKill();
 | 
						|
        isDead = false;
 | 
						|
        isShorten = true;
 | 
						|
        SrcEnd = getUseIndex(getInstructionIndex(LastUse));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (isDead)
 | 
						|
      isShorten = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, attempt to join these two intervals.  On failure, this returns false.
 | 
						|
  // Otherwise, if one of the intervals being joined is a physreg, this method
 | 
						|
  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
 | 
						|
  // been modified, so we can use this information below to update aliases.
 | 
						|
  if (JoinIntervals(DestInt, SrcInt)) {
 | 
						|
    if (isDead) {
 | 
						|
      // Result of the copy is dead. Propagate this property.
 | 
						|
      if (SrcStart == 0) {
 | 
						|
        assert(MRegisterInfo::isPhysicalRegister(repSrcReg) &&
 | 
						|
               "Live-in must be a physical register!");
 | 
						|
        // Live-in to the function but dead. Remove it from entry live-in set.
 | 
						|
        // JoinIntervals may end up swapping the two intervals.
 | 
						|
        mf_->begin()->removeLiveIn(repSrcReg);
 | 
						|
      } else {
 | 
						|
        MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
 | 
						|
        if (SrcMI) {
 | 
						|
          MachineOperand *mops = SrcMI->findRegisterDefOperand(SrcReg);
 | 
						|
          if (mops)
 | 
						|
            // FIXME: mops == NULL means SrcMI defines a subregister?
 | 
						|
            mops->setIsDead();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isShorten) {
 | 
						|
      // Shorten the live interval.
 | 
						|
      LiveInterval &LiveInInt = (repSrcReg == DestInt.reg) ? DestInt : SrcInt;
 | 
						|
      LiveInInt.removeRange(SrcStart, SrcEnd);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Coallescing failed.
 | 
						|
    
 | 
						|
    // If we can eliminate the copy without merging the live ranges, do so now.
 | 
						|
    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, we are unable to join the intervals.
 | 
						|
    DOUT << "Interference!\n";
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Swapped = repSrcReg == DestInt.reg;
 | 
						|
  if (Swapped)
 | 
						|
    std::swap(repSrcReg, repDstReg);
 | 
						|
  assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
 | 
						|
         "LiveInterval::join didn't work right!");
 | 
						|
                               
 | 
						|
  // If we're about to merge live ranges into a physical register live range,
 | 
						|
  // we have to update any aliased register's live ranges to indicate that they
 | 
						|
  // have clobbered values for this range.
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
 | 
						|
    for (const unsigned *AS = mri_->getAliasSet(repDstReg); *AS; ++AS)
 | 
						|
      getInterval(*AS).MergeInClobberRanges(SrcInt);
 | 
						|
  }
 | 
						|
 | 
						|
  DOUT << "\n\t\tJoined.  Result = "; DestInt.print(DOUT, mri_);
 | 
						|
  DOUT << "\n";
 | 
						|
 | 
						|
  // Remember these liveintervals have been joined.
 | 
						|
  JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
 | 
						|
  if (MRegisterInfo::isVirtualRegister(repDstReg))
 | 
						|
    JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);
 | 
						|
 | 
						|
  // If the intervals were swapped by Join, swap them back so that the register
 | 
						|
  // mapping (in the r2i map) is correct.
 | 
						|
  if (Swapped) SrcInt.swap(DestInt);
 | 
						|
  removeInterval(repSrcReg);
 | 
						|
  r2rMap_[repSrcReg] = repDstReg;
 | 
						|
 | 
						|
  // Finally, delete the copy instruction.
 | 
						|
  RemoveMachineInstrFromMaps(CopyMI);
 | 
						|
  CopyMI->eraseFromParent();
 | 
						|
  ++numPeep;
 | 
						|
  ++numJoins;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
 | 
						|
/// compute what the resultant value numbers for each value in the input two
 | 
						|
/// ranges will be.  This is complicated by copies between the two which can
 | 
						|
/// and will commonly cause multiple value numbers to be merged into one.
 | 
						|
///
 | 
						|
/// VN is the value number that we're trying to resolve.  InstDefiningValue
 | 
						|
/// keeps track of the new InstDefiningValue assignment for the result
 | 
						|
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
 | 
						|
/// whether a value in this or other is a copy from the opposite set.
 | 
						|
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
 | 
						|
/// already been assigned.
 | 
						|
///
 | 
						|
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
 | 
						|
/// contains the value number the copy is from.
 | 
						|
///
 | 
						|
static unsigned ComputeUltimateVN(unsigned VN,
 | 
						|
                                  SmallVector<std::pair<unsigned,
 | 
						|
                                                unsigned>, 16> &ValueNumberInfo,
 | 
						|
                                  SmallVector<int, 16> &ThisFromOther,
 | 
						|
                                  SmallVector<int, 16> &OtherFromThis,
 | 
						|
                                  SmallVector<int, 16> &ThisValNoAssignments,
 | 
						|
                                  SmallVector<int, 16> &OtherValNoAssignments,
 | 
						|
                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
 | 
						|
  // If the VN has already been computed, just return it.
 | 
						|
  if (ThisValNoAssignments[VN] >= 0)
 | 
						|
    return ThisValNoAssignments[VN];
 | 
						|
//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
 | 
						|
  
 | 
						|
  // If this val is not a copy from the other val, then it must be a new value
 | 
						|
  // number in the destination.
 | 
						|
  int OtherValNo = ThisFromOther[VN];
 | 
						|
  if (OtherValNo == -1) {
 | 
						|
    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
 | 
						|
    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this *is* a copy from the RHS.  If the other side has already
 | 
						|
  // been computed, return it.
 | 
						|
  if (OtherValNoAssignments[OtherValNo] >= 0)
 | 
						|
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
 | 
						|
  
 | 
						|
  // Mark this value number as currently being computed, then ask what the
 | 
						|
  // ultimate value # of the other value is.
 | 
						|
  ThisValNoAssignments[VN] = -2;
 | 
						|
  unsigned UltimateVN =
 | 
						|
    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
 | 
						|
                      OtherFromThis, ThisFromOther,
 | 
						|
                      OtherValNoAssignments, ThisValNoAssignments,
 | 
						|
                      OtherLI, ThisLI);
 | 
						|
  return ThisValNoAssignments[VN] = UltimateVN;
 | 
						|
}
 | 
						|
 | 
						|
static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
 | 
						|
  return std::find(V.begin(), V.end(), Val) != V.end();
 | 
						|
}
 | 
						|
 | 
						|
/// SimpleJoin - Attempt to joint the specified interval into this one. The
 | 
						|
/// caller of this method must guarantee that the RHS only contains a single
 | 
						|
/// value number and that the RHS is not defined by a copy from this
 | 
						|
/// interval.  This returns false if the intervals are not joinable, or it
 | 
						|
/// joins them and returns true.
 | 
						|
bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
 | 
						|
  assert(RHS.containsOneValue());
 | 
						|
  
 | 
						|
  // Some number (potentially more than one) value numbers in the current
 | 
						|
  // interval may be defined as copies from the RHS.  Scan the overlapping
 | 
						|
  // portions of the LHS and RHS, keeping track of this and looking for
 | 
						|
  // overlapping live ranges that are NOT defined as copies.  If these exist, we
 | 
						|
  // cannot coallesce.
 | 
						|
  
 | 
						|
  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
 | 
						|
  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
 | 
						|
  
 | 
						|
  if (LHSIt->start < RHSIt->start) {
 | 
						|
    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
 | 
						|
    if (LHSIt != LHS.begin()) --LHSIt;
 | 
						|
  } else if (RHSIt->start < LHSIt->start) {
 | 
						|
    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
 | 
						|
    if (RHSIt != RHS.begin()) --RHSIt;
 | 
						|
  }
 | 
						|
  
 | 
						|
  SmallVector<unsigned, 8> EliminatedLHSVals;
 | 
						|
  
 | 
						|
  while (1) {
 | 
						|
    // Determine if these live intervals overlap.
 | 
						|
    bool Overlaps = false;
 | 
						|
    if (LHSIt->start <= RHSIt->start)
 | 
						|
      Overlaps = LHSIt->end > RHSIt->start;
 | 
						|
    else
 | 
						|
      Overlaps = RHSIt->end > LHSIt->start;
 | 
						|
    
 | 
						|
    // If the live intervals overlap, there are two interesting cases: if the
 | 
						|
    // LHS interval is defined by a copy from the RHS, it's ok and we record
 | 
						|
    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
 | 
						|
    // coallesce these live ranges and we bail out.
 | 
						|
    if (Overlaps) {
 | 
						|
      // If we haven't already recorded that this value # is safe, check it.
 | 
						|
      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
 | 
						|
        // Copy from the RHS?
 | 
						|
        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
 | 
						|
        if (rep(SrcReg) != RHS.reg)
 | 
						|
          return false;    // Nope, bail out.
 | 
						|
        
 | 
						|
        EliminatedLHSVals.push_back(LHSIt->ValId);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // We know this entire LHS live range is okay, so skip it now.
 | 
						|
      if (++LHSIt == LHSEnd) break;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (LHSIt->end < RHSIt->end) {
 | 
						|
      if (++LHSIt == LHSEnd) break;
 | 
						|
    } else {
 | 
						|
      // One interesting case to check here.  It's possible that we have
 | 
						|
      // something like "X3 = Y" which defines a new value number in the LHS,
 | 
						|
      // and is the last use of this liverange of the RHS.  In this case, we
 | 
						|
      // want to notice this copy (so that it gets coallesced away) even though
 | 
						|
      // the live ranges don't actually overlap.
 | 
						|
      if (LHSIt->start == RHSIt->end) {
 | 
						|
        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
 | 
						|
          // We already know that this value number is going to be merged in
 | 
						|
          // if coallescing succeeds.  Just skip the liverange.
 | 
						|
          if (++LHSIt == LHSEnd) break;
 | 
						|
        } else {
 | 
						|
          // Otherwise, if this is a copy from the RHS, mark it as being merged
 | 
						|
          // in.
 | 
						|
          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
 | 
						|
            EliminatedLHSVals.push_back(LHSIt->ValId);
 | 
						|
 | 
						|
            // We know this entire LHS live range is okay, so skip it now.
 | 
						|
            if (++LHSIt == LHSEnd) break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (++RHSIt == RHSEnd) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we got here, we know that the coallescing will be successful and that
 | 
						|
  // the value numbers in EliminatedLHSVals will all be merged together.  Since
 | 
						|
  // the most common case is that EliminatedLHSVals has a single number, we
 | 
						|
  // optimize for it: if there is more than one value, we merge them all into
 | 
						|
  // the lowest numbered one, then handle the interval as if we were merging
 | 
						|
  // with one value number.
 | 
						|
  unsigned LHSValNo;
 | 
						|
  if (EliminatedLHSVals.size() > 1) {
 | 
						|
    // Loop through all the equal value numbers merging them into the smallest
 | 
						|
    // one.
 | 
						|
    unsigned Smallest = EliminatedLHSVals[0];
 | 
						|
    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
 | 
						|
      if (EliminatedLHSVals[i] < Smallest) {
 | 
						|
        // Merge the current notion of the smallest into the smaller one.
 | 
						|
        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
 | 
						|
        Smallest = EliminatedLHSVals[i];
 | 
						|
      } else {
 | 
						|
        // Merge into the smallest.
 | 
						|
        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    LHSValNo = Smallest;
 | 
						|
  } else {
 | 
						|
    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
 | 
						|
    LHSValNo = EliminatedLHSVals[0];
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, now that there is a single LHS value number that we're merging the
 | 
						|
  // RHS into, update the value number info for the LHS to indicate that the
 | 
						|
  // value number is defined where the RHS value number was.
 | 
						|
  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
 | 
						|
  
 | 
						|
  // Okay, the final step is to loop over the RHS live intervals, adding them to
 | 
						|
  // the LHS.
 | 
						|
  LHS.MergeRangesInAsValue(RHS, LHSValNo);
 | 
						|
  LHS.weight += RHS.weight;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// JoinIntervals - Attempt to join these two intervals.  On failure, this
 | 
						|
/// returns false.  Otherwise, if one of the intervals being joined is a
 | 
						|
/// physreg, this method always canonicalizes LHS to be it.  The output
 | 
						|
/// "RHS" will not have been modified, so we can use this information
 | 
						|
/// below to update aliases.
 | 
						|
bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
 | 
						|
  // Compute the final value assignment, assuming that the live ranges can be
 | 
						|
  // coallesced.
 | 
						|
  SmallVector<int, 16> LHSValNoAssignments;
 | 
						|
  SmallVector<int, 16> RHSValNoAssignments;
 | 
						|
  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
 | 
						|
                          
 | 
						|
  // Compute ultimate value numbers for the LHS and RHS values.
 | 
						|
  if (RHS.containsOneValue()) {
 | 
						|
    // Copies from a liveinterval with a single value are simple to handle and
 | 
						|
    // very common, handle the special case here.  This is important, because
 | 
						|
    // often RHS is small and LHS is large (e.g. a physreg).
 | 
						|
    
 | 
						|
    // Find out if the RHS is defined as a copy from some value in the LHS.
 | 
						|
    int RHSValID = -1;
 | 
						|
    std::pair<unsigned,unsigned> RHSValNoInfo;
 | 
						|
    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
 | 
						|
    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
 | 
						|
      // If RHS is not defined as a copy from the LHS, we can use simpler and
 | 
						|
      // faster checks to see if the live ranges are coallescable.  This joiner
 | 
						|
      // can't swap the LHS/RHS intervals though.
 | 
						|
      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
 | 
						|
        return SimpleJoin(LHS, RHS);
 | 
						|
      } else {
 | 
						|
        RHSValNoInfo = RHS.getValNumInfo(0);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // It was defined as a copy from the LHS, find out what value # it is.
 | 
						|
      unsigned ValInst = RHS.getInstForValNum(0);
 | 
						|
      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
 | 
						|
      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
 | 
						|
    }
 | 
						|
    
 | 
						|
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
 | 
						|
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
 | 
						|
    ValueNumberInfo.resize(LHS.getNumValNums());
 | 
						|
    
 | 
						|
    // Okay, *all* of the values in LHS that are defined as a copy from RHS
 | 
						|
    // should now get updated.
 | 
						|
    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
 | 
						|
      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
 | 
						|
        if (rep(LHSSrcReg) != RHS.reg) {
 | 
						|
          // If this is not a copy from the RHS, its value number will be
 | 
						|
          // unmodified by the coallescing.
 | 
						|
          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
 | 
						|
          LHSValNoAssignments[VN] = VN;
 | 
						|
        } else if (RHSValID == -1) {
 | 
						|
          // Otherwise, it is a copy from the RHS, and we don't already have a
 | 
						|
          // value# for it.  Keep the current value number, but remember it.
 | 
						|
          LHSValNoAssignments[VN] = RHSValID = VN;
 | 
						|
          ValueNumberInfo[VN] = RHSValNoInfo;
 | 
						|
        } else {
 | 
						|
          // Otherwise, use the specified value #.
 | 
						|
          LHSValNoAssignments[VN] = RHSValID;
 | 
						|
          if (VN != (unsigned)RHSValID)
 | 
						|
            ValueNumberInfo[VN].first = ~1U;
 | 
						|
          else
 | 
						|
            ValueNumberInfo[VN] = RHSValNoInfo;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
 | 
						|
        LHSValNoAssignments[VN] = VN;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert(RHSValID != -1 && "Didn't find value #?");
 | 
						|
    RHSValNoAssignments[0] = RHSValID;
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // Loop over the value numbers of the LHS, seeing if any are defined from
 | 
						|
    // the RHS.
 | 
						|
    SmallVector<int, 16> LHSValsDefinedFromRHS;
 | 
						|
    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
 | 
						|
    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
 | 
						|
      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
 | 
						|
      if (ValSrcReg == 0)  // Src not defined by a copy?
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // DstReg is known to be a register in the LHS interval.  If the src is
 | 
						|
      // from the RHS interval, we can use its value #.
 | 
						|
      if (rep(ValSrcReg) != RHS.reg)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Figure out the value # from the RHS.
 | 
						|
      unsigned ValInst = LHS.getInstForValNum(VN);
 | 
						|
      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Loop over the value numbers of the RHS, seeing if any are defined from
 | 
						|
    // the LHS.
 | 
						|
    SmallVector<int, 16> RHSValsDefinedFromLHS;
 | 
						|
    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
 | 
						|
    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
 | 
						|
      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
 | 
						|
      if (ValSrcReg == 0)  // Src not defined by a copy?
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // DstReg is known to be a register in the RHS interval.  If the src is
 | 
						|
      // from the LHS interval, we can use its value #.
 | 
						|
      if (rep(ValSrcReg) != LHS.reg)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Figure out the value # from the LHS.
 | 
						|
      unsigned ValInst = RHS.getInstForValNum(VN);
 | 
						|
      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
 | 
						|
    }
 | 
						|
    
 | 
						|
    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
 | 
						|
    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
 | 
						|
    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
 | 
						|
    
 | 
						|
    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
 | 
						|
      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U) 
 | 
						|
        continue;
 | 
						|
      ComputeUltimateVN(VN, ValueNumberInfo,
 | 
						|
                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
 | 
						|
                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
 | 
						|
    }
 | 
						|
    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
 | 
						|
      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
 | 
						|
        continue;
 | 
						|
      // If this value number isn't a copy from the LHS, it's a new number.
 | 
						|
      if (RHSValsDefinedFromLHS[VN] == -1) {
 | 
						|
        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
 | 
						|
        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      ComputeUltimateVN(VN, ValueNumberInfo,
 | 
						|
                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
 | 
						|
                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
 | 
						|
  // interval lists to see if these intervals are coallescable.
 | 
						|
  LiveInterval::const_iterator I = LHS.begin();
 | 
						|
  LiveInterval::const_iterator IE = LHS.end();
 | 
						|
  LiveInterval::const_iterator J = RHS.begin();
 | 
						|
  LiveInterval::const_iterator JE = RHS.end();
 | 
						|
  
 | 
						|
  // Skip ahead until the first place of potential sharing.
 | 
						|
  if (I->start < J->start) {
 | 
						|
    I = std::upper_bound(I, IE, J->start);
 | 
						|
    if (I != LHS.begin()) --I;
 | 
						|
  } else if (J->start < I->start) {
 | 
						|
    J = std::upper_bound(J, JE, I->start);
 | 
						|
    if (J != RHS.begin()) --J;
 | 
						|
  }
 | 
						|
  
 | 
						|
  while (1) {
 | 
						|
    // Determine if these two live ranges overlap.
 | 
						|
    bool Overlaps;
 | 
						|
    if (I->start < J->start) {
 | 
						|
      Overlaps = I->end > J->start;
 | 
						|
    } else {
 | 
						|
      Overlaps = J->end > I->start;
 | 
						|
    }
 | 
						|
 | 
						|
    // If so, check value # info to determine if they are really different.
 | 
						|
    if (Overlaps) {
 | 
						|
      // If the live range overlap will map to the same value number in the
 | 
						|
      // result liverange, we can still coallesce them.  If not, we can't.
 | 
						|
      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (I->end < J->end) {
 | 
						|
      ++I;
 | 
						|
      if (I == IE) break;
 | 
						|
    } else {
 | 
						|
      ++J;
 | 
						|
      if (J == JE) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, we know that we can coallesce the live ranges.  Ask the
 | 
						|
  // intervals to coallesce themselves now.
 | 
						|
  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
 | 
						|
           ValueNumberInfo);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
 | 
						|
  // depth of the basic block (the unsigned), and then on the MBB number.
 | 
						|
  struct DepthMBBCompare {
 | 
						|
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
 | 
						|
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
 | 
						|
      if (LHS.first > RHS.first) return true;   // Deeper loops first
 | 
						|
      return LHS.first == RHS.first &&
 | 
						|
        LHS.second->getNumber() < RHS.second->getNumber();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
 | 
						|
                                       std::vector<CopyRec> &TryAgain) {
 | 
						|
  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
 | 
						|
  
 | 
						|
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
 | 
						|
       MII != E;) {
 | 
						|
    MachineInstr *Inst = MII++;
 | 
						|
    
 | 
						|
    // If this isn't a copy, we can't join intervals.
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
 | 
						|
    
 | 
						|
    if (!JoinCopy(Inst, SrcReg, DstReg))
 | 
						|
      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void LiveIntervals::joinIntervals() {
 | 
						|
  DOUT << "********** JOINING INTERVALS ***********\n";
 | 
						|
 | 
						|
  JoinedLIs.resize(getNumIntervals());
 | 
						|
  JoinedLIs.reset();
 | 
						|
 | 
						|
  std::vector<CopyRec> TryAgainList;
 | 
						|
  const LoopInfo &LI = getAnalysis<LoopInfo>();
 | 
						|
  if (LI.begin() == LI.end()) {
 | 
						|
    // If there are no loops in the function, join intervals in function order.
 | 
						|
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | 
						|
         I != E; ++I)
 | 
						|
      CopyCoallesceInMBB(I, TryAgainList);
 | 
						|
  } else {
 | 
						|
    // Otherwise, join intervals in inner loops before other intervals.
 | 
						|
    // Unfortunately we can't just iterate over loop hierarchy here because
 | 
						|
    // there may be more MBB's than BB's.  Collect MBB's for sorting.
 | 
						|
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
 | 
						|
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | 
						|
         I != E; ++I)
 | 
						|
      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
 | 
						|
 | 
						|
    // Sort by loop depth.
 | 
						|
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
 | 
						|
 | 
						|
    // Finally, join intervals in loop nest order.
 | 
						|
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
 | 
						|
      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Joining intervals can allow other intervals to be joined.  Iteratively join
 | 
						|
  // until we make no progress.
 | 
						|
  bool ProgressMade = true;
 | 
						|
  while (ProgressMade) {
 | 
						|
    ProgressMade = false;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
 | 
						|
      CopyRec &TheCopy = TryAgainList[i];
 | 
						|
      if (TheCopy.MI &&
 | 
						|
          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
 | 
						|
        TheCopy.MI = 0;   // Mark this one as done.
 | 
						|
        ProgressMade = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Some live range has been lengthened due to colaescing, eliminate the
 | 
						|
  // unnecessary kills.
 | 
						|
  int RegNum = JoinedLIs.find_first();
 | 
						|
  while (RegNum != -1) {
 | 
						|
    unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister;
 | 
						|
    unsigned repReg = rep(Reg);
 | 
						|
    LiveInterval &LI = getInterval(repReg);
 | 
						|
    LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg);
 | 
						|
    for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) {
 | 
						|
      MachineInstr *Kill = svi.Kills[i];
 | 
						|
      // Suppose vr1 = op vr2, x
 | 
						|
      // and vr1 and vr2 are coalesced. vr2 should still be marked kill
 | 
						|
      // unless it is a two-address operand.
 | 
						|
      if (isRemoved(Kill) || hasRegisterDef(Kill, repReg))
 | 
						|
        continue;
 | 
						|
      if (LI.liveAt(getInstructionIndex(Kill) + InstrSlots::NUM))
 | 
						|
        unsetRegisterKill(Kill, repReg);
 | 
						|
    }
 | 
						|
    RegNum = JoinedLIs.find_next(RegNum);
 | 
						|
  }
 | 
						|
  
 | 
						|
  DOUT << "*** Register mapping ***\n";
 | 
						|
  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
 | 
						|
    if (r2rMap_[i]) {
 | 
						|
      DOUT << "  reg " << i << " -> ";
 | 
						|
      DEBUG(printRegName(r2rMap_[i]));
 | 
						|
      DOUT << "\n";
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the two specified registers belong to different register
 | 
						|
/// classes.  The registers may be either phys or virt regs.
 | 
						|
bool LiveIntervals::differingRegisterClasses(unsigned RegA,
 | 
						|
                                             unsigned RegB) const {
 | 
						|
 | 
						|
  // Get the register classes for the first reg.
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(RegA)) {
 | 
						|
    assert(MRegisterInfo::isVirtualRegister(RegB) &&
 | 
						|
           "Shouldn't consider two physregs!");
 | 
						|
    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare against the regclass for the second reg.
 | 
						|
  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
 | 
						|
  if (MRegisterInfo::isVirtualRegister(RegB))
 | 
						|
    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
 | 
						|
  else
 | 
						|
    return !RegClass->contains(RegB);
 | 
						|
}
 | 
						|
 | 
						|
/// lastRegisterUse - Returns the last use of the specific register between
 | 
						|
/// cycles Start and End. It also returns the use operand by reference. It
 | 
						|
/// returns NULL if there are no uses.
 | 
						|
MachineInstr *
 | 
						|
LiveIntervals::lastRegisterUse(unsigned Reg, unsigned Start, unsigned End,
 | 
						|
                               MachineOperand *&MOU) {
 | 
						|
  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
 | 
						|
  int s = Start;
 | 
						|
  while (e >= s) {
 | 
						|
    // Skip deleted instructions
 | 
						|
    MachineInstr *MI = getInstructionFromIndex(e);
 | 
						|
    while ((e - InstrSlots::NUM) >= s && !MI) {
 | 
						|
      e -= InstrSlots::NUM;
 | 
						|
      MI = getInstructionFromIndex(e);
 | 
						|
    }
 | 
						|
    if (e < s || MI == NULL)
 | 
						|
      return NULL;
 | 
						|
 | 
						|
    for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isUse() && MO.getReg() &&
 | 
						|
          mri_->regsOverlap(rep(MO.getReg()), Reg)) {
 | 
						|
        MOU = &MO;
 | 
						|
        return MI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    e -= InstrSlots::NUM;
 | 
						|
  }
 | 
						|
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/// unsetRegisterKill - Unset IsKill property of all uses of specific register
 | 
						|
/// of the specific instruction.
 | 
						|
void LiveIntervals::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() &&
 | 
						|
        mri_->regsOverlap(rep(MO.getReg()), Reg))
 | 
						|
      MO.unsetIsKill();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// hasRegisterDef - True if the instruction defines the specific register.
 | 
						|
///
 | 
						|
bool LiveIntervals::hasRegisterDef(MachineInstr *MI, unsigned Reg) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isDef() &&
 | 
						|
        mri_->regsOverlap(rep(MO.getReg()), Reg))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
LiveInterval LiveIntervals::createInterval(unsigned reg) {
 | 
						|
  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
 | 
						|
                       HUGE_VALF : 0.0F;
 | 
						|
  return LiveInterval(reg, Weight);
 | 
						|
}
 |