forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			744 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			744 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file Implements the ScheduleDAG class, which is a base class used by
 | 
						|
/// scheduling implementation classes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "pre-RA-sched"
 | 
						|
 | 
						|
STATISTIC(NumNewPredsAdded, "Number of times a  single predecessor was added");
 | 
						|
STATISTIC(NumTopoInits,
 | 
						|
          "Number of times the topological order has been recomputed");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool> StressSchedOpt(
 | 
						|
  "stress-sched", cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Stress test instruction scheduling"));
 | 
						|
#endif
 | 
						|
 | 
						|
void SchedulingPriorityQueue::anchor() {}
 | 
						|
 | 
						|
ScheduleDAG::ScheduleDAG(MachineFunction &mf)
 | 
						|
    : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
 | 
						|
      TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
 | 
						|
      MRI(mf.getRegInfo()) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  StressSched = StressSchedOpt;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
ScheduleDAG::~ScheduleDAG() = default;
 | 
						|
 | 
						|
void ScheduleDAG::clearDAG() {
 | 
						|
  SUnits.clear();
 | 
						|
  EntrySU = SUnit();
 | 
						|
  ExitSU = SUnit();
 | 
						|
}
 | 
						|
 | 
						|
const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
 | 
						|
  if (!Node || !Node->isMachineOpcode()) return nullptr;
 | 
						|
  return &TII->get(Node->getMachineOpcode());
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const {
 | 
						|
  switch (getKind()) {
 | 
						|
  case Data:   dbgs() << "Data"; break;
 | 
						|
  case Anti:   dbgs() << "Anti"; break;
 | 
						|
  case Output: dbgs() << "Out "; break;
 | 
						|
  case Order:  dbgs() << "Ord "; break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (getKind()) {
 | 
						|
  case Data:
 | 
						|
    dbgs() << " Latency=" << getLatency();
 | 
						|
    if (TRI && isAssignedRegDep())
 | 
						|
      dbgs() << " Reg=" << printReg(getReg(), TRI);
 | 
						|
    break;
 | 
						|
  case Anti:
 | 
						|
  case Output:
 | 
						|
    dbgs() << " Latency=" << getLatency();
 | 
						|
    break;
 | 
						|
  case Order:
 | 
						|
    dbgs() << " Latency=" << getLatency();
 | 
						|
    switch(Contents.OrdKind) {
 | 
						|
    case Barrier:      dbgs() << " Barrier"; break;
 | 
						|
    case MayAliasMem:
 | 
						|
    case MustAliasMem: dbgs() << " Memory"; break;
 | 
						|
    case Artificial:   dbgs() << " Artificial"; break;
 | 
						|
    case Weak:         dbgs() << " Weak"; break;
 | 
						|
    case Cluster:      dbgs() << " Cluster"; break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SUnit::addPred(const SDep &D, bool Required) {
 | 
						|
  // If this node already has this dependence, don't add a redundant one.
 | 
						|
  for (SDep &PredDep : Preds) {
 | 
						|
    // Zero-latency weak edges may be added purely for heuristic ordering. Don't
 | 
						|
    // add them if another kind of edge already exists.
 | 
						|
    if (!Required && PredDep.getSUnit() == D.getSUnit())
 | 
						|
      return false;
 | 
						|
    if (PredDep.overlaps(D)) {
 | 
						|
      // Extend the latency if needed. Equivalent to
 | 
						|
      // removePred(PredDep) + addPred(D).
 | 
						|
      if (PredDep.getLatency() < D.getLatency()) {
 | 
						|
        SUnit *PredSU = PredDep.getSUnit();
 | 
						|
        // Find the corresponding successor in N.
 | 
						|
        SDep ForwardD = PredDep;
 | 
						|
        ForwardD.setSUnit(this);
 | 
						|
        for (SDep &SuccDep : PredSU->Succs) {
 | 
						|
          if (SuccDep == ForwardD) {
 | 
						|
            SuccDep.setLatency(D.getLatency());
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        PredDep.setLatency(D.getLatency());
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Now add a corresponding succ to N.
 | 
						|
  SDep P = D;
 | 
						|
  P.setSUnit(this);
 | 
						|
  SUnit *N = D.getSUnit();
 | 
						|
  // Update the bookkeeping.
 | 
						|
  if (D.getKind() == SDep::Data) {
 | 
						|
    assert(NumPreds < std::numeric_limits<unsigned>::max() &&
 | 
						|
           "NumPreds will overflow!");
 | 
						|
    assert(N->NumSuccs < std::numeric_limits<unsigned>::max() &&
 | 
						|
           "NumSuccs will overflow!");
 | 
						|
    ++NumPreds;
 | 
						|
    ++N->NumSuccs;
 | 
						|
  }
 | 
						|
  if (!N->isScheduled) {
 | 
						|
    if (D.isWeak()) {
 | 
						|
      ++WeakPredsLeft;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      assert(NumPredsLeft < std::numeric_limits<unsigned>::max() &&
 | 
						|
             "NumPredsLeft will overflow!");
 | 
						|
      ++NumPredsLeft;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!isScheduled) {
 | 
						|
    if (D.isWeak()) {
 | 
						|
      ++N->WeakSuccsLeft;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
 | 
						|
             "NumSuccsLeft will overflow!");
 | 
						|
      ++N->NumSuccsLeft;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Preds.push_back(D);
 | 
						|
  N->Succs.push_back(P);
 | 
						|
  if (P.getLatency() != 0) {
 | 
						|
    this->setDepthDirty();
 | 
						|
    N->setHeightDirty();
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::removePred(const SDep &D) {
 | 
						|
  // Find the matching predecessor.
 | 
						|
  SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D);
 | 
						|
  if (I == Preds.end())
 | 
						|
    return;
 | 
						|
  // Find the corresponding successor in N.
 | 
						|
  SDep P = D;
 | 
						|
  P.setSUnit(this);
 | 
						|
  SUnit *N = D.getSUnit();
 | 
						|
  SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P);
 | 
						|
  assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
 | 
						|
  N->Succs.erase(Succ);
 | 
						|
  Preds.erase(I);
 | 
						|
  // Update the bookkeeping.
 | 
						|
  if (P.getKind() == SDep::Data) {
 | 
						|
    assert(NumPreds > 0 && "NumPreds will underflow!");
 | 
						|
    assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
 | 
						|
    --NumPreds;
 | 
						|
    --N->NumSuccs;
 | 
						|
  }
 | 
						|
  if (!N->isScheduled) {
 | 
						|
    if (D.isWeak())
 | 
						|
      --WeakPredsLeft;
 | 
						|
    else {
 | 
						|
      assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
 | 
						|
      --NumPredsLeft;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!isScheduled) {
 | 
						|
    if (D.isWeak())
 | 
						|
      --N->WeakSuccsLeft;
 | 
						|
    else {
 | 
						|
      assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
 | 
						|
      --N->NumSuccsLeft;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (P.getLatency() != 0) {
 | 
						|
    this->setDepthDirty();
 | 
						|
    N->setHeightDirty();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::setDepthDirty() {
 | 
						|
  if (!isDepthCurrent) return;
 | 
						|
  SmallVector<SUnit*, 8> WorkList;
 | 
						|
  WorkList.push_back(this);
 | 
						|
  do {
 | 
						|
    SUnit *SU = WorkList.pop_back_val();
 | 
						|
    SU->isDepthCurrent = false;
 | 
						|
    for (SDep &SuccDep : SU->Succs) {
 | 
						|
      SUnit *SuccSU = SuccDep.getSUnit();
 | 
						|
      if (SuccSU->isDepthCurrent)
 | 
						|
        WorkList.push_back(SuccSU);
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::setHeightDirty() {
 | 
						|
  if (!isHeightCurrent) return;
 | 
						|
  SmallVector<SUnit*, 8> WorkList;
 | 
						|
  WorkList.push_back(this);
 | 
						|
  do {
 | 
						|
    SUnit *SU = WorkList.pop_back_val();
 | 
						|
    SU->isHeightCurrent = false;
 | 
						|
    for (SDep &PredDep : SU->Preds) {
 | 
						|
      SUnit *PredSU = PredDep.getSUnit();
 | 
						|
      if (PredSU->isHeightCurrent)
 | 
						|
        WorkList.push_back(PredSU);
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::setDepthToAtLeast(unsigned NewDepth) {
 | 
						|
  if (NewDepth <= getDepth())
 | 
						|
    return;
 | 
						|
  setDepthDirty();
 | 
						|
  Depth = NewDepth;
 | 
						|
  isDepthCurrent = true;
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::setHeightToAtLeast(unsigned NewHeight) {
 | 
						|
  if (NewHeight <= getHeight())
 | 
						|
    return;
 | 
						|
  setHeightDirty();
 | 
						|
  Height = NewHeight;
 | 
						|
  isHeightCurrent = true;
 | 
						|
}
 | 
						|
 | 
						|
/// Calculates the maximal path from the node to the exit.
 | 
						|
void SUnit::ComputeDepth() {
 | 
						|
  SmallVector<SUnit*, 8> WorkList;
 | 
						|
  WorkList.push_back(this);
 | 
						|
  do {
 | 
						|
    SUnit *Cur = WorkList.back();
 | 
						|
 | 
						|
    bool Done = true;
 | 
						|
    unsigned MaxPredDepth = 0;
 | 
						|
    for (const SDep &PredDep : Cur->Preds) {
 | 
						|
      SUnit *PredSU = PredDep.getSUnit();
 | 
						|
      if (PredSU->isDepthCurrent)
 | 
						|
        MaxPredDepth = std::max(MaxPredDepth,
 | 
						|
                                PredSU->Depth + PredDep.getLatency());
 | 
						|
      else {
 | 
						|
        Done = false;
 | 
						|
        WorkList.push_back(PredSU);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Done) {
 | 
						|
      WorkList.pop_back();
 | 
						|
      if (MaxPredDepth != Cur->Depth) {
 | 
						|
        Cur->setDepthDirty();
 | 
						|
        Cur->Depth = MaxPredDepth;
 | 
						|
      }
 | 
						|
      Cur->isDepthCurrent = true;
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
/// Calculates the maximal path from the node to the entry.
 | 
						|
void SUnit::ComputeHeight() {
 | 
						|
  SmallVector<SUnit*, 8> WorkList;
 | 
						|
  WorkList.push_back(this);
 | 
						|
  do {
 | 
						|
    SUnit *Cur = WorkList.back();
 | 
						|
 | 
						|
    bool Done = true;
 | 
						|
    unsigned MaxSuccHeight = 0;
 | 
						|
    for (const SDep &SuccDep : Cur->Succs) {
 | 
						|
      SUnit *SuccSU = SuccDep.getSUnit();
 | 
						|
      if (SuccSU->isHeightCurrent)
 | 
						|
        MaxSuccHeight = std::max(MaxSuccHeight,
 | 
						|
                                 SuccSU->Height + SuccDep.getLatency());
 | 
						|
      else {
 | 
						|
        Done = false;
 | 
						|
        WorkList.push_back(SuccSU);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Done) {
 | 
						|
      WorkList.pop_back();
 | 
						|
      if (MaxSuccHeight != Cur->Height) {
 | 
						|
        Cur->setHeightDirty();
 | 
						|
        Cur->Height = MaxSuccHeight;
 | 
						|
      }
 | 
						|
      Cur->isHeightCurrent = true;
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::biasCriticalPath() {
 | 
						|
  if (NumPreds < 2)
 | 
						|
    return;
 | 
						|
 | 
						|
  SUnit::pred_iterator BestI = Preds.begin();
 | 
						|
  unsigned MaxDepth = BestI->getSUnit()->getDepth();
 | 
						|
  for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
 | 
						|
      BestI = I;
 | 
						|
  }
 | 
						|
  if (BestI != Preds.begin())
 | 
						|
    std::swap(*Preds.begin(), *BestI);
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void SUnit::dumpAttributes() const {
 | 
						|
  dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
 | 
						|
  dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
 | 
						|
  if (WeakPredsLeft)
 | 
						|
    dbgs() << "  # weak preds left  : " << WeakPredsLeft << "\n";
 | 
						|
  if (WeakSuccsLeft)
 | 
						|
    dbgs() << "  # weak succs left  : " << WeakSuccsLeft << "\n";
 | 
						|
  dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
 | 
						|
  dbgs() << "  Latency            : " << Latency << "\n";
 | 
						|
  dbgs() << "  Depth              : " << getDepth() << "\n";
 | 
						|
  dbgs() << "  Height             : " << getHeight() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const {
 | 
						|
  if (&SU == &EntrySU)
 | 
						|
    dbgs() << "EntrySU";
 | 
						|
  else if (&SU == &ExitSU)
 | 
						|
    dbgs() << "ExitSU";
 | 
						|
  else
 | 
						|
    dbgs() << "SU(" << SU.NodeNum << ")";
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const {
 | 
						|
  dumpNode(SU);
 | 
						|
  SU.dumpAttributes();
 | 
						|
  if (SU.Preds.size() > 0) {
 | 
						|
    dbgs() << "  Predecessors:\n";
 | 
						|
    for (const SDep &Dep : SU.Preds) {
 | 
						|
      dbgs() << "    ";
 | 
						|
      dumpNodeName(*Dep.getSUnit());
 | 
						|
      dbgs() << ": ";
 | 
						|
      Dep.dump(TRI);
 | 
						|
      dbgs() << '\n';
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (SU.Succs.size() > 0) {
 | 
						|
    dbgs() << "  Successors:\n";
 | 
						|
    for (const SDep &Dep : SU.Succs) {
 | 
						|
      dbgs() << "    ";
 | 
						|
      dumpNodeName(*Dep.getSUnit());
 | 
						|
      dbgs() << ": ";
 | 
						|
      Dep.dump(TRI);
 | 
						|
      dbgs() << '\n';
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  unsigned DeadNodes = 0;
 | 
						|
  for (const SUnit &SUnit : SUnits) {
 | 
						|
    if (!SUnit.isScheduled) {
 | 
						|
      if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) {
 | 
						|
        ++DeadNodes;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!AnyNotSched)
 | 
						|
        dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
      dumpNode(SUnit);
 | 
						|
      dbgs() << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
    if (SUnit.isScheduled &&
 | 
						|
        (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) >
 | 
						|
          unsigned(std::numeric_limits<int>::max())) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
      dumpNode(SUnit);
 | 
						|
      dbgs() << "has an unexpected "
 | 
						|
           << (isBottomUp ? "Height" : "Depth") << " value!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
    if (isBottomUp) {
 | 
						|
      if (SUnit.NumSuccsLeft != 0) {
 | 
						|
        if (!AnyNotSched)
 | 
						|
          dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
        dumpNode(SUnit);
 | 
						|
        dbgs() << "has successors left!\n";
 | 
						|
        AnyNotSched = true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (SUnit.NumPredsLeft != 0) {
 | 
						|
        if (!AnyNotSched)
 | 
						|
          dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
        dumpNode(SUnit);
 | 
						|
        dbgs() << "has predecessors left!\n";
 | 
						|
        AnyNotSched = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(!AnyNotSched);
 | 
						|
  return SUnits.size() - DeadNodes;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
 | 
						|
  // The idea of the algorithm is taken from
 | 
						|
  // "Online algorithms for managing the topological order of
 | 
						|
  // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
 | 
						|
  // This is the MNR algorithm, which was first introduced by
 | 
						|
  // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
 | 
						|
  // "Maintaining a topological order under edge insertions".
 | 
						|
  //
 | 
						|
  // Short description of the algorithm:
 | 
						|
  //
 | 
						|
  // Topological ordering, ord, of a DAG maps each node to a topological
 | 
						|
  // index so that for all edges X->Y it is the case that ord(X) < ord(Y).
 | 
						|
  //
 | 
						|
  // This means that if there is a path from the node X to the node Z,
 | 
						|
  // then ord(X) < ord(Z).
 | 
						|
  //
 | 
						|
  // This property can be used to check for reachability of nodes:
 | 
						|
  // if Z is reachable from X, then an insertion of the edge Z->X would
 | 
						|
  // create a cycle.
 | 
						|
  //
 | 
						|
  // The algorithm first computes a topological ordering for the DAG by
 | 
						|
  // initializing the Index2Node and Node2Index arrays and then tries to keep
 | 
						|
  // the ordering up-to-date after edge insertions by reordering the DAG.
 | 
						|
  //
 | 
						|
  // On insertion of the edge X->Y, the algorithm first marks by calling DFS
 | 
						|
  // the nodes reachable from Y, and then shifts them using Shift to lie
 | 
						|
  // immediately after X in Index2Node.
 | 
						|
 | 
						|
  // Cancel pending updates, mark as valid.
 | 
						|
  Dirty = false;
 | 
						|
  Updates.clear();
 | 
						|
 | 
						|
  unsigned DAGSize = SUnits.size();
 | 
						|
  std::vector<SUnit*> WorkList;
 | 
						|
  WorkList.reserve(DAGSize);
 | 
						|
 | 
						|
  Index2Node.resize(DAGSize);
 | 
						|
  Node2Index.resize(DAGSize);
 | 
						|
 | 
						|
  // Initialize the data structures.
 | 
						|
  if (ExitSU)
 | 
						|
    WorkList.push_back(ExitSU);
 | 
						|
  for (SUnit &SU : SUnits) {
 | 
						|
    int NodeNum = SU.NodeNum;
 | 
						|
    unsigned Degree = SU.Succs.size();
 | 
						|
    // Temporarily use the Node2Index array as scratch space for degree counts.
 | 
						|
    Node2Index[NodeNum] = Degree;
 | 
						|
 | 
						|
    // Is it a node without dependencies?
 | 
						|
    if (Degree == 0) {
 | 
						|
      assert(SU.Succs.empty() && "SUnit should have no successors");
 | 
						|
      // Collect leaf nodes.
 | 
						|
      WorkList.push_back(&SU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  int Id = DAGSize;
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    SUnit *SU = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    if (SU->NodeNum < DAGSize)
 | 
						|
      Allocate(SU->NodeNum, --Id);
 | 
						|
    for (const SDep &PredDep : SU->Preds) {
 | 
						|
      SUnit *SU = PredDep.getSUnit();
 | 
						|
      if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
 | 
						|
        // If all dependencies of the node are processed already,
 | 
						|
        // then the node can be computed now.
 | 
						|
        WorkList.push_back(SU);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Visited.resize(DAGSize);
 | 
						|
  NumTopoInits++;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Check correctness of the ordering
 | 
						|
  for (SUnit &SU : SUnits)  {
 | 
						|
    for (const SDep &PD : SU.Preds) {
 | 
						|
      assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] &&
 | 
						|
      "Wrong topological sorting");
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGTopologicalSort::FixOrder() {
 | 
						|
  // Recompute from scratch after new nodes have been added.
 | 
						|
  if (Dirty) {
 | 
						|
    InitDAGTopologicalSorting();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise apply updates one-by-one.
 | 
						|
  for (auto &U : Updates)
 | 
						|
    AddPred(U.first, U.second);
 | 
						|
  Updates.clear();
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGTopologicalSort::AddPredQueued(SUnit *Y, SUnit *X) {
 | 
						|
  // Recomputing the order from scratch is likely more efficient than applying
 | 
						|
  // updates one-by-one for too many updates. The current cut-off is arbitrarily
 | 
						|
  // chosen.
 | 
						|
  Dirty = Dirty || Updates.size() > 10;
 | 
						|
 | 
						|
  if (Dirty)
 | 
						|
    return;
 | 
						|
 | 
						|
  Updates.emplace_back(Y, X);
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
 | 
						|
  int UpperBound, LowerBound;
 | 
						|
  LowerBound = Node2Index[Y->NodeNum];
 | 
						|
  UpperBound = Node2Index[X->NodeNum];
 | 
						|
  bool HasLoop = false;
 | 
						|
  // Is Ord(X) < Ord(Y) ?
 | 
						|
  if (LowerBound < UpperBound) {
 | 
						|
    // Update the topological order.
 | 
						|
    Visited.reset();
 | 
						|
    DFS(Y, UpperBound, HasLoop);
 | 
						|
    assert(!HasLoop && "Inserted edge creates a loop!");
 | 
						|
    // Recompute topological indexes.
 | 
						|
    Shift(Visited, LowerBound, UpperBound);
 | 
						|
  }
 | 
						|
 | 
						|
  NumNewPredsAdded++;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
 | 
						|
  // InitDAGTopologicalSorting();
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
 | 
						|
                                     bool &HasLoop) {
 | 
						|
  std::vector<const SUnit*> WorkList;
 | 
						|
  WorkList.reserve(SUnits.size());
 | 
						|
 | 
						|
  WorkList.push_back(SU);
 | 
						|
  do {
 | 
						|
    SU = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    Visited.set(SU->NodeNum);
 | 
						|
    for (const SDep &SuccDep
 | 
						|
         : make_range(SU->Succs.rbegin(), SU->Succs.rend())) {
 | 
						|
      unsigned s = SuccDep.getSUnit()->NodeNum;
 | 
						|
      // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
 | 
						|
      if (s >= Node2Index.size())
 | 
						|
        continue;
 | 
						|
      if (Node2Index[s] == UpperBound) {
 | 
						|
        HasLoop = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // Visit successors if not already and in affected region.
 | 
						|
      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
 | 
						|
        WorkList.push_back(SuccDep.getSUnit());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU,
 | 
						|
                                                         const SUnit &TargetSU,
 | 
						|
                                                         bool &Success) {
 | 
						|
  std::vector<const SUnit*> WorkList;
 | 
						|
  int LowerBound = Node2Index[StartSU.NodeNum];
 | 
						|
  int UpperBound = Node2Index[TargetSU.NodeNum];
 | 
						|
  bool Found = false;
 | 
						|
  BitVector VisitedBack;
 | 
						|
  std::vector<int> Nodes;
 | 
						|
 | 
						|
  if (LowerBound > UpperBound) {
 | 
						|
    Success = false;
 | 
						|
    return Nodes;
 | 
						|
  }
 | 
						|
 | 
						|
  WorkList.reserve(SUnits.size());
 | 
						|
  Visited.reset();
 | 
						|
 | 
						|
  // Starting from StartSU, visit all successors up
 | 
						|
  // to UpperBound.
 | 
						|
  WorkList.push_back(&StartSU);
 | 
						|
  do {
 | 
						|
    const SUnit *SU = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    for (int I = SU->Succs.size()-1; I >= 0; --I) {
 | 
						|
      const SUnit *Succ = SU->Succs[I].getSUnit();
 | 
						|
      unsigned s = Succ->NodeNum;
 | 
						|
      // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
 | 
						|
      if (Succ->isBoundaryNode())
 | 
						|
        continue;
 | 
						|
      if (Node2Index[s] == UpperBound) {
 | 
						|
        Found = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Visit successors if not already and in affected region.
 | 
						|
      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
 | 
						|
        Visited.set(s);
 | 
						|
        WorkList.push_back(Succ);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
 | 
						|
  if (!Found) {
 | 
						|
    Success = false;
 | 
						|
    return Nodes;
 | 
						|
  }
 | 
						|
 | 
						|
  WorkList.clear();
 | 
						|
  VisitedBack.resize(SUnits.size());
 | 
						|
  Found = false;
 | 
						|
 | 
						|
  // Starting from TargetSU, visit all predecessors up
 | 
						|
  // to LowerBound. SUs that are visited by the two
 | 
						|
  // passes are added to Nodes.
 | 
						|
  WorkList.push_back(&TargetSU);
 | 
						|
  do {
 | 
						|
    const SUnit *SU = WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    for (int I = SU->Preds.size()-1; I >= 0; --I) {
 | 
						|
      const SUnit *Pred = SU->Preds[I].getSUnit();
 | 
						|
      unsigned s = Pred->NodeNum;
 | 
						|
      // Edges to non-SUnits are allowed but ignored (e.g. EntrySU).
 | 
						|
      if (Pred->isBoundaryNode())
 | 
						|
        continue;
 | 
						|
      if (Node2Index[s] == LowerBound) {
 | 
						|
        Found = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!VisitedBack.test(s) && Visited.test(s)) {
 | 
						|
        VisitedBack.set(s);
 | 
						|
        WorkList.push_back(Pred);
 | 
						|
        Nodes.push_back(s);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
 | 
						|
  assert(Found && "Error in SUnit Graph!");
 | 
						|
  Success = true;
 | 
						|
  return Nodes;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
 | 
						|
                                       int UpperBound) {
 | 
						|
  std::vector<int> L;
 | 
						|
  int shift = 0;
 | 
						|
  int i;
 | 
						|
 | 
						|
  for (i = LowerBound; i <= UpperBound; ++i) {
 | 
						|
    // w is node at topological index i.
 | 
						|
    int w = Index2Node[i];
 | 
						|
    if (Visited.test(w)) {
 | 
						|
      // Unmark.
 | 
						|
      Visited.reset(w);
 | 
						|
      L.push_back(w);
 | 
						|
      shift = shift + 1;
 | 
						|
    } else {
 | 
						|
      Allocate(w, i - shift);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned LI : L) {
 | 
						|
    Allocate(LI, i - shift);
 | 
						|
    i = i + 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
 | 
						|
  FixOrder();
 | 
						|
  // Is SU reachable from TargetSU via successor edges?
 | 
						|
  if (IsReachable(SU, TargetSU))
 | 
						|
    return true;
 | 
						|
  for (const SDep &PredDep : TargetSU->Preds)
 | 
						|
    if (PredDep.isAssignedRegDep() &&
 | 
						|
        IsReachable(SU, PredDep.getSUnit()))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
 | 
						|
                                             const SUnit *TargetSU) {
 | 
						|
  FixOrder();
 | 
						|
  // If insertion of the edge SU->TargetSU would create a cycle
 | 
						|
  // then there is a path from TargetSU to SU.
 | 
						|
  int UpperBound, LowerBound;
 | 
						|
  LowerBound = Node2Index[TargetSU->NodeNum];
 | 
						|
  UpperBound = Node2Index[SU->NodeNum];
 | 
						|
  bool HasLoop = false;
 | 
						|
  // Is Ord(TargetSU) < Ord(SU) ?
 | 
						|
  if (LowerBound < UpperBound) {
 | 
						|
    Visited.reset();
 | 
						|
    // There may be a path from TargetSU to SU. Check for it.
 | 
						|
    DFS(TargetSU, UpperBound, HasLoop);
 | 
						|
  }
 | 
						|
  return HasLoop;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
 | 
						|
  Node2Index[n] = index;
 | 
						|
  Index2Node[index] = n;
 | 
						|
}
 | 
						|
 | 
						|
ScheduleDAGTopologicalSort::
 | 
						|
ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
 | 
						|
  : SUnits(sunits), ExitSU(exitsu) {}
 | 
						|
 | 
						|
ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default;
 |