forked from OSchip/llvm-project
186 lines
6.9 KiB
C++
186 lines
6.9 KiB
C++
//===-- runtime/time-intrinsic.cpp ----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Implements time-related intrinsic subroutines.
|
|
|
|
#include "time-intrinsic.h"
|
|
|
|
#include <ctime>
|
|
|
|
// CPU_TIME (Fortran 2018 16.9.57)
|
|
// SYSTEM_CLOCK (Fortran 2018 16.9.168)
|
|
//
|
|
// We can use std::clock() from the <ctime> header as a fallback implementation
|
|
// that should be available everywhere. This may not provide the best resolution
|
|
// and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
|
|
// is defined as 10^6 regardless of the actual precision of std::clock().
|
|
// Therefore, we will usually prefer platform-specific alternatives when they
|
|
// are available.
|
|
//
|
|
// We can use SFINAE to choose a platform-specific alternative. To do so, we
|
|
// introduce a helper function template, whose overload set will contain only
|
|
// implementations relying on interfaces which are actually available. Each
|
|
// overload will have a dummy parameter whose type indicates whether or not it
|
|
// should be preferred. Any other parameters required for SFINAE should have
|
|
// default values provided.
|
|
namespace {
|
|
// Types for the dummy parameter indicating the priority of a given overload.
|
|
// We will invoke our helper with an integer literal argument, so the overload
|
|
// with the highest priority should have the type int.
|
|
using fallback_implementation = double;
|
|
using preferred_implementation = int;
|
|
|
|
// This is the fallback implementation, which should work everywhere.
|
|
template <typename Unused = void> double GetCpuTime(fallback_implementation) {
|
|
std::clock_t timestamp{std::clock()};
|
|
if (timestamp != static_cast<std::clock_t>(-1)) {
|
|
return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
|
|
}
|
|
|
|
// Return some negative value to represent failure.
|
|
return -1.0;
|
|
}
|
|
|
|
// POSIX implementation using clock_gettime. This is only enabled if
|
|
// clock_gettime is available.
|
|
template <typename T = int, typename U = struct timespec>
|
|
double GetCpuTime(preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
#if defined CLOCK_THREAD_CPUTIME_ID
|
|
#define CLOCKID CLOCK_THREAD_CPUTIME_ID
|
|
#elif defined CLOCK_PROCESS_CPUTIME_ID
|
|
#define CLOCKID CLOCK_PROCESS_CPUTIME_ID
|
|
#elif defined CLOCK_MONOTONIC
|
|
#define CLOCKID CLOCK_MONOTONIC
|
|
#else
|
|
#define CLOCKID CLOCK_REALTIME
|
|
#endif
|
|
struct timespec tspec;
|
|
if (clock_gettime(CLOCKID, &tspec) == 0) {
|
|
return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
|
|
}
|
|
|
|
// Return some negative value to represent failure.
|
|
return -1.0;
|
|
}
|
|
|
|
using count_t =
|
|
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, 8>;
|
|
|
|
// This is the fallback implementation, which should work everywhere. Note that
|
|
// in general we can't recover after std::clock has reached its maximum value.
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCount(fallback_implementation) {
|
|
std::clock_t timestamp{std::clock()};
|
|
if (timestamp == static_cast<std::clock_t>(-1)) {
|
|
// Return -HUGE() to represent failure.
|
|
return -std::numeric_limits<count_t>::max();
|
|
}
|
|
|
|
// If our return type is large enough to hold any value returned by
|
|
// std::clock, our work is done. Otherwise, we have to wrap around.
|
|
static constexpr auto max{std::numeric_limits<count_t>::max()};
|
|
if constexpr (std::numeric_limits<std::clock_t>::max() <= max) {
|
|
return static_cast<count_t>(timestamp);
|
|
} else {
|
|
// Since std::clock_t could be a floating point type, we can't just use the
|
|
// % operator, so we have to wrap around manually.
|
|
return static_cast<count_t>(timestamp - max * std::floor(timestamp / max));
|
|
}
|
|
}
|
|
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCountRate(fallback_implementation) {
|
|
return CLOCKS_PER_SEC;
|
|
}
|
|
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCountMax(fallback_implementation) {
|
|
static constexpr auto max_clock_t = std::numeric_limits<std::clock_t>::max();
|
|
static constexpr auto max_count_t = std::numeric_limits<count_t>::max();
|
|
if constexpr (max_clock_t < max_count_t) {
|
|
return static_cast<count_t>(max_clock_t);
|
|
} else {
|
|
return max_count_t;
|
|
}
|
|
}
|
|
|
|
constexpr count_t NSECS_PER_SEC{1'000'000'000};
|
|
|
|
// POSIX implementation using clock_gettime. This is only enabled if
|
|
// clock_gettime is available.
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCount(preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
#if defined CLOCK_THREAD_CPUTIME_ID
|
|
#define CLOCKID CLOCK_THREAD_CPUTIME_ID
|
|
#elif defined CLOCK_PROCESS_CPUTIME_ID
|
|
#define CLOCKID CLOCK_PROCESS_CPUTIME_ID
|
|
#elif defined CLOCK_MONOTONIC
|
|
#define CLOCKID CLOCK_MONOTONIC
|
|
#else
|
|
#define CLOCKID CLOCK_REALTIME
|
|
#endif
|
|
struct timespec tspec;
|
|
if (clock_gettime(CLOCKID, &tspec) != 0) {
|
|
// Return -HUGE() to represent failure.
|
|
return -std::numeric_limits<count_t>::max();
|
|
}
|
|
|
|
// Wrap around to avoid overflows.
|
|
constexpr count_t max_secs{
|
|
std::numeric_limits<count_t>::max() / NSECS_PER_SEC};
|
|
count_t wrapped_secs{tspec.tv_sec % max_secs};
|
|
|
|
// At this point, wrapped_secs < max_secs, and max_secs has already been
|
|
// truncated by the division. Therefore, we should still have enough room to
|
|
// add tv_nsec, since it is < NSECS_PER_SEC.
|
|
return tspec.tv_nsec + wrapped_secs * NSECS_PER_SEC;
|
|
}
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCountRate(preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
return NSECS_PER_SEC;
|
|
}
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCountMax(preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
count_t max_secs{std::numeric_limits<count_t>::max() / NSECS_PER_SEC};
|
|
return max_secs * NSECS_PER_SEC - 1;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
namespace Fortran::runtime {
|
|
extern "C" {
|
|
|
|
double RTNAME(CpuTime)() { return GetCpuTime(0); }
|
|
|
|
CppTypeFor<TypeCategory::Integer, 8> RTNAME(SystemClockCount)() {
|
|
return GetSystemClockCount(0);
|
|
}
|
|
|
|
CppTypeFor<TypeCategory::Integer, 8> RTNAME(SystemClockCountRate)() {
|
|
return GetSystemClockCountRate(0);
|
|
}
|
|
|
|
CppTypeFor<TypeCategory::Integer, 8> RTNAME(SystemClockCountMax)() {
|
|
return GetSystemClockCountMax(0);
|
|
}
|
|
} // extern "C"
|
|
} // namespace Fortran::runtime
|