forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3289 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3289 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements the ASTContext interface.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExternalASTSource.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| using namespace clang;
 | |
| 
 | |
| enum FloatingRank {
 | |
|   FloatRank, DoubleRank, LongDoubleRank
 | |
| };
 | |
| 
 | |
| ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
 | |
|                        TargetInfo &t,
 | |
|                        IdentifierTable &idents, SelectorTable &sels,
 | |
|                        bool FreeMem, unsigned size_reserve,
 | |
|                        bool InitializeBuiltins) : 
 | |
|   GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0), 
 | |
|   ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts), 
 | |
|   FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
 | |
|   ExternalSource(0) {  
 | |
|   if (size_reserve > 0) Types.reserve(size_reserve);    
 | |
|   InitBuiltinTypes();
 | |
|   TUDecl = TranslationUnitDecl::Create(*this);
 | |
|   BuiltinInfo.InitializeTargetBuiltins(Target);
 | |
|   if (InitializeBuiltins)
 | |
|     this->InitializeBuiltins(idents);
 | |
| }
 | |
| 
 | |
| ASTContext::~ASTContext() {
 | |
|   // Deallocate all the types.
 | |
|   while (!Types.empty()) {
 | |
|     Types.back()->Destroy(*this);
 | |
|     Types.pop_back();
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
 | |
|       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
 | |
|     while (I != E) {
 | |
|       ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
 | |
|       delete R;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
 | |
|       I = ObjCLayouts.begin(), E = ObjCLayouts.end();
 | |
|     while (I != E) {
 | |
|       ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
 | |
|       delete R;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Destroy nested-name-specifiers.
 | |
|   for (llvm::FoldingSet<NestedNameSpecifier>::iterator
 | |
|          NNS = NestedNameSpecifiers.begin(),
 | |
|          NNSEnd = NestedNameSpecifiers.end(); 
 | |
|        NNS != NNSEnd; 
 | |
|        /* Increment in loop */)
 | |
|     (*NNS++).Destroy(*this);
 | |
| 
 | |
|   if (GlobalNestedNameSpecifier)
 | |
|     GlobalNestedNameSpecifier->Destroy(*this);
 | |
| 
 | |
|   TUDecl->Destroy(*this);
 | |
| }
 | |
| 
 | |
| void ASTContext::InitializeBuiltins(IdentifierTable &idents) {
 | |
|   BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin);
 | |
| }
 | |
| 
 | |
| void 
 | |
| ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
 | |
|   ExternalSource.reset(Source.take());
 | |
| }
 | |
| 
 | |
| void ASTContext::PrintStats() const {
 | |
|   fprintf(stderr, "*** AST Context Stats:\n");
 | |
|   fprintf(stderr, "  %d types total.\n", (int)Types.size());
 | |
|   unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
 | |
|   unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
 | |
|   unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0;
 | |
|   unsigned NumLValueReference = 0, NumRValueReference = 0, NumMemberPointer = 0;
 | |
| 
 | |
|   unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
 | |
|   unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
 | |
|   unsigned NumObjCQualifiedIds = 0;
 | |
|   unsigned NumTypeOfTypes = 0, NumTypeOfExprTypes = 0;
 | |
|   unsigned NumExtQual = 0;
 | |
| 
 | |
|   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
 | |
|     Type *T = Types[i];
 | |
|     if (isa<BuiltinType>(T))
 | |
|       ++NumBuiltin;
 | |
|     else if (isa<PointerType>(T))
 | |
|       ++NumPointer;
 | |
|     else if (isa<BlockPointerType>(T))
 | |
|       ++NumBlockPointer;
 | |
|     else if (isa<LValueReferenceType>(T))
 | |
|       ++NumLValueReference;
 | |
|     else if (isa<RValueReferenceType>(T))
 | |
|       ++NumRValueReference;
 | |
|     else if (isa<MemberPointerType>(T))
 | |
|       ++NumMemberPointer;
 | |
|     else if (isa<ComplexType>(T))
 | |
|       ++NumComplex;
 | |
|     else if (isa<ArrayType>(T))
 | |
|       ++NumArray;
 | |
|     else if (isa<VectorType>(T))
 | |
|       ++NumVector;
 | |
|     else if (isa<FunctionNoProtoType>(T))
 | |
|       ++NumFunctionNP;
 | |
|     else if (isa<FunctionProtoType>(T))
 | |
|       ++NumFunctionP;
 | |
|     else if (isa<TypedefType>(T))
 | |
|       ++NumTypeName;
 | |
|     else if (TagType *TT = dyn_cast<TagType>(T)) {
 | |
|       ++NumTagged;
 | |
|       switch (TT->getDecl()->getTagKind()) {
 | |
|       default: assert(0 && "Unknown tagged type!");
 | |
|       case TagDecl::TK_struct: ++NumTagStruct; break;
 | |
|       case TagDecl::TK_union:  ++NumTagUnion; break;
 | |
|       case TagDecl::TK_class:  ++NumTagClass; break; 
 | |
|       case TagDecl::TK_enum:   ++NumTagEnum; break;
 | |
|       }
 | |
|     } else if (isa<ObjCInterfaceType>(T))
 | |
|       ++NumObjCInterfaces;
 | |
|     else if (isa<ObjCQualifiedInterfaceType>(T))
 | |
|       ++NumObjCQualifiedInterfaces;
 | |
|     else if (isa<ObjCQualifiedIdType>(T))
 | |
|       ++NumObjCQualifiedIds;
 | |
|     else if (isa<TypeOfType>(T))
 | |
|       ++NumTypeOfTypes;
 | |
|     else if (isa<TypeOfExprType>(T))
 | |
|       ++NumTypeOfExprTypes;
 | |
|     else if (isa<ExtQualType>(T))
 | |
|       ++NumExtQual;
 | |
|     else {
 | |
|       QualType(T, 0).dump();
 | |
|       assert(0 && "Unknown type!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   fprintf(stderr, "    %d builtin types\n", NumBuiltin);
 | |
|   fprintf(stderr, "    %d pointer types\n", NumPointer);
 | |
|   fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
 | |
|   fprintf(stderr, "    %d lvalue reference types\n", NumLValueReference);
 | |
|   fprintf(stderr, "    %d rvalue reference types\n", NumRValueReference);
 | |
|   fprintf(stderr, "    %d member pointer types\n", NumMemberPointer);
 | |
|   fprintf(stderr, "    %d complex types\n", NumComplex);
 | |
|   fprintf(stderr, "    %d array types\n", NumArray);
 | |
|   fprintf(stderr, "    %d vector types\n", NumVector);
 | |
|   fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
 | |
|   fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
 | |
|   fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
 | |
|   fprintf(stderr, "    %d tagged types\n", NumTagged);
 | |
|   fprintf(stderr, "      %d struct types\n", NumTagStruct);
 | |
|   fprintf(stderr, "      %d union types\n", NumTagUnion);
 | |
|   fprintf(stderr, "      %d class types\n", NumTagClass);
 | |
|   fprintf(stderr, "      %d enum types\n", NumTagEnum);
 | |
|   fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
 | |
|   fprintf(stderr, "    %d protocol qualified interface types\n",
 | |
|           NumObjCQualifiedInterfaces);
 | |
|   fprintf(stderr, "    %d protocol qualified id types\n",
 | |
|           NumObjCQualifiedIds);
 | |
|   fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
 | |
|   fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprTypes);
 | |
|   fprintf(stderr, "    %d attribute-qualified types\n", NumExtQual);
 | |
| 
 | |
|   fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
 | |
|     NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
 | |
|     NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
 | |
|     NumLValueReference*sizeof(LValueReferenceType)+
 | |
|     NumRValueReference*sizeof(RValueReferenceType)+
 | |
|     NumMemberPointer*sizeof(MemberPointerType)+
 | |
|     NumFunctionP*sizeof(FunctionProtoType)+
 | |
|     NumFunctionNP*sizeof(FunctionNoProtoType)+
 | |
|     NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
 | |
|     NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprTypes*sizeof(TypeOfExprType)+
 | |
|     NumExtQual*sizeof(ExtQualType)));
 | |
| 
 | |
|   if (ExternalSource.get()) {
 | |
|     fprintf(stderr, "\n");
 | |
|     ExternalSource->PrintStats();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
 | |
|   Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
 | |
| }
 | |
| 
 | |
| void ASTContext::InitBuiltinTypes() {
 | |
|   assert(VoidTy.isNull() && "Context reinitialized?");
 | |
|   
 | |
|   // C99 6.2.5p19.
 | |
|   InitBuiltinType(VoidTy,              BuiltinType::Void);
 | |
|   
 | |
|   // C99 6.2.5p2.
 | |
|   InitBuiltinType(BoolTy,              BuiltinType::Bool);
 | |
|   // C99 6.2.5p3.
 | |
|   if (Target.isCharSigned())
 | |
|     InitBuiltinType(CharTy,            BuiltinType::Char_S);
 | |
|   else
 | |
|     InitBuiltinType(CharTy,            BuiltinType::Char_U);
 | |
|   // C99 6.2.5p4.
 | |
|   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
 | |
|   InitBuiltinType(ShortTy,             BuiltinType::Short);
 | |
|   InitBuiltinType(IntTy,               BuiltinType::Int);
 | |
|   InitBuiltinType(LongTy,              BuiltinType::Long);
 | |
|   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
 | |
|   
 | |
|   // C99 6.2.5p6.
 | |
|   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
 | |
|   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
 | |
|   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
 | |
|   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
 | |
|   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
 | |
|   
 | |
|   // C99 6.2.5p10.
 | |
|   InitBuiltinType(FloatTy,             BuiltinType::Float);
 | |
|   InitBuiltinType(DoubleTy,            BuiltinType::Double);
 | |
|   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
 | |
| 
 | |
|   // GNU extension, 128-bit integers.
 | |
|   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
 | |
|   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
 | |
| 
 | |
|   if (LangOpts.CPlusPlus) // C++ 3.9.1p5
 | |
|     InitBuiltinType(WCharTy,           BuiltinType::WChar);
 | |
|   else // C99
 | |
|     WCharTy = getFromTargetType(Target.getWCharType());
 | |
| 
 | |
|   // Placeholder type for functions.
 | |
|   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
 | |
| 
 | |
|   // Placeholder type for type-dependent expressions whose type is
 | |
|   // completely unknown. No code should ever check a type against
 | |
|   // DependentTy and users should never see it; however, it is here to
 | |
|   // help diagnose failures to properly check for type-dependent
 | |
|   // expressions.
 | |
|   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
 | |
| 
 | |
|   // C99 6.2.5p11.
 | |
|   FloatComplexTy      = getComplexType(FloatTy);
 | |
|   DoubleComplexTy     = getComplexType(DoubleTy);
 | |
|   LongDoubleComplexTy = getComplexType(LongDoubleTy);
 | |
| 
 | |
|   BuiltinVaListType = QualType();
 | |
|   ObjCIdType = QualType();
 | |
|   IdStructType = 0;
 | |
|   ObjCClassType = QualType();
 | |
|   ClassStructType = 0;
 | |
|   
 | |
|   ObjCConstantStringType = QualType();
 | |
|   
 | |
|   // void * type
 | |
|   VoidPtrTy = getPointerType(VoidTy);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Type Sizing and Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
 | |
| /// scalar floating point type.
 | |
| const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
 | |
|   const BuiltinType *BT = T->getAsBuiltinType();
 | |
|   assert(BT && "Not a floating point type!");
 | |
|   switch (BT->getKind()) {
 | |
|   default: assert(0 && "Not a floating point type!");
 | |
|   case BuiltinType::Float:      return Target.getFloatFormat();
 | |
|   case BuiltinType::Double:     return Target.getDoubleFormat();
 | |
|   case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getDeclAlign - Return a conservative estimate of the alignment of the
 | |
| /// specified decl.  Note that bitfields do not have a valid alignment, so
 | |
| /// this method will assert on them.
 | |
| unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
 | |
|   unsigned Align = Target.getCharWidth();
 | |
| 
 | |
|   if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
 | |
|     Align = std::max(Align, AA->getAlignment());
 | |
| 
 | |
|   if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
 | |
|     QualType T = VD->getType();
 | |
|     if (const ReferenceType* RT = T->getAsReferenceType()) {
 | |
|       unsigned AS = RT->getPointeeType().getAddressSpace();
 | |
|       Align = Target.getPointerAlign(AS);
 | |
|     } else if (!T->isIncompleteType() && !T->isFunctionType()) {
 | |
|       // Incomplete or function types default to 1.
 | |
|       while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
 | |
|         T = cast<ArrayType>(T)->getElementType();
 | |
| 
 | |
|       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Align / Target.getCharWidth();
 | |
| }
 | |
| 
 | |
| /// getTypeSize - Return the size of the specified type, in bits.  This method
 | |
| /// does not work on incomplete types.
 | |
| std::pair<uint64_t, unsigned>
 | |
| ASTContext::getTypeInfo(const Type *T) {
 | |
|   uint64_t Width=0;
 | |
|   unsigned Align=8;
 | |
|   switch (T->getTypeClass()) {
 | |
| #define TYPE(Class, Base)
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_TYPE(Class, Base)
 | |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #include "clang/AST/TypeNodes.def"
 | |
|     assert(false && "Should not see dependent types");
 | |
|     break;
 | |
| 
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::FunctionProto:
 | |
|     // GCC extension: alignof(function) = 32 bits
 | |
|     Width = 0;
 | |
|     Align = 32;
 | |
|     break;
 | |
| 
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray:
 | |
|     Width = 0;
 | |
|     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
 | |
|     break;
 | |
| 
 | |
|   case Type::ConstantArray: {
 | |
|     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
 | |
|     
 | |
|     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
 | |
|     Width = EltInfo.first*CAT->getSize().getZExtValue();
 | |
|     Align = EltInfo.second;
 | |
|     break;
 | |
|   }
 | |
|   case Type::ExtVector:
 | |
|   case Type::Vector: {
 | |
|     std::pair<uint64_t, unsigned> EltInfo = 
 | |
|       getTypeInfo(cast<VectorType>(T)->getElementType());
 | |
|     Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
 | |
|     Align = Width;
 | |
|     // If the alignment is not a power of 2, round up to the next power of 2.
 | |
|     // This happens for non-power-of-2 length vectors.
 | |
|     // FIXME: this should probably be a target property.
 | |
|     Align = 1 << llvm::Log2_32_Ceil(Align);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::Builtin:
 | |
|     switch (cast<BuiltinType>(T)->getKind()) {
 | |
|     default: assert(0 && "Unknown builtin type!");
 | |
|     case BuiltinType::Void:
 | |
|       // GCC extension: alignof(void) = 8 bits.
 | |
|       Width = 0;
 | |
|       Align = 8;
 | |
|       break;
 | |
| 
 | |
|     case BuiltinType::Bool:
 | |
|       Width = Target.getBoolWidth();
 | |
|       Align = Target.getBoolAlign();
 | |
|       break;
 | |
|     case BuiltinType::Char_S:
 | |
|     case BuiltinType::Char_U:
 | |
|     case BuiltinType::UChar:
 | |
|     case BuiltinType::SChar:
 | |
|       Width = Target.getCharWidth();
 | |
|       Align = Target.getCharAlign();
 | |
|       break;
 | |
|     case BuiltinType::WChar:
 | |
|       Width = Target.getWCharWidth();
 | |
|       Align = Target.getWCharAlign();
 | |
|       break;
 | |
|     case BuiltinType::UShort:
 | |
|     case BuiltinType::Short:
 | |
|       Width = Target.getShortWidth();
 | |
|       Align = Target.getShortAlign();
 | |
|       break;
 | |
|     case BuiltinType::UInt:
 | |
|     case BuiltinType::Int:
 | |
|       Width = Target.getIntWidth();
 | |
|       Align = Target.getIntAlign();
 | |
|       break;
 | |
|     case BuiltinType::ULong:
 | |
|     case BuiltinType::Long:
 | |
|       Width = Target.getLongWidth();
 | |
|       Align = Target.getLongAlign();
 | |
|       break;
 | |
|     case BuiltinType::ULongLong:
 | |
|     case BuiltinType::LongLong:
 | |
|       Width = Target.getLongLongWidth();
 | |
|       Align = Target.getLongLongAlign();
 | |
|       break;
 | |
|     case BuiltinType::Int128:
 | |
|     case BuiltinType::UInt128:
 | |
|       Width = 128;
 | |
|       Align = 128; // int128_t is 128-bit aligned on all targets.
 | |
|       break;
 | |
|     case BuiltinType::Float:
 | |
|       Width = Target.getFloatWidth();
 | |
|       Align = Target.getFloatAlign();
 | |
|       break;
 | |
|     case BuiltinType::Double:
 | |
|       Width = Target.getDoubleWidth();
 | |
|       Align = Target.getDoubleAlign();
 | |
|       break;
 | |
|     case BuiltinType::LongDouble:
 | |
|       Width = Target.getLongDoubleWidth();
 | |
|       Align = Target.getLongDoubleAlign();
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case Type::FixedWidthInt:
 | |
|     // FIXME: This isn't precisely correct; the width/alignment should depend
 | |
|     // on the available types for the target
 | |
|     Width = cast<FixedWidthIntType>(T)->getWidth();
 | |
|     Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
 | |
|     Align = Width;
 | |
|     break;
 | |
|   case Type::ExtQual:
 | |
|     // FIXME: Pointers into different addr spaces could have different sizes and
 | |
|     // alignment requirements: getPointerInfo should take an AddrSpace.
 | |
|     return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
 | |
|   case Type::ObjCQualifiedId:
 | |
|   case Type::ObjCQualifiedInterface:
 | |
|     Width = Target.getPointerWidth(0);
 | |
|     Align = Target.getPointerAlign(0);
 | |
|     break;
 | |
|   case Type::BlockPointer: {
 | |
|     unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
 | |
|     Width = Target.getPointerWidth(AS);
 | |
|     Align = Target.getPointerAlign(AS);
 | |
|     break;
 | |
|   }
 | |
|   case Type::Pointer: {
 | |
|     unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
 | |
|     Width = Target.getPointerWidth(AS);
 | |
|     Align = Target.getPointerAlign(AS);
 | |
|     break;
 | |
|   }
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|     // "When applied to a reference or a reference type, the result is the size
 | |
|     // of the referenced type." C++98 5.3.3p2: expr.sizeof.
 | |
|     // FIXME: This is wrong for struct layout: a reference in a struct has
 | |
|     // pointer size.
 | |
|     return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
 | |
|   case Type::MemberPointer: {
 | |
|     // FIXME: This is not only platform- but also ABI-dependent. We follow
 | |
|     // the GCC ABI, where pointers to data are one pointer large, pointers to
 | |
|     // functions two pointers. But if we want to support ABI compatibility with
 | |
|     // other compilers too, we need to delegate this completely to TargetInfo
 | |
|     // or some ABI abstraction layer.
 | |
|     QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
 | |
|     unsigned AS = Pointee.getAddressSpace();
 | |
|     Width = Target.getPointerWidth(AS);
 | |
|     if (Pointee->isFunctionType())
 | |
|       Width *= 2;
 | |
|     Align = Target.getPointerAlign(AS);
 | |
|     // GCC aligns at single pointer width.
 | |
|   }
 | |
|   case Type::Complex: {
 | |
|     // Complex types have the same alignment as their elements, but twice the
 | |
|     // size.
 | |
|     std::pair<uint64_t, unsigned> EltInfo = 
 | |
|       getTypeInfo(cast<ComplexType>(T)->getElementType());
 | |
|     Width = EltInfo.first*2;
 | |
|     Align = EltInfo.second;
 | |
|     break;
 | |
|   }
 | |
|   case Type::ObjCInterface: {
 | |
|     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
 | |
|     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
 | |
|     Width = Layout.getSize();
 | |
|     Align = Layout.getAlignment();
 | |
|     break;
 | |
|   }
 | |
|   case Type::Record:
 | |
|   case Type::Enum: {
 | |
|     const TagType *TT = cast<TagType>(T);
 | |
| 
 | |
|     if (TT->getDecl()->isInvalidDecl()) {
 | |
|       Width = 1;
 | |
|       Align = 1;
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (const EnumType *ET = dyn_cast<EnumType>(TT))
 | |
|       return getTypeInfo(ET->getDecl()->getIntegerType());
 | |
| 
 | |
|     const RecordType *RT = cast<RecordType>(TT);
 | |
|     const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
 | |
|     Width = Layout.getSize();
 | |
|     Align = Layout.getAlignment();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::Typedef: {
 | |
|     const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
 | |
|     if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
 | |
|       Align = Aligned->getAlignment();
 | |
|       Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
 | |
|     } else
 | |
|       return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::TypeOfExpr:
 | |
|     return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
 | |
|                          .getTypePtr());
 | |
| 
 | |
|   case Type::TypeOf:
 | |
|     return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
 | |
| 
 | |
|   case Type::QualifiedName:
 | |
|     return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
 | |
|     
 | |
|   case Type::TemplateSpecialization:
 | |
|     assert(getCanonicalType(T) != T && 
 | |
|            "Cannot request the size of a dependent type");
 | |
|     // FIXME: this is likely to be wrong once we support template
 | |
|     // aliases, since a template alias could refer to a typedef that
 | |
|     // has an __aligned__ attribute on it.
 | |
|     return getTypeInfo(getCanonicalType(T));
 | |
|   }
 | |
|   
 | |
|   assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
 | |
|   return std::make_pair(Width, Align);
 | |
| }
 | |
| 
 | |
| /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
 | |
| /// type for the current target in bits.  This can be different than the ABI
 | |
| /// alignment in cases where it is beneficial for performance to overalign
 | |
| /// a data type.
 | |
| unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
 | |
|   unsigned ABIAlign = getTypeAlign(T);
 | |
|   
 | |
|   // Doubles should be naturally aligned if possible.
 | |
|   if (T->isSpecificBuiltinType(BuiltinType::Double))
 | |
|     return std::max(ABIAlign, 64U);
 | |
|   
 | |
|   return ABIAlign;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LayoutField - Field layout.
 | |
| void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
 | |
|                                   bool IsUnion, unsigned StructPacking,
 | |
|                                   ASTContext &Context) {
 | |
|   unsigned FieldPacking = StructPacking;
 | |
|   uint64_t FieldOffset = IsUnion ? 0 : Size;
 | |
|   uint64_t FieldSize;
 | |
|   unsigned FieldAlign;
 | |
| 
 | |
|   // FIXME: Should this override struct packing? Probably we want to
 | |
|   // take the minimum?
 | |
|   if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
 | |
|     FieldPacking = PA->getAlignment();
 | |
|   
 | |
|   if (const Expr *BitWidthExpr = FD->getBitWidth()) {
 | |
|     // TODO: Need to check this algorithm on other targets!
 | |
|     //       (tested on Linux-X86)
 | |
|     FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
 | |
|     
 | |
|     std::pair<uint64_t, unsigned> FieldInfo = 
 | |
|       Context.getTypeInfo(FD->getType());
 | |
|     uint64_t TypeSize = FieldInfo.first;
 | |
|     
 | |
|     // Determine the alignment of this bitfield. The packing
 | |
|     // attributes define a maximum and the alignment attribute defines
 | |
|     // a minimum.
 | |
|     // FIXME: What is the right behavior when the specified alignment
 | |
|     // is smaller than the specified packing?
 | |
|     FieldAlign = FieldInfo.second;
 | |
|     if (FieldPacking)
 | |
|       FieldAlign = std::min(FieldAlign, FieldPacking);
 | |
|     if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
 | |
|       FieldAlign = std::max(FieldAlign, AA->getAlignment());
 | |
|     
 | |
|     // Check if we need to add padding to give the field the correct
 | |
|     // alignment.
 | |
|     if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
 | |
|       FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
 | |
|     
 | |
|     // Padding members don't affect overall alignment
 | |
|     if (!FD->getIdentifier())
 | |
|       FieldAlign = 1;
 | |
|   } else {
 | |
|     if (FD->getType()->isIncompleteArrayType()) {
 | |
|       // This is a flexible array member; we can't directly
 | |
|       // query getTypeInfo about these, so we figure it out here.
 | |
|       // Flexible array members don't have any size, but they
 | |
|       // have to be aligned appropriately for their element type.
 | |
|       FieldSize = 0;
 | |
|       const ArrayType* ATy = Context.getAsArrayType(FD->getType());
 | |
|       FieldAlign = Context.getTypeAlign(ATy->getElementType());
 | |
|     } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
 | |
|       unsigned AS = RT->getPointeeType().getAddressSpace();
 | |
|       FieldSize = Context.Target.getPointerWidth(AS);
 | |
|       FieldAlign = Context.Target.getPointerAlign(AS);
 | |
|     } else {
 | |
|       std::pair<uint64_t, unsigned> FieldInfo = 
 | |
|         Context.getTypeInfo(FD->getType());
 | |
|       FieldSize = FieldInfo.first;
 | |
|       FieldAlign = FieldInfo.second;
 | |
|     }
 | |
|     
 | |
|     // Determine the alignment of this bitfield. The packing
 | |
|     // attributes define a maximum and the alignment attribute defines
 | |
|     // a minimum. Additionally, the packing alignment must be at least
 | |
|     // a byte for non-bitfields.
 | |
|     //
 | |
|     // FIXME: What is the right behavior when the specified alignment
 | |
|     // is smaller than the specified packing?
 | |
|     if (FieldPacking)
 | |
|       FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
 | |
|     if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
 | |
|       FieldAlign = std::max(FieldAlign, AA->getAlignment());
 | |
|     
 | |
|     // Round up the current record size to the field's alignment boundary.
 | |
|     FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
 | |
|   }
 | |
|   
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets[FieldNo] = FieldOffset;
 | |
|   
 | |
|   // Reserve space for this field.
 | |
|   if (IsUnion) {
 | |
|     Size = std::max(Size, FieldSize);
 | |
|   } else {
 | |
|     Size = FieldOffset + FieldSize;
 | |
|   }
 | |
|   
 | |
|   // Remember the next available offset.
 | |
|   NextOffset = Size;
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   Alignment = std::max(Alignment, FieldAlign);
 | |
| }
 | |
| 
 | |
| static void CollectLocalObjCIvars(ASTContext *Ctx,
 | |
|                                   const ObjCInterfaceDecl *OI,
 | |
|                                   llvm::SmallVectorImpl<FieldDecl*> &Fields) {
 | |
|   for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
 | |
|        E = OI->ivar_end(); I != E; ++I) {
 | |
|     ObjCIvarDecl *IVDecl = *I;
 | |
|     if (!IVDecl->isInvalidDecl())
 | |
|       Fields.push_back(cast<FieldDecl>(IVDecl));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
 | |
|                              llvm::SmallVectorImpl<FieldDecl*> &Fields) {
 | |
|   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
 | |
|     CollectObjCIvars(SuperClass, Fields);
 | |
|   CollectLocalObjCIvars(this, OI, Fields);
 | |
| }
 | |
| 
 | |
| /// getInterfaceLayoutImpl - Get or compute information about the
 | |
| /// layout of the given interface.
 | |
| ///
 | |
| /// \param Impl - If given, also include the layout of the interface's
 | |
| /// implementation. This may differ by including synthesized ivars.
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
 | |
|                           const ObjCImplementationDecl *Impl) {
 | |
|   assert(!D->isForwardDecl() && "Invalid interface decl!");
 | |
| 
 | |
|   // Look up this layout, if already laid out, return what we have.
 | |
|   ObjCContainerDecl *Key = 
 | |
|     Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
 | |
|   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
 | |
|     return *Entry;
 | |
| 
 | |
|   unsigned FieldCount = D->ivar_size();
 | |
|   // Add in synthesized ivar count if laying out an implementation.
 | |
|   if (Impl) {
 | |
|     for (ObjCInterfaceDecl::prop_iterator I = D->prop_begin(*this),
 | |
|            E = D->prop_end(*this); I != E; ++I)
 | |
|       if ((*I)->getPropertyIvarDecl())
 | |
|         ++FieldCount;
 | |
| 
 | |
|     // If there aren't any sythesized ivars then reuse the interface
 | |
|     // entry. Note we can't cache this because we simply free all
 | |
|     // entries later; however we shouldn't look up implementations
 | |
|     // frequently.
 | |
|     if (FieldCount == D->ivar_size())
 | |
|       return getObjCLayout(D, 0);
 | |
|   }
 | |
| 
 | |
|   ASTRecordLayout *NewEntry = NULL;
 | |
|   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
 | |
|     const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
 | |
|     unsigned Alignment = SL.getAlignment();
 | |
| 
 | |
|     // We start laying out ivars not at the end of the superclass
 | |
|     // structure, but at the next byte following the last field.
 | |
|     uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
 | |
| 
 | |
|     ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
 | |
|     NewEntry->InitializeLayout(FieldCount);
 | |
|   } else {
 | |
|     ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
 | |
|     NewEntry->InitializeLayout(FieldCount);
 | |
|   }
 | |
| 
 | |
|   unsigned StructPacking = 0;
 | |
|   if (const PackedAttr *PA = D->getAttr<PackedAttr>())
 | |
|     StructPacking = PA->getAlignment();
 | |
| 
 | |
|   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
 | |
|     NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), 
 | |
|                                     AA->getAlignment()));
 | |
| 
 | |
|   // Layout each ivar sequentially.
 | |
|   unsigned i = 0;
 | |
|   for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(), 
 | |
|        IVE = D->ivar_end(); IVI != IVE; ++IVI) {
 | |
|     const ObjCIvarDecl* Ivar = (*IVI);
 | |
|     NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
 | |
|   }
 | |
|   // And synthesized ivars, if this is an implementation.
 | |
|   if (Impl) {
 | |
|     for (ObjCInterfaceDecl::prop_iterator I = D->prop_begin(*this),
 | |
|            E = D->prop_end(*this); I != E; ++I) {
 | |
|       if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
 | |
|         NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   NewEntry->FinalizeLayout();
 | |
|   return *NewEntry;
 | |
| }
 | |
| 
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
 | |
|   return getObjCLayout(D, 0);
 | |
| }
 | |
| 
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
 | |
|   return getObjCLayout(D->getClassInterface(), D);
 | |
| }
 | |
| 
 | |
| /// getASTRecordLayout - Get or compute information about the layout of the
 | |
| /// specified record (struct/union/class), which indicates its size and field
 | |
| /// position information.
 | |
| const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
 | |
|   D = D->getDefinition(*this);
 | |
|   assert(D && "Cannot get layout of forward declarations!");
 | |
| 
 | |
|   // Look up this layout, if already laid out, return what we have.
 | |
|   const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
 | |
|   if (Entry) return *Entry;
 | |
| 
 | |
|   // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
 | |
|   // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
 | |
|   ASTRecordLayout *NewEntry = new ASTRecordLayout();
 | |
|   Entry = NewEntry;
 | |
| 
 | |
|   // FIXME: Avoid linear walk through the fields, if possible.
 | |
|   NewEntry->InitializeLayout(std::distance(D->field_begin(*this), 
 | |
|                                            D->field_end(*this)));
 | |
|   bool IsUnion = D->isUnion();
 | |
| 
 | |
|   unsigned StructPacking = 0;
 | |
|   if (const PackedAttr *PA = D->getAttr<PackedAttr>())
 | |
|     StructPacking = PA->getAlignment();
 | |
| 
 | |
|   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
 | |
|     NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), 
 | |
|                                     AA->getAlignment()));
 | |
| 
 | |
|   // Layout each field, for now, just sequentially, respecting alignment.  In
 | |
|   // the future, this will need to be tweakable by targets.
 | |
|   unsigned FieldIdx = 0;
 | |
|   for (RecordDecl::field_iterator Field = D->field_begin(*this),
 | |
|                                FieldEnd = D->field_end(*this);
 | |
|        Field != FieldEnd; (void)++Field, ++FieldIdx)
 | |
|     NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   NewEntry->FinalizeLayout();
 | |
|   return *NewEntry;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   Type creation/memoization methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
 | |
|   QualType CanT = getCanonicalType(T);
 | |
|   if (CanT.getAddressSpace() == AddressSpace)
 | |
|     return T;
 | |
| 
 | |
|   // If we are composing extended qualifiers together, merge together into one
 | |
|   // ExtQualType node.
 | |
|   unsigned CVRQuals = T.getCVRQualifiers();
 | |
|   QualType::GCAttrTypes GCAttr = QualType::GCNone;
 | |
|   Type *TypeNode = T.getTypePtr();
 | |
|   
 | |
|   if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
 | |
|     // If this type already has an address space specified, it cannot get
 | |
|     // another one.
 | |
|     assert(EQT->getAddressSpace() == 0 &&
 | |
|            "Type cannot be in multiple addr spaces!");
 | |
|     GCAttr = EQT->getObjCGCAttr();
 | |
|     TypeNode = EQT->getBaseType();
 | |
|   }
 | |
|   
 | |
|   // Check if we've already instantiated this type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);      
 | |
|   void *InsertPos = 0;
 | |
|   if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(EXTQy, CVRQuals);
 | |
| 
 | |
|   // If the base type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!TypeNode->isCanonical()) {
 | |
|     Canonical = getAddrSpaceQualType(CanT, AddressSpace);
 | |
|     
 | |
|     // Update InsertPos, the previous call could have invalidated it.
 | |
|     ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   ExtQualType *New =
 | |
|     new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
 | |
|   ExtQualTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, CVRQuals);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getObjCGCQualType(QualType T,
 | |
|                                        QualType::GCAttrTypes GCAttr) {
 | |
|   QualType CanT = getCanonicalType(T);
 | |
|   if (CanT.getObjCGCAttr() == GCAttr)
 | |
|     return T;
 | |
|   
 | |
|   // If we are composing extended qualifiers together, merge together into one
 | |
|   // ExtQualType node.
 | |
|   unsigned CVRQuals = T.getCVRQualifiers();
 | |
|   Type *TypeNode = T.getTypePtr();
 | |
|   unsigned AddressSpace = 0;
 | |
|   
 | |
|   if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
 | |
|     // If this type already has an address space specified, it cannot get
 | |
|     // another one.
 | |
|     assert(EQT->getObjCGCAttr() == QualType::GCNone &&
 | |
|            "Type cannot be in multiple addr spaces!");
 | |
|     AddressSpace = EQT->getAddressSpace();
 | |
|     TypeNode = EQT->getBaseType();
 | |
|   }
 | |
|   
 | |
|   // Check if we've already instantiated an gc qual'd type of this type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);      
 | |
|   void *InsertPos = 0;
 | |
|   if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(EXTQy, CVRQuals);
 | |
|   
 | |
|   // If the base type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   // FIXME: Isn't this also not canonical if the base type is a array
 | |
|   // or pointer type?  I can't find any documentation for objc_gc, though...
 | |
|   QualType Canonical;
 | |
|   if (!T->isCanonical()) {
 | |
|     Canonical = getObjCGCQualType(CanT, GCAttr);
 | |
|     
 | |
|     // Update InsertPos, the previous call could have invalidated it.
 | |
|     ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   ExtQualType *New =
 | |
|     new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
 | |
|   ExtQualTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, CVRQuals);
 | |
| }
 | |
| 
 | |
| /// getComplexType - Return the uniqued reference to the type for a complex
 | |
| /// number with the specified element type.
 | |
| QualType ASTContext::getComplexType(QualType T) {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ComplexType::Profile(ID, T);
 | |
|   
 | |
|   void *InsertPos = 0;
 | |
|   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(CT, 0);
 | |
|   
 | |
|   // If the pointee type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T->isCanonical()) {
 | |
|     Canonical = getComplexType(getCanonicalType(T));
 | |
|     
 | |
|     // Get the new insert position for the node we care about.
 | |
|     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   ComplexType *New = new (*this,8) ComplexType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   ComplexTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
 | |
|   llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
 | |
|      SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
 | |
|   FixedWidthIntType *&Entry = Map[Width];
 | |
|   if (!Entry)
 | |
|     Entry = new FixedWidthIntType(Width, Signed);
 | |
|   return QualType(Entry, 0);
 | |
| }
 | |
| 
 | |
| /// getPointerType - Return the uniqued reference to the type for a pointer to
 | |
| /// the specified type.
 | |
| QualType ASTContext::getPointerType(QualType T) {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   PointerType::Profile(ID, T);
 | |
|   
 | |
|   void *InsertPos = 0;
 | |
|   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(PT, 0);
 | |
|   
 | |
|   // If the pointee type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T->isCanonical()) {
 | |
|     Canonical = getPointerType(getCanonicalType(T));
 | |
|    
 | |
|     // Get the new insert position for the node we care about.
 | |
|     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   PointerType *New = new (*this,8) PointerType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   PointerTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getBlockPointerType - Return the uniqued reference to the type for 
 | |
| /// a pointer to the specified block.
 | |
| QualType ASTContext::getBlockPointerType(QualType T) {
 | |
|   assert(T->isFunctionType() && "block of function types only");
 | |
|   // Unique pointers, to guarantee there is only one block of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   BlockPointerType::Profile(ID, T);
 | |
|   
 | |
|   void *InsertPos = 0;
 | |
|   if (BlockPointerType *PT =
 | |
|         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(PT, 0);
 | |
|   
 | |
|   // If the block pointee type isn't canonical, this won't be a canonical 
 | |
|   // type either so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T->isCanonical()) {
 | |
|     Canonical = getBlockPointerType(getCanonicalType(T));
 | |
|     
 | |
|     // Get the new insert position for the node we care about.
 | |
|     BlockPointerType *NewIP =
 | |
|       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   BlockPointerTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getLValueReferenceType - Return the uniqued reference to the type for an
 | |
| /// lvalue reference to the specified type.
 | |
| QualType ASTContext::getLValueReferenceType(QualType T) {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ReferenceType::Profile(ID, T);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   if (LValueReferenceType *RT =
 | |
|         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(RT, 0);
 | |
| 
 | |
|   // If the referencee type isn't canonical, this won't be a canonical type
 | |
|   // either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T->isCanonical()) {
 | |
|     Canonical = getLValueReferenceType(getCanonicalType(T));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     LValueReferenceType *NewIP =
 | |
|       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
| 
 | |
|   LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   LValueReferenceTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getRValueReferenceType - Return the uniqued reference to the type for an
 | |
| /// rvalue reference to the specified type.
 | |
| QualType ASTContext::getRValueReferenceType(QualType T) {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ReferenceType::Profile(ID, T);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   if (RValueReferenceType *RT =
 | |
|         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(RT, 0);
 | |
| 
 | |
|   // If the referencee type isn't canonical, this won't be a canonical type
 | |
|   // either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T->isCanonical()) {
 | |
|     Canonical = getRValueReferenceType(getCanonicalType(T));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     RValueReferenceType *NewIP =
 | |
|       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
| 
 | |
|   RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   RValueReferenceTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getMemberPointerType - Return the uniqued reference to the type for a
 | |
| /// member pointer to the specified type, in the specified class.
 | |
| QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
 | |
| {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   MemberPointerType::Profile(ID, T, Cls);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   if (MemberPointerType *PT =
 | |
|       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(PT, 0);
 | |
| 
 | |
|   // If the pointee or class type isn't canonical, this won't be a canonical
 | |
|   // type either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T->isCanonical()) {
 | |
|     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     MemberPointerType *NewIP =
 | |
|       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
 | |
|   Types.push_back(New);
 | |
|   MemberPointerTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getConstantArrayType - Return the unique reference to the type for an 
 | |
| /// array of the specified element type.
 | |
| QualType ASTContext::getConstantArrayType(QualType EltTy, 
 | |
|                                           const llvm::APInt &ArySize,
 | |
|                                           ArrayType::ArraySizeModifier ASM,
 | |
|                                           unsigned EltTypeQuals) {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
 | |
|       
 | |
|   void *InsertPos = 0;
 | |
|   if (ConstantArrayType *ATP = 
 | |
|       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(ATP, 0);
 | |
|   
 | |
|   // If the element type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!EltTy->isCanonical()) {
 | |
|     Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize, 
 | |
|                                      ASM, EltTypeQuals);
 | |
|     // Get the new insert position for the node we care about.
 | |
|     ConstantArrayType *NewIP = 
 | |
|       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   
 | |
|   ConstantArrayType *New =
 | |
|     new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
 | |
|   ConstantArrayTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getVariableArrayType - Returns a non-unique reference to the type for a
 | |
| /// variable array of the specified element type.
 | |
| QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
 | |
|                                           ArrayType::ArraySizeModifier ASM,
 | |
|                                           unsigned EltTypeQuals) {
 | |
|   // Since we don't unique expressions, it isn't possible to unique VLA's
 | |
|   // that have an expression provided for their size.
 | |
| 
 | |
|   VariableArrayType *New =
 | |
|     new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
 | |
| 
 | |
|   VariableArrayTypes.push_back(New);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getDependentSizedArrayType - Returns a non-unique reference to
 | |
| /// the type for a dependently-sized array of the specified element
 | |
| /// type. FIXME: We will need these to be uniqued, or at least
 | |
| /// comparable, at some point.
 | |
| QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
 | |
|                                                 ArrayType::ArraySizeModifier ASM,
 | |
|                                                 unsigned EltTypeQuals) {
 | |
|   assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) && 
 | |
|          "Size must be type- or value-dependent!");
 | |
| 
 | |
|   // Since we don't unique expressions, it isn't possible to unique
 | |
|   // dependently-sized array types.
 | |
| 
 | |
|   DependentSizedArrayType *New =
 | |
|       new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts, 
 | |
|                                             ASM, EltTypeQuals);
 | |
| 
 | |
|   DependentSizedArrayTypes.push_back(New);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getIncompleteArrayType(QualType EltTy,
 | |
|                                             ArrayType::ArraySizeModifier ASM,
 | |
|                                             unsigned EltTypeQuals) {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   if (IncompleteArrayType *ATP = 
 | |
|        IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(ATP, 0);
 | |
| 
 | |
|   // If the element type isn't canonical, this won't be a canonical type
 | |
|   // either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
| 
 | |
|   if (!EltTy->isCanonical()) {
 | |
|     Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
 | |
|                                        ASM, EltTypeQuals);
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     IncompleteArrayType *NewIP =
 | |
|       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
| 
 | |
|   IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
 | |
|                                                            ASM, EltTypeQuals);
 | |
| 
 | |
|   IncompleteArrayTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getVectorType - Return the unique reference to a vector type of
 | |
| /// the specified element type and size. VectorType must be a built-in type.
 | |
| QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
 | |
|   BuiltinType *baseType;
 | |
|   
 | |
|   baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
 | |
|   assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
 | |
|          
 | |
|   // Check if we've already instantiated a vector of this type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   VectorType::Profile(ID, vecType, NumElts, Type::Vector);      
 | |
|   void *InsertPos = 0;
 | |
|   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(VTP, 0);
 | |
| 
 | |
|   // If the element type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!vecType->isCanonical()) {
 | |
|     Canonical = getVectorType(getCanonicalType(vecType), NumElts);
 | |
|     
 | |
|     // Get the new insert position for the node we care about.
 | |
|     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
 | |
|   VectorTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getExtVectorType - Return the unique reference to an extended vector type of
 | |
| /// the specified element type and size. VectorType must be a built-in type.
 | |
| QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
 | |
|   BuiltinType *baseType;
 | |
|   
 | |
|   baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
 | |
|   assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
 | |
|          
 | |
|   // Check if we've already instantiated a vector of this type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);      
 | |
|   void *InsertPos = 0;
 | |
|   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(VTP, 0);
 | |
| 
 | |
|   // If the element type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!vecType->isCanonical()) {
 | |
|     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
 | |
|     
 | |
|     // Get the new insert position for the node we care about.
 | |
|     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
 | |
|   VectorTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
 | |
| ///
 | |
| QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
 | |
|   // Unique functions, to guarantee there is only one function of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   FunctionNoProtoType::Profile(ID, ResultTy);
 | |
|   
 | |
|   void *InsertPos = 0;
 | |
|   if (FunctionNoProtoType *FT = 
 | |
|         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(FT, 0);
 | |
|   
 | |
|   QualType Canonical;
 | |
|   if (!ResultTy->isCanonical()) {
 | |
|     Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
 | |
|     
 | |
|     // Get the new insert position for the node we care about.
 | |
|     FunctionNoProtoType *NewIP =
 | |
|       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   
 | |
|   FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
 | |
|   Types.push_back(New);
 | |
|   FunctionNoProtoTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getFunctionType - Return a normal function type with a typed argument
 | |
| /// list.  isVariadic indicates whether the argument list includes '...'.
 | |
| QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
 | |
|                                      unsigned NumArgs, bool isVariadic,
 | |
|                                      unsigned TypeQuals) {
 | |
|   // Unique functions, to guarantee there is only one function of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
 | |
|                              TypeQuals);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   if (FunctionProtoType *FTP = 
 | |
|         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(FTP, 0);
 | |
|     
 | |
|   // Determine whether the type being created is already canonical or not.  
 | |
|   bool isCanonical = ResultTy->isCanonical();
 | |
|   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
 | |
|     if (!ArgArray[i]->isCanonical())
 | |
|       isCanonical = false;
 | |
| 
 | |
|   // If this type isn't canonical, get the canonical version of it.
 | |
|   QualType Canonical;
 | |
|   if (!isCanonical) {
 | |
|     llvm::SmallVector<QualType, 16> CanonicalArgs;
 | |
|     CanonicalArgs.reserve(NumArgs);
 | |
|     for (unsigned i = 0; i != NumArgs; ++i)
 | |
|       CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
 | |
|     
 | |
|     Canonical = getFunctionType(getCanonicalType(ResultTy),
 | |
|                                 &CanonicalArgs[0], NumArgs,
 | |
|                                 isVariadic, TypeQuals);
 | |
|     
 | |
|     // Get the new insert position for the node we care about.
 | |
|     FunctionProtoType *NewIP =
 | |
|       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
 | |
|   }
 | |
|   
 | |
|   // FunctionProtoType objects are allocated with extra bytes after them
 | |
|   // for a variable size array (for parameter types) at the end of them.
 | |
|   FunctionProtoType *FTP = 
 | |
|     (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) + 
 | |
|                                  NumArgs*sizeof(QualType), 8);
 | |
|   new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
 | |
|                               TypeQuals, Canonical);
 | |
|   Types.push_back(FTP);
 | |
|   FunctionProtoTypes.InsertNode(FTP, InsertPos);
 | |
|   return QualType(FTP, 0);
 | |
| }
 | |
| 
 | |
| /// getTypeDeclType - Return the unique reference to the type for the
 | |
| /// specified type declaration.
 | |
| QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
 | |
|   assert(Decl && "Passed null for Decl param");
 | |
|   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | |
|   
 | |
|   if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
 | |
|     return getTypedefType(Typedef);
 | |
|   else if (isa<TemplateTypeParmDecl>(Decl)) {
 | |
|     assert(false && "Template type parameter types are always available.");
 | |
|   } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
 | |
|     return getObjCInterfaceType(ObjCInterface);
 | |
| 
 | |
|   if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
 | |
|     if (PrevDecl)
 | |
|       Decl->TypeForDecl = PrevDecl->TypeForDecl;
 | |
|     else
 | |
|       Decl->TypeForDecl = new (*this,8) RecordType(Record);
 | |
|   }
 | |
|   else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
 | |
|     if (PrevDecl)
 | |
|       Decl->TypeForDecl = PrevDecl->TypeForDecl;
 | |
|     else
 | |
|       Decl->TypeForDecl = new (*this,8) EnumType(Enum);
 | |
|   }
 | |
|   else
 | |
|     assert(false && "TypeDecl without a type?");
 | |
| 
 | |
|   if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
 | |
|   return QualType(Decl->TypeForDecl, 0);
 | |
| }
 | |
| 
 | |
| /// getTypedefType - Return the unique reference to the type for the
 | |
| /// specified typename decl.
 | |
| QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
 | |
|   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | |
|   
 | |
|   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
 | |
|   Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
 | |
|   Types.push_back(Decl->TypeForDecl);
 | |
|   return QualType(Decl->TypeForDecl, 0);
 | |
| }
 | |
| 
 | |
| /// getObjCInterfaceType - Return the unique reference to the type for the
 | |
| /// specified ObjC interface decl.
 | |
| QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
 | |
|   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | |
|   
 | |
|   ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
 | |
|   Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
 | |
|   Types.push_back(Decl->TypeForDecl);
 | |
|   return QualType(Decl->TypeForDecl, 0);
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the template type parameter type for a template
 | |
| /// parameter with the given depth, index, and (optionally) name.
 | |
| QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, 
 | |
|                                              IdentifierInfo *Name) {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   TemplateTypeParmType::Profile(ID, Depth, Index, Name);
 | |
|   void *InsertPos = 0;
 | |
|   TemplateTypeParmType *TypeParm 
 | |
|     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (TypeParm)
 | |
|     return QualType(TypeParm, 0);
 | |
|   
 | |
|   if (Name)
 | |
|     TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
 | |
|                                          getTemplateTypeParmType(Depth, Index));
 | |
|   else
 | |
|     TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
 | |
| 
 | |
|   Types.push_back(TypeParm);
 | |
|   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
 | |
| 
 | |
|   return QualType(TypeParm, 0);
 | |
| }
 | |
| 
 | |
| QualType 
 | |
| ASTContext::getTemplateSpecializationType(TemplateName Template,
 | |
|                                           const TemplateArgument *Args,
 | |
|                                           unsigned NumArgs,
 | |
|                                           QualType Canon) {
 | |
|   if (!Canon.isNull())
 | |
|     Canon = getCanonicalType(Canon);
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   TemplateSpecializationType *Spec
 | |
|     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (Spec)
 | |
|     return QualType(Spec, 0);
 | |
|   
 | |
|   void *Mem = Allocate((sizeof(TemplateSpecializationType) + 
 | |
|                         sizeof(TemplateArgument) * NumArgs),
 | |
|                        8);
 | |
|   Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
 | |
|   Types.push_back(Spec);
 | |
|   TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
 | |
| 
 | |
|   return QualType(Spec, 0);  
 | |
| }
 | |
| 
 | |
| QualType 
 | |
| ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
 | |
|                                  QualType NamedType) {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   QualifiedNameType::Profile(ID, NNS, NamedType);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   QualifiedNameType *T 
 | |
|     = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (T)
 | |
|     return QualType(T, 0);
 | |
| 
 | |
|   T = new (*this) QualifiedNameType(NNS, NamedType, 
 | |
|                                     getCanonicalType(NamedType));
 | |
|   Types.push_back(T);
 | |
|   QualifiedNameTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS, 
 | |
|                                      const IdentifierInfo *Name,
 | |
|                                      QualType Canon) {
 | |
|   assert(NNS->isDependent() && "nested-name-specifier must be dependent");
 | |
| 
 | |
|   if (Canon.isNull()) {
 | |
|     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | |
|     if (CanonNNS != NNS)
 | |
|       Canon = getTypenameType(CanonNNS, Name);
 | |
|   }
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   TypenameType::Profile(ID, NNS, Name);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   TypenameType *T 
 | |
|     = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (T)
 | |
|     return QualType(T, 0);
 | |
| 
 | |
|   T = new (*this) TypenameType(NNS, Name, Canon);
 | |
|   Types.push_back(T);
 | |
|   TypenameTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);  
 | |
| }
 | |
| 
 | |
| QualType 
 | |
| ASTContext::getTypenameType(NestedNameSpecifier *NNS, 
 | |
|                             const TemplateSpecializationType *TemplateId,
 | |
|                             QualType Canon) {
 | |
|   assert(NNS->isDependent() && "nested-name-specifier must be dependent");
 | |
| 
 | |
|   if (Canon.isNull()) {
 | |
|     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | |
|     QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
 | |
|     if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
 | |
|       const TemplateSpecializationType *CanonTemplateId
 | |
|         = CanonType->getAsTemplateSpecializationType();
 | |
|       assert(CanonTemplateId &&
 | |
|              "Canonical type must also be a template specialization type");
 | |
|       Canon = getTypenameType(CanonNNS, CanonTemplateId);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   TypenameType::Profile(ID, NNS, TemplateId);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   TypenameType *T 
 | |
|     = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (T)
 | |
|     return QualType(T, 0);
 | |
| 
 | |
|   T = new (*this) TypenameType(NNS, TemplateId, Canon);
 | |
|   Types.push_back(T);
 | |
|   TypenameTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);    
 | |
| }
 | |
| 
 | |
| /// CmpProtocolNames - Comparison predicate for sorting protocols
 | |
| /// alphabetically.
 | |
| static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
 | |
|                             const ObjCProtocolDecl *RHS) {
 | |
|   return LHS->getDeclName() < RHS->getDeclName();
 | |
| }
 | |
| 
 | |
| static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
 | |
|                                    unsigned &NumProtocols) {
 | |
|   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
 | |
|   
 | |
|   // Sort protocols, keyed by name.
 | |
|   std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
 | |
| 
 | |
|   // Remove duplicates.
 | |
|   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
 | |
|   NumProtocols = ProtocolsEnd-Protocols;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
 | |
| /// the given interface decl and the conforming protocol list.
 | |
| QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
 | |
|                        ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
 | |
|   // Sort the protocol list alphabetically to canonicalize it.
 | |
|   SortAndUniqueProtocols(Protocols, NumProtocols);
 | |
|   
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
 | |
|   
 | |
|   void *InsertPos = 0;
 | |
|   if (ObjCQualifiedInterfaceType *QT =
 | |
|       ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(QT, 0);
 | |
|   
 | |
|   // No Match;
 | |
|   ObjCQualifiedInterfaceType *QType =
 | |
|     new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
 | |
| 
 | |
|   Types.push_back(QType);
 | |
|   ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
 | |
|   return QualType(QType, 0);
 | |
| }
 | |
| 
 | |
| /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
 | |
| /// and the conforming protocol list.
 | |
| QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols, 
 | |
|                                             unsigned NumProtocols) {
 | |
|   // Sort the protocol list alphabetically to canonicalize it.
 | |
|   SortAndUniqueProtocols(Protocols, NumProtocols);
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
 | |
|   
 | |
|   void *InsertPos = 0;
 | |
|   if (ObjCQualifiedIdType *QT =
 | |
|         ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(QT, 0);
 | |
|   
 | |
|   // No Match;
 | |
|   ObjCQualifiedIdType *QType =
 | |
|     new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
 | |
|   Types.push_back(QType);
 | |
|   ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
 | |
|   return QualType(QType, 0);
 | |
| }
 | |
| 
 | |
| /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
 | |
| /// TypeOfExprType AST's (since expression's are never shared). For example,
 | |
| /// multiple declarations that refer to "typeof(x)" all contain different
 | |
| /// DeclRefExpr's. This doesn't effect the type checker, since it operates 
 | |
| /// on canonical type's (which are always unique).
 | |
| QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
 | |
|   QualType Canonical = getCanonicalType(tofExpr->getType());
 | |
|   TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
 | |
|   Types.push_back(toe);
 | |
|   return QualType(toe, 0);
 | |
| }
 | |
| 
 | |
| /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
 | |
| /// TypeOfType AST's. The only motivation to unique these nodes would be
 | |
| /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
 | |
| /// an issue. This doesn't effect the type checker, since it operates 
 | |
| /// on canonical type's (which are always unique).
 | |
| QualType ASTContext::getTypeOfType(QualType tofType) {
 | |
|   QualType Canonical = getCanonicalType(tofType);
 | |
|   TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
 | |
|   Types.push_back(tot);
 | |
|   return QualType(tot, 0);
 | |
| }
 | |
| 
 | |
| /// getTagDeclType - Return the unique reference to the type for the
 | |
| /// specified TagDecl (struct/union/class/enum) decl.
 | |
| QualType ASTContext::getTagDeclType(TagDecl *Decl) {
 | |
|   assert (Decl);
 | |
|   return getTypeDeclType(Decl);
 | |
| }
 | |
| 
 | |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 
 | |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 
 | |
| /// needs to agree with the definition in <stddef.h>. 
 | |
| QualType ASTContext::getSizeType() const {
 | |
|   return getFromTargetType(Target.getSizeType());
 | |
| }
 | |
| 
 | |
| /// getSignedWCharType - Return the type of "signed wchar_t".
 | |
| /// Used when in C++, as a GCC extension.
 | |
| QualType ASTContext::getSignedWCharType() const {
 | |
|   // FIXME: derive from "Target" ?
 | |
|   return WCharTy;
 | |
| }
 | |
| 
 | |
| /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
 | |
| /// Used when in C++, as a GCC extension.
 | |
| QualType ASTContext::getUnsignedWCharType() const {
 | |
|   // FIXME: derive from "Target" ?
 | |
|   return UnsignedIntTy;
 | |
| }
 | |
| 
 | |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
 | |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
 | |
| QualType ASTContext::getPointerDiffType() const {
 | |
|   return getFromTargetType(Target.getPtrDiffType(0));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Type Operators
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getCanonicalType - Return the canonical (structural) type corresponding to
 | |
| /// the specified potentially non-canonical type.  The non-canonical version
 | |
| /// of a type may have many "decorated" versions of types.  Decorators can
 | |
| /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
 | |
| /// to be free of any of these, allowing two canonical types to be compared
 | |
| /// for exact equality with a simple pointer comparison.
 | |
| QualType ASTContext::getCanonicalType(QualType T) {
 | |
|   QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
 | |
|   
 | |
|   // If the result has type qualifiers, make sure to canonicalize them as well.
 | |
|   unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
 | |
|   if (TypeQuals == 0) return CanType;
 | |
| 
 | |
|   // If the type qualifiers are on an array type, get the canonical type of the
 | |
|   // array with the qualifiers applied to the element type.
 | |
|   ArrayType *AT = dyn_cast<ArrayType>(CanType);
 | |
|   if (!AT)
 | |
|     return CanType.getQualifiedType(TypeQuals);
 | |
|   
 | |
|   // Get the canonical version of the element with the extra qualifiers on it.
 | |
|   // This can recursively sink qualifiers through multiple levels of arrays.
 | |
|   QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
 | |
|   NewEltTy = getCanonicalType(NewEltTy);
 | |
|   
 | |
|   if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|     return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
 | |
|                                 CAT->getIndexTypeQualifier());
 | |
|   if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
 | |
|     return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
 | |
|                                   IAT->getIndexTypeQualifier());
 | |
|   
 | |
|   if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
 | |
|     return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
 | |
|                                       DSAT->getSizeModifier(),
 | |
|                                       DSAT->getIndexTypeQualifier());    
 | |
| 
 | |
|   VariableArrayType *VAT = cast<VariableArrayType>(AT);
 | |
|   return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
 | |
|                               VAT->getSizeModifier(),
 | |
|                               VAT->getIndexTypeQualifier());
 | |
| }
 | |
| 
 | |
| TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
 | |
|   // If this template name refers to a template, the canonical
 | |
|   // template name merely stores the template itself.
 | |
|   if (TemplateDecl *Template = Name.getAsTemplateDecl())
 | |
|     return TemplateName(Template);
 | |
| 
 | |
|   DependentTemplateName *DTN = Name.getAsDependentTemplateName();
 | |
|   assert(DTN && "Non-dependent template names must refer to template decls.");
 | |
|   return DTN->CanonicalTemplateName;
 | |
| }
 | |
| 
 | |
| NestedNameSpecifier *
 | |
| ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
 | |
|   if (!NNS) 
 | |
|     return 0;
 | |
| 
 | |
|   switch (NNS->getKind()) {
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|     // Canonicalize the prefix but keep the identifier the same.
 | |
|     return NestedNameSpecifier::Create(*this, 
 | |
|                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
 | |
|                                        NNS->getAsIdentifier());
 | |
| 
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|     // A namespace is canonical; build a nested-name-specifier with
 | |
|     // this namespace and no prefix.
 | |
|     return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
 | |
| 
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate: {
 | |
|     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
 | |
|     NestedNameSpecifier *Prefix = 0;
 | |
| 
 | |
|     // FIXME: This isn't the right check!
 | |
|     if (T->isDependentType())
 | |
|       Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
 | |
| 
 | |
|     return NestedNameSpecifier::Create(*this, Prefix, 
 | |
|                  NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate, 
 | |
|                                        T.getTypePtr());
 | |
|   }
 | |
| 
 | |
|   case NestedNameSpecifier::Global:
 | |
|     // The global specifier is canonical and unique.
 | |
|     return NNS;
 | |
|   }
 | |
| 
 | |
|   // Required to silence a GCC warning
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| const ArrayType *ASTContext::getAsArrayType(QualType T) {
 | |
|   // Handle the non-qualified case efficiently.
 | |
|   if (T.getCVRQualifiers() == 0) {
 | |
|     // Handle the common positive case fast.
 | |
|     if (const ArrayType *AT = dyn_cast<ArrayType>(T))
 | |
|       return AT;
 | |
|   }
 | |
|   
 | |
|   // Handle the common negative case fast, ignoring CVR qualifiers.
 | |
|   QualType CType = T->getCanonicalTypeInternal();
 | |
|     
 | |
|   // Make sure to look through type qualifiers (like ExtQuals) for the negative
 | |
|   // test.
 | |
|   if (!isa<ArrayType>(CType) &&
 | |
|       !isa<ArrayType>(CType.getUnqualifiedType()))
 | |
|     return 0;
 | |
|   
 | |
|   // Apply any CVR qualifiers from the array type to the element type.  This
 | |
|   // implements C99 6.7.3p8: "If the specification of an array type includes
 | |
|   // any type qualifiers, the element type is so qualified, not the array type."
 | |
|   
 | |
|   // If we get here, we either have type qualifiers on the type, or we have
 | |
|   // sugar such as a typedef in the way.  If we have type qualifiers on the type
 | |
|   // we must propagate them down into the elemeng type.
 | |
|   unsigned CVRQuals = T.getCVRQualifiers();
 | |
|   unsigned AddrSpace = 0;
 | |
|   Type *Ty = T.getTypePtr();
 | |
|   
 | |
|   // Rip through ExtQualType's and typedefs to get to a concrete type.
 | |
|   while (1) {
 | |
|     if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
 | |
|       AddrSpace = EXTQT->getAddressSpace();
 | |
|       Ty = EXTQT->getBaseType();
 | |
|     } else {
 | |
|       T = Ty->getDesugaredType();
 | |
|       if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
 | |
|         break;
 | |
|       CVRQuals |= T.getCVRQualifiers();
 | |
|       Ty = T.getTypePtr();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we have a simple case, just return now.
 | |
|   const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
 | |
|   if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
 | |
|     return ATy;
 | |
|   
 | |
|   // Otherwise, we have an array and we have qualifiers on it.  Push the
 | |
|   // qualifiers into the array element type and return a new array type.
 | |
|   // Get the canonical version of the element with the extra qualifiers on it.
 | |
|   // This can recursively sink qualifiers through multiple levels of arrays.
 | |
|   QualType NewEltTy = ATy->getElementType();
 | |
|   if (AddrSpace)
 | |
|     NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
 | |
|   NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
 | |
|   
 | |
|   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
 | |
|     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
 | |
|                                                 CAT->getSizeModifier(),
 | |
|                                                 CAT->getIndexTypeQualifier()));
 | |
|   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
 | |
|     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
 | |
|                                                   IAT->getSizeModifier(),
 | |
|                                                  IAT->getIndexTypeQualifier()));
 | |
| 
 | |
|   if (const DependentSizedArrayType *DSAT 
 | |
|         = dyn_cast<DependentSizedArrayType>(ATy))
 | |
|     return cast<ArrayType>(
 | |
|                      getDependentSizedArrayType(NewEltTy, 
 | |
|                                                 DSAT->getSizeExpr(),
 | |
|                                                 DSAT->getSizeModifier(),
 | |
|                                                 DSAT->getIndexTypeQualifier()));
 | |
|   
 | |
|   const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
 | |
|   return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
 | |
|                                               VAT->getSizeModifier(),
 | |
|                                               VAT->getIndexTypeQualifier()));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getArrayDecayedType - Return the properly qualified result of decaying the
 | |
| /// specified array type to a pointer.  This operation is non-trivial when
 | |
| /// handling typedefs etc.  The canonical type of "T" must be an array type,
 | |
| /// this returns a pointer to a properly qualified element of the array.
 | |
| ///
 | |
| /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
 | |
| QualType ASTContext::getArrayDecayedType(QualType Ty) {
 | |
|   // Get the element type with 'getAsArrayType' so that we don't lose any
 | |
|   // typedefs in the element type of the array.  This also handles propagation
 | |
|   // of type qualifiers from the array type into the element type if present
 | |
|   // (C99 6.7.3p8).
 | |
|   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
 | |
|   assert(PrettyArrayType && "Not an array type!");
 | |
|   
 | |
|   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
 | |
| 
 | |
|   // int x[restrict 4] ->  int *restrict
 | |
|   return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
 | |
|   QualType ElemTy = VAT->getElementType();
 | |
|   
 | |
|   if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
 | |
|     return getBaseElementType(VAT);
 | |
|   
 | |
|   return ElemTy;
 | |
| }
 | |
| 
 | |
| /// getFloatingRank - Return a relative rank for floating point types.
 | |
| /// This routine will assert if passed a built-in type that isn't a float.
 | |
| static FloatingRank getFloatingRank(QualType T) {
 | |
|   if (const ComplexType *CT = T->getAsComplexType())
 | |
|     return getFloatingRank(CT->getElementType());
 | |
| 
 | |
|   assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
 | |
|   switch (T->getAsBuiltinType()->getKind()) {
 | |
|   default: assert(0 && "getFloatingRank(): not a floating type");
 | |
|   case BuiltinType::Float:      return FloatRank;
 | |
|   case BuiltinType::Double:     return DoubleRank;
 | |
|   case BuiltinType::LongDouble: return LongDoubleRank;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFloatingTypeOfSizeWithinDomain - Returns a real floating 
 | |
| /// point or a complex type (based on typeDomain/typeSize). 
 | |
| /// 'typeDomain' is a real floating point or complex type.
 | |
| /// 'typeSize' is a real floating point or complex type.
 | |
| QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
 | |
|                                                        QualType Domain) const {
 | |
|   FloatingRank EltRank = getFloatingRank(Size);
 | |
|   if (Domain->isComplexType()) {
 | |
|     switch (EltRank) {
 | |
|     default: assert(0 && "getFloatingRank(): illegal value for rank");
 | |
|     case FloatRank:      return FloatComplexTy;
 | |
|     case DoubleRank:     return DoubleComplexTy;
 | |
|     case LongDoubleRank: return LongDoubleComplexTy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(Domain->isRealFloatingType() && "Unknown domain!");
 | |
|   switch (EltRank) {
 | |
|   default: assert(0 && "getFloatingRank(): illegal value for rank");
 | |
|   case FloatRank:      return FloatTy;
 | |
|   case DoubleRank:     return DoubleTy;
 | |
|   case LongDoubleRank: return LongDoubleTy;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFloatingTypeOrder - Compare the rank of the two specified floating
 | |
| /// point types, ignoring the domain of the type (i.e. 'double' ==
 | |
| /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
 | |
| /// LHS < RHS, return -1. 
 | |
| int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
 | |
|   FloatingRank LHSR = getFloatingRank(LHS);
 | |
|   FloatingRank RHSR = getFloatingRank(RHS);
 | |
|   
 | |
|   if (LHSR == RHSR)
 | |
|     return 0;
 | |
|   if (LHSR > RHSR)
 | |
|     return 1;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
 | |
| /// routine will assert if passed a built-in type that isn't an integer or enum,
 | |
| /// or if it is not canonicalized.
 | |
| unsigned ASTContext::getIntegerRank(Type *T) {
 | |
|   assert(T->isCanonical() && "T should be canonicalized");
 | |
|   if (EnumType* ET = dyn_cast<EnumType>(T))
 | |
|     T = ET->getDecl()->getIntegerType().getTypePtr();
 | |
| 
 | |
|   // There are two things which impact the integer rank: the width, and
 | |
|   // the ordering of builtins.  The builtin ordering is encoded in the
 | |
|   // bottom three bits; the width is encoded in the bits above that.
 | |
|   if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
 | |
|     return FWIT->getWidth() << 3;
 | |
|   }
 | |
| 
 | |
|   switch (cast<BuiltinType>(T)->getKind()) {
 | |
|   default: assert(0 && "getIntegerRank(): not a built-in integer");
 | |
|   case BuiltinType::Bool:
 | |
|     return 1 + (getIntWidth(BoolTy) << 3);
 | |
|   case BuiltinType::Char_S:
 | |
|   case BuiltinType::Char_U:
 | |
|   case BuiltinType::SChar:
 | |
|   case BuiltinType::UChar:
 | |
|     return 2 + (getIntWidth(CharTy) << 3);
 | |
|   case BuiltinType::Short:
 | |
|   case BuiltinType::UShort:
 | |
|     return 3 + (getIntWidth(ShortTy) << 3);
 | |
|   case BuiltinType::Int:
 | |
|   case BuiltinType::UInt:
 | |
|     return 4 + (getIntWidth(IntTy) << 3);
 | |
|   case BuiltinType::Long:
 | |
|   case BuiltinType::ULong:
 | |
|     return 5 + (getIntWidth(LongTy) << 3);
 | |
|   case BuiltinType::LongLong:
 | |
|   case BuiltinType::ULongLong:
 | |
|     return 6 + (getIntWidth(LongLongTy) << 3);
 | |
|   case BuiltinType::Int128:
 | |
|   case BuiltinType::UInt128:
 | |
|     return 7 + (getIntWidth(Int128Ty) << 3);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getIntegerTypeOrder - Returns the highest ranked integer type: 
 | |
| /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
 | |
| /// LHS < RHS, return -1. 
 | |
| int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
 | |
|   Type *LHSC = getCanonicalType(LHS).getTypePtr();
 | |
|   Type *RHSC = getCanonicalType(RHS).getTypePtr();
 | |
|   if (LHSC == RHSC) return 0;
 | |
|   
 | |
|   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
 | |
|   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
 | |
|   
 | |
|   unsigned LHSRank = getIntegerRank(LHSC);
 | |
|   unsigned RHSRank = getIntegerRank(RHSC);
 | |
|   
 | |
|   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
 | |
|     if (LHSRank == RHSRank) return 0;
 | |
|     return LHSRank > RHSRank ? 1 : -1;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
 | |
|   if (LHSUnsigned) {
 | |
|     // If the unsigned [LHS] type is larger, return it.
 | |
|     if (LHSRank >= RHSRank)
 | |
|       return 1;
 | |
|     
 | |
|     // If the signed type can represent all values of the unsigned type, it
 | |
|     // wins.  Because we are dealing with 2's complement and types that are
 | |
|     // powers of two larger than each other, this is always safe. 
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   // If the unsigned [RHS] type is larger, return it.
 | |
|   if (RHSRank >= LHSRank)
 | |
|     return -1;
 | |
|   
 | |
|   // If the signed type can represent all values of the unsigned type, it
 | |
|   // wins.  Because we are dealing with 2's complement and types that are
 | |
|   // powers of two larger than each other, this is always safe. 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| // getCFConstantStringType - Return the type used for constant CFStrings. 
 | |
| QualType ASTContext::getCFConstantStringType() {
 | |
|   if (!CFConstantStringTypeDecl) {
 | |
|     CFConstantStringTypeDecl = 
 | |
|       RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), 
 | |
|                          &Idents.get("NSConstantString"));
 | |
|     QualType FieldTypes[4];
 | |
|   
 | |
|     // const int *isa;
 | |
|     FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));  
 | |
|     // int flags;
 | |
|     FieldTypes[1] = IntTy;
 | |
|     // const char *str;
 | |
|     FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));  
 | |
|     // long length;
 | |
|     FieldTypes[3] = LongTy;  
 | |
|   
 | |
|     // Create fields
 | |
|     for (unsigned i = 0; i < 4; ++i) {
 | |
|       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, 
 | |
|                                            SourceLocation(), 0,
 | |
|                                            FieldTypes[i], /*BitWidth=*/0, 
 | |
|                                            /*Mutable=*/false);
 | |
|       CFConstantStringTypeDecl->addDecl(*this, Field);
 | |
|     }
 | |
| 
 | |
|     CFConstantStringTypeDecl->completeDefinition(*this);
 | |
|   }
 | |
|   
 | |
|   return getTagDeclType(CFConstantStringTypeDecl);
 | |
| }
 | |
| 
 | |
| void ASTContext::setCFConstantStringType(QualType T) {
 | |
|   const RecordType *Rec = T->getAsRecordType();
 | |
|   assert(Rec && "Invalid CFConstantStringType");
 | |
|   CFConstantStringTypeDecl = Rec->getDecl();
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getObjCFastEnumerationStateType()
 | |
| {
 | |
|   if (!ObjCFastEnumerationStateTypeDecl) {
 | |
|     ObjCFastEnumerationStateTypeDecl =
 | |
|       RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
 | |
|                          &Idents.get("__objcFastEnumerationState"));
 | |
|     
 | |
|     QualType FieldTypes[] = {
 | |
|       UnsignedLongTy,
 | |
|       getPointerType(ObjCIdType),
 | |
|       getPointerType(UnsignedLongTy),
 | |
|       getConstantArrayType(UnsignedLongTy,
 | |
|                            llvm::APInt(32, 5), ArrayType::Normal, 0)
 | |
|     };
 | |
|     
 | |
|     for (size_t i = 0; i < 4; ++i) {
 | |
|       FieldDecl *Field = FieldDecl::Create(*this, 
 | |
|                                            ObjCFastEnumerationStateTypeDecl, 
 | |
|                                            SourceLocation(), 0, 
 | |
|                                            FieldTypes[i], /*BitWidth=*/0, 
 | |
|                                            /*Mutable=*/false);
 | |
|       ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
 | |
|     }
 | |
|     
 | |
|     ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
 | |
|   }
 | |
|   
 | |
|   return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
 | |
| }
 | |
| 
 | |
| void ASTContext::setObjCFastEnumerationStateType(QualType T) {
 | |
|   const RecordType *Rec = T->getAsRecordType();
 | |
|   assert(Rec && "Invalid ObjCFAstEnumerationStateType");
 | |
|   ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
 | |
| }
 | |
| 
 | |
| // This returns true if a type has been typedefed to BOOL:
 | |
| // typedef <type> BOOL;
 | |
| static bool isTypeTypedefedAsBOOL(QualType T) {
 | |
|   if (const TypedefType *TT = dyn_cast<TypedefType>(T))
 | |
|     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
 | |
|       return II->isStr("BOOL");
 | |
|         
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getObjCEncodingTypeSize returns size of type for objective-c encoding
 | |
| /// purpose.
 | |
| int ASTContext::getObjCEncodingTypeSize(QualType type) {
 | |
|   uint64_t sz = getTypeSize(type);
 | |
|   
 | |
|   // Make all integer and enum types at least as large as an int
 | |
|   if (sz > 0 && type->isIntegralType())
 | |
|     sz = std::max(sz, getTypeSize(IntTy));
 | |
|   // Treat arrays as pointers, since that's how they're passed in.
 | |
|   else if (type->isArrayType())
 | |
|     sz = getTypeSize(VoidPtrTy);
 | |
|   return sz / getTypeSize(CharTy);
 | |
| }
 | |
| 
 | |
| /// getObjCEncodingForMethodDecl - Return the encoded type for this method
 | |
| /// declaration.
 | |
| void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 
 | |
|                                               std::string& S) {
 | |
|   // FIXME: This is not very efficient.
 | |
|   // Encode type qualifer, 'in', 'inout', etc. for the return type.
 | |
|   getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
 | |
|   // Encode result type.
 | |
|   getObjCEncodingForType(Decl->getResultType(), S);
 | |
|   // Compute size of all parameters.
 | |
|   // Start with computing size of a pointer in number of bytes.
 | |
|   // FIXME: There might(should) be a better way of doing this computation!
 | |
|   SourceLocation Loc;
 | |
|   int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
 | |
|   // The first two arguments (self and _cmd) are pointers; account for
 | |
|   // their size.
 | |
|   int ParmOffset = 2 * PtrSize;
 | |
|   for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
 | |
|        E = Decl->param_end(); PI != E; ++PI) {
 | |
|     QualType PType = (*PI)->getType();
 | |
|     int sz = getObjCEncodingTypeSize(PType);
 | |
|     assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
 | |
|     ParmOffset += sz;
 | |
|   }
 | |
|   S += llvm::utostr(ParmOffset);
 | |
|   S += "@0:";
 | |
|   S += llvm::utostr(PtrSize);
 | |
|   
 | |
|   // Argument types.
 | |
|   ParmOffset = 2 * PtrSize;
 | |
|   for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
 | |
|        E = Decl->param_end(); PI != E; ++PI) {
 | |
|     ParmVarDecl *PVDecl = *PI;
 | |
|     QualType PType = PVDecl->getOriginalType(); 
 | |
|     if (const ArrayType *AT =
 | |
|           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
 | |
|       // Use array's original type only if it has known number of
 | |
|       // elements.
 | |
|       if (!isa<ConstantArrayType>(AT))
 | |
|         PType = PVDecl->getType();
 | |
|     } else if (PType->isFunctionType())
 | |
|       PType = PVDecl->getType();
 | |
|     // Process argument qualifiers for user supplied arguments; such as,
 | |
|     // 'in', 'inout', etc.
 | |
|     getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
 | |
|     getObjCEncodingForType(PType, S);
 | |
|     S += llvm::utostr(ParmOffset);
 | |
|     ParmOffset += getObjCEncodingTypeSize(PType);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getObjCEncodingForPropertyDecl - Return the encoded type for this
 | |
| /// property declaration. If non-NULL, Container must be either an
 | |
| /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
 | |
| /// NULL when getting encodings for protocol properties.
 | |
| /// Property attributes are stored as a comma-delimited C string. The simple 
 | |
| /// attributes readonly and bycopy are encoded as single characters. The 
 | |
| /// parametrized attributes, getter=name, setter=name, and ivar=name, are 
 | |
| /// encoded as single characters, followed by an identifier. Property types 
 | |
| /// are also encoded as a parametrized attribute. The characters used to encode 
 | |
| /// these attributes are defined by the following enumeration:
 | |
| /// @code
 | |
| /// enum PropertyAttributes {
 | |
| /// kPropertyReadOnly = 'R',   // property is read-only.
 | |
| /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
 | |
| /// kPropertyByref = '&',  // property is a reference to the value last assigned
 | |
| /// kPropertyDynamic = 'D',    // property is dynamic
 | |
| /// kPropertyGetter = 'G',     // followed by getter selector name
 | |
| /// kPropertySetter = 'S',     // followed by setter selector name
 | |
| /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
 | |
| /// kPropertyType = 't'              // followed by old-style type encoding.
 | |
| /// kPropertyWeak = 'W'              // 'weak' property
 | |
| /// kPropertyStrong = 'P'            // property GC'able
 | |
| /// kPropertyNonAtomic = 'N'         // property non-atomic
 | |
| /// };
 | |
| /// @endcode
 | |
| void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 
 | |
|                                                 const Decl *Container,
 | |
|                                                 std::string& S) {
 | |
|   // Collect information from the property implementation decl(s).
 | |
|   bool Dynamic = false;
 | |
|   ObjCPropertyImplDecl *SynthesizePID = 0;
 | |
| 
 | |
|   // FIXME: Duplicated code due to poor abstraction.
 | |
|   if (Container) {
 | |
|     if (const ObjCCategoryImplDecl *CID = 
 | |
|         dyn_cast<ObjCCategoryImplDecl>(Container)) {
 | |
|       for (ObjCCategoryImplDecl::propimpl_iterator
 | |
|              i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
 | |
|            i != e; ++i) {
 | |
|         ObjCPropertyImplDecl *PID = *i;
 | |
|         if (PID->getPropertyDecl() == PD) {
 | |
|           if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
 | |
|             Dynamic = true;
 | |
|           } else {
 | |
|             SynthesizePID = PID;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
 | |
|       for (ObjCCategoryImplDecl::propimpl_iterator
 | |
|              i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
 | |
|            i != e; ++i) {
 | |
|         ObjCPropertyImplDecl *PID = *i;
 | |
|         if (PID->getPropertyDecl() == PD) {
 | |
|           if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
 | |
|             Dynamic = true;
 | |
|           } else {
 | |
|             SynthesizePID = PID;
 | |
|           }
 | |
|         }
 | |
|       }      
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: This is not very efficient.
 | |
|   S = "T";
 | |
| 
 | |
|   // Encode result type.
 | |
|   // GCC has some special rules regarding encoding of properties which
 | |
|   // closely resembles encoding of ivars.
 | |
|   getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0, 
 | |
|                              true /* outermost type */,
 | |
|                              true /* encoding for property */);
 | |
| 
 | |
|   if (PD->isReadOnly()) {
 | |
|     S += ",R";
 | |
|   } else {
 | |
|     switch (PD->getSetterKind()) {
 | |
|     case ObjCPropertyDecl::Assign: break;
 | |
|     case ObjCPropertyDecl::Copy:   S += ",C"; break;
 | |
|     case ObjCPropertyDecl::Retain: S += ",&"; break;      
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // It really isn't clear at all what this means, since properties
 | |
|   // are "dynamic by default".
 | |
|   if (Dynamic)
 | |
|     S += ",D";
 | |
| 
 | |
|   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
 | |
|     S += ",N";
 | |
|   
 | |
|   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
 | |
|     S += ",G";
 | |
|     S += PD->getGetterName().getAsString();
 | |
|   }
 | |
| 
 | |
|   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
 | |
|     S += ",S";
 | |
|     S += PD->getSetterName().getAsString();
 | |
|   }
 | |
| 
 | |
|   if (SynthesizePID) {
 | |
|     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
 | |
|     S += ",V";
 | |
|     S += OID->getNameAsString();
 | |
|   }
 | |
| 
 | |
|   // FIXME: OBJCGC: weak & strong
 | |
| }
 | |
| 
 | |
| /// getLegacyIntegralTypeEncoding -
 | |
| /// Another legacy compatibility encoding: 32-bit longs are encoded as 
 | |
| /// 'l' or 'L' , but not always.  For typedefs, we need to use 
 | |
| /// 'i' or 'I' instead if encoding a struct field, or a pointer!
 | |
| ///
 | |
| void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
 | |
|   if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
 | |
|     if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
 | |
|       if (BT->getKind() == BuiltinType::ULong &&
 | |
|           ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
 | |
|         PointeeTy = UnsignedIntTy;
 | |
|       else 
 | |
|         if (BT->getKind() == BuiltinType::Long &&
 | |
|             ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
 | |
|           PointeeTy = IntTy;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
 | |
|                                         const FieldDecl *Field) {
 | |
|   // We follow the behavior of gcc, expanding structures which are
 | |
|   // directly pointed to, and expanding embedded structures. Note that
 | |
|   // these rules are sufficient to prevent recursive encoding of the
 | |
|   // same type.
 | |
|   getObjCEncodingForTypeImpl(T, S, true, true, Field, 
 | |
|                              true /* outermost type */);
 | |
| }
 | |
| 
 | |
| static void EncodeBitField(const ASTContext *Context, std::string& S, 
 | |
|                            const FieldDecl *FD) {
 | |
|   const Expr *E = FD->getBitWidth();
 | |
|   assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
 | |
|   ASTContext *Ctx = const_cast<ASTContext*>(Context);
 | |
|   unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
 | |
|   S += 'b';
 | |
|   S += llvm::utostr(N);
 | |
| }
 | |
| 
 | |
| void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
 | |
|                                             bool ExpandPointedToStructures,
 | |
|                                             bool ExpandStructures,
 | |
|                                             const FieldDecl *FD,
 | |
|                                             bool OutermostType,
 | |
|                                             bool EncodingProperty) {
 | |
|   if (const BuiltinType *BT = T->getAsBuiltinType()) {
 | |
|     if (FD && FD->isBitField()) {
 | |
|       EncodeBitField(this, S, FD);
 | |
|     }
 | |
|     else {
 | |
|       char encoding;
 | |
|       switch (BT->getKind()) {
 | |
|       default: assert(0 && "Unhandled builtin type kind");          
 | |
|       case BuiltinType::Void:       encoding = 'v'; break;
 | |
|       case BuiltinType::Bool:       encoding = 'B'; break;
 | |
|       case BuiltinType::Char_U:
 | |
|       case BuiltinType::UChar:      encoding = 'C'; break;
 | |
|       case BuiltinType::UShort:     encoding = 'S'; break;
 | |
|       case BuiltinType::UInt:       encoding = 'I'; break;
 | |
|       case BuiltinType::ULong:      
 | |
|           encoding = 
 | |
|             (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q'; 
 | |
|           break;
 | |
|       case BuiltinType::UInt128:    encoding = 'T'; break;
 | |
|       case BuiltinType::ULongLong:  encoding = 'Q'; break;
 | |
|       case BuiltinType::Char_S:
 | |
|       case BuiltinType::SChar:      encoding = 'c'; break;
 | |
|       case BuiltinType::Short:      encoding = 's'; break;
 | |
|       case BuiltinType::Int:        encoding = 'i'; break;
 | |
|       case BuiltinType::Long:       
 | |
|         encoding = 
 | |
|           (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q'; 
 | |
|         break;
 | |
|       case BuiltinType::LongLong:   encoding = 'q'; break;
 | |
|       case BuiltinType::Int128:     encoding = 't'; break;
 | |
|       case BuiltinType::Float:      encoding = 'f'; break;
 | |
|       case BuiltinType::Double:     encoding = 'd'; break;
 | |
|       case BuiltinType::LongDouble: encoding = 'd'; break;
 | |
|       }
 | |
|     
 | |
|       S += encoding;
 | |
|     }
 | |
|   } else if (const ComplexType *CT = T->getAsComplexType()) {
 | |
|     S += 'j';
 | |
|     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false, 
 | |
|                                false);
 | |
|   } else if (T->isObjCQualifiedIdType()) {
 | |
|     getObjCEncodingForTypeImpl(getObjCIdType(), S, 
 | |
|                                ExpandPointedToStructures,
 | |
|                                ExpandStructures, FD);
 | |
|     if (FD || EncodingProperty) {
 | |
|       // Note that we do extended encoding of protocol qualifer list
 | |
|       // Only when doing ivar or property encoding.
 | |
|       const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
 | |
|       S += '"';
 | |
|       for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
 | |
|         ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
 | |
|         S += '<';
 | |
|         S += Proto->getNameAsString();
 | |
|         S += '>';
 | |
|       }
 | |
|       S += '"';
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   else if (const PointerType *PT = T->getAsPointerType()) {
 | |
|     QualType PointeeTy = PT->getPointeeType();
 | |
|     bool isReadOnly = false;
 | |
|     // For historical/compatibility reasons, the read-only qualifier of the
 | |
|     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
 | |
|     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
 | |
|     // Also, do not emit the 'r' for anything but the outermost type! 
 | |
|     if (dyn_cast<TypedefType>(T.getTypePtr())) {
 | |
|       if (OutermostType && T.isConstQualified()) {
 | |
|         isReadOnly = true;
 | |
|         S += 'r';
 | |
|       }
 | |
|     }
 | |
|     else if (OutermostType) {
 | |
|       QualType P = PointeeTy;
 | |
|       while (P->getAsPointerType())
 | |
|         P = P->getAsPointerType()->getPointeeType();
 | |
|       if (P.isConstQualified()) {
 | |
|         isReadOnly = true;
 | |
|         S += 'r';
 | |
|       }
 | |
|     }
 | |
|     if (isReadOnly) {
 | |
|       // Another legacy compatibility encoding. Some ObjC qualifier and type
 | |
|       // combinations need to be rearranged.
 | |
|       // Rewrite "in const" from "nr" to "rn"
 | |
|       const char * s = S.c_str();
 | |
|       int len = S.length();
 | |
|       if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
 | |
|         std::string replace = "rn";
 | |
|         S.replace(S.end()-2, S.end(), replace);
 | |
|       }
 | |
|     }
 | |
|     if (isObjCIdStructType(PointeeTy)) {
 | |
|       S += '@';
 | |
|       return;
 | |
|     }
 | |
|     else if (PointeeTy->isObjCInterfaceType()) {
 | |
|       if (!EncodingProperty &&
 | |
|           isa<TypedefType>(PointeeTy.getTypePtr())) {
 | |
|         // Another historical/compatibility reason.
 | |
|         // We encode the underlying type which comes out as 
 | |
|         // {...};
 | |
|         S += '^';
 | |
|         getObjCEncodingForTypeImpl(PointeeTy, S, 
 | |
|                                    false, ExpandPointedToStructures, 
 | |
|                                    NULL);
 | |
|         return;
 | |
|       }
 | |
|       S += '@';
 | |
|       if (FD || EncodingProperty) {
 | |
|         const ObjCInterfaceType *OIT = 
 | |
|                 PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
 | |
|         ObjCInterfaceDecl *OI = OIT->getDecl();
 | |
|         S += '"';
 | |
|         S += OI->getNameAsCString();
 | |
|         for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
 | |
|           ObjCProtocolDecl *Proto = OIT->getProtocol(i);
 | |
|           S += '<';
 | |
|           S += Proto->getNameAsString();
 | |
|           S += '>';
 | |
|         } 
 | |
|         S += '"';
 | |
|       }
 | |
|       return;
 | |
|     } else if (isObjCClassStructType(PointeeTy)) {
 | |
|       S += '#';
 | |
|       return;
 | |
|     } else if (isObjCSelType(PointeeTy)) {
 | |
|       S += ':';
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     if (PointeeTy->isCharType()) {
 | |
|       // char pointer types should be encoded as '*' unless it is a
 | |
|       // type that has been typedef'd to 'BOOL'.
 | |
|       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
 | |
|         S += '*';
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     S += '^';
 | |
|     getLegacyIntegralTypeEncoding(PointeeTy);
 | |
| 
 | |
|     getObjCEncodingForTypeImpl(PointeeTy, S, 
 | |
|                                false, ExpandPointedToStructures, 
 | |
|                                NULL);
 | |
|   } else if (const ArrayType *AT =
 | |
|                // Ignore type qualifiers etc.
 | |
|                dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
 | |
|     if (isa<IncompleteArrayType>(AT)) {
 | |
|       // Incomplete arrays are encoded as a pointer to the array element.
 | |
|       S += '^';
 | |
| 
 | |
|       getObjCEncodingForTypeImpl(AT->getElementType(), S, 
 | |
|                                  false, ExpandStructures, FD);
 | |
|     } else {
 | |
|       S += '[';
 | |
|     
 | |
|       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|         S += llvm::utostr(CAT->getSize().getZExtValue());
 | |
|       else {
 | |
|         //Variable length arrays are encoded as a regular array with 0 elements.
 | |
|         assert(isa<VariableArrayType>(AT) && "Unknown array type!");
 | |
|         S += '0';
 | |
|       }
 | |
|     
 | |
|       getObjCEncodingForTypeImpl(AT->getElementType(), S, 
 | |
|                                  false, ExpandStructures, FD);
 | |
|       S += ']';
 | |
|     }
 | |
|   } else if (T->getAsFunctionType()) {
 | |
|     S += '?';
 | |
|   } else if (const RecordType *RTy = T->getAsRecordType()) {
 | |
|     RecordDecl *RDecl = RTy->getDecl();
 | |
|     S += RDecl->isUnion() ? '(' : '{';
 | |
|     // Anonymous structures print as '?'
 | |
|     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
 | |
|       S += II->getName();
 | |
|     } else {
 | |
|       S += '?';
 | |
|     }
 | |
|     if (ExpandStructures) {
 | |
|       S += '=';
 | |
|       for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
 | |
|                                    FieldEnd = RDecl->field_end(*this);
 | |
|            Field != FieldEnd; ++Field) {
 | |
|         if (FD) {
 | |
|           S += '"';
 | |
|           S += Field->getNameAsString();
 | |
|           S += '"';
 | |
|         }
 | |
|         
 | |
|         // Special case bit-fields.
 | |
|         if (Field->isBitField()) {
 | |
|           getObjCEncodingForTypeImpl(Field->getType(), S, false, true, 
 | |
|                                      (*Field));
 | |
|         } else {
 | |
|           QualType qt = Field->getType();
 | |
|           getLegacyIntegralTypeEncoding(qt);
 | |
|           getObjCEncodingForTypeImpl(qt, S, false, true, 
 | |
|                                      FD);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     S += RDecl->isUnion() ? ')' : '}';
 | |
|   } else if (T->isEnumeralType()) {
 | |
|     if (FD && FD->isBitField())
 | |
|       EncodeBitField(this, S, FD);
 | |
|     else
 | |
|       S += 'i';
 | |
|   } else if (T->isBlockPointerType()) {
 | |
|     S += "@?"; // Unlike a pointer-to-function, which is "^?".
 | |
|   } else if (T->isObjCInterfaceType()) {
 | |
|     // @encode(class_name)
 | |
|     ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
 | |
|     S += '{';
 | |
|     const IdentifierInfo *II = OI->getIdentifier();
 | |
|     S += II->getName();
 | |
|     S += '=';
 | |
|     llvm::SmallVector<FieldDecl*, 32> RecFields;
 | |
|     CollectObjCIvars(OI, RecFields);
 | |
|     for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | |
|       if (RecFields[i]->isBitField())
 | |
|         getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true, 
 | |
|                                    RecFields[i]);
 | |
|       else
 | |
|         getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true, 
 | |
|                                    FD);
 | |
|     }
 | |
|     S += '}';
 | |
|   }
 | |
|   else
 | |
|     assert(0 && "@encode for type not implemented!");
 | |
| }
 | |
| 
 | |
| void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 
 | |
|                                                  std::string& S) const {
 | |
|   if (QT & Decl::OBJC_TQ_In)
 | |
|     S += 'n';
 | |
|   if (QT & Decl::OBJC_TQ_Inout)
 | |
|     S += 'N';
 | |
|   if (QT & Decl::OBJC_TQ_Out)
 | |
|     S += 'o';
 | |
|   if (QT & Decl::OBJC_TQ_Bycopy)
 | |
|     S += 'O';
 | |
|   if (QT & Decl::OBJC_TQ_Byref)
 | |
|     S += 'R';
 | |
|   if (QT & Decl::OBJC_TQ_Oneway)
 | |
|     S += 'V';
 | |
| }
 | |
| 
 | |
| void ASTContext::setBuiltinVaListType(QualType T)
 | |
| {
 | |
|   assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
 | |
|     
 | |
|   BuiltinVaListType = T;
 | |
| }
 | |
| 
 | |
| void ASTContext::setObjCIdType(QualType T)
 | |
| {
 | |
|   ObjCIdType = T;
 | |
| 
 | |
|   const TypedefType *TT = T->getAsTypedefType();
 | |
|   if (!TT)
 | |
|     return;
 | |
| 
 | |
|   TypedefDecl *TD = TT->getDecl();
 | |
| 
 | |
|   // typedef struct objc_object *id;
 | |
|   const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
 | |
|   // User error - caller will issue diagnostics.
 | |
|   if (!ptr)
 | |
|     return;
 | |
|   const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
 | |
|   // User error - caller will issue diagnostics.
 | |
|   if (!rec)
 | |
|     return;
 | |
|   IdStructType = rec;
 | |
| }
 | |
| 
 | |
| void ASTContext::setObjCSelType(QualType T)
 | |
| {
 | |
|   ObjCSelType = T;
 | |
| 
 | |
|   const TypedefType *TT = T->getAsTypedefType();
 | |
|   if (!TT)
 | |
|     return;
 | |
|   TypedefDecl *TD = TT->getDecl();
 | |
| 
 | |
|   // typedef struct objc_selector *SEL;
 | |
|   const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
 | |
|   if (!ptr)
 | |
|     return;
 | |
|   const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
 | |
|   if (!rec)
 | |
|     return;
 | |
|   SelStructType = rec;
 | |
| }
 | |
| 
 | |
| void ASTContext::setObjCProtoType(QualType QT)
 | |
| {
 | |
|   ObjCProtoType = QT;
 | |
| }
 | |
| 
 | |
| void ASTContext::setObjCClassType(QualType T)
 | |
| {
 | |
|   ObjCClassType = T;
 | |
| 
 | |
|   const TypedefType *TT = T->getAsTypedefType();
 | |
|   if (!TT)
 | |
|     return;
 | |
|   TypedefDecl *TD = TT->getDecl();
 | |
| 
 | |
|   // typedef struct objc_class *Class;
 | |
|   const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
 | |
|   assert(ptr && "'Class' incorrectly typed");
 | |
|   const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
 | |
|   assert(rec && "'Class' incorrectly typed");
 | |
|   ClassStructType = rec;
 | |
| }
 | |
| 
 | |
| void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
 | |
|   assert(ObjCConstantStringType.isNull() && 
 | |
|          "'NSConstantString' type already set!");
 | |
|   
 | |
|   ObjCConstantStringType = getObjCInterfaceType(Decl);
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the template name that represents a qualified
 | |
| /// template name such as \c std::vector.
 | |
| TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, 
 | |
|                                                   bool TemplateKeyword,
 | |
|                                                   TemplateDecl *Template) {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   QualifiedTemplateName *QTN =
 | |
|     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (!QTN) {
 | |
|     QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
 | |
|     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
 | |
|   }
 | |
| 
 | |
|   return TemplateName(QTN);
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the template name that represents a dependent
 | |
| /// template name such as \c MetaFun::template apply.
 | |
| TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 
 | |
|                                                   const IdentifierInfo *Name) {
 | |
|   assert(NNS->isDependent() && "Nested name specifier must be dependent");
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentTemplateName::Profile(ID, NNS, Name);
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   DependentTemplateName *QTN =
 | |
|     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (QTN)
 | |
|     return TemplateName(QTN);
 | |
| 
 | |
|   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | |
|   if (CanonNNS == NNS) {
 | |
|     QTN = new (*this,4) DependentTemplateName(NNS, Name);
 | |
|   } else {
 | |
|     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
 | |
|     QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
 | |
|   }
 | |
| 
 | |
|   DependentTemplateNames.InsertNode(QTN, InsertPos);
 | |
|   return TemplateName(QTN);
 | |
| }
 | |
| 
 | |
| /// getFromTargetType - Given one of the integer types provided by
 | |
| /// TargetInfo, produce the corresponding type. The unsigned @p Type
 | |
| /// is actually a value of type @c TargetInfo::IntType.
 | |
| QualType ASTContext::getFromTargetType(unsigned Type) const {
 | |
|   switch (Type) {
 | |
|   case TargetInfo::NoInt: return QualType(); 
 | |
|   case TargetInfo::SignedShort: return ShortTy;
 | |
|   case TargetInfo::UnsignedShort: return UnsignedShortTy;
 | |
|   case TargetInfo::SignedInt: return IntTy;
 | |
|   case TargetInfo::UnsignedInt: return UnsignedIntTy;
 | |
|   case TargetInfo::SignedLong: return LongTy;
 | |
|   case TargetInfo::UnsignedLong: return UnsignedLongTy;
 | |
|   case TargetInfo::SignedLongLong: return LongLongTy;
 | |
|   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
 | |
|   }
 | |
| 
 | |
|   assert(false && "Unhandled TargetInfo::IntType value");
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Type Predicates.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isObjCNSObjectType - Return true if this is an NSObject object using
 | |
| /// NSObject attribute on a c-style pointer type.
 | |
| /// FIXME - Make it work directly on types.
 | |
| ///
 | |
| bool ASTContext::isObjCNSObjectType(QualType Ty) const {
 | |
|   if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
 | |
|     if (TypedefDecl *TD = TDT->getDecl())
 | |
|       if (TD->getAttr<ObjCNSObjectAttr>())
 | |
|         return true;
 | |
|   }
 | |
|   return false;  
 | |
| }
 | |
| 
 | |
| /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
 | |
| /// to an object type.  This includes "id" and "Class" (two 'special' pointers
 | |
| /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
 | |
| /// ID type).
 | |
| bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
 | |
|   if (Ty->isObjCQualifiedIdType())
 | |
|     return true;
 | |
|   
 | |
|   // Blocks are objects.
 | |
|   if (Ty->isBlockPointerType())
 | |
|     return true;
 | |
|     
 | |
|   // All other object types are pointers.
 | |
|   const PointerType *PT = Ty->getAsPointerType();
 | |
|   if (PT == 0)
 | |
|     return false;
 | |
|   
 | |
|   // If this a pointer to an interface (e.g. NSString*), it is ok.
 | |
|   if (PT->getPointeeType()->isObjCInterfaceType() ||
 | |
|       // If is has NSObject attribute, OK as well.
 | |
|       isObjCNSObjectType(Ty))
 | |
|     return true;
 | |
|   
 | |
|   // Check to see if this is 'id' or 'Class', both of which are typedefs for
 | |
|   // pointer types.  This looks for the typedef specifically, not for the
 | |
|   // underlying type.  Iteratively strip off typedefs so that we can handle
 | |
|   // typedefs of typedefs.
 | |
|   while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
 | |
|     if (Ty.getUnqualifiedType() == getObjCIdType() ||
 | |
|         Ty.getUnqualifiedType() == getObjCClassType())
 | |
|       return true;
 | |
|     
 | |
|     Ty = TDT->getDecl()->getUnderlyingType();
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
 | |
| /// garbage collection attribute.
 | |
| ///
 | |
| QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
 | |
|   QualType::GCAttrTypes GCAttrs = QualType::GCNone;
 | |
|   if (getLangOptions().ObjC1 &&
 | |
|       getLangOptions().getGCMode() != LangOptions::NonGC) {
 | |
|     GCAttrs = Ty.getObjCGCAttr();
 | |
|     // Default behavious under objective-c's gc is for objective-c pointers
 | |
|     // (or pointers to them) be treated as though they were declared 
 | |
|     // as __strong.
 | |
|     if (GCAttrs == QualType::GCNone) {
 | |
|       if (isObjCObjectPointerType(Ty))
 | |
|         GCAttrs = QualType::Strong;
 | |
|       else if (Ty->isPointerType())
 | |
|         return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
 | |
|     }
 | |
|     // Non-pointers have none gc'able attribute regardless of the attribute
 | |
|     // set on them.
 | |
|     else if (!isObjCObjectPointerType(Ty) && !Ty->isPointerType())
 | |
|       return QualType::GCNone;
 | |
|   }
 | |
|   return GCAttrs;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Type Compatibility Testing
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// typesAreBlockCompatible - This routine is called when comparing two
 | |
| /// block types. Types must be strictly compatible here. For example,
 | |
| /// C unfortunately doesn't produce an error for the following:
 | |
| /// 
 | |
| ///   int (*emptyArgFunc)();
 | |
| ///   int (*intArgList)(int) = emptyArgFunc;
 | |
| /// 
 | |
| /// For blocks, we will produce an error for the following (similar to C++):
 | |
| ///
 | |
| ///   int (^emptyArgBlock)();
 | |
| ///   int (^intArgBlock)(int) = emptyArgBlock;
 | |
| ///
 | |
| /// FIXME: When the dust settles on this integration, fold this into mergeTypes.
 | |
| ///
 | |
| bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
 | |
|   const FunctionType *lbase = lhs->getAsFunctionType();
 | |
|   const FunctionType *rbase = rhs->getAsFunctionType();
 | |
|   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
 | |
|   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
 | |
|   if (lproto && rproto == 0)
 | |
|     return false;
 | |
|   return !mergeTypes(lhs, rhs).isNull();
 | |
| }
 | |
| 
 | |
| /// areCompatVectorTypes - Return true if the two specified vector types are 
 | |
| /// compatible.
 | |
| static bool areCompatVectorTypes(const VectorType *LHS,
 | |
|                                  const VectorType *RHS) {
 | |
|   assert(LHS->isCanonical() && RHS->isCanonical());
 | |
|   return LHS->getElementType() == RHS->getElementType() &&
 | |
|          LHS->getNumElements() == RHS->getNumElements();
 | |
| }
 | |
| 
 | |
| /// canAssignObjCInterfaces - Return true if the two interface types are
 | |
| /// compatible for assignment from RHS to LHS.  This handles validation of any
 | |
| /// protocol qualifiers on the LHS or RHS.
 | |
| ///
 | |
| bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
 | |
|                                          const ObjCInterfaceType *RHS) {
 | |
|   // Verify that the base decls are compatible: the RHS must be a subclass of
 | |
|   // the LHS.
 | |
|   if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
 | |
|     return false;
 | |
|   
 | |
|   // RHS must have a superset of the protocols in the LHS.  If the LHS is not
 | |
|   // protocol qualified at all, then we are good.
 | |
|   if (!isa<ObjCQualifiedInterfaceType>(LHS))
 | |
|     return true;
 | |
|   
 | |
|   // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
 | |
|   // isn't a superset.
 | |
|   if (!isa<ObjCQualifiedInterfaceType>(RHS))
 | |
|     return true;  // FIXME: should return false!
 | |
|   
 | |
|   // Finally, we must have two protocol-qualified interfaces.
 | |
|   const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
 | |
|   const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
 | |
|   
 | |
|   // All LHS protocols must have a presence on the RHS.  
 | |
|   assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
 | |
|   
 | |
|   for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
 | |
|                                                  LHSPE = LHSP->qual_end();
 | |
|        LHSPI != LHSPE; LHSPI++) {
 | |
|     bool RHSImplementsProtocol = false;
 | |
| 
 | |
|     // If the RHS doesn't implement the protocol on the left, the types
 | |
|     // are incompatible.
 | |
|     for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
 | |
|                                                    RHSPE = RHSP->qual_end();
 | |
|          !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
 | |
|       if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
 | |
|         RHSImplementsProtocol = true;
 | |
|     }
 | |
|     // FIXME: For better diagnostics, consider passing back the protocol name.
 | |
|     if (!RHSImplementsProtocol)
 | |
|       return false;
 | |
|   }
 | |
|   // The RHS implements all protocols listed on the LHS.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
 | |
|   // get the "pointed to" types
 | |
|   const PointerType *LHSPT = LHS->getAsPointerType();
 | |
|   const PointerType *RHSPT = RHS->getAsPointerType();
 | |
|   
 | |
|   if (!LHSPT || !RHSPT)
 | |
|     return false;
 | |
|     
 | |
|   QualType lhptee = LHSPT->getPointeeType();
 | |
|   QualType rhptee = RHSPT->getPointeeType();
 | |
|   const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
 | |
|   const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
 | |
|   // ID acts sort of like void* for ObjC interfaces
 | |
|   if (LHSIface && isObjCIdStructType(rhptee))
 | |
|     return true;
 | |
|   if (RHSIface && isObjCIdStructType(lhptee))
 | |
|     return true;
 | |
|   if (!LHSIface || !RHSIface)
 | |
|     return false;
 | |
|   return canAssignObjCInterfaces(LHSIface, RHSIface) ||
 | |
|          canAssignObjCInterfaces(RHSIface, LHSIface);
 | |
| }
 | |
| 
 | |
| /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 
 | |
| /// both shall have the identically qualified version of a compatible type.
 | |
| /// C99 6.2.7p1: Two types have compatible types if their types are the 
 | |
| /// same. See 6.7.[2,3,5] for additional rules.
 | |
| bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
 | |
|   return !mergeTypes(LHS, RHS).isNull();
 | |
| }
 | |
| 
 | |
| QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
 | |
|   const FunctionType *lbase = lhs->getAsFunctionType();
 | |
|   const FunctionType *rbase = rhs->getAsFunctionType();
 | |
|   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
 | |
|   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
 | |
|   bool allLTypes = true;
 | |
|   bool allRTypes = true;
 | |
| 
 | |
|   // Check return type
 | |
|   QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
 | |
|   if (retType.isNull()) return QualType();
 | |
|   if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
 | |
|     allLTypes = false;
 | |
|   if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
 | |
|     allRTypes = false;
 | |
| 
 | |
|   if (lproto && rproto) { // two C99 style function prototypes
 | |
|     unsigned lproto_nargs = lproto->getNumArgs();
 | |
|     unsigned rproto_nargs = rproto->getNumArgs();
 | |
| 
 | |
|     // Compatible functions must have the same number of arguments
 | |
|     if (lproto_nargs != rproto_nargs)
 | |
|       return QualType();
 | |
| 
 | |
|     // Variadic and non-variadic functions aren't compatible
 | |
|     if (lproto->isVariadic() != rproto->isVariadic())
 | |
|       return QualType();
 | |
| 
 | |
|     if (lproto->getTypeQuals() != rproto->getTypeQuals())
 | |
|       return QualType();
 | |
| 
 | |
|     // Check argument compatibility
 | |
|     llvm::SmallVector<QualType, 10> types;
 | |
|     for (unsigned i = 0; i < lproto_nargs; i++) {
 | |
|       QualType largtype = lproto->getArgType(i).getUnqualifiedType();
 | |
|       QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
 | |
|       QualType argtype = mergeTypes(largtype, rargtype);
 | |
|       if (argtype.isNull()) return QualType();
 | |
|       types.push_back(argtype);
 | |
|       if (getCanonicalType(argtype) != getCanonicalType(largtype))
 | |
|         allLTypes = false;
 | |
|       if (getCanonicalType(argtype) != getCanonicalType(rargtype))
 | |
|         allRTypes = false;
 | |
|     }
 | |
|     if (allLTypes) return lhs;
 | |
|     if (allRTypes) return rhs;
 | |
|     return getFunctionType(retType, types.begin(), types.size(),
 | |
|                            lproto->isVariadic(), lproto->getTypeQuals());
 | |
|   }
 | |
| 
 | |
|   if (lproto) allRTypes = false;
 | |
|   if (rproto) allLTypes = false;
 | |
| 
 | |
|   const FunctionProtoType *proto = lproto ? lproto : rproto;
 | |
|   if (proto) {
 | |
|     if (proto->isVariadic()) return QualType();
 | |
|     // Check that the types are compatible with the types that
 | |
|     // would result from default argument promotions (C99 6.7.5.3p15).
 | |
|     // The only types actually affected are promotable integer
 | |
|     // types and floats, which would be passed as a different
 | |
|     // type depending on whether the prototype is visible.
 | |
|     unsigned proto_nargs = proto->getNumArgs();
 | |
|     for (unsigned i = 0; i < proto_nargs; ++i) {
 | |
|       QualType argTy = proto->getArgType(i);
 | |
|       if (argTy->isPromotableIntegerType() ||
 | |
|           getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
 | |
|         return QualType();
 | |
|     }
 | |
| 
 | |
|     if (allLTypes) return lhs;
 | |
|     if (allRTypes) return rhs;
 | |
|     return getFunctionType(retType, proto->arg_type_begin(),
 | |
|                            proto->getNumArgs(), lproto->isVariadic(),
 | |
|                            lproto->getTypeQuals());
 | |
|   }
 | |
| 
 | |
|   if (allLTypes) return lhs;
 | |
|   if (allRTypes) return rhs;
 | |
|   return getFunctionNoProtoType(retType);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
 | |
|   // C++ [expr]: If an expression initially has the type "reference to T", the
 | |
|   // type is adjusted to "T" prior to any further analysis, the expression
 | |
|   // designates the object or function denoted by the reference, and the
 | |
|   // expression is an lvalue unless the reference is an rvalue reference and
 | |
|   // the expression is a function call (possibly inside parentheses).
 | |
|   // FIXME: C++ shouldn't be going through here!  The rules are different
 | |
|   // enough that they should be handled separately.
 | |
|   // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
 | |
|   // shouldn't be going through here!
 | |
|   if (const ReferenceType *RT = LHS->getAsReferenceType())
 | |
|     LHS = RT->getPointeeType();
 | |
|   if (const ReferenceType *RT = RHS->getAsReferenceType())
 | |
|     RHS = RT->getPointeeType();
 | |
| 
 | |
|   QualType LHSCan = getCanonicalType(LHS),
 | |
|            RHSCan = getCanonicalType(RHS);
 | |
| 
 | |
|   // If two types are identical, they are compatible.
 | |
|   if (LHSCan == RHSCan)
 | |
|     return LHS;
 | |
| 
 | |
|   // If the qualifiers are different, the types aren't compatible
 | |
|   // Note that we handle extended qualifiers later, in the
 | |
|   // case for ExtQualType.
 | |
|   if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
 | |
|     return QualType();
 | |
| 
 | |
|   Type::TypeClass LHSClass = LHSCan.getUnqualifiedType()->getTypeClass();
 | |
|   Type::TypeClass RHSClass = RHSCan.getUnqualifiedType()->getTypeClass();
 | |
| 
 | |
|   // We want to consider the two function types to be the same for these
 | |
|   // comparisons, just force one to the other.
 | |
|   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
 | |
|   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
 | |
| 
 | |
|   // Same as above for arrays
 | |
|   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
 | |
|     LHSClass = Type::ConstantArray;
 | |
|   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
 | |
|     RHSClass = Type::ConstantArray;
 | |
|   
 | |
|   // Canonicalize ExtVector -> Vector.
 | |
|   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
 | |
|   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
 | |
|   
 | |
|   // Consider qualified interfaces and interfaces the same.
 | |
|   if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
 | |
|   if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
 | |
| 
 | |
|   // If the canonical type classes don't match.
 | |
|   if (LHSClass != RHSClass) {
 | |
|     const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
 | |
|     const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
 | |
|     
 | |
|     // 'id' and 'Class' act sort of like void* for ObjC interfaces
 | |
|     if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
 | |
|       return LHS;
 | |
|     if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
 | |
|       return RHS;
 | |
|     
 | |
|     // ID is compatible with all qualified id types.
 | |
|     if (LHS->isObjCQualifiedIdType()) {
 | |
|       if (const PointerType *PT = RHS->getAsPointerType()) {
 | |
|         QualType pType = PT->getPointeeType();
 | |
|         if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
 | |
|           return LHS;
 | |
|         // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
 | |
|         // Unfortunately, this API is part of Sema (which we don't have access
 | |
|         // to. Need to refactor. The following check is insufficient, since we 
 | |
|         // need to make sure the class implements the protocol.
 | |
|         if (pType->isObjCInterfaceType())
 | |
|           return LHS;
 | |
|       }
 | |
|     }
 | |
|     if (RHS->isObjCQualifiedIdType()) {
 | |
|       if (const PointerType *PT = LHS->getAsPointerType()) {
 | |
|         QualType pType = PT->getPointeeType();
 | |
|         if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
 | |
|           return RHS;
 | |
|         // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
 | |
|         // Unfortunately, this API is part of Sema (which we don't have access
 | |
|         // to. Need to refactor. The following check is insufficient, since we 
 | |
|         // need to make sure the class implements the protocol.
 | |
|         if (pType->isObjCInterfaceType())
 | |
|           return RHS;
 | |
|       }
 | |
|     }
 | |
|     // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
 | |
|     // a signed integer type, or an unsigned integer type. 
 | |
|     if (const EnumType* ETy = LHS->getAsEnumType()) {
 | |
|       if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
 | |
|         return RHS;
 | |
|     }
 | |
|     if (const EnumType* ETy = RHS->getAsEnumType()) {
 | |
|       if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
 | |
|         return LHS;
 | |
|     }
 | |
| 
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // The canonical type classes match.
 | |
|   switch (LHSClass) {
 | |
| #define TYPE(Class, Base)
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #include "clang/AST/TypeNodes.def"
 | |
|     assert(false && "Non-canonical and dependent types shouldn't get here");
 | |
|     return QualType();
 | |
| 
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|   case Type::MemberPointer:
 | |
|     assert(false && "C++ should never be in mergeTypes");
 | |
|     return QualType();
 | |
| 
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray:
 | |
|   case Type::FunctionProto:
 | |
|   case Type::ExtVector:
 | |
|   case Type::ObjCQualifiedInterface:
 | |
|     assert(false && "Types are eliminated above");
 | |
|     return QualType();
 | |
| 
 | |
|   case Type::Pointer:
 | |
|   {
 | |
|     // Merge two pointer types, while trying to preserve typedef info
 | |
|     QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
 | |
|     QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
 | |
|     QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
 | |
|     if (ResultType.isNull()) return QualType();
 | |
|     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     return getPointerType(ResultType);
 | |
|   }
 | |
|   case Type::BlockPointer:
 | |
|   {
 | |
|     // Merge two block pointer types, while trying to preserve typedef info
 | |
|     QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
 | |
|     QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
 | |
|     QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
 | |
|     if (ResultType.isNull()) return QualType();
 | |
|     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     return getBlockPointerType(ResultType);
 | |
|   }
 | |
|   case Type::ConstantArray:
 | |
|   {
 | |
|     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
 | |
|     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
 | |
|     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
 | |
|       return QualType();
 | |
| 
 | |
|     QualType LHSElem = getAsArrayType(LHS)->getElementType();
 | |
|     QualType RHSElem = getAsArrayType(RHS)->getElementType();
 | |
|     QualType ResultType = mergeTypes(LHSElem, RHSElem);
 | |
|     if (ResultType.isNull()) return QualType();
 | |
|     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
 | |
|                                           ArrayType::ArraySizeModifier(), 0);
 | |
|     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
 | |
|                                           ArrayType::ArraySizeModifier(), 0);
 | |
|     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
 | |
|     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
 | |
|     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     if (LVAT) {
 | |
|       // FIXME: This isn't correct! But tricky to implement because
 | |
|       // the array's size has to be the size of LHS, but the type
 | |
|       // has to be different.
 | |
|       return LHS;
 | |
|     }
 | |
|     if (RVAT) {
 | |
|       // FIXME: This isn't correct! But tricky to implement because
 | |
|       // the array's size has to be the size of RHS, but the type
 | |
|       // has to be different.
 | |
|       return RHS;
 | |
|     }
 | |
|     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
 | |
|     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
 | |
|     return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
 | |
|   }
 | |
|   case Type::FunctionNoProto:
 | |
|     return mergeFunctionTypes(LHS, RHS);
 | |
|   case Type::Record:
 | |
|   case Type::Enum:
 | |
|     // FIXME: Why are these compatible?
 | |
|     if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
 | |
|     if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
 | |
|     return QualType();
 | |
|   case Type::Builtin:
 | |
|     // Only exactly equal builtin types are compatible, which is tested above.
 | |
|     return QualType();
 | |
|   case Type::Complex:
 | |
|     // Distinct complex types are incompatible.
 | |
|     return QualType();
 | |
|   case Type::Vector:
 | |
|     // FIXME: The merged type should be an ExtVector!
 | |
|     if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
 | |
|       return LHS;
 | |
|     return QualType();
 | |
|   case Type::ObjCInterface: {
 | |
|     // Check if the interfaces are assignment compatible.
 | |
|     // FIXME: This should be type compatibility, e.g. whether
 | |
|     // "LHS x; RHS x;" at global scope is legal.
 | |
|     const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
 | |
|     const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
 | |
|     if (LHSIface && RHSIface &&
 | |
|         canAssignObjCInterfaces(LHSIface, RHSIface))
 | |
|       return LHS;
 | |
| 
 | |
|     return QualType();
 | |
|   }
 | |
|   case Type::ObjCQualifiedId:
 | |
|     // Distinct qualified id's are not compatible.
 | |
|     return QualType();
 | |
|   case Type::FixedWidthInt:
 | |
|     // Distinct fixed-width integers are not compatible.
 | |
|     return QualType();
 | |
|   case Type::ExtQual:
 | |
|     // FIXME: ExtQual types can be compatible even if they're not
 | |
|     // identical!
 | |
|     return QualType();
 | |
|     // First attempt at an implementation, but I'm not really sure it's
 | |
|     // right...
 | |
| #if 0
 | |
|     ExtQualType* LQual = cast<ExtQualType>(LHSCan);
 | |
|     ExtQualType* RQual = cast<ExtQualType>(RHSCan);
 | |
|     if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
 | |
|         LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
 | |
|       return QualType();
 | |
|     QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
 | |
|     LHSBase = QualType(LQual->getBaseType(), 0);
 | |
|     RHSBase = QualType(RQual->getBaseType(), 0);
 | |
|     ResultType = mergeTypes(LHSBase, RHSBase);
 | |
|     if (ResultType.isNull()) return QualType();
 | |
|     ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
 | |
|     if (LHSCan.getUnqualifiedType() == ResCanUnqual)
 | |
|       return LHS;
 | |
|     if (RHSCan.getUnqualifiedType() == ResCanUnqual)
 | |
|       return RHS;
 | |
|     ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
 | |
|     ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
 | |
|     ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
 | |
|     return ResultType;
 | |
| #endif
 | |
| 
 | |
|   case Type::TemplateSpecialization:
 | |
|     assert(false && "Dependent types have no size");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Integer Predicates
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned ASTContext::getIntWidth(QualType T) {
 | |
|   if (T == BoolTy)
 | |
|     return 1;
 | |
|   if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
 | |
|     return FWIT->getWidth();
 | |
|   }
 | |
|   // For builtin types, just use the standard type sizing method
 | |
|   return (unsigned)getTypeSize(T);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
 | |
|   assert(T->isSignedIntegerType() && "Unexpected type");
 | |
|   if (const EnumType* ETy = T->getAsEnumType())
 | |
|     T = ETy->getDecl()->getIntegerType();
 | |
|   const BuiltinType* BTy = T->getAsBuiltinType();
 | |
|   assert (BTy && "Unexpected signed integer type");
 | |
|   switch (BTy->getKind()) {
 | |
|   case BuiltinType::Char_S:
 | |
|   case BuiltinType::SChar:
 | |
|     return UnsignedCharTy;
 | |
|   case BuiltinType::Short:
 | |
|     return UnsignedShortTy;
 | |
|   case BuiltinType::Int:
 | |
|     return UnsignedIntTy;
 | |
|   case BuiltinType::Long:
 | |
|     return UnsignedLongTy;
 | |
|   case BuiltinType::LongLong:
 | |
|     return UnsignedLongLongTy;
 | |
|   case BuiltinType::Int128:
 | |
|     return UnsignedInt128Ty;
 | |
|   default:
 | |
|     assert(0 && "Unexpected signed integer type");
 | |
|     return QualType();
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExternalASTSource::~ExternalASTSource() { }
 | |
| 
 | |
| void ExternalASTSource::PrintStats() { }
 |