forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1972 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1972 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Expr class and subclasses.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Primary Expressions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| IntegerLiteral* IntegerLiteral::Clone(ASTContext &C) const {
 | |
|   return new (C) IntegerLiteral(Value, getType(), Loc);
 | |
| }
 | |
| 
 | |
| /// getValueAsApproximateDouble - This returns the value as an inaccurate
 | |
| /// double.  Note that this may cause loss of precision, but is useful for
 | |
| /// debugging dumps, etc.
 | |
| double FloatingLiteral::getValueAsApproximateDouble() const {
 | |
|   llvm::APFloat V = getValue();
 | |
|   bool ignored;
 | |
|   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
 | |
|             &ignored);
 | |
|   return V.convertToDouble();
 | |
| }
 | |
| 
 | |
| StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
 | |
|                                      unsigned ByteLength, bool Wide,
 | |
|                                      QualType Ty,
 | |
|                                      const SourceLocation *Loc, 
 | |
|                                      unsigned NumStrs) {
 | |
|   // Allocate enough space for the StringLiteral plus an array of locations for
 | |
|   // any concatenated string tokens.
 | |
|   void *Mem = C.Allocate(sizeof(StringLiteral)+
 | |
|                          sizeof(SourceLocation)*(NumStrs-1),
 | |
|                          llvm::alignof<StringLiteral>());
 | |
|   StringLiteral *SL = new (Mem) StringLiteral(Ty);
 | |
|   
 | |
|   // OPTIMIZE: could allocate this appended to the StringLiteral.
 | |
|   char *AStrData = new (C, 1) char[ByteLength];
 | |
|   memcpy(AStrData, StrData, ByteLength);
 | |
|   SL->StrData = AStrData;
 | |
|   SL->ByteLength = ByteLength;
 | |
|   SL->IsWide = Wide;
 | |
|   SL->TokLocs[0] = Loc[0];
 | |
|   SL->NumConcatenated = NumStrs;
 | |
| 
 | |
|   if (NumStrs != 1)
 | |
|     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
 | |
|   return SL;
 | |
| }
 | |
| 
 | |
| StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
 | |
|   void *Mem = C.Allocate(sizeof(StringLiteral)+
 | |
|                          sizeof(SourceLocation)*(NumStrs-1),
 | |
|                          llvm::alignof<StringLiteral>());
 | |
|   StringLiteral *SL = new (Mem) StringLiteral(QualType());
 | |
|   SL->StrData = 0;
 | |
|   SL->ByteLength = 0;
 | |
|   SL->NumConcatenated = NumStrs;
 | |
|   return SL;
 | |
| }
 | |
| 
 | |
| StringLiteral* StringLiteral::Clone(ASTContext &C) const {
 | |
|   return Create(C, StrData, ByteLength, IsWide, getType(),
 | |
|                 TokLocs, NumConcatenated);
 | |
| }
 | |
| 
 | |
| void StringLiteral::Destroy(ASTContext &C) {
 | |
|   C.Deallocate(const_cast<char*>(StrData));
 | |
|   this->~StringLiteral();
 | |
|   C.Deallocate(this);
 | |
| }
 | |
| 
 | |
| void StringLiteral::setStrData(ASTContext &C, const char *Str, unsigned Len) {
 | |
|   if (StrData)
 | |
|     C.Deallocate(const_cast<char*>(StrData));
 | |
| 
 | |
|   char *AStrData = new (C, 1) char[Len];
 | |
|   memcpy(AStrData, Str, Len);
 | |
|   StrData = AStrData;
 | |
|   ByteLength = Len;
 | |
| }
 | |
| 
 | |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
 | |
| /// corresponds to, e.g. "sizeof" or "[pre]++".
 | |
| const char *UnaryOperator::getOpcodeStr(Opcode Op) {
 | |
|   switch (Op) {
 | |
|   default: assert(0 && "Unknown unary operator");
 | |
|   case PostInc: return "++";
 | |
|   case PostDec: return "--";
 | |
|   case PreInc:  return "++";
 | |
|   case PreDec:  return "--";
 | |
|   case AddrOf:  return "&";
 | |
|   case Deref:   return "*";
 | |
|   case Plus:    return "+";
 | |
|   case Minus:   return "-";
 | |
|   case Not:     return "~";
 | |
|   case LNot:    return "!";
 | |
|   case Real:    return "__real";
 | |
|   case Imag:    return "__imag";
 | |
|   case Extension: return "__extension__";
 | |
|   case OffsetOf: return "__builtin_offsetof";
 | |
|   }
 | |
| }
 | |
| 
 | |
| UnaryOperator::Opcode 
 | |
| UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
 | |
|   switch (OO) {
 | |
|   default: assert(false && "No unary operator for overloaded function");
 | |
|   case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
 | |
|   case OO_MinusMinus: return Postfix ? PostDec : PreDec;
 | |
|   case OO_Amp:        return AddrOf;
 | |
|   case OO_Star:       return Deref;
 | |
|   case OO_Plus:       return Plus;
 | |
|   case OO_Minus:      return Minus;
 | |
|   case OO_Tilde:      return Not;
 | |
|   case OO_Exclaim:    return LNot;
 | |
|   }
 | |
| }
 | |
| 
 | |
| OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
 | |
|   switch (Opc) {
 | |
|   case PostInc: case PreInc: return OO_PlusPlus;
 | |
|   case PostDec: case PreDec: return OO_MinusMinus;
 | |
|   case AddrOf: return OO_Amp;
 | |
|   case Deref: return OO_Star;
 | |
|   case Plus: return OO_Plus;
 | |
|   case Minus: return OO_Minus;
 | |
|   case Not: return OO_Tilde;
 | |
|   case LNot: return OO_Exclaim;
 | |
|   default: return OO_None;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Postfix Operators.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
 | |
|                    unsigned numargs, QualType t, SourceLocation rparenloc)
 | |
|   : Expr(SC, t, 
 | |
|          fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
 | |
|          fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
 | |
|     NumArgs(numargs) {
 | |
|       
 | |
|   SubExprs = new (C) Stmt*[numargs+1];
 | |
|   SubExprs[FN] = fn;
 | |
|   for (unsigned i = 0; i != numargs; ++i)
 | |
|     SubExprs[i+ARGS_START] = args[i];
 | |
| 
 | |
|   RParenLoc = rparenloc;
 | |
| }
 | |
| 
 | |
| CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
 | |
|                    QualType t, SourceLocation rparenloc)
 | |
|   : Expr(CallExprClass, t,
 | |
|          fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
 | |
|          fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
 | |
|     NumArgs(numargs) {
 | |
| 
 | |
|   SubExprs = new (C) Stmt*[numargs+1];
 | |
|   SubExprs[FN] = fn;
 | |
|   for (unsigned i = 0; i != numargs; ++i)
 | |
|     SubExprs[i+ARGS_START] = args[i];
 | |
| 
 | |
|   RParenLoc = rparenloc;
 | |
| }
 | |
| 
 | |
| CallExpr::CallExpr(ASTContext &C, EmptyShell Empty) 
 | |
|   : Expr(CallExprClass, Empty), SubExprs(0), NumArgs(0) { 
 | |
|   SubExprs = new (C) Stmt*[1];
 | |
| }
 | |
| 
 | |
| void CallExpr::Destroy(ASTContext& C) {
 | |
|   DestroyChildren(C);
 | |
|   if (SubExprs) C.Deallocate(SubExprs);
 | |
|   this->~CallExpr();
 | |
|   C.Deallocate(this);
 | |
| }
 | |
| 
 | |
| /// setNumArgs - This changes the number of arguments present in this call.
 | |
| /// Any orphaned expressions are deleted by this, and any new operands are set
 | |
| /// to null.
 | |
| void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
 | |
|   // No change, just return.
 | |
|   if (NumArgs == getNumArgs()) return;
 | |
|   
 | |
|   // If shrinking # arguments, just delete the extras and forgot them.
 | |
|   if (NumArgs < getNumArgs()) {
 | |
|     for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
 | |
|       getArg(i)->Destroy(C);
 | |
|     this->NumArgs = NumArgs;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we are growing the # arguments.  New an bigger argument array.
 | |
|   Stmt **NewSubExprs = new Stmt*[NumArgs+1];
 | |
|   // Copy over args.
 | |
|   for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
 | |
|     NewSubExprs[i] = SubExprs[i];
 | |
|   // Null out new args.
 | |
|   for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
 | |
|     NewSubExprs[i] = 0;
 | |
|   
 | |
|   if (SubExprs) C.Deallocate(SubExprs);
 | |
|   SubExprs = NewSubExprs;
 | |
|   this->NumArgs = NumArgs;
 | |
| }
 | |
| 
 | |
| /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
 | |
| /// not, return 0.
 | |
| unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
 | |
|   // All simple function calls (e.g. func()) are implicitly cast to pointer to
 | |
|   // function. As a result, we try and obtain the DeclRefExpr from the 
 | |
|   // ImplicitCastExpr.
 | |
|   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
 | |
|   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
 | |
|     return 0;
 | |
|   
 | |
|   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
 | |
|   if (!DRE)
 | |
|     return 0;
 | |
|   
 | |
|   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
 | |
|   if (!FDecl)
 | |
|     return 0;
 | |
|   
 | |
|   if (!FDecl->getIdentifier())
 | |
|     return 0;
 | |
| 
 | |
|   return FDecl->getBuiltinID(Context);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
 | |
| /// corresponds to, e.g. "<<=".
 | |
| const char *BinaryOperator::getOpcodeStr(Opcode Op) {
 | |
|   switch (Op) {
 | |
|   case PtrMemD:   return ".*";
 | |
|   case PtrMemI:   return "->*";
 | |
|   case Mul:       return "*";
 | |
|   case Div:       return "/";
 | |
|   case Rem:       return "%";
 | |
|   case Add:       return "+";
 | |
|   case Sub:       return "-";
 | |
|   case Shl:       return "<<";
 | |
|   case Shr:       return ">>";
 | |
|   case LT:        return "<";
 | |
|   case GT:        return ">";
 | |
|   case LE:        return "<=";
 | |
|   case GE:        return ">=";
 | |
|   case EQ:        return "==";
 | |
|   case NE:        return "!=";
 | |
|   case And:       return "&";
 | |
|   case Xor:       return "^";
 | |
|   case Or:        return "|";
 | |
|   case LAnd:      return "&&";
 | |
|   case LOr:       return "||";
 | |
|   case Assign:    return "=";
 | |
|   case MulAssign: return "*=";
 | |
|   case DivAssign: return "/=";
 | |
|   case RemAssign: return "%=";
 | |
|   case AddAssign: return "+=";
 | |
|   case SubAssign: return "-=";
 | |
|   case ShlAssign: return "<<=";
 | |
|   case ShrAssign: return ">>=";
 | |
|   case AndAssign: return "&=";
 | |
|   case XorAssign: return "^=";
 | |
|   case OrAssign:  return "|=";
 | |
|   case Comma:     return ",";
 | |
|   }
 | |
| 
 | |
|   return "";
 | |
| }
 | |
| 
 | |
| BinaryOperator::Opcode 
 | |
| BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
 | |
|   switch (OO) {
 | |
|   default: assert(false && "Not an overloadable binary operator");
 | |
|   case OO_Plus: return Add;
 | |
|   case OO_Minus: return Sub;
 | |
|   case OO_Star: return Mul;
 | |
|   case OO_Slash: return Div;
 | |
|   case OO_Percent: return Rem;
 | |
|   case OO_Caret: return Xor;
 | |
|   case OO_Amp: return And;
 | |
|   case OO_Pipe: return Or;
 | |
|   case OO_Equal: return Assign;
 | |
|   case OO_Less: return LT;
 | |
|   case OO_Greater: return GT;
 | |
|   case OO_PlusEqual: return AddAssign;
 | |
|   case OO_MinusEqual: return SubAssign;
 | |
|   case OO_StarEqual: return MulAssign;
 | |
|   case OO_SlashEqual: return DivAssign;
 | |
|   case OO_PercentEqual: return RemAssign;
 | |
|   case OO_CaretEqual: return XorAssign;
 | |
|   case OO_AmpEqual: return AndAssign;
 | |
|   case OO_PipeEqual: return OrAssign;
 | |
|   case OO_LessLess: return Shl;
 | |
|   case OO_GreaterGreater: return Shr;
 | |
|   case OO_LessLessEqual: return ShlAssign;
 | |
|   case OO_GreaterGreaterEqual: return ShrAssign;
 | |
|   case OO_EqualEqual: return EQ;
 | |
|   case OO_ExclaimEqual: return NE;
 | |
|   case OO_LessEqual: return LE;
 | |
|   case OO_GreaterEqual: return GE;
 | |
|   case OO_AmpAmp: return LAnd;
 | |
|   case OO_PipePipe: return LOr;
 | |
|   case OO_Comma: return Comma;
 | |
|   case OO_ArrowStar: return PtrMemI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
 | |
|   static const OverloadedOperatorKind OverOps[] = {
 | |
|     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
 | |
|     OO_Star, OO_Slash, OO_Percent,
 | |
|     OO_Plus, OO_Minus,
 | |
|     OO_LessLess, OO_GreaterGreater,
 | |
|     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
 | |
|     OO_EqualEqual, OO_ExclaimEqual,
 | |
|     OO_Amp,
 | |
|     OO_Caret,
 | |
|     OO_Pipe,
 | |
|     OO_AmpAmp,
 | |
|     OO_PipePipe,
 | |
|     OO_Equal, OO_StarEqual,
 | |
|     OO_SlashEqual, OO_PercentEqual,
 | |
|     OO_PlusEqual, OO_MinusEqual,
 | |
|     OO_LessLessEqual, OO_GreaterGreaterEqual,
 | |
|     OO_AmpEqual, OO_CaretEqual,
 | |
|     OO_PipeEqual,
 | |
|     OO_Comma
 | |
|   };
 | |
|   return OverOps[Opc];
 | |
| }
 | |
| 
 | |
| InitListExpr::InitListExpr(SourceLocation lbraceloc, 
 | |
|                            Expr **initExprs, unsigned numInits,
 | |
|                            SourceLocation rbraceloc)
 | |
|   : Expr(InitListExprClass, QualType()),
 | |
|     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), 
 | |
|     UnionFieldInit(0), HadArrayRangeDesignator(false) {
 | |
| 
 | |
|   InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
 | |
| }
 | |
| 
 | |
| void InitListExpr::reserveInits(unsigned NumInits) {
 | |
|   if (NumInits > InitExprs.size())
 | |
|     InitExprs.reserve(NumInits);
 | |
| }
 | |
| 
 | |
| void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
 | |
|   for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
 | |
|        Idx < LastIdx; ++Idx)
 | |
|     InitExprs[Idx]->Destroy(Context);
 | |
|   InitExprs.resize(NumInits, 0);
 | |
| }
 | |
| 
 | |
| Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
 | |
|   if (Init >= InitExprs.size()) {
 | |
|     InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
 | |
|     InitExprs.back() = expr;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
 | |
|   InitExprs[Init] = expr;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// getFunctionType - Return the underlying function type for this block.
 | |
| ///
 | |
| const FunctionType *BlockExpr::getFunctionType() const {
 | |
|   return getType()->getAsBlockPointerType()->
 | |
|                     getPointeeType()->getAsFunctionType();
 | |
| }
 | |
| 
 | |
| SourceLocation BlockExpr::getCaretLocation() const { 
 | |
|   return TheBlock->getCaretLocation(); 
 | |
| }
 | |
| const Stmt *BlockExpr::getBody() const { 
 | |
|   return TheBlock->getBody();
 | |
| }
 | |
| Stmt *BlockExpr::getBody() { 
 | |
|   return TheBlock->getBody(); 
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Generic Expression Routines
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isUnusedResultAWarning - Return true if this immediate expression should
 | |
| /// be warned about if the result is unused.  If so, fill in Loc and Ranges
 | |
| /// with location to warn on and the source range[s] to report with the
 | |
| /// warning.
 | |
| bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
 | |
|                                   SourceRange &R2) const {
 | |
|   switch (getStmtClass()) {
 | |
|   default:
 | |
|     Loc = getExprLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
|   case ParenExprClass:
 | |
|     return cast<ParenExpr>(this)->getSubExpr()->
 | |
|       isUnusedResultAWarning(Loc, R1, R2);
 | |
|   case UnaryOperatorClass: {
 | |
|     const UnaryOperator *UO = cast<UnaryOperator>(this);
 | |
|     
 | |
|     switch (UO->getOpcode()) {
 | |
|     default: break;
 | |
|     case UnaryOperator::PostInc:
 | |
|     case UnaryOperator::PostDec:
 | |
|     case UnaryOperator::PreInc:
 | |
|     case UnaryOperator::PreDec:                 // ++/--
 | |
|       return false;  // Not a warning.
 | |
|     case UnaryOperator::Deref:
 | |
|       // Dereferencing a volatile pointer is a side-effect.
 | |
|       if (getType().isVolatileQualified())
 | |
|         return false;
 | |
|       break;
 | |
|     case UnaryOperator::Real:
 | |
|     case UnaryOperator::Imag:
 | |
|       // accessing a piece of a volatile complex is a side-effect.
 | |
|       if (UO->getSubExpr()->getType().isVolatileQualified())
 | |
|         return false;
 | |
|       break;
 | |
|     case UnaryOperator::Extension:
 | |
|       return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
 | |
|     }
 | |
|     Loc = UO->getOperatorLoc();
 | |
|     R1 = UO->getSubExpr()->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case BinaryOperatorClass: {
 | |
|     const BinaryOperator *BO = cast<BinaryOperator>(this);
 | |
|     // Consider comma to have side effects if the LHS or RHS does.
 | |
|     if (BO->getOpcode() == BinaryOperator::Comma)
 | |
|       return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) ||
 | |
|              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2);
 | |
|       
 | |
|     if (BO->isAssignmentOp())
 | |
|       return false;
 | |
|     Loc = BO->getOperatorLoc();
 | |
|     R1 = BO->getLHS()->getSourceRange();
 | |
|     R2 = BO->getRHS()->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case CompoundAssignOperatorClass:
 | |
|     return false;
 | |
| 
 | |
|   case ConditionalOperatorClass: {
 | |
|     // The condition must be evaluated, but if either the LHS or RHS is a
 | |
|     // warning, warn about them.
 | |
|     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
 | |
|     if (Exp->getLHS() && Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2))
 | |
|       return true;
 | |
|     return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2);
 | |
|   }
 | |
| 
 | |
|   case MemberExprClass:
 | |
|     // If the base pointer or element is to a volatile pointer/field, accessing
 | |
|     // it is a side effect.
 | |
|     if (getType().isVolatileQualified())
 | |
|       return false;
 | |
|     Loc = cast<MemberExpr>(this)->getMemberLoc();
 | |
|     R1 = SourceRange(Loc, Loc);
 | |
|     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
 | |
|     return true;
 | |
|       
 | |
|   case ArraySubscriptExprClass:
 | |
|     // If the base pointer or element is to a volatile pointer/field, accessing
 | |
|     // it is a side effect.
 | |
|     if (getType().isVolatileQualified())
 | |
|       return false;
 | |
|     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
 | |
|     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
 | |
|     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
 | |
|     return true;
 | |
| 
 | |
|   case CallExprClass:
 | |
|   case CXXOperatorCallExprClass:
 | |
|   case CXXMemberCallExprClass: {
 | |
|     // If this is a direct call, get the callee.
 | |
|     const CallExpr *CE = cast<CallExpr>(this);
 | |
|     const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts();
 | |
|     if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) {
 | |
|       // If the callee has attribute pure, const, or warn_unused_result, warn
 | |
|       // about it. void foo() { strlen("bar"); } should warn.
 | |
|       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl()))
 | |
|         if (FD->getAttr<WarnUnusedResultAttr>() ||
 | |
|             FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
 | |
|           Loc = CE->getCallee()->getLocStart();
 | |
|           R1 = CE->getCallee()->getSourceRange();
 | |
|           
 | |
|           if (unsigned NumArgs = CE->getNumArgs())
 | |
|             R2 = SourceRange(CE->getArg(0)->getLocStart(),
 | |
|                              CE->getArg(NumArgs-1)->getLocEnd());
 | |
|           return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case ObjCMessageExprClass:
 | |
|     return false;
 | |
|   case StmtExprClass: {
 | |
|     // Statement exprs don't logically have side effects themselves, but are
 | |
|     // sometimes used in macros in ways that give them a type that is unused.
 | |
|     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
 | |
|     // however, if the result of the stmt expr is dead, we don't want to emit a
 | |
|     // warning.
 | |
|     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
 | |
|     if (!CS->body_empty())
 | |
|       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
 | |
|         return E->isUnusedResultAWarning(Loc, R1, R2);
 | |
|     
 | |
|     Loc = cast<StmtExpr>(this)->getLParenLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case CStyleCastExprClass:
 | |
|     // If this is a cast to void, check the operand.  Otherwise, the result of
 | |
|     // the cast is unused.
 | |
|     if (getType()->isVoidType())
 | |
|       return cast<CastExpr>(this)->getSubExpr()->isUnusedResultAWarning(Loc,
 | |
|                                                                         R1, R2);
 | |
|     Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
 | |
|     R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
 | |
|     return true;
 | |
|   case CXXFunctionalCastExprClass:
 | |
|     // If this is a cast to void, check the operand.  Otherwise, the result of
 | |
|     // the cast is unused.
 | |
|     if (getType()->isVoidType())
 | |
|       return cast<CastExpr>(this)->getSubExpr()->isUnusedResultAWarning(Loc,
 | |
|                                                                         R1, R2);
 | |
|     Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
 | |
|     R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
 | |
|     return true;
 | |
|       
 | |
|   case ImplicitCastExprClass:
 | |
|     // Check the operand, since implicit casts are inserted by Sema
 | |
|     return cast<ImplicitCastExpr>(this)
 | |
|       ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
 | |
| 
 | |
|   case CXXDefaultArgExprClass:
 | |
|     return cast<CXXDefaultArgExpr>(this)
 | |
|       ->getExpr()->isUnusedResultAWarning(Loc, R1, R2);
 | |
| 
 | |
|   case CXXNewExprClass:
 | |
|     // FIXME: In theory, there might be new expressions that don't have side
 | |
|     // effects (e.g. a placement new with an uninitialized POD).
 | |
|   case CXXDeleteExprClass:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DeclCanBeLvalue - Determine whether the given declaration can be
 | |
| /// an lvalue. This is a helper routine for isLvalue.
 | |
| static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
 | |
|   // C++ [temp.param]p6:
 | |
|   //   A non-type non-reference template-parameter is not an lvalue.
 | |
|   if (const NonTypeTemplateParmDecl *NTTParm 
 | |
|         = dyn_cast<NonTypeTemplateParmDecl>(Decl))
 | |
|     return NTTParm->getType()->isReferenceType();
 | |
| 
 | |
|   return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
 | |
|     // C++ 3.10p2: An lvalue refers to an object or function.
 | |
|     (Ctx.getLangOptions().CPlusPlus &&
 | |
|      (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl)));
 | |
| }
 | |
| 
 | |
| /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
 | |
| /// incomplete type other than void. Nonarray expressions that can be lvalues:
 | |
| ///  - name, where name must be a variable
 | |
| ///  - e[i]
 | |
| ///  - (e), where e must be an lvalue
 | |
| ///  - e.name, where e must be an lvalue
 | |
| ///  - e->name
 | |
| ///  - *e, the type of e cannot be a function type
 | |
| ///  - string-constant
 | |
| ///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
 | |
| ///  - reference type [C++ [expr]]
 | |
| ///
 | |
| Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
 | |
|   assert(!TR->isReferenceType() && "Expressions can't have reference type.");
 | |
| 
 | |
|   isLvalueResult Res = isLvalueInternal(Ctx);
 | |
|   if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
 | |
|     return Res;
 | |
| 
 | |
|   // first, check the type (C99 6.3.2.1). Expressions with function
 | |
|   // type in C are not lvalues, but they can be lvalues in C++.
 | |
|   if (TR->isFunctionType())
 | |
|     return LV_NotObjectType;
 | |
| 
 | |
|   // Allow qualified void which is an incomplete type other than void (yuck).
 | |
|   if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
 | |
|     return LV_IncompleteVoidType;
 | |
| 
 | |
|   return LV_Valid;
 | |
| }
 | |
| 
 | |
| // Check whether the expression can be sanely treated like an l-value
 | |
| Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
 | |
|   switch (getStmtClass()) {
 | |
|   case StringLiteralClass:  // C99 6.5.1p4
 | |
|   case ObjCEncodeExprClass: // @encode behaves like its string in every way.
 | |
|     return LV_Valid;
 | |
|   case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
 | |
|     // For vectors, make sure base is an lvalue (i.e. not a function call).
 | |
|     if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
 | |
|       return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
 | |
|     return LV_Valid;
 | |
|   case DeclRefExprClass: 
 | |
|   case QualifiedDeclRefExprClass: { // C99 6.5.1p2
 | |
|     const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
 | |
|     if (DeclCanBeLvalue(RefdDecl, Ctx))
 | |
|       return LV_Valid;
 | |
|     break;
 | |
|   }
 | |
|   case BlockDeclRefExprClass: {
 | |
|     const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
 | |
|     if (isa<VarDecl>(BDR->getDecl()))
 | |
|       return LV_Valid;
 | |
|     break;
 | |
|   }
 | |
|   case MemberExprClass: { 
 | |
|     const MemberExpr *m = cast<MemberExpr>(this);
 | |
|     if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
 | |
|       NamedDecl *Member = m->getMemberDecl();
 | |
|       // C++ [expr.ref]p4:
 | |
|       //   If E2 is declared to have type "reference to T", then E1.E2
 | |
|       //   is an lvalue.
 | |
|       if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
 | |
|         if (Value->getType()->isReferenceType())
 | |
|           return LV_Valid;
 | |
| 
 | |
|       //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
 | |
|       if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
 | |
|         return LV_Valid;
 | |
| 
 | |
|       //   -- If E2 is a non-static data member [...]. If E1 is an
 | |
|       //      lvalue, then E1.E2 is an lvalue.
 | |
|       if (isa<FieldDecl>(Member))
 | |
|         return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
 | |
| 
 | |
|       //   -- If it refers to a static member function [...], then
 | |
|       //      E1.E2 is an lvalue.
 | |
|       //   -- Otherwise, if E1.E2 refers to a non-static member
 | |
|       //      function [...], then E1.E2 is not an lvalue.
 | |
|       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
 | |
|         return Method->isStatic()? LV_Valid : LV_MemberFunction;
 | |
| 
 | |
|       //   -- If E2 is a member enumerator [...], the expression E1.E2
 | |
|       //      is not an lvalue.
 | |
|       if (isa<EnumConstantDecl>(Member))
 | |
|         return LV_InvalidExpression;
 | |
| 
 | |
|         // Not an lvalue.
 | |
|       return LV_InvalidExpression;
 | |
|     } 
 | |
| 
 | |
|     // C99 6.5.2.3p4
 | |
|     return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
 | |
|   }
 | |
|   case UnaryOperatorClass:
 | |
|     if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
 | |
|       return LV_Valid; // C99 6.5.3p4
 | |
| 
 | |
|     if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
 | |
|         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
 | |
|         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
 | |
|       return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
 | |
| 
 | |
|     if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
 | |
|         (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
 | |
|          cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
 | |
|       return LV_Valid;
 | |
|     break;
 | |
|   case ImplicitCastExprClass:
 | |
|     return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid 
 | |
|                                                        : LV_InvalidExpression;
 | |
|   case ParenExprClass: // C99 6.5.1p5
 | |
|     return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
 | |
|   case BinaryOperatorClass:
 | |
|   case CompoundAssignOperatorClass: {
 | |
|     const BinaryOperator *BinOp = cast<BinaryOperator>(this);
 | |
| 
 | |
|     if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
 | |
|         BinOp->getOpcode() == BinaryOperator::Comma)
 | |
|       return BinOp->getRHS()->isLvalue(Ctx);
 | |
| 
 | |
|     // C++ [expr.mptr.oper]p6
 | |
|     if ((BinOp->getOpcode() == BinaryOperator::PtrMemD ||
 | |
|          BinOp->getOpcode() == BinaryOperator::PtrMemI) &&
 | |
|         !BinOp->getType()->isFunctionType())
 | |
|       return BinOp->getLHS()->isLvalue(Ctx);
 | |
| 
 | |
|     if (!BinOp->isAssignmentOp())
 | |
|       return LV_InvalidExpression;
 | |
| 
 | |
|     if (Ctx.getLangOptions().CPlusPlus)
 | |
|       // C++ [expr.ass]p1: 
 | |
|       //   The result of an assignment operation [...] is an lvalue.
 | |
|       return LV_Valid;
 | |
| 
 | |
| 
 | |
|     // C99 6.5.16:
 | |
|     //   An assignment expression [...] is not an lvalue.
 | |
|     return LV_InvalidExpression;
 | |
|   }
 | |
|   case CallExprClass: 
 | |
|   case CXXOperatorCallExprClass:
 | |
|   case CXXMemberCallExprClass: {
 | |
|     // C++0x [expr.call]p10
 | |
|     //   A function call is an lvalue if and only if the result type
 | |
|     //   is an lvalue reference.
 | |
|     QualType CalleeType = cast<CallExpr>(this)->getCallee()->getType();
 | |
|     if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
 | |
|       CalleeType = FnTypePtr->getPointeeType();
 | |
|     if (const FunctionType *FnType = CalleeType->getAsFunctionType())
 | |
|       if (FnType->getResultType()->isLValueReferenceType())
 | |
|         return LV_Valid;
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case CompoundLiteralExprClass: // C99 6.5.2.5p5
 | |
|     return LV_Valid;
 | |
|   case ChooseExprClass:
 | |
|     // __builtin_choose_expr is an lvalue if the selected operand is.
 | |
|     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
 | |
|   case ExtVectorElementExprClass:
 | |
|     if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
 | |
|       return LV_DuplicateVectorComponents;
 | |
|     return LV_Valid;
 | |
|   case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
 | |
|     return LV_Valid;
 | |
|   case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
 | |
|     return LV_Valid;
 | |
|   case ObjCKVCRefExprClass: // FIXME: check if read-only property.
 | |
|     return LV_Valid;
 | |
|   case PredefinedExprClass:
 | |
|     return LV_Valid;
 | |
|   case CXXDefaultArgExprClass:
 | |
|     return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
 | |
|   case CXXConditionDeclExprClass:
 | |
|     return LV_Valid;
 | |
|   case CStyleCastExprClass:
 | |
|   case CXXFunctionalCastExprClass:
 | |
|   case CXXStaticCastExprClass:
 | |
|   case CXXDynamicCastExprClass:
 | |
|   case CXXReinterpretCastExprClass:
 | |
|   case CXXConstCastExprClass:
 | |
|     // The result of an explicit cast is an lvalue if the type we are
 | |
|     // casting to is an lvalue reference type. See C++ [expr.cast]p1,
 | |
|     // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
 | |
|     // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
 | |
|     if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
 | |
|           isLValueReferenceType())
 | |
|       return LV_Valid;
 | |
|     break;
 | |
|   case CXXTypeidExprClass:
 | |
|     // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
 | |
|     return LV_Valid;
 | |
|   case ConditionalOperatorClass: {
 | |
|     // Complicated handling is only for C++.
 | |
|     if (!Ctx.getLangOptions().CPlusPlus)
 | |
|       return LV_InvalidExpression;
 | |
| 
 | |
|     // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
 | |
|     // everywhere there's an object converted to an rvalue. Also, any other
 | |
|     // casts should be wrapped by ImplicitCastExprs. There's just the special
 | |
|     // case involving throws to work out.
 | |
|     const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
 | |
|     Expr *LHS = Cond->getLHS();
 | |
|     Expr *RHS = Cond->getRHS();
 | |
|     // C++0x 5.16p2
 | |
|     //   If either the second or the third operand has type (cv) void, [...]
 | |
|     //   the result [...] is an rvalue.
 | |
|     if (LHS->getType()->isVoidType() || RHS->getType()->isVoidType())
 | |
|       return LV_InvalidExpression;
 | |
| 
 | |
|     // Both sides must be lvalues for the result to be an lvalue.
 | |
|     if (LHS->isLvalue(Ctx) != LV_Valid || RHS->isLvalue(Ctx) != LV_Valid)
 | |
|       return LV_InvalidExpression;
 | |
| 
 | |
|     // That's it.
 | |
|     return LV_Valid;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return LV_InvalidExpression;
 | |
| }
 | |
| 
 | |
| /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
 | |
| /// does not have an incomplete type, does not have a const-qualified type, and
 | |
| /// if it is a structure or union, does not have any member (including, 
 | |
| /// recursively, any member or element of all contained aggregates or unions)
 | |
| /// with a const-qualified type.
 | |
| Expr::isModifiableLvalueResult 
 | |
| Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
 | |
|   isLvalueResult lvalResult = isLvalue(Ctx);
 | |
|     
 | |
|   switch (lvalResult) {
 | |
|   case LV_Valid: 
 | |
|     // C++ 3.10p11: Functions cannot be modified, but pointers to
 | |
|     // functions can be modifiable.
 | |
|     if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
 | |
|       return MLV_NotObjectType;
 | |
|     break;
 | |
| 
 | |
|   case LV_NotObjectType: return MLV_NotObjectType;
 | |
|   case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
 | |
|   case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
 | |
|   case LV_InvalidExpression:
 | |
|     // If the top level is a C-style cast, and the subexpression is a valid
 | |
|     // lvalue, then this is probably a use of the old-school "cast as lvalue"
 | |
|     // GCC extension.  We don't support it, but we want to produce good
 | |
|     // diagnostics when it happens so that the user knows why.
 | |
|     if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
 | |
|       if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
 | |
|         if (Loc)
 | |
|           *Loc = CE->getLParenLoc();
 | |
|         return MLV_LValueCast;
 | |
|       }
 | |
|     }
 | |
|     return MLV_InvalidExpression;
 | |
|   case LV_MemberFunction: return MLV_MemberFunction;
 | |
|   }
 | |
| 
 | |
|   // The following is illegal:
 | |
|   //   void takeclosure(void (^C)(void));
 | |
|   //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
 | |
|   //
 | |
|   if (isa<BlockDeclRefExpr>(this)) {
 | |
|     const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
 | |
|     if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
 | |
|       return MLV_NotBlockQualified;
 | |
|   }
 | |
| 
 | |
|   QualType CT = Ctx.getCanonicalType(getType());
 | |
|   
 | |
|   if (CT.isConstQualified())
 | |
|     return MLV_ConstQualified;
 | |
|   if (CT->isArrayType())
 | |
|     return MLV_ArrayType;
 | |
|   if (CT->isIncompleteType())
 | |
|     return MLV_IncompleteType;
 | |
|     
 | |
|   if (const RecordType *r = CT->getAsRecordType()) {
 | |
|     if (r->hasConstFields()) 
 | |
|       return MLV_ConstQualified;
 | |
|   }
 | |
|   
 | |
|   // Assigning to an 'implicit' property?
 | |
|   else if (isa<ObjCKVCRefExpr>(this)) {
 | |
|     const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
 | |
|     if (KVCExpr->getSetterMethod() == 0)
 | |
|       return MLV_NoSetterProperty;
 | |
|   }
 | |
|   return MLV_Valid;    
 | |
| }
 | |
| 
 | |
| /// hasGlobalStorage - Return true if this expression has static storage
 | |
| /// duration.  This means that the address of this expression is a link-time
 | |
| /// constant.
 | |
| bool Expr::hasGlobalStorage() const {
 | |
|   switch (getStmtClass()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case BlockExprClass:
 | |
|     return true;
 | |
|   case ParenExprClass:
 | |
|     return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
 | |
|   case ImplicitCastExprClass:
 | |
|     return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
 | |
|   case CompoundLiteralExprClass:
 | |
|     return cast<CompoundLiteralExpr>(this)->isFileScope();
 | |
|   case DeclRefExprClass:
 | |
|   case QualifiedDeclRefExprClass: {
 | |
|     const Decl *D = cast<DeclRefExpr>(this)->getDecl();
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|       return VD->hasGlobalStorage();
 | |
|     if (isa<FunctionDecl>(D))
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
|   case MemberExprClass: {
 | |
|     const MemberExpr *M = cast<MemberExpr>(this);
 | |
|     return !M->isArrow() && M->getBase()->hasGlobalStorage();
 | |
|   }
 | |
|   case ArraySubscriptExprClass:
 | |
|     return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
 | |
|   case PredefinedExprClass:
 | |
|     return true;
 | |
|   case CXXDefaultArgExprClass:
 | |
|     return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isOBJCGCCandidate - Check if an expression is objc gc'able.
 | |
| ///
 | |
| bool Expr::isOBJCGCCandidate() const {
 | |
|   switch (getStmtClass()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ObjCIvarRefExprClass:
 | |
|     return true;
 | |
|   case Expr::UnaryOperatorClass:
 | |
|     return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate();
 | |
|   case ParenExprClass:
 | |
|     return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate();
 | |
|   case ImplicitCastExprClass:
 | |
|     return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate();
 | |
|   case CStyleCastExprClass:
 | |
|     return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate();
 | |
|   case DeclRefExprClass:
 | |
|   case QualifiedDeclRefExprClass: {
 | |
|     const Decl *D = cast<DeclRefExpr>(this)->getDecl();
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|       return VD->hasGlobalStorage();
 | |
|     return false;
 | |
|   }
 | |
|   case MemberExprClass: {
 | |
|     const MemberExpr *M = cast<MemberExpr>(this);
 | |
|     return M->getBase()->isOBJCGCCandidate();
 | |
|   }
 | |
|   case ArraySubscriptExprClass:
 | |
|     return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate();
 | |
|   }
 | |
| }
 | |
| Expr* Expr::IgnoreParens() {
 | |
|   Expr* E = this;
 | |
|   while (ParenExpr* P = dyn_cast<ParenExpr>(E))
 | |
|     E = P->getSubExpr();
 | |
|   
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
 | |
| /// or CastExprs or ImplicitCastExprs, returning their operand.
 | |
| Expr *Expr::IgnoreParenCasts() {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     if (ParenExpr *P = dyn_cast<ParenExpr>(E))
 | |
|       E = P->getSubExpr();
 | |
|     else if (CastExpr *P = dyn_cast<CastExpr>(E))
 | |
|       E = P->getSubExpr();
 | |
|     else
 | |
|       return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
 | |
| /// value (including ptr->int casts of the same size).  Strip off any
 | |
| /// ParenExpr or CastExprs, returning their operand.
 | |
| Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
 | |
|       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
 | |
|       // ptr<->int casts of the same width.  We also ignore all identify casts.
 | |
|       Expr *SE = P->getSubExpr();
 | |
|       
 | |
|       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
 | |
|         E = SE;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
 | |
|           (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
 | |
|           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
 | |
|         E = SE;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// hasAnyTypeDependentArguments - Determines if any of the expressions
 | |
| /// in Exprs is type-dependent.
 | |
| bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
 | |
|   for (unsigned I = 0; I < NumExprs; ++I)
 | |
|     if (Exprs[I]->isTypeDependent())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasAnyValueDependentArguments - Determines if any of the expressions
 | |
| /// in Exprs is value-dependent.
 | |
| bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
 | |
|   for (unsigned I = 0; I < NumExprs; ++I)
 | |
|     if (Exprs[I]->isValueDependent())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Expr::isConstantInitializer(ASTContext &Ctx) const {
 | |
|   // This function is attempting whether an expression is an initializer
 | |
|   // which can be evaluated at compile-time.  isEvaluatable handles most
 | |
|   // of the cases, but it can't deal with some initializer-specific
 | |
|   // expressions, and it can't deal with aggregates; we deal with those here,
 | |
|   // and fall back to isEvaluatable for the other cases.
 | |
| 
 | |
|   // FIXME: This function assumes the variable being assigned to
 | |
|   // isn't a reference type!
 | |
| 
 | |
|   switch (getStmtClass()) {
 | |
|   default: break;
 | |
|   case StringLiteralClass:
 | |
|   case ObjCEncodeExprClass:
 | |
|     return true;
 | |
|   case CompoundLiteralExprClass: {
 | |
|     // This handles gcc's extension that allows global initializers like
 | |
|     // "struct x {int x;} x = (struct x) {};".
 | |
|     // FIXME: This accepts other cases it shouldn't!
 | |
|     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
 | |
|     return Exp->isConstantInitializer(Ctx);
 | |
|   }
 | |
|   case InitListExprClass: {
 | |
|     // FIXME: This doesn't deal with fields with reference types correctly.
 | |
|     // FIXME: This incorrectly allows pointers cast to integers to be assigned
 | |
|     // to bitfields.
 | |
|     const InitListExpr *Exp = cast<InitListExpr>(this);
 | |
|     unsigned numInits = Exp->getNumInits();
 | |
|     for (unsigned i = 0; i < numInits; i++) {
 | |
|       if (!Exp->getInit(i)->isConstantInitializer(Ctx)) 
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case ImplicitValueInitExprClass:
 | |
|     return true;
 | |
|   case ParenExprClass: {
 | |
|     return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
 | |
|   }
 | |
|   case UnaryOperatorClass: {
 | |
|     const UnaryOperator* Exp = cast<UnaryOperator>(this);
 | |
|     if (Exp->getOpcode() == UnaryOperator::Extension)
 | |
|       return Exp->getSubExpr()->isConstantInitializer(Ctx);
 | |
|     break;
 | |
|   }
 | |
|   case ImplicitCastExprClass:
 | |
|   case CStyleCastExprClass:
 | |
|     // Handle casts with a destination that's a struct or union; this
 | |
|     // deals with both the gcc no-op struct cast extension and the
 | |
|     // cast-to-union extension.
 | |
|     if (getType()->isRecordType())
 | |
|       return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return isEvaluatable(Ctx);
 | |
| }
 | |
| 
 | |
| /// isIntegerConstantExpr - this recursive routine will test if an expression is
 | |
| /// an integer constant expression.
 | |
| 
 | |
| /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
 | |
| /// comma, etc
 | |
| ///
 | |
| /// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
 | |
| /// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
 | |
| /// cast+dereference.
 | |
| 
 | |
| // CheckICE - This function does the fundamental ICE checking: the returned
 | |
| // ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
 | |
| // Note that to reduce code duplication, this helper does no evaluation
 | |
| // itself; the caller checks whether the expression is evaluatable, and 
 | |
| // in the rare cases where CheckICE actually cares about the evaluated
 | |
| // value, it calls into Evalute.  
 | |
| //
 | |
| // Meanings of Val:
 | |
| // 0: This expression is an ICE if it can be evaluated by Evaluate.
 | |
| // 1: This expression is not an ICE, but if it isn't evaluated, it's
 | |
| //    a legal subexpression for an ICE. This return value is used to handle
 | |
| //    the comma operator in C99 mode.
 | |
| // 2: This expression is not an ICE, and is not a legal subexpression for one.
 | |
| 
 | |
| struct ICEDiag {
 | |
|   unsigned Val;
 | |
|   SourceLocation Loc;
 | |
| 
 | |
|   public:
 | |
|   ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
 | |
|   ICEDiag() : Val(0) {}
 | |
| };
 | |
| 
 | |
| ICEDiag NoDiag() { return ICEDiag(); }
 | |
| 
 | |
| static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
 | |
|   Expr::EvalResult EVResult;
 | |
|   if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
 | |
|       !EVResult.Val.isInt()) {
 | |
|     return ICEDiag(2, E->getLocStart());
 | |
|   }
 | |
|   return NoDiag();
 | |
| }
 | |
| 
 | |
| static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
 | |
|   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
 | |
|   if (!E->getType()->isIntegralType()) {
 | |
|     return ICEDiag(2, E->getLocStart());
 | |
|   }
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
|   default:
 | |
|     return ICEDiag(2, E->getLocStart());
 | |
|   case Expr::ParenExprClass:
 | |
|     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
 | |
|   case Expr::IntegerLiteralClass:
 | |
|   case Expr::CharacterLiteralClass:
 | |
|   case Expr::CXXBoolLiteralExprClass:
 | |
|   case Expr::CXXZeroInitValueExprClass:
 | |
|   case Expr::TypesCompatibleExprClass:
 | |
|   case Expr::UnaryTypeTraitExprClass:
 | |
|     return NoDiag();
 | |
|   case Expr::CallExprClass: 
 | |
|   case Expr::CXXOperatorCallExprClass: {
 | |
|     const CallExpr *CE = cast<CallExpr>(E);
 | |
|     if (CE->isBuiltinCall(Ctx))
 | |
|       return CheckEvalInICE(E, Ctx);
 | |
|     return ICEDiag(2, E->getLocStart());
 | |
|   }
 | |
|   case Expr::DeclRefExprClass:
 | |
|   case Expr::QualifiedDeclRefExprClass:
 | |
|     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
 | |
|       return NoDiag();
 | |
|     if (Ctx.getLangOptions().CPlusPlus &&
 | |
|         E->getType().getCVRQualifiers() == QualType::Const) {
 | |
|       // C++ 7.1.5.1p2
 | |
|       //   A variable of non-volatile const-qualified integral or enumeration
 | |
|       //   type initialized by an ICE can be used in ICEs.
 | |
|       if (const VarDecl *Dcl =
 | |
|               dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
 | |
|         if (const Expr *Init = Dcl->getInit())
 | |
|           return CheckICE(Init, Ctx);
 | |
|       }
 | |
|     }
 | |
|     return ICEDiag(2, E->getLocStart());
 | |
|   case Expr::UnaryOperatorClass: {
 | |
|     const UnaryOperator *Exp = cast<UnaryOperator>(E);
 | |
|     switch (Exp->getOpcode()) {
 | |
|     default:
 | |
|       return ICEDiag(2, E->getLocStart());
 | |
|     case UnaryOperator::Extension:
 | |
|     case UnaryOperator::LNot:
 | |
|     case UnaryOperator::Plus:
 | |
|     case UnaryOperator::Minus:
 | |
|     case UnaryOperator::Not:
 | |
|     case UnaryOperator::Real:
 | |
|     case UnaryOperator::Imag:
 | |
|       return CheckICE(Exp->getSubExpr(), Ctx);
 | |
|     case UnaryOperator::OffsetOf:
 | |
|       // Note that per C99, offsetof must be an ICE. And AFAIK, using
 | |
|       // Evaluate matches the proposed gcc behavior for cases like
 | |
|       // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
 | |
|       // compliance: we should warn earlier for offsetof expressions with
 | |
|       // array subscripts that aren't ICEs, and if the array subscripts
 | |
|       // are ICEs, the value of the offsetof must be an integer constant.
 | |
|       return CheckEvalInICE(E, Ctx);
 | |
|     }
 | |
|   }
 | |
|   case Expr::SizeOfAlignOfExprClass: {
 | |
|     const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
 | |
|     if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
 | |
|       return ICEDiag(2, E->getLocStart());
 | |
|     return NoDiag();
 | |
|   }
 | |
|   case Expr::BinaryOperatorClass: {
 | |
|     const BinaryOperator *Exp = cast<BinaryOperator>(E);
 | |
|     switch (Exp->getOpcode()) {
 | |
|     default:
 | |
|       return ICEDiag(2, E->getLocStart());
 | |
|     case BinaryOperator::Mul:
 | |
|     case BinaryOperator::Div:
 | |
|     case BinaryOperator::Rem:
 | |
|     case BinaryOperator::Add:
 | |
|     case BinaryOperator::Sub:
 | |
|     case BinaryOperator::Shl:
 | |
|     case BinaryOperator::Shr:
 | |
|     case BinaryOperator::LT:
 | |
|     case BinaryOperator::GT:
 | |
|     case BinaryOperator::LE:
 | |
|     case BinaryOperator::GE:
 | |
|     case BinaryOperator::EQ:
 | |
|     case BinaryOperator::NE:
 | |
|     case BinaryOperator::And:
 | |
|     case BinaryOperator::Xor:
 | |
|     case BinaryOperator::Or:
 | |
|     case BinaryOperator::Comma: {
 | |
|       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
 | |
|       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
 | |
|       if (Exp->getOpcode() == BinaryOperator::Div ||
 | |
|           Exp->getOpcode() == BinaryOperator::Rem) {
 | |
|         // Evaluate gives an error for undefined Div/Rem, so make sure
 | |
|         // we don't evaluate one.
 | |
|         if (LHSResult.Val != 2 && RHSResult.Val != 2) {
 | |
|           llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
 | |
|           if (REval == 0)
 | |
|             return ICEDiag(1, E->getLocStart());
 | |
|           if (REval.isSigned() && REval.isAllOnesValue()) {
 | |
|             llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
 | |
|             if (LEval.isMinSignedValue())
 | |
|               return ICEDiag(1, E->getLocStart());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (Exp->getOpcode() == BinaryOperator::Comma) {
 | |
|         if (Ctx.getLangOptions().C99) {
 | |
|           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
 | |
|           // if it isn't evaluated.
 | |
|           if (LHSResult.Val == 0 && RHSResult.Val == 0)
 | |
|             return ICEDiag(1, E->getLocStart());
 | |
|         } else {
 | |
|           // In both C89 and C++, commas in ICEs are illegal.
 | |
|           return ICEDiag(2, E->getLocStart());
 | |
|         }
 | |
|       }
 | |
|       if (LHSResult.Val >= RHSResult.Val)
 | |
|         return LHSResult;
 | |
|       return RHSResult;
 | |
|     }
 | |
|     case BinaryOperator::LAnd:
 | |
|     case BinaryOperator::LOr: {
 | |
|       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
 | |
|       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
 | |
|       if (LHSResult.Val == 0 && RHSResult.Val == 1) {
 | |
|         // Rare case where the RHS has a comma "side-effect"; we need
 | |
|         // to actually check the condition to see whether the side
 | |
|         // with the comma is evaluated.
 | |
|         if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
 | |
|             (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
 | |
|           return RHSResult;
 | |
|         return NoDiag();
 | |
|       }
 | |
| 
 | |
|       if (LHSResult.Val >= RHSResult.Val)
 | |
|         return LHSResult;
 | |
|       return RHSResult;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   case Expr::ImplicitCastExprClass:
 | |
|   case Expr::CStyleCastExprClass:
 | |
|   case Expr::CXXFunctionalCastExprClass: {
 | |
|     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
 | |
|     if (SubExpr->getType()->isIntegralType())
 | |
|       return CheckICE(SubExpr, Ctx);
 | |
|     if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
 | |
|       return NoDiag();
 | |
|     return ICEDiag(2, E->getLocStart());
 | |
|   }
 | |
|   case Expr::ConditionalOperatorClass: {
 | |
|     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
 | |
|     // If the condition (ignoring parens) is a __builtin_constant_p call, 
 | |
|     // then only the true side is actually considered in an integer constant
 | |
|     // expression, and it is fully evaluated.  This is an important GNU
 | |
|     // extension.  See GCC PR38377 for discussion.
 | |
|     if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
 | |
|       if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
 | |
|         Expr::EvalResult EVResult;
 | |
|         if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
 | |
|             !EVResult.Val.isInt()) {
 | |
|           return ICEDiag(2, E->getLocStart());
 | |
|         }
 | |
|         return NoDiag();
 | |
|       }
 | |
|     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
 | |
|     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
 | |
|     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
 | |
|     if (CondResult.Val == 2)
 | |
|       return CondResult;
 | |
|     if (TrueResult.Val == 2)
 | |
|       return TrueResult;
 | |
|     if (FalseResult.Val == 2)
 | |
|       return FalseResult;
 | |
|     if (CondResult.Val == 1)
 | |
|       return CondResult;
 | |
|     if (TrueResult.Val == 0 && FalseResult.Val == 0)
 | |
|       return NoDiag();
 | |
|     // Rare case where the diagnostics depend on which side is evaluated
 | |
|     // Note that if we get here, CondResult is 0, and at least one of
 | |
|     // TrueResult and FalseResult is non-zero.
 | |
|     if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
 | |
|       return FalseResult;
 | |
|     }
 | |
|     return TrueResult;
 | |
|   }
 | |
|   case Expr::CXXDefaultArgExprClass:
 | |
|     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
 | |
|   case Expr::ChooseExprClass: {
 | |
|     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
 | |
|                                  SourceLocation *Loc, bool isEvaluated) const {
 | |
|   ICEDiag d = CheckICE(this, Ctx);
 | |
|   if (d.Val != 0) {
 | |
|     if (Loc) *Loc = d.Loc;
 | |
|     return false;
 | |
|   }
 | |
|   EvalResult EvalResult;
 | |
|   if (!Evaluate(EvalResult, Ctx))
 | |
|     assert(0 && "ICE cannot be evaluated!");
 | |
|   assert(!EvalResult.HasSideEffects && "ICE with side effects!");
 | |
|   assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
 | |
|   Result = EvalResult.Val.getInt();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
 | |
| /// integer constant expression with the value zero, or if this is one that is
 | |
| /// cast to void*.
 | |
| bool Expr::isNullPointerConstant(ASTContext &Ctx) const
 | |
| {
 | |
|   // Strip off a cast to void*, if it exists. Except in C++.
 | |
|   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
 | |
|     if (!Ctx.getLangOptions().CPlusPlus) {
 | |
|       // Check that it is a cast to void*.
 | |
|       if (const PointerType *PT = CE->getType()->getAsPointerType()) {
 | |
|         QualType Pointee = PT->getPointeeType();
 | |
|         if (Pointee.getCVRQualifiers() == 0 && 
 | |
|             Pointee->isVoidType() &&                              // to void*
 | |
|             CE->getSubExpr()->getType()->isIntegerType())         // from int.
 | |
|           return CE->getSubExpr()->isNullPointerConstant(Ctx);
 | |
|       }
 | |
|     }
 | |
|   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
 | |
|     // Ignore the ImplicitCastExpr type entirely.
 | |
|     return ICE->getSubExpr()->isNullPointerConstant(Ctx);
 | |
|   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
 | |
|     // Accept ((void*)0) as a null pointer constant, as many other
 | |
|     // implementations do.
 | |
|     return PE->getSubExpr()->isNullPointerConstant(Ctx);
 | |
|   } else if (const CXXDefaultArgExpr *DefaultArg 
 | |
|                = dyn_cast<CXXDefaultArgExpr>(this)) {
 | |
|     // See through default argument expressions
 | |
|     return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
 | |
|   } else if (isa<GNUNullExpr>(this)) {
 | |
|     // The GNU __null extension is always a null pointer constant.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // This expression must be an integer type.
 | |
|   if (!getType()->isIntegerType())
 | |
|     return false;
 | |
|   
 | |
|   // If we have an integer constant expression, we need to *evaluate* it and
 | |
|   // test for the value 0.
 | |
|   llvm::APSInt Result;
 | |
|   return isIntegerConstantExpr(Result, Ctx) && Result == 0;
 | |
| }
 | |
| 
 | |
| FieldDecl *Expr::getBitField() {
 | |
|   Expr *E = this->IgnoreParenCasts();
 | |
| 
 | |
|   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
 | |
|     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
 | |
|       if (Field->isBitField())
 | |
|         return Field;
 | |
| 
 | |
|   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
 | |
|     if (BinOp->isAssignmentOp() && BinOp->getLHS())
 | |
|       return BinOp->getLHS()->getBitField();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isArrow - Return true if the base expression is a pointer to vector,
 | |
| /// return false if the base expression is a vector.
 | |
| bool ExtVectorElementExpr::isArrow() const {
 | |
|   return getBase()->getType()->isPointerType();
 | |
| }
 | |
| 
 | |
| unsigned ExtVectorElementExpr::getNumElements() const {
 | |
|   if (const VectorType *VT = getType()->getAsVectorType())
 | |
|     return VT->getNumElements();
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// containsDuplicateElements - Return true if any element access is repeated.
 | |
| bool ExtVectorElementExpr::containsDuplicateElements() const {
 | |
|   const char *compStr = Accessor->getName();
 | |
|   unsigned length = Accessor->getLength();
 | |
| 
 | |
|   // Halving swizzles do not contain duplicate elements.
 | |
|   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || 
 | |
|       !strcmp(compStr, "even") || !strcmp(compStr, "odd"))
 | |
|     return false;
 | |
|   
 | |
|   // Advance past s-char prefix on hex swizzles.
 | |
|   if (*compStr == 's') {
 | |
|     compStr++;
 | |
|     length--;
 | |
|   }
 | |
|   
 | |
|   for (unsigned i = 0; i != length-1; i++) {
 | |
|     const char *s = compStr+i;
 | |
|     for (const char c = *s++; *s; s++)
 | |
|       if (c == *s) 
 | |
|         return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
 | |
| void ExtVectorElementExpr::getEncodedElementAccess(
 | |
|                                   llvm::SmallVectorImpl<unsigned> &Elts) const {
 | |
|   const char *compStr = Accessor->getName();
 | |
|   if (*compStr == 's')
 | |
|     compStr++;
 | |
|  
 | |
|   bool isHi =   !strcmp(compStr, "hi");
 | |
|   bool isLo =   !strcmp(compStr, "lo");
 | |
|   bool isEven = !strcmp(compStr, "even");
 | |
|   bool isOdd  = !strcmp(compStr, "odd");
 | |
|     
 | |
|   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
 | |
|     uint64_t Index;
 | |
|     
 | |
|     if (isHi)
 | |
|       Index = e + i;
 | |
|     else if (isLo)
 | |
|       Index = i;
 | |
|     else if (isEven)
 | |
|       Index = 2 * i;
 | |
|     else if (isOdd)
 | |
|       Index = 2 * i + 1;
 | |
|     else
 | |
|       Index = ExtVectorType::getAccessorIdx(compStr[i]);
 | |
| 
 | |
|     Elts.push_back(Index);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // constructor for instance messages.
 | |
| ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
 | |
|                 QualType retType, ObjCMethodDecl *mproto,
 | |
|                 SourceLocation LBrac, SourceLocation RBrac,
 | |
|                 Expr **ArgExprs, unsigned nargs)
 | |
|   : Expr(ObjCMessageExprClass, retType), SelName(selInfo), 
 | |
|     MethodProto(mproto) {
 | |
|   NumArgs = nargs;
 | |
|   SubExprs = new Stmt*[NumArgs+1];
 | |
|   SubExprs[RECEIVER] = receiver;
 | |
|   if (NumArgs) {
 | |
|     for (unsigned i = 0; i != NumArgs; ++i)
 | |
|       SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
 | |
|   }
 | |
|   LBracloc = LBrac;
 | |
|   RBracloc = RBrac;
 | |
| }
 | |
| 
 | |
| // constructor for class messages. 
 | |
| // FIXME: clsName should be typed to ObjCInterfaceType
 | |
| ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
 | |
|                 QualType retType, ObjCMethodDecl *mproto,
 | |
|                 SourceLocation LBrac, SourceLocation RBrac,
 | |
|                 Expr **ArgExprs, unsigned nargs)
 | |
|   : Expr(ObjCMessageExprClass, retType), SelName(selInfo), 
 | |
|     MethodProto(mproto) {
 | |
|   NumArgs = nargs;
 | |
|   SubExprs = new Stmt*[NumArgs+1];
 | |
|   SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
 | |
|   if (NumArgs) {
 | |
|     for (unsigned i = 0; i != NumArgs; ++i)
 | |
|       SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
 | |
|   }
 | |
|   LBracloc = LBrac;
 | |
|   RBracloc = RBrac;
 | |
| }
 | |
| 
 | |
| // constructor for class messages. 
 | |
| ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
 | |
|                                  QualType retType, ObjCMethodDecl *mproto,
 | |
|                                  SourceLocation LBrac, SourceLocation RBrac,
 | |
|                                  Expr **ArgExprs, unsigned nargs)
 | |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), 
 | |
| MethodProto(mproto) {
 | |
|   NumArgs = nargs;
 | |
|   SubExprs = new Stmt*[NumArgs+1];
 | |
|   SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
 | |
|   if (NumArgs) {
 | |
|     for (unsigned i = 0; i != NumArgs; ++i)
 | |
|       SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
 | |
|   }
 | |
|   LBracloc = LBrac;
 | |
|   RBracloc = RBrac;
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
 | |
|   uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
 | |
|   switch (x & Flags) {
 | |
|     default:
 | |
|       assert(false && "Invalid ObjCMessageExpr.");
 | |
|     case IsInstMeth:
 | |
|       return ClassInfo(0, 0);
 | |
|     case IsClsMethDeclUnknown:
 | |
|       return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
 | |
|     case IsClsMethDeclKnown: {
 | |
|       ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
 | |
|       return ClassInfo(D, D->getIdentifier());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
 | |
|   if (CI.first == 0 && CI.second == 0)
 | |
|     SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
 | |
|   else if (CI.first == 0)
 | |
|     SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
 | |
|   else
 | |
|     SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ChooseExpr::isConditionTrue(ASTContext &C) const {
 | |
|   return getCond()->EvaluateAsInt(C) != 0;
 | |
| }
 | |
| 
 | |
| void ShuffleVectorExpr::setExprs(Expr ** Exprs, unsigned NumExprs) {
 | |
|   if (NumExprs)
 | |
|     delete [] SubExprs;
 | |
|   
 | |
|   SubExprs = new Stmt* [NumExprs];
 | |
|   this->NumExprs = NumExprs;
 | |
|   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
 | |
| }
 | |
| 
 | |
| void SizeOfAlignOfExpr::Destroy(ASTContext& C) {
 | |
|   // Override default behavior of traversing children. If this has a type
 | |
|   // operand and the type is a variable-length array, the child iteration
 | |
|   // will iterate over the size expression. However, this expression belongs
 | |
|   // to the type, not to this, so we don't want to delete it.
 | |
|   // We still want to delete this expression.
 | |
|   if (isArgumentType()) {
 | |
|     this->~SizeOfAlignOfExpr();
 | |
|     C.Deallocate(this);
 | |
|   }
 | |
|   else
 | |
|     Expr::Destroy(C);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DesignatedInitExpr
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
 | |
|   assert(Kind == FieldDesignator && "Only valid on a field designator");
 | |
|   if (Field.NameOrField & 0x01)
 | |
|     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
 | |
|   else
 | |
|     return getField()->getIdentifier();
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators, 
 | |
|                                        const Designator *Designators,
 | |
|                                        SourceLocation EqualOrColonLoc, 
 | |
|                                        bool GNUSyntax,
 | |
|                                        unsigned NumSubExprs)
 | |
|   : Expr(DesignatedInitExprClass, Ty), 
 | |
|     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 
 | |
|     NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { 
 | |
|   this->Designators = new Designator[NumDesignators];
 | |
|   for (unsigned I = 0; I != NumDesignators; ++I)
 | |
|     this->Designators[I] = Designators[I];
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr *
 | |
| DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, 
 | |
|                            unsigned NumDesignators,
 | |
|                            Expr **IndexExprs, unsigned NumIndexExprs,
 | |
|                            SourceLocation ColonOrEqualLoc,
 | |
|                            bool UsesColonSyntax, Expr *Init) {
 | |
|   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
 | |
|                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
 | |
|   DesignatedInitExpr *DIE 
 | |
|     = new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
 | |
|                                    ColonOrEqualLoc, UsesColonSyntax,
 | |
|                                    NumIndexExprs + 1);
 | |
| 
 | |
|   // Fill in the designators
 | |
|   unsigned ExpectedNumSubExprs = 0;
 | |
|   designators_iterator Desig = DIE->designators_begin();
 | |
|   for (unsigned Idx = 0; Idx < NumDesignators; ++Idx, ++Desig) {
 | |
|     if (Designators[Idx].isArrayDesignator())
 | |
|       ++ExpectedNumSubExprs;
 | |
|     else if (Designators[Idx].isArrayRangeDesignator())
 | |
|       ExpectedNumSubExprs += 2;
 | |
|   }
 | |
|   assert(ExpectedNumSubExprs == NumIndexExprs && "Wrong number of indices!");
 | |
| 
 | |
|   // Fill in the subexpressions, including the initializer expression.
 | |
|   child_iterator Child = DIE->child_begin();
 | |
|   *Child++ = Init;
 | |
|   for (unsigned Idx = 0; Idx < NumIndexExprs; ++Idx, ++Child)
 | |
|     *Child = IndexExprs[Idx];
 | |
| 
 | |
|   return DIE;
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, 
 | |
|                                                     unsigned NumIndexExprs) {
 | |
|   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
 | |
|                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
 | |
|   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
 | |
| }
 | |
| 
 | |
| void DesignatedInitExpr::setDesignators(const Designator *Desigs, 
 | |
|                                         unsigned NumDesigs) {
 | |
|   if (Designators)
 | |
|     delete [] Designators;
 | |
| 
 | |
|   Designators = new Designator[NumDesigs];
 | |
|   NumDesignators = NumDesigs;
 | |
|   for (unsigned I = 0; I != NumDesigs; ++I)
 | |
|     Designators[I] = Desigs[I];
 | |
| }
 | |
| 
 | |
| SourceRange DesignatedInitExpr::getSourceRange() const {
 | |
|   SourceLocation StartLoc;
 | |
|   Designator &First =
 | |
|     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
 | |
|   if (First.isFieldDesignator()) {
 | |
|     if (GNUSyntax)
 | |
|       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
 | |
|     else
 | |
|       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
 | |
|   } else
 | |
|     StartLoc =
 | |
|       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
 | |
|   return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
 | |
|   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
 | |
|   char* Ptr = static_cast<char*>(static_cast<void *>(this));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
 | |
|   assert(D.Kind == Designator::ArrayRangeDesignator && 
 | |
|          "Requires array range designator");
 | |
|   char* Ptr = static_cast<char*>(static_cast<void *>(this));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
 | |
|   assert(D.Kind == Designator::ArrayRangeDesignator && 
 | |
|          "Requires array range designator");
 | |
|   char* Ptr = static_cast<char*>(static_cast<void *>(this));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
 | |
| }
 | |
| 
 | |
| /// \brief Replaces the designator at index @p Idx with the series
 | |
| /// of designators in [First, Last).
 | |
| void DesignatedInitExpr::ExpandDesignator(unsigned Idx, 
 | |
|                                           const Designator *First, 
 | |
|                                           const Designator *Last) {
 | |
|   unsigned NumNewDesignators = Last - First;
 | |
|   if (NumNewDesignators == 0) {
 | |
|     std::copy_backward(Designators + Idx + 1,
 | |
|                        Designators + NumDesignators,
 | |
|                        Designators + Idx);
 | |
|     --NumNewDesignators;
 | |
|     return;
 | |
|   } else if (NumNewDesignators == 1) {
 | |
|     Designators[Idx] = *First;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Designator *NewDesignators 
 | |
|     = new Designator[NumDesignators - 1 + NumNewDesignators];
 | |
|   std::copy(Designators, Designators + Idx, NewDesignators);
 | |
|   std::copy(First, Last, NewDesignators + Idx);
 | |
|   std::copy(Designators + Idx + 1, Designators + NumDesignators,
 | |
|             NewDesignators + Idx + NumNewDesignators);
 | |
|   delete [] Designators;
 | |
|   Designators = NewDesignators;
 | |
|   NumDesignators = NumDesignators - 1 + NumNewDesignators;
 | |
| }
 | |
| 
 | |
| void DesignatedInitExpr::Destroy(ASTContext &C) {
 | |
|   delete [] Designators;
 | |
|   Expr::Destroy(C);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ExprIterator.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
 | |
| Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
 | |
| Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
 | |
| const Expr* ConstExprIterator::operator[](size_t idx) const {
 | |
|   return cast<Expr>(I[idx]);
 | |
| }
 | |
| const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
 | |
| const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Child Iterators for iterating over subexpressions/substatements
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // DeclRefExpr
 | |
| Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
 | |
| 
 | |
| // ObjCIvarRefExpr
 | |
| Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
 | |
| Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
 | |
| 
 | |
| // ObjCPropertyRefExpr
 | |
| Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
 | |
| Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
 | |
| 
 | |
| // ObjCKVCRefExpr
 | |
| Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
 | |
| Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
 | |
| 
 | |
| // ObjCSuperExpr
 | |
| Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
 | |
| 
 | |
| // PredefinedExpr
 | |
| Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
 | |
| 
 | |
| // IntegerLiteral
 | |
| Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
 | |
| 
 | |
| // CharacterLiteral
 | |
| Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
 | |
| Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
 | |
| 
 | |
| // FloatingLiteral
 | |
| Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
 | |
| 
 | |
| // ImaginaryLiteral
 | |
| Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
 | |
| Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
 | |
| 
 | |
| // StringLiteral
 | |
| Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
 | |
| 
 | |
| // ParenExpr
 | |
| Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
 | |
| Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
 | |
| 
 | |
| // UnaryOperator
 | |
| Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
 | |
| Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
 | |
| 
 | |
| // SizeOfAlignOfExpr
 | |
| Stmt::child_iterator SizeOfAlignOfExpr::child_begin() { 
 | |
|   // If this is of a type and the type is a VLA type (and not a typedef), the
 | |
|   // size expression of the VLA needs to be treated as an executable expression.
 | |
|   // Why isn't this weirdness documented better in StmtIterator?
 | |
|   if (isArgumentType()) {
 | |
|     if (VariableArrayType* T = dyn_cast<VariableArrayType>(
 | |
|                                    getArgumentType().getTypePtr()))
 | |
|       return child_iterator(T);
 | |
|     return child_iterator();
 | |
|   }
 | |
|   return child_iterator(&Argument.Ex);
 | |
| }
 | |
| Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
 | |
|   if (isArgumentType())
 | |
|     return child_iterator();
 | |
|   return child_iterator(&Argument.Ex + 1);
 | |
| }
 | |
| 
 | |
| // ArraySubscriptExpr
 | |
| Stmt::child_iterator ArraySubscriptExpr::child_begin() {
 | |
|   return &SubExprs[0];
 | |
| }
 | |
| Stmt::child_iterator ArraySubscriptExpr::child_end() {
 | |
|   return &SubExprs[0]+END_EXPR;
 | |
| }
 | |
| 
 | |
| // CallExpr
 | |
| Stmt::child_iterator CallExpr::child_begin() {
 | |
|   return &SubExprs[0];
 | |
| }
 | |
| Stmt::child_iterator CallExpr::child_end() {
 | |
|   return &SubExprs[0]+NumArgs+ARGS_START;
 | |
| }
 | |
| 
 | |
| // MemberExpr
 | |
| Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
 | |
| Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
 | |
| 
 | |
| // ExtVectorElementExpr
 | |
| Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
 | |
| Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
 | |
| 
 | |
| // CompoundLiteralExpr
 | |
| Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
 | |
| Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
 | |
| 
 | |
| // CastExpr
 | |
| Stmt::child_iterator CastExpr::child_begin() { return &Op; }
 | |
| Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
 | |
| 
 | |
| // BinaryOperator
 | |
| Stmt::child_iterator BinaryOperator::child_begin() {
 | |
|   return &SubExprs[0];
 | |
| }
 | |
| Stmt::child_iterator BinaryOperator::child_end() {
 | |
|   return &SubExprs[0]+END_EXPR;
 | |
| }
 | |
| 
 | |
| // ConditionalOperator
 | |
| Stmt::child_iterator ConditionalOperator::child_begin() {
 | |
|   return &SubExprs[0];
 | |
| }
 | |
| Stmt::child_iterator ConditionalOperator::child_end() {
 | |
|   return &SubExprs[0]+END_EXPR;
 | |
| }
 | |
| 
 | |
| // AddrLabelExpr
 | |
| Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
 | |
| 
 | |
| // StmtExpr
 | |
| Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
 | |
| Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
 | |
| 
 | |
| // TypesCompatibleExpr
 | |
| Stmt::child_iterator TypesCompatibleExpr::child_begin() {
 | |
|   return child_iterator();
 | |
| }
 | |
| 
 | |
| Stmt::child_iterator TypesCompatibleExpr::child_end() {
 | |
|   return child_iterator();
 | |
| }
 | |
| 
 | |
| // ChooseExpr
 | |
| Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
 | |
| Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
 | |
| 
 | |
| // GNUNullExpr
 | |
| Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
 | |
| 
 | |
| // ShuffleVectorExpr
 | |
| Stmt::child_iterator ShuffleVectorExpr::child_begin() {
 | |
|   return &SubExprs[0];
 | |
| }
 | |
| Stmt::child_iterator ShuffleVectorExpr::child_end() {
 | |
|   return &SubExprs[0]+NumExprs;
 | |
| }
 | |
| 
 | |
| // VAArgExpr
 | |
| Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
 | |
| Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
 | |
| 
 | |
| // InitListExpr
 | |
| Stmt::child_iterator InitListExpr::child_begin() {
 | |
|   return InitExprs.size() ? &InitExprs[0] : 0;
 | |
| }
 | |
| Stmt::child_iterator InitListExpr::child_end() {
 | |
|   return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
 | |
| }
 | |
| 
 | |
| // DesignatedInitExpr
 | |
| Stmt::child_iterator DesignatedInitExpr::child_begin() {
 | |
|   char* Ptr = static_cast<char*>(static_cast<void *>(this));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
| }
 | |
| Stmt::child_iterator DesignatedInitExpr::child_end() {
 | |
|   return child_iterator(&*child_begin() + NumSubExprs);
 | |
| }
 | |
| 
 | |
| // ImplicitValueInitExpr
 | |
| Stmt::child_iterator ImplicitValueInitExpr::child_begin() { 
 | |
|   return child_iterator(); 
 | |
| }
 | |
| 
 | |
| Stmt::child_iterator ImplicitValueInitExpr::child_end() { 
 | |
|   return child_iterator(); 
 | |
| }
 | |
| 
 | |
| // ObjCStringLiteral
 | |
| Stmt::child_iterator ObjCStringLiteral::child_begin() { 
 | |
|   return &String;
 | |
| }
 | |
| Stmt::child_iterator ObjCStringLiteral::child_end() {
 | |
|   return &String+1;
 | |
| }
 | |
| 
 | |
| // ObjCEncodeExpr
 | |
| Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
 | |
| 
 | |
| // ObjCSelectorExpr
 | |
| Stmt::child_iterator ObjCSelectorExpr::child_begin() { 
 | |
|   return child_iterator();
 | |
| }
 | |
| Stmt::child_iterator ObjCSelectorExpr::child_end() {
 | |
|   return child_iterator();
 | |
| }
 | |
| 
 | |
| // ObjCProtocolExpr
 | |
| Stmt::child_iterator ObjCProtocolExpr::child_begin() {
 | |
|   return child_iterator();
 | |
| }
 | |
| Stmt::child_iterator ObjCProtocolExpr::child_end() {
 | |
|   return child_iterator();
 | |
| }
 | |
| 
 | |
| // ObjCMessageExpr
 | |
| Stmt::child_iterator ObjCMessageExpr::child_begin() {  
 | |
|   return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
 | |
| }
 | |
| Stmt::child_iterator ObjCMessageExpr::child_end() {
 | |
|   return &SubExprs[0]+ARGS_START+getNumArgs();
 | |
| }
 | |
| 
 | |
| // Blocks
 | |
| Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
 | |
| Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
 | |
| 
 | |
| Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
 | |
| Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
 |